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Abstract

The dispersive properties of high order finite element schemes are anal-
ysed in the setting of the Helmholtz equation, and an explicit form the
discrete dispersion relation is obtained for elements of arbitrary order. It
is shown that the numerical dispersion displays three different types of
behaviour depending on the size of the order of the method relative to the
mesh-size and the wave number. Quantitative estimates are obtained for
the behaviour and rates of decay of the dispersion error in the differing
regimes. All estimates are fully explicit and are shown to be sharp. Limits
are obtained for where transitions between the different regimes occurs,
and used to provide guidelines for the selection of the mesh-size and the
polynomial order in terms of the wave number so that the dispersion error
is controlled.
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1 Introduction

Wave propagation phenomena arising in practical applications typically require
large wave number (or frequency) w. Accurate numerical simulation of such
applications is thwarted by a number of issues, perhaps the most acute of which
is numerical dispersion. This refers to the effect whereby the numerical scheme
fails to propagate waves at the correct speed resulting a phase-lead or lag in the
numerical approximation. Numerical dispersion is often responsible not only
for poor resolution but approximations that are even qualitatively incorrect.
Finite elements are often the method of choice for engineer’s interested
in problems of continuum mechanics posed over complicated domains. It is
therefore not surprising that finite elements are frequently used in numerical
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wave propagation [3]. The importance of numerical dispersion is widely recog-
nised, and is often used in assessing the quality of a numerical scheme and
as a basis for ranking different finite element methods. For instance, Harari
and co-workers [16-19] consider the use of stabilised and Galerkin least squares
finite element formulations for combatting the problem of dispersion in the so-
lution of acoustic scattering problems, typically in the context of low order
finite elements. Pinsky and co-workers [1,25] also study the discrete dispersive
properties of various lower order finite element methods (such as the 8-node
trilinear element, 20-node serendipity, 27-node tri-quadratic element) for the
approximation of the scalar wave equation in three dimensions. More recently,
Christon [6] considered the dispersive behaviour of a variety of finite element
schemes for the second-order wave equation and performed a computational
study of the discrete phase and group velocities.

Advantages of using higher order elements have also been widely recognised.
For example, Harari and Avraham [18] compare the efficiency of first and sec-
ond order elements for the solution of acoustic scattering problems, and view
their work as justifying the extension of the ideas to higher order (p-version)
finite elements. Thompson and Pinsky [29] study the dispersive and atten-
uation properties of finite elements up to fifth order for the one dimensional
scalar Helmholtz equation, and on the basis of numerical evidence, conjecture
that elements of degree p provide a 2p-th order accurate approximation of the
dispersion relation in the limit wh tends to zero.

Applications are not confined to applications in acoustic scattering, for in-
stance, Dyson [12] proposes the use of high (up to fifteenth) order schemes
for propagation of waves for Euler equations. Monk and Cohen [7-9, 24] have
considered the dispersive behaviour of lower order finite element methods for
Maxwell’s equations. The use of high order finite element and spectral element
schemes for the approximation of Maxwell’s equations has attracted much in-
terest [10, 20].

The first systematic study of the properties of finite element methods for
high wave number applications was carried out in a series of papers by Babuska
and Thlenburg. In [4,21], the convergence properties in H!-norm of first order
finite elements for the one dimensional model Helmholtz problem are studied
working under the assumption that wh < 1, and it is show that the pollution
error is of the same order as the dispersion error. These ideas are extended to
higher dimensions by Deraemaeker et. al. [11] who undertake a numerical study
of the dispersive behaviour for various finite element formulations in higher
dimensions that allow one to include topological effects of the meshes, while
Gerdes and Ihlenburg [14] study convergence of an h-version Galerkin finite
element method for a 3D-problem of rigid scattering with mesh refinement in the
radial direction, and show that the error bound contains pollution effects similar
to those observed in the one dimensional analysis. A detailed study of the
dispersion and approximation behaviour of Ap-finite elements for the Helmholtz
equation in one dimension is undertaken by Ihlenburg and Babuska [22].

Despite extensive investigations, several important issues concerning the dis-
persive properties of standard finite element schemes remain unresolved, par-
ticularly in the context of high order elements. The aim of the present work
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is to give a sharp analysis of the dispersive properties of high order finite ele-
ment schemes in the setting of the Helmholtz equation, to identify thresholds
(relating the order p of the method and the mesh-size h to the wave number w)
where the dispersion error begins to decay, and to obtain sharp quantitative
estimates on the rates of decay of the error in the differing regimes. A clear
understanding of the dispersive properties of a scheme is not only of academic
interest. Accurate quantitative information on the dispersion effects can serve
as a practical guideline for the construction of a mesh and a polynomial order
that will lead to a reasonable first approximation.

The analysis hinges on knowledge of an explicit form for the discrete disper-
sion relation valid for elements of arbitrary order. This is obviously a valuable
tool for the study of numerical dispersion, and, to the best of our knowledge,
has not been obtained before. We derive a neat closed form expression for the
discrete dispersion relation for elements of arbitrary order in terms of Padé
approximants.

We study the behaviour of the error in the discrete dispersion relation in two
important limits: (i) the small wave number limit where wh < 1 limit, where
we provide a confirmation of the conjecture of Thompson and Pinsky [29]; and
(ii), in the important practical case of high wave number, where wh > 1. The
analysis provides a practical guideline for choosing the order p of the elements
and the mesh-size h in order that the dispersion error is properly controlled:

ptisy C(wh)'/3. (1)

2 2
In fact, when p is increased in this regime, the error decays at a super-exponential
rate, and an explicit expression for the error is given. In the limit where p is
much larger than wh/2, the expression decays as (whe/2(2p + 1))?P*1, which
is compatible with the upper bounds derived by Ihlenburg and Babuska [22].
More importantly, criterion (1) is shown to be sharp in the sense that if p does

not satisfy (1), i.e. if

p—|—2 < > o(wh)™?,

then the dispersion error will not decay, and may even increase significantly
as the order p is increased. These results show that there is essentially no
pre-asymptotic error reduction which one might have expected based on the
analysis for the positive definite case [28]. Strictly speaking, the error does
begin to decay when p enters the transition zone

1
P+ 5 € <%h — o(wh)'/?, %h + o(wh)l/g) .

However, it is shown that the decay in this phase is only algebraic: (’)(pfl/ 3,
and the comparatively narrow transition zone means that the pre-asymptotic
decay is too short-lived to be of any real practical significance.

The results obtained here improve on the upper bounds given in [22]. In
particular, all estimates are given explicitly and do not involve generic con-
stants. This enables us to show that these estimates are the best ones possible.
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Our analysis is restricted to schemes of uniform order on tensor product meshes.
Nevertheless, this type of scheme is used locally in regions remote from the scat-
terer where the main issue is to control numerical dispersion. Equally well, our
analysis only deals with the issue of numerical dispersion. The actual accuracy
of the approximation is a separate issue which is considered by Ihlenburg and
Babuska [22], where it is shown that the error in the H'-norm will be properly
controlled only if w?h is sufficiently small.

The remainder of this article is organised as follows. Firstly, we review the
standard framework leading to the derivation of the discrete dispersion relation
in the setting of the wave equation in one dimension, and describe the relevance
of this to the multi-dimensional case where tensor product meshes are used. The
main results are outlined in the following section. The remaining sections deal
with the technical details and proofs of the results.

2 The Discrete Dispersion Relation

2.1 The Setting

It is well-known that the general solution of the homogeneous wave equation in
one space dimension

Pu  0%u _0

o a2
can be expressed as a superposition of plane waves in the form

U(:L',t) :/ [a(k)ei(kx-i-wt)+b(k)ei(kx—wt) dk
R

for suitable functions a and b, where w and k are related by the dispersion
relation
w? = k%

Suppose that a uniform grid of size h > 0 is placed on the real line with
nodes located at hZ, and let V}, denote the set of continuous piecewise linear
functions relative to the grid. By analogy with the continuous problem, we may
seek solutions of the form

up(x,t) = ™', (z) (2)
so that Uy € Vj, must satisfy
B, (Up,vp,) =0 for all v, € V}, (3)

where

B.(Up,vn) = (Up, vp) — w*(Up, vn)

and (-, -) denotes the Lo-inner product on R.
The invariance of the grid under translation by h prompts use to seek Bloch
wave [26] solutions of the homogeneous eq. (3) in the form

Un(z) =« Z emkhg  (x) (4)

MEZ
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where « and k are constants to be determined. Here, 0,, are the usual piecewise
linear hat functions defined by

O (nh) = Oy, m,n € Z. (5)
The translation invariance of the grid means that
Om(x +nh) =0, _n(x), z€R, nezZ,

which in turn implies that U has the characteristic property of a Bloch wave:
for each n € Z, .
Un(z +nh) = e*nhy, (z), =z eR. (6)

This means that (3) is equivalent to the condition
BW(U/’H 90) = 07

or, inserting the expression (4) for Uy,
o Z eimkth(Hm, 6o) = 0.
MEZL
Hence, a non-trivial Bloch wave exists provided that
> ™ By (6m, 00) = 0.
mEZ
This expression may be simplified further using properties of the hat functions
giving ' '
eilkth(e_l, (90) + Bw(eo, (90) + e’kth(el, 90) =0,

and, again by exploiting translation invariance of the grid, we obtain the discrete
dispersion relation

2 COS(kh)Bw (91, 90) + B, (90, 90) =0. (7)

We refer to eq. (7) as the dispersion relation for the following reason. For
the first order standard Galerkin scheme considered above, we find that

2 1 1 1
B.y(00,00) = 7 (1 - §w2h2> i Bu(61,00) = - (1 + 6w2h2>

and the discrete dispersion relation simplifies to give the well-known result

6 — 2w?h? 1

_ -1
kh = cos ( o
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2.2 Extension to High Order Schemes
The discrete dispersion relation for higher order schemes may be obtained by
modifying the previous arguments. Let V}, denote the set of continuous piece-
wise polynomials of degree p on the grid hZ, and let V,Ep denote the subspace
V,Ep = {vpp € Vi : Upp(mh) = 0,m € Z}.
As before, we seek a Bloch wave solution Up, € Vj,, satisfying
B,(Unp, vnp) = 0 for all vpy, € V.

Accordingly, we write Uy, in the form

Unplw) = 3 " [0 () + 00 (2 = mi)| (8)
mEZ
where o and 3 are constants, and ¢(p) € Vhbp is supported on (0, k). By analogy
with (5), the function 9,(5) € Vi has nodal values given by

0P (nh) = 6, myn € Z, (9)

but is instead extended to the element interiors as a polynomial of degree p by
requiring that
Bo,(0), vpp) = 0 for all vy, € V. (10)

If w does not correspond to a discrete eigenvalue, then 0#:) is uniquely defined
by this condition. It is not difficult to show that the function Uy, satisfies the
Bloch wave condition: for all n € Z,

Upp(x + nh) = e*MUy(2), z €R.

Consequently, exploiting translation invariance of the grid, it suffices to require

Bw(Uhpae(()p)) =0
Bo(Upp, p®) = 0.

By inserting the expression (8) for Uy, into the latter equation, using (10) and
the fact that w does not correspond to a discrete eigenvalue, we conclude that
1/1(”) must vanish identically. Consequently, the expression (8) collapses to the
form considered in the case of first order schemes,

Unp(z) = « Z eikmhﬁﬁfl’)(:b), (11)

MEZ

and by analogy with (7), the higher order discrete dispersion relation assumes
the form
2 cos(kh) B, (0, 0y + B, (6", 6%)) = 0. (12)

The same expression was obtained by IThlenburg and Babuska [4,22]. A detailed
study of the discrete dispersion relation for higher order elements is postponed
until the next section.
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2.3 Relevance to Multi-Dimensional Problems

Information on the discrete dispersion relation for the scalar Helmholtz equation
in one dimension may be used to derive explicit forms for the discrete dispersion
relation for finite element approximation of problems in higher dimensions on
tensor product meshes. Here, we describe the case of the wave equation in detail.
An extension of the argument to the approximation of Maxwell equations using
Nédélec elements will be found in [2].

Consider the wave equation in d-dimensions,

1 0%u
———Au=0
c? Ot?
and assume that a tensor product grid hZ? is introduced on R?. Let Vhyp denote
the space of piecewise polynomials of total degree p in each variable on the
grid, then seeking a discrete solution of the form (2) leads to the problem of

determining Uy, € Vh(;l) such that

d
OUnp Ovnyp 2 (d)
Z ( oz, on. ) K (Unp, vnp) = 0, for all vy, € Vip' -

r=1

The tensor product structure prompts us to seek a solution of the form

d
Unp(x1,...,2q) = H Xp(kr; zp)
r=1
where « is a constant, and
Xp(k;s) = ™ol (s) (13)

MEZL
with ¢£,’Z) defined as above. In particular, we recall that X, (k) € V3, satisfies
(X (kr),v') = 62(Xp(kr),v) = 0 for all v € Vi, (14)

where k, is related to k, by the discrete dispersion relation (12).

Choosing the test function vy, to be a product of one dimensional functions
[]vr, leads to the following necessary condition for the existence of non-trivial
solutions

d d

Z((I);;(kq)’ U(l;) H(Xp(kr)’ vp) — K? H(Xp(kr)’ vp) =0,

q=1 r#q r=1

Therefore, in view of (14), we obtain

d d
(Z ”72« - ”2> H(Xp(kq)a vg) = 0,

r=1
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and it follows that the discrete dispersion relation for the multi-dimensional
scheme is given by

d
Zlﬁ% = K? (15)
r=1

where £, is related to k, by the discrete dispersion relation (12). An alternative
proof of this result for Gauss point mass lumped finite element schemes will be
found the book [9, p. 228]. The above argument extends immediately to these
schemes.

3 Higher Order Discrete Dispersion Relation

An explicit expression for the higher order dispersion relation could, at least in
principle, be derived by proceeding directly as in the first order case. Unfortu-
nately, such a direct computation rapidly becomes intractable with increasing
order, as pointed out in [9], and the general result seems to be unavailable. In
Sect. 4, we prove that the discrete dispersion relation is given explicitly in terms
of Padé approximants [5]:

Theorem 1 Suppose p € N, and define set N. = |p/2] and N, = |(p+1)/2].
Let 2N 4+ 2/2Ne),. tan . 01d [2No/2Ny — 2], o . denote the Padé approzimants
to ktan k and K cot k respectively. Then, the discrete dispersion relation is given

by

cos(kh) = Ry(hw) (16)
where Ry, is the rational function
2Ny/2N, — 2 — 2N, +2/2N,
RP(QKZ) — [ / ]ncotn [ + / ]ntann_ (17)
[2N0/2N0 - 2]ncotrs + [2N€ + 2/2N€]ntann

Despite the apparent simplicity, this result has been hitherto unknown in the
literature, although special cases for lower order elements can be found in many
sources. Table 1 shows the discrete dispersion relation and the leading term in
the error in the dispersion relation for methods of order p = 1 to p = 4. For
example, in the case of first order approximation p = 1,

6 — 2w2h?
6+ w?h?’

which agrees with the result obtained for first order approximation in the pre-
vious section.

cos(kh) = Ry(wh) =

3.1 Accuracy at Small Wave Numbers

The following general result for the leading term for the error in the dispersion
relation, valid for wave numbers satisfying wh < 1, is proved in Sect. 4:

Theorem 2 Let p € N. Then, the error in the discrete dispersion relation is
given by

+ O(wh)?P 4, (18)

! ]2 (wh)2P+2

1
coskh — coswh = = [(Qp)! o+l

2
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Order p R,(£Y) cosT1 R,(Q) — Q

) 202+ 6 o
02 +6 24

5 304 — 10402 + 240 o

Q4 + 1602 + 240 1440
5 —406 4 5400% — 1152092 + 25200 a8

Q6 + 30094 + 108092 + 25200 201600
A 508 — 1800926 + 1340640Q* — 2378880022 + 5080320 o
Q8 + 4806 + 302404 + 16128002 + 5080320 50803200

Table 1: Discrete dispersion relation cos(kh) = R,(wh) for order p approxima-
tion given in Theorem 1. The leading term in the series expansion for the error
when © < 1 (see Theorem 2) is also indicated.

or, if kh is sufficiently small,

1[ p! 17 (wh)2Pt! ot
kh —wh = —= O(wh)?P+3, 1
W= [<2p>!] op 1 T OWN 19)
The result implies that
k
~-1=0 (wh)? (20)

meaning that the dispersion relation for a p-th order scheme is accurate to order
2p. This is consistent with the conjecture made by Thompson and Pinsky [29,
eq. (41)] on the basis of numerical evidence in the particular cases of elements
of order p =1 to 5.

3.2 Accuracy at Large Wave Numbers

While error estimates for small values of wh are not without interest, the most
interesting case in practice is the high wave number limit, where the practical
limitations on the size of mesh means that product wh is large even though h
is small. The next result describes the behaviour of the error as the order of
approximation p is increased, so that both p and wh are large:

Theorem 3 Suppose that wh > 1. Then, the error EP = cos kh — coswh in
the discrete dispersion relation passes through three distinct phases as the order
p € N is increased:

1. Oscillatory Phase: For2p+1 < wh—o(wh)l/g, EP oscillates, but does not
decay, as p is increased;

2. Transition Zone: For wh — o(wh)'/3 < 2p+1 < wh + o(wh)'/3, the error
EP decays algebraically at a rate O(p*1/3),'

3. Super-FExponential Decay: For 2p+ 1 > wh + 0(wh)1/3, EP decreases at a
super-exponential rate:

sin(2wh) F(VI=(h/Cr+ 1))

EP ~

)p-l-l/?’ (21)
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Figure 1: Behaviour of error in discrete dispersion relation for high wave num-
bers wh > 1 as the order p is increased. The transition region between the
oscillatory phase and the super-exponential decay of the error is indicated in
each case (cf. Theorem 3).

where f:w — (1—w)/(1+w)exp(2w), so that in the case where 2p+1 >
whe/2,

(22)

o~ sin(wh) whe %1
T2 |2(2p+1) '

Observe that the term appearing in parentheses in eq. (21) has magnitude
less than unity, which follows from the fact that the function f : w — (1 —
w)/(1+ w) exp(2w) is non-negative and monotonic decreasing on [0, 1] and the
observation that f(0) = 1.

Figure 1 shows the behaviour of the actual error as the order p is increased
for a range of values of wh. The oscillatory region and the transition to the
super-exponential decay in the error described in Theorem 3 can be clearly
discerned.

Theorem 3 provides clear guidelines for the construction of meshes and
choice of order for numerical resolution of waves using finite elements. In order
to ensure that the dispersion error is properly controlled, it is desirable that we
work in the super-exponential regime. For this reason, it is recommended to
choose the order p and the mesh-size h so that

2+ 1> wh + C(wh)/3. (23)
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The numerical results shown in Fig. 1 support this criterion. It is interesting
that the same type of criterion is found in the implementation of the Fast
Multipole Method for scattering problems [23, Eq. (3.38)].

4 Proofs of the Results

4.1 Basic polynomials

Let B denote the bilinear form

where k > 0 is a constant. We introduce the following basic polynomials, ®5
and ®, of degree at most p € N satisfying:

(1) =1: B(@,v)=0 YveP,NH}-1,1) (24)

and
Pr(+1)==+1: B(@0)=0 YoeP,nHi(-1,1). (25)

Throughout, it will be assumed that x does not coincide with an eigenvalue for
this problem so that the polynomials are defined uniquely by these conditions.

It is easy to see that ®) and ®% are odd and even functions, respectively.
The first result gives explicit closed forms for the expressions B(®%, ®2) and
B(®?, ®F) which will be needed later.

Theorem 4 Let p € N satisfy p > 2. Then:

1. if k # (m+1/2)w for all m € Z,

~ Joniz/e(k)cosk + Yonig/o(k)sink
B0, D) — 2 2 3/2() COS + Vo y/2() (26)
oNt3/2(K)sink — Yon3/9(K) cosk
where N = |p/2], and |-] denotes the integer part;
2. if Kk £ mm for allm € 7,
~ J. K)sink — Y5 K) COS K
B(o?, o2) = 2% an+1/2(K) an+1/2(K) 27)

Jong1/2(K) cosk + Yonpq/2(k) sink

where N = |(p+1)/2].

Proof. Symmetry arguments reveal that the function ®2 is an even order
polynomial of degree 2N, where N = [p/2]. For the remainder of the proof
superscripts will be omitted since no confusion is likely to arise. Using defini-
tion (24) and integrating by parts shows that

1
/ (! + k2@ vdz =0 Yo € Poy N HE(—1,1)
-1
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where the superscript p has been omitted. The term in parentheses is a poly-
nomial of degree 2N, which may be written in the form

2N+1
D+ k2D, = Z Ly (z)
k=1

for suitable scalars py, where Ly is the Legendre polynomial [15] of degree
k. Inserting v = (1 — 2?)L)(z), with j = 1,2,...,2N — 1, and recalling the
orthogonality property [15]

1
/ (1— a:2)L;(a:) Li(x)dx =0 for j # k,
-1

leads to the conclusion p; = 0 for j = 1,2,...,2N — 1. Furthermore, the fact
that L, is an odd function and a parity argument shows pany = 0. Hence,

OY + Ko = pan 11 Loy 41 (28)

It is not difficult to verify that the function wey defined by

N e
wn@) =3 () HEE) 29)

§=0
is a polynomial of degree 2N satisfying
wyy + KPwan = =Ly
Consequently, ®. may be written in the form

_ ’LUQN(.’L')
O (x) = wan (D)

provided that won (1) is non-zero, and moreover, inserting this form into eq. (28)
reveals that
pan+1 = —1/wan(1).

With the aid of these results, we obtain

1
S 1
B(®.,®.) = [<I>;<I>e]1—/ ®, (P + K*®e) dx
-1
1
QCL,QN-FI dx
1

= 2(I)Ie(1)_ﬂ2N+1/

= 20L(1) — pont1 [PeLon 1],

= 2(Pu(1) — pont1)
2
= — = (1+uwhy(1)),
where standard properties of Legendre polynomials have been used such as the
fact that Loy is orthogonal to any polynomial of lower degree with respect
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to the Lo(—1,1) inner product, and Loyi1(£1) = £1. The values of w and its
derivative at x = 1 are given by the following formula which is obtained using
eq. (8.910) in [15]:

(n+d)! (£1)4n
, ford=0,...,n
LW (+1) ={ d(n—a) 2d (30)

0, otherwise.
giving, after some manipulation,
1+ whn(1) = agn+1 (31)

and
ng(l) = —b2N+1/I€. (32)

Here, a, and b, are the expressions defined, for non-negative integers n, by

Ln/2]

_ (=DF (n+2k)! 1
fn = kzzo (2k)! (n — 2k)! (2m)7F (33)

and
DR ok 2k 1y 1

bn = kzo 2k + 1)1 (n — 2k — 1)1 (2r)2F1

These series appear in formulae (8.461) and (8.465) of [15], and satisfy the
identity

sin(k —mn/2)  cos(k —n/2) ] [ an ] B \/71'_7[ ny1/2(K)
cos(k —mn/2) —sin(k —mn/2) by |V 2 [ ()" WYi2(k)
(35)
where Jy,11/5 and Y, 1/, are Bessel functions of the first and second kind re-

spectively. Equation (35) may be rearranged to obtain expressions for the series
an and by, leading to the conclusion,

(34)

B J. K)cosk + Y- k) Sin K
B((I)e,(I)e) = —QK% - 9% 2N+3/2( ) 2N+3/2( )

= - 36
ban+1 Jony3/2(K) sink — Yon 1 3/5(K) cos & (36)

which completes the proof in the even case.
The proof of the odd order case follows similar lines, leading to the following
analogue of eq. (36),
B(®,, ®,) = —2k22N (37)
ban
where N = |(p+ 1)/2]. Inserting expressions for the series aon and boy, and
simplifying leads to the result claimed. [ |

Equations (26) and (27) provide compact representations for the terms B(9F, ®P)
and B(®5, ®%), but hide the fact that they are actually rational functions of
k. Interestingly enough, the expressions are actually certain types of Padé
approximant [5]:
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Theorem 5 Let p € N satisfy p > 2. Then:

1. E(@é’, ®L) is the 2N +2/2N]-Padé approximant of —2k tan k, where N =
|p/2]. Furthermore, if k # (m + 1/2)w, m € Z, then

EP(k) = B(®P, D) + 2k tank
1 [(2N+1)!]2 (2, )AN+4
2

(N 1+ 2)] + Ok ), (38)

4N +3

2. E(@ﬁ,@’;) is the [2N/2N — 2]-Padé approzimant of 2k cot k, where N =
[(p+1)/2]. If kK # mm, m € Z, then

~

EP(k) = B(PE,PY) —2kcot K

IN)IT? (2k)4N AN
- 2[E4N;!] iN)H O, (39)

Proof. Firstly, eq. (36) shows that B(®%, ®L) is given by —2kaon41/ban+1
where asny11 and bon4q are defined in (33)-(34). It is not difficult to see that
k2Nt agn,1 and k2N Flbyno 1 are polynomials in & of degree 2N + 1 and 2N
respectively. Hence, E(@g ,®%) is a rational function of degree [2N + 2/2N].
Straightforward manipulation beginning with the expression (26) gives

. 2K -
B(®2,®P) + 2k tan k = > HQ2N+3/2(”) (1 - Q2N+3/2(”) tan ”) ' (40)
where J (k)
2N+3/2\K
/4‘; =  —-——-————
Qon3/2(K) Yon5/2(r)

The behaviour of Qony3/2(k) is studied in the Appendix, where the following
estimate is proved in Lemma 6,

1[N+ (2)NF3
Qan+3/2(k) = —5 [(4N+2)!] AN +3

With the aid of this estimate, we obtain that

~ 1 [(2N+1)!]2 (24N H4 L

B(®P, ®P) + 2k tank = ~
(@, @6) + 26 tans =5 | N o) | ANt 3

as claimed. Summarising, we have shown that B (®L, ®L) is rational function
of degree 2NV + 2/2N] which approximates —2x tan x to order 4N + 4. Conse-
quently, B(®%, ®%) is the [2N + 2/2N]-Padé approximant of —2x tan x.

The assertions concerning B(®%, ®5) are proved in a similar fashion. In
particular, using eq. (37) it is easy to see that B(®%, ®b) is a rational function
of type [2N/2N — 2]. With the aid of eq. (27), we derive

~ 2K

B(PL, ®2) — 2k cot k = — Qony1/2(r) (1 + Qanyaya(r) cot k), (41)

sin? K
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where
Jont1 /2(5)

N Yon41/2(k)

and then, applying Lemma 6, we deduce that

Qan+1/2(K)

o~ INNT? (2r)4Y
B(®2, d0) — 2 =2 (
(®P, ®P) — 2Kk cot k [(4N)!] 4N—|—1+

as claimed. It follows that B(®%, ®%) is the [2N/2N — 2] Padé approximant of
2K cot K. |
4.2 Proof of Theorem 1

We are now in a position to present the proof of Theorem 1:

Proof. Fix k = wh/2. Firstly, we claim that for z € (0, k), the function o)
defined in eqgs (9)-(10) may be expressed in terms of the basic polynomials as
follows:

) () = 5 [®(s) — B3]
and !
0 () = 5 [22(s) + P5(s)]

where s = 2x/h — 1 € (—1,1). It is easy to verify that the expression for Qép )

takes the correct values at the endpoints x = 0 and x = h. Moreover, since
®L is a polynomial of degree p (in both z and s), it suffices to show that the
orthogonality condition (10) is satisfied. Let vp, € Vhbp be supported on (0, h)
and define V. € PN H}(—1,1) by V(s) = vpy(z), z € (0,h). A simple change of
variable reveals that

B,(0P  vpp) = h 1 B(BL — T2, V)

and conditions (24)-(25) show that this vanishes. Similar arguments may be

applied in the case of ng ).

It is clear from symmetry considerations that Hép ) is an even function. This

fact, combined with a simple change of variable shows that, since wh = 2k,
B0, 08"y = n=' B(er — @b, &F — oD)
then, exploiting the parities of ® and ®5, we obtain
B, (6, 0lP) = p1 [E(@g, or) + B(oP, cpg)] .
Similar arguments reveal that

B0, 0") = (2n)"" [ B(oL, @) — B(ah, @5)] .
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Substituting these results into (12) gives

B(TE, ©8) + B(DL, P)
B(®%, ®L) — B(PE, 3P)’

cos(kh) = (42)
Theorem 5 identifies the terms appearing in this quotient as Padé approxi-
mants, and substituting for these expressions leads to the result claimed in
Theorem 1. [ |

4.3 Error for Small wh

The general result for the leading term given in Theorem 2 for the error in the
dispersion relation for small wave number is proved using Theorem 5 as follows:

Proof. Fix k = wh/2 < 1, and let &(k) and &(x) be defined as in Theo-
rem 5. By writing B(®?, ®%) and B(®5, ®%) in terms of £F and &) respectively,
substituting into eq. (42), followed by a lengthy but otherwise straightforward
computation, one arrives at the following expression for the error in the discrete
dispersion relation:

coskh — coswh =

(€7 sin®(wh/2) + €7 cos®(wh/2)} {1 + Sg;‘;h (€ - eg)}_ (43)

sinwh

wh

(Here, the argument x of £ and £) has been suppressed.) In particular, for
small argument, Theorem 5 implies that

(2No)!]? h)*™e |

AN | 4N, +1

-]

where N, = [(p+1)/2], and

1 [(2N, + 1)!] ? (wh)tNe+4 N

EP =~
2 [ (4N, +2)! 4N, + 3
where N, = [p/2]. It then follows that

2
cos kh — coswh = (%h) EP+E+ ...

where

() e =) [ENl e

2 2 [(4N,)!| 4N, +1

° 2
and &7 is given above. There are two cases, depending on the parity of the
polynomial order p:

e If p is even, then 2N, = 2N, = p and the term involving £, dominates
the error, giving

12 (wh)2+2
b ] W7

1
cosk:h—coswh—i [(2]9)! ot 1
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e If pis odd, then 2N, = p — 1 and 2N, = p + 1 and the term involving &7
now dominates the error, giving

1[ p! 17 (wh)2rt?
coskh — coswh = = [(2p)!] Sy

2

This concludes the proof of (18). Estimate (19) then follows immediately
from (18) using the approximation

cos kh — coswh = —(kh — wh)sinwh + . ..

valid for small kh — wh. [ ]

In examining this proof, we observe that the leading term in the remainder is
the same, regardless of the parity of the polynomial order p. This effect occurs
despite terms of different parities alternately dominating the error.

4.4 Error for Large wh
Now fix kK = wh/2 > 1. Equation (40) implies that, with k = wh/2,

cos?(wh/2)

ER (k)2 = ~Qanpa/2(k) {1 = Qanrapa(k) b} T (44)

while eq. (41) implies that

sin?(wh/2)

enln) T2

-1
= —Qan,+1/2(K) {1+ Qan,11/2(k) cot s} . (45)
Theorem 3 is proved using the foregoing results along with estimates for the
behaviour of the quotient (), studied in Theorem 7 of the Appendix:

Proof. Firstly, consider the pre-asymptotic regime where 2p + 1 < wh —
o(wh)/3. For p in this range, neither 2N, nor 2N, exceed k — o(k'/3), where
k = wh/2. Therefore, we are in the situation covered by the first part of
Theorem 7, where both Qap,41/2(k) and Qan,43/2(k) oscillate, but do not
decay. Consequently, with the aid of the identities (44)-(45) and the expression
for the error given in eq. (43), we are led to the conclusion that EP oscillates,
but does not decay, as p is increased in this range.

For p in the transition region where wh —o(wh)/? < 2p+1 < wh+o(wh)'/3,
it follows that both 2N, and 2N, lie in the transition region [k — o(k!/?), k +
o(k'/3)] dealt with in the second part of Theorem 7. Here, the term appearing
in the denominator of eq. (43) is O(1) for wh > 1. The identities (44)-(45)
show that the error in the dispersion relation is dictated by the behaviour of
the sum of Qon,y3/2(k) and Qan,+1/2(x). Applying Theorem 7, we conclude
that the error decays algebraically at a rate O(p~'/3).

The proof in the case where 2p + 1 > wh 4 o(wh)/? follows the same lines
as the argument used in the transition region, and will not be elaborated upon
further. ]
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A Behaviour of Q,,(k)
The quotient @Q),, defined by

Qm(k) = Yo ()’ m = integer + %, (46)

appears in the expression for the error in the Padé approximants considered in
Sect. 4. The following estimate, valid for small values of k, was used in the
proof of Theorem 5:

Lemma 6 Let m = integer + 1/2 and let @, be defined as above. Then, for
K<L,

1 (m—%)!'] @) (47)

Qmlr) = =3 [(2m —DI " 2m

Proof. Write m = n + 1/2 where n € Z. For small x, identity (8.440) of [15]
gives

1 K\ n1/2
while combining identities (8.465); and (8.440) of [15] gives

(=t (;)-7@-1/2 L

n—1
Yoi12(k) = (=1)""J_p_12(K) = T(1/2=n)
where I' denotes the gamma function. Therefore, using formulae (8.339) of [15]
gives, after some simplification,

1[ n! 1% (2k)2n 1
Qunl) =~ S AR
2 | @2n)!] 2n+1
and rewriting in terms of m gives the result claimed. [ |

Lemma 6 shows that @, (k) decays algebraically as x becomes small. How-
ever, it will be useful to consider the ratio in the regime x > 1, with particular
attention to the behaviour as the order m of the Bessel functions becomes large.
Figure 2 shows the behaviour of @, (x) when x = 20 as the order m is increased.
It is found that there are three distinct phases depending on the size of the or-
der m. Initially, @, (k) oscillates around unity. As the order m passes through
K, there is a relatively short-lived transition zone where @, (k) begins to decay
at an algebraic rate as m is increased. Finally, as m is increased further, @, (k)
decays at an exponential rate.

Our objective in the remainder of this section will be to show that the be-
haviour observed in this particular case is typical. The following result provides
sharp estimates for the values at which the different phases occur and quantifies
the rates of decay:

Theorem 7 Let )y, be defined as above, and m = integer+ 1/2. Then, as m
is increased, Qm (k) passes through three phases:
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. k=20
10 . : : : : : :
10° t ~J_ Exponential Decay
yhase
107 | -
z .
e Oscillatory Phase
= 107%
W
107° \ Transition Zone
(Algebraic Decay)
10‘20 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Order m

Figure 2: Graph showing the three phases in the behaviour of |Q,, (k)| for
Kk = 20 as the order m is increased.

1. form < k — o(k'/3), Qm(r) oscillates around unity, but does not decay
as m is increased,

2. for k —o(k'?) < m < k + o(k3), then Qm(k) decays algebraically at a
rate O(m~Y3). More precisely,

Qm(ﬁ)w—%—%r (§>2(ﬁ—m) (%)1/3+... (48)

3. form > K+ o(k'/3), Qm(k) decays at a super-exponential rate:

Qur) ~ — & | LoV L2 B2/ o i § (49)
" 2114 +/1—-kK%/m? ’

so that, for m > k,

1 1 ke 2m
Qm(k) ~ 3 [%} - (50)
The proof of this result is divided into four distinct cases covered in the following

sections.

A.1 Pre-asymptotic Regime: m <

We start by discussing the behaviour of @,,(x) in the pre-asymptotic regime
where the value of the argument x exceeds the order m of the Bessel functions.
Langer’s formulas [13, Sect. 7.13.4] provide uniform asymptotic expansions for
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Bessel functions of large order and large argument, and give

_ Jiy3(2) cos(w/6) = Yy 3(2) sin(n/6) + O(m=*/%)

Qulr) =7 /3(2) sin(7/6) + Y1 3(2) cos(m/6) + O(m=4/3)

(51)

where
z=m(w—tan"' w) and w = \/k2/m?2 — 1.

Bounds on the accuracy of the approximation obtained when the higher order
terms are dropped in eq. (51) could be obtained using the uniform asymptotic
expansions with remainder given in Olver [27]. However, we shall content our-
selves with making the approximation

_ () cos(/6) — Yiy(2) sin(r/6)
T1/3(2) S(/6) + Va3(2) cos(w/6)

Qm(’i) (52)

A.1.1 Oscillatory Phase: m < k — o(r!/?)

In the pre-asymptotic range where m is small relative to s, the ratio Q, (k)
tends to oscillate and has magnitude of order unity. While it is difficult to make
quantitative statements concerning the erratic behaviour observed in Fig. 2, it
is possible to give a qualitative explanation. When m is small relative to &,
the argument z of the Bessel functions appearing in eq. (52) will be large and
positive. Asymptotic expansions for Bessel functions of large argument are
given in (8.440); of [15]:

mz\—1/2 1 T
Ju(z) ~ <7> cos <z — YT Z)

and in (8.440) of [15]:

mz\—1/2 1 T
Y, (z) ~ <7> sin <z —gvm - Z) .

Together with (52), these expressions show that @, (x) will tend to oscillate
without a decay in the magnitude as m is increased. Indeed, these expressions
into the right hand side of (52) and simplifying gives

cot (z - %) . (53)

Of course, we would not expect this expression to necessarily agree closely
with @ (k). Nevertheless, this expression actually provides a surprisingly good
representation of the qualitative behaviour in the pre-asymptotic regime even
in the case of relatively modest values of x, as shown in Fig. 3.

A.1.2 Transition Zone: xk — o(k'/3) < m < &

We consider the behaviour in the zone where m approaches x from below. For
m in this range,
K
1< = <1+o(m™/?)
m
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Case: k=5 Case: k=10

10— Mon0/Y ()] N 100 | N/ I
"0 AIE)BIE)] "0 AIE)BIE)]
= 0 - |cot(z-m/4)| o 0~ |cot(z-m/4)|
0 2 3 4 5 6 7 8 9 0 %0 10 15 20
Order m Order m
. Case: k=20

Case: k=40

([— 190w, o

sool] — Bl
0 |AIE)/BIE)| "0 |AIE)/BIE)]
g0l ootz . . ‘ ‘ 108 9 loot(z-m4) . . ‘ .
0 5 10 15 25 30 35 40 0 10 20 30 50 60 70 80

20 40
Order m Order m

Figure 3: Graphs of |Qp, (k)| in (46) for m = 1,...,2k, | cot(z—n/4)| in (53) for
m=1,...,k and | Ai(§)/Bi(¢)| in (56) for m =k + 1,...,2K. Values of kK = 5,
10, 20 and 40 are shown. Observe the oscillatory behaviour of |@,,| and the
good qualitative agreement provided by the cotangent in the pre-asymptotic
regime m < k. Furthermore, note the quantitative agreement between |Q,|
and | Ai(¢)/Bi(¢)| in the asymptotic regime m > k.
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so that,

o= [im] o

and therefore,

1 52 20 k—m 3/2_

Using the series representations for Bessel functions [15, eq. (8.440)], we obtain

2
Qm(K) ~ _% _ %F (;) <§>2/3 N

and, by substituting for z and simplifying, we arrive at the conclusion

Qu (k) ~ —% - %F (;)2 (5 —m) (%)1/3 b (54)

valid for k — o(k'/3) < m < k. As a matter of fact, this result could also have
been obtained formally using Nicholson’s formulas [13, Sect. 7.13.3].

A.2 Asymptotic Regime: m > &

We now study the behaviour in the regime where the order of the Bessel func-
tions exceeds the argument. Langer’s formulas [13, Sect. 7.13.4] imply that

T K j3(2) + O(m™4/3)

(W) = =1 03 ¥ Lya(z) + O(m V5

(55)

where, in this case,

z=m(tanh™'w —w) and w = /1 — k2/m?2.

As before, it is possible to use the results of Olver [27] to obtain bounds on
the accuracy of the approximation obtained when the higher order terms are
dropped in eq. (55), although we will not pursue this further here. Writing
z = 2¢%/2 and using formulas (11.1.04) and (11.1.12) from [27] gives

B 7T_1K1/3(Z) _ _Ai(f)
I3(2) + I y3(2) Bi(¢)

where Ai and Bi denote Airy functions of the first and second kinds respec-
tively [15]. The accuracy of this approximation is indicated in Fig. 3.

The behaviour of the ratio of Airy functions for positive £ may be deduced
from the results quoted in Olver [27, pp. 392-393]. However, the following
simple approximations will suffice for present purposes. For small argument
£<2,

Qm(k) ~ (56)

(57)
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Full Range

— AI€)/Bi()
------ Approx. 1
== Approx. 2 ||

Figure 4: Graph showing the ratio Ai(§)/Bi({) compared with the approxima-
tions for small and large arguments given in eqs (57) and (58) respectively.

while for larger arguments where £ > 2,

Al(f) ~ 6_22 1 - 2%22 y = 2&-3/2 (58)
Bi(¢) = 2 1+ 527 37

Here I' denotes the gamma function [15]. Together, these approximations pro-
vide an accurate picture of the behaviour of the ratio throughout the full range
of argument, as indicated in Fig. 4. In particular, it is observed that the ratio
initially decays linearly,

Ai 1 33 [2)?
e -tor(3) e (59)
Bi9) ~ V3 7 \3
before undergoing a rapid transition to an exponential rate of decay given by
Ai —2z
i) e (60)
Bi(¢) ~ 2

A.2.1 Transition Zone: k < m < k + o(k/3)

As the order m passes through k, we have

1—o(m™/3) < LS
m
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and using similar arguments to those used before, we obtain

f:(%)”%m—m»

Since m — k = o(k'/3) = o(m!/3), it follows that £ = o(1) and, using (59), we

obtain
QA0 L LA (Y (8) o

valid for k < m < k + o(k/?). This form agrees with the result (54) obtained
when m lies the transition region to the left of k.

or, equally well,

Q

1

A.2.2 Exponential Decay Phase: m > r + o(k!/?)

If m exceeds k + o(ml/ 3), then w is no longer small, and in turn, z and ¢ will be
large. By substituting for z in terms of w in the expression (60) and applying
elementary manipulations, we arrive at

AN 1[1=w 4,]"
Bi(¢) 5{1—1—106 ] ’

or, substituting for w,

Ai(¢ 1 1—\/1—I€2/m2 \/W
Bi(¢) 2 |11/1_r2jm2

The function f : w — (1 —w)/(14 w) exp(2w) is monotonic decreasing on [0, 1]
from O to 1. Therefore, the term in parentheses is less than unity and we have
an exponential rate of decay when m is close to k. This rate of decay increases
as m becomes even larger relative to k, and in the limiting case, we find that

2
F(VI=wim) = [35]
m
Therefore, when m > ke/2, we obtain a super-exponential rate of decay

Ai(¢) 1 [nerm

2 L2m

Bi(¢) 2
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