THE ULTRA WEAK VARIATIONAL FORMULATION FOR ELASTIC
WAVE PROBLEMS
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Abstract. The ultra weak variational formulation has been used effectively to solve time-
harmonic acoustic and electromagnetic wave propagation in inhomogeneous media. We develop the
ultra weak variational formulation for elastic wave propagation in two space dimensions. In order
to improve the accuracy and stability of the method we find it necessary to approximate the S- and
P- wave components of the solution in a balanced way. Some preliminary analysis is provided and
numerical evidence is presented for the efficiency of the scheme in comparison to piecewise linear
finite elements.
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1. Introduction. When modeling the propagation of time-harmonic ultrasonic
waves through human bone we are faced with the problem of solving the equations
of time-harmonic elastic wave propagation in a medium with complicated shape and
potentially spatially varying parameters (see for example [13] and [21]). Furthermore
the wavelength of the acoustic field can be small in comparison to the size of anatom-
ical structures (a typical wavelength in our application is 2-6 mm) so that a method
suitable for higher frequencies is needed.

Of course there is no shortage of methods for this important problem which arises
in other areas of applications including seismic wave propagation (see for example [6])
and non-destructive testing (see for example [1]). Given the complicated geometry
of the problem and the need to allow spatially varying elastic parameters an obvious
candidate is the finite element method (see for example [5] for the standard approach
to elastostatics and [9] for an improved scheme for the time-harmonic problem). In
order to resolve a wave, the finite element grid needs to be sufficiently fine compared
to the wavelength of the elastic wave. Typically, for a piecewise linear scheme, at least
10 grid points per wavelength are needed to resolve the wave, and even more if wave
propagation is to be accurately modeled over many wavelengths [16]. Of particular
relevance to the elastic wave equation is that the wavelength used in this estimate
must be the shortest appearing in the computation (the wavelength of the S-wave).
Higher order schemes can help with this problem. A final, and not inconsequential,
point is that the finite element method results in a linear system that is not easy to
solve by standard fast methods such as multigrid. This is because the finite element
matrix is indefinite (at least for a sufficiently short wavelength compared to the size
of the computational domain).

Given the difficulties outlined above for the finite element method for this prob-
lem, it is natural to ask if other finite element type procedures can be developed
which have the flexibility of the finite element scheme, but improved properties when
applied to the elastic wave propagation problem. In this paper we shall develop an
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application of the Ultra Weak Variational Formulation (UWVF) to the time-harmonic
elastic wave equation. This method was developed by Cessenat and Després [4] for
the Helmholtz equation and by Cessenat [3] for Maxwell’s equations. Our positive
experience with this scheme in both these applications shows that the UWVF has
several attractive features. It is based on a finite element decomposition of space and
hence is able to approximate geometric features as well as the finite element method.
However, instead of using piecewise polynomials to discretize the problem, the UWVF
uses plane wave solutions of the underlying wave equation on each element (hence the
basis is globally discontinuous). By varying the number of these solutions used on
each element the effective order of convergence of the method can be changed, and
the conditioning of problem controlled to some extent (see [11]). The matrix equation
resulting from the UWVF is also simpler to solve than the finite element matrix prob-
lem and in our experience a bi-conjugate gradient method can provide an accurate
solution (of course this method does not approach multigrid efficiencies but does allow
the solution of problems without the need for factoring the matrix).

Of course the UWVF is not a panacea and even it’s originators note that it is
rather complex [4]. The UWVF method does not directly provide an approximation
to the field at all points in space unless the solution is post-processed. However the
displacement field and traction can be recovered on faces of the mesh without difficulty.
Only piecewise constant elastic coefficients can be handled (due to the need for explicit
solutions of the underlying equations), but rather general transmission conditions
across internal interfaces are easy to incorporate. The conditioning of the linear system
is sensitive to the correct choice of the approximating functions on each element. If
too many functions are used, the conditioning deteriorates. For this reason we have
advocated choosing the basis dynamically during the assembly of the relevant matrices
[11]. Finally the UWVF does not avoid the need for a sufficiently fine discretization
compared to the wavelength of the sound. However, we shall see that the S-wave and
P-wave components of the displacement can be approximated independently in the
UWVF. Furthermore, by using larger elements and larger numbers of plane waves per
element the density of unknowns can be reduced below that needed for a low order
finite element scheme.

This paper will be devoted to developing the UWVF for the linear time-harmonic
equations of elasticity in two dimensions. In the future we will extend the study to
three dimensions and the fluid structures interaction problem. In the next section
we define the problem to be studied and discuss appropriate boundary conditions.
The UWVF is developed in Section 4 and discretized in Section 5. This development
requires two ingredients. First and most critical, initial attempts to develop an UWVF
for the elasticity problem suffered from very poor conditioning of the resulting matrix
problem. In our early work we used the same number of basis functions to approximate
both the S- and P-waves. In this paper the conditioning problem is reduced by using
a basis that approximates the S- and P-waves in a balanced way. Particularly when
there is a large discrepancy in the wavenumber for the S- and P-waves this is essential
to improve conditioning. Second, we require an absorbing boundary condition in
order to simulate elastic scattering problems. This is provided by special absorbing
boundary condition (ABC) for the elasticity problem developed in [12]. The ABC
provides a low order absorbing boundary condition appropriate for these equations.
It is also used to provide inter-element coupling.

The error analysis of the UWVF is not as well developed as the error analysis
of the finite element. We report results in the context of the elasticity problem in
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Section 6. Finally, in Section 7 we report a numerical study that shows why we need
to consider approximating the S- and P-waves in a balanced way and compare the
elastic UWVF to a classical piecewise linear finite element method. We also solve a
transmission problem to illustrate the various sources of error in the method. These
examples show that the the elastic UWVF is worth of future study.

We should mention that this study is not the first to advocate the use of plane
waves as part of an algorithm for the elasticity problem. Bettess et al. [19, 20] describe
a partition of unity type method for an integral equation for the time-harmonic linear
elastic wave problem. Their method shows considerable promise but is aimed at
solving for the field in a homogeneous isotropic medium with standard boundary
conditions whereas the UWVF can handle inhomogeneous material coefficients and
mixed boundary conditions. An alternative approach would be to apply the method
of Babuiska and Melenk [2, 17] to the elastic wave equation. This deserves to be looked
at but it seems to be more difficult to incorporate variable material properties in this
formulation.

2. The time-harmonic elastic wave equation. In this section we shall de-
fine the problem to be solved paying particular attention to boundary conditions.
As we discussed in the Introduction we are interested in studying two dimensional
linearized time-harmonic elastic wave propagation. Consider linearized elastic wave
motion in an inhomogeneous medium occupying a bounded Lipschitz polygonal do-
main Q C R2. We suppose that the elastic properties of the medium occupying 2 are
piecewise constant functions of position. Thus we can write Q = U]JﬂQ—j where the
overline indicates closure, and {Qj}jzl is a collection of non-overlapping Lipschitz
domains. On each Q; the Lame constants A and u and the density of the medium p
are independent of position. Then the time-harmonic displacement vector u satisfies
the Navier equation [8]

(2.1) pAu+ A+ p)V(V-u) +w?pu=0 inQ;

for each j. Here w is the angular frequency of the field. The Lame constants can be
expressed by means of the Poisson ratio v and Young’s modulus F as follows

_ E \ = Ev

F=sa+oy T A+r)(1-20)
In order to model dissipation we allow E to be complex valued and in particular
E =FE —4iE", (E', E” > 0) where E’ is the standard Young’s modulus and E" is
often called the loss modulus. The loss modulus is a non-negative piecewise constant
function of position, and the choice of sign for the imaginary part of FE is due to
our assumption that the time dependence of the time-harmonic wave is exp(—iwt).
We shall assume the density and frequency are real. Although we shall formulate
the UWVF for complex valued coefficients, our analysis and examples will have real
valued coefficients.

To complete the description of the problem we need a boundary condition on
the boundary of 2 denoted by I', and we need to make precise how the fields on the
different subdomains 2; are related across interfaces between regions with different
elastic properties. Let n be the unit normal to a curve S. Then on S we define the
traction operator T™ formally by

(2.2) T (u) = 2,ug—u +AnV-u+unxV xu
n
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where the functions are evaluated on S. If the coefficients A and p are discontinuous
at S, the choice of the coefficients in T depend on which side of S the traction is
being evaluated. The operator T maps local displacements to local tractions on the
boundary S.

The Navier equation is assumed to be satisfied on each subdomain 2, and across
subdomain boundaries continuity of the displacement u and the traction T ensures
that the global function solves the elastic wave problem. In particular, suppose sub-
domains 2, and §;, meet at a common edge ¥, ;, where ¥, ;, = Q;, NQ;,. Suppose
n;, is the unit outward normal to €2;,, £ = 1,2. In Q;, and Q;, the Navier equation
(2.1) is satisfied using the appropriate elastic coefficients and density for that domain.
On the interface ¥; ;, the continuity of the displacement and the stress leads to
transmission conditions

ulgj

u|Qj
1 —T(znjz)(u|ﬂj2) } on Xy, ja,

(2.3) T3 (ulg,, )

where T is given by (2.2) and the coefficients on 2;, are used to evaluate T (*™ic) (ulgy, )
¢ =1,2. For the UWVF these transmission conditions are combined into Robin type
boundary conditions. Let o denote a positive-definite real valued matrix function of
position on Xj, ;, (we shall say how we choose ¢ in Section 2.1) and we demand that
on Ejl,jz

T®) (ulg, ) +ioulg,, = —T®2) (ulg, ) + ioulg,,,

T (ulg,, ) —ioulg,, = —T™2) (ulg,,) —ioulq,, .

Obviously these transmission conditions are equivalent to the original pair.

For the boundary I of 2, we use a special type of boundary condition motivated
by previous work on the UWVF for the Helmholtz and Maxwell equations [3]. In
particular, let Q denote a scalar function of position on I' and let o € R2*2 denote
a real valued and symmetric positive definite matrix function of position on I" (both
functions need to have entries in L>°(I') and are assumed to be uniformly bounded).
Suppose I' has unit outward normal n. The boundary condition on I is then written
as

(2.4) TM (u) —jou=Q(—T™(u) —iou) +g onT

where g € (L?('))? is a given function providing the source term. With different
choices of @ and o a variety of boundary conditions can be implemented. For example,
if @ = 1, we obtain the traction boundary condition

1
(2.5) TW (u) = ggonl
whereas when ) = —1 we obtain the displacement boundary condition
o1
(2.6) u=i——gonT.

When @ = 0 we obtain a Robin type boundary condition. With the choice o given
in Section 2.1 this provided a low order absorbing boundary condition for the elastic
wave equation.

We shall assume that the Lame constants, angular frequency and functions @, o
and g have been chosen so that there is a unique solution u € (H*(£2))? of the Navier
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equation (2.1) together with the transmission conditions (2.3) and the boundary con-
dition (2.4). Further assumptions on u will be made as we derive the UWVF.

Since @ and o can be functions of position the above boundary conditions (2.5)
and (2.6) can be mixed on a single surface or on different surface components. Ob-
viously we need a method for choosing ¢ and we consider this problem next. In
particular, in order to simulate scattering problems, we need an absorbing boundary
condition.

2.1. Absorbing boundary condition. In this section we shall briefly develop
the absorbing boundary condition of [12] since it does not appear to be well known.
Suppose that all the coefficients in the Navier equation are constant and real as will
usually be the case near the absorbing boundary. Let us consider a time-harmonic
elastic plane wave moving in a direction d with |d| = 1. The plane wave can be split
into two components

u = aydexp(ikpx - d) + axd* exp(iksx - d)

where the wavenumbers kp and kg will be given shortly, a; and as are constants and
d-d! = 0. The first component denoted up = ardexp(ikpx-d) is called the P-wave
and we see that V x up = 0 (interpreted in the scalar two dimensional sense) and
that up is a solution of the Navier equation provided the wavenumber kp = w/cp
where the wave speed for the P-wave is

At 2
(2.7) — J;“.

Similarly the second component of the plane wave solution, called the S-wave and
given by us = axd* exp(ixsd - x) is a solution of the Navier equation if ks = w/cs
and the wave speed for the S-wave is given by

(2.8) cs = \/g

In this case V -ug = 0.

Thus we see that the two components of the wave travel at different velocities
and with different wavenumbers. An advantage of the UWVF is that these two waves
can be discretized independently.

We can now develop the absorbing boundary condition. Let us first consider a
simplified situation in which the domain  is a half space Q = {(z,y),z < 0} and the
boundary I is the line z = 0. A time-harmonic elastic plane wave u = (u,u,)T, where
the superscript T' denotes transpose, traveling at normal incidence to the boundary
I (i.e. with d = (1,0)7) is perfectly absorbed if

(2.9) % —ikpuy =0,
(2.10) % —ikguy =0,

since in this case up = (uz,0)T and us = (0,uy)T. These are the time-harmonic
forms of the widely used first order absorbing boundary conditions for elastic waves,
see e.g. [10] and [22].
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The absorbing properties of (2.9) and (2.10) are conserved when we rewrite the
boundary conditions as

2 2
Ou,  Cp — 2cs Ouy

2.11 LTk, =
(2.11) e 2 oy ikpuy =0,
(2.12) % + %1:; — ikguy = 0.

These forms are particularly interesting since they allow us to relate the traction
operator (2.2) and the displacement vector u.

According to the definition of the boundary I' the outward normal in this simpli-
fied example is n = (1,0)7. It follows that the components of the traction operator
T(07) (u) = (T, T,)T are then

Oouy ou
(2.13) T, = PC%% +p(cp - 20%)6_;
B Ouy  Ouy

Combining equations (2.11)-(2.14) we formulate the absorbing boundary condition for
this case as

(2.15) T((l’O)T)(u) —iou=0

( wpcp 0 )
o=
0 wpcs

Correspondingly the absorbing boundary condition for a general boundary I' with
normal n can be derived. In that case we get

where

(2.16) T® (u) — iou=0
where
(2.17) o=wp(lcprn®n+css®s)

and where s is the tangential vector to the boundary, and ® denotes the outer product

so that n®n = nn”.

3. Weak formulation. We shall later compare the elastic UWVF to a piecewise
linear finite element method (FEM) code for the elastic wave equation. To contrast
the UWVF with the standard finite element scheme we briefly summarize the standard
variational setting for the elastic wave equation. Let us first introduce a shorthand
notation

Afu=pAu+ A+ p)V(V - u).

Then we can rewrite the Navier equation (2.1) as

(3.1) /Q(Aeu +w?pu) v =0
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where v is a smooth test vector. A weak formulation is obtained using the Betti
formula [14]

(3.2) —a(u,v)+/I‘T(“)(u)-v+w2p/ﬂu-v:0
where

—_ - -V E u llT M v VT.
63 atwy)=A [ V-aVeveh [ (Tus (@) (9v+ (o))

Here the transpose is again denoted by the superscript T and the double dot operation
between two tensors A = a; ; and B = b; ; is defined as

(34) A:B= Z Za,’,jb,’,j.
i

Due to the particular choice of example for the comparison of the finite element
method with the UWVF later in this paper, we need to use (2.4) suitably rewritten
for the finite element scheme. Solving this equation for T(® (u) we obtain

(3.5) ) () — (%) ou = (ﬁ) g onT

Using this equality in (3.2) we arrive at the problem of finding u € (H*(2))? such
that

(3.6) —a(u,v)+/F (z (i—Q> ou+ (ﬁ) g) -v+w2p/ﬂu-v:0

for all v € (H'(2))%. In our examples |Q| < 1.

Now the approximation by continuous piecewise linear finite elements is obvious.
We use a regular finite element mesh consisting of triangles having a maximum radius
h covering 2 and on this mesh construct a space S; of continuous piecewise linear
finite element functions. The finite element solution u; € (S;,)? then satisfies

(3.7) a(up,vn) _/r (Z (%) oup, + (ﬁ) g) “Vp — W2P/Quh v, =0

for all v, € (S;)%. As usual we see that the FEM uses piecewise polynomials to
represent the displacement throughout an element (these are not particularly adapted
to the solutions of the Navier equation), and thus easily provides an approximation
of the displacement at any point in space.

4. The ultra weak variational formulation of the Navier Equation. In
this section we shall detail the UWVF for the elasticity problem. As in the finite
element method, the UWVF starts by partitioning the domain 2 into disjoint regular
finite elements Ky, & = 1,..., N of maximum radius h. We shall assume that the
mesh consists of triangles, but this is not essential. Quadrilaterals can also be used,
or even a mix of triangular and quadrilateral elements. The mesh must be chosen
so that the coefficients A, p and p are constant on each element (of course they
can be discontinuous across element boundaries). Since we let the domain £ consist

of subdomains Q; (i.e. © = U7_,Q;) in which material properties are constants,
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we require that the boundaries of the subdomains J2; do not intersect any of the
elements Kj. In other words, we require that the element edges 0K}, coincide with
the subdomain boundaries 912;.

At this stage the UWVF is just another variational formulation of the time har-
monic elasticity problem and hence is not fully discrete.

FiGure 4.1. A summary of the notation used to describe the UWVF mesh. The edge Xy ;
separates elements Ky and K; with normal ny. Boundary edges of Ky are denoted T'y, with an
outward pointing normal.

In describing the UWVF we shall need to refer to elements and normal vectors.
Let us denote by I'y, = K, NT (of course I';, may be empty) and by X4 ; = 0K;NIK;
with normal vector pointing from K} to K;. Let us also denote by n; the outward
unit normal to element Kj. Thus the normal to X ; is ng and to X is n; = —ny.
For a graphical summary of this notation see Fig. 4.1.

Let us denote by uj, the restriction of u to Kj, so that

(41) U, = u|Kk,
Aluy + wzpkuk =0 in Ky,

where pr, = p|k, and Ak, and p|k, are used in A°. We also need to define the
complex conjugate of the traction operator

(4.3) T(“)(u):2ﬁg—u+XnV-u+ﬁnxqu
n

where the overline indicates complex conjugation. Thus T(®) (u) = T (@). We now
prove the following “Isometry Lemma”.

LEMMA 4.1. Suppose uy, € (H(K}y))? is a solution of Navier’s equation (4.2) on
K. such that

TO) (wy) — douy € (L2 (0Ky))2.
Let the test function ey, € (H'(Ky))? satisfy
(4.4) Ae;, + wzpkék =0 in Ky,

such that

T (ef) — ioey, € (L2(0K}))>.
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Then

Z/m ~T0%) (wy) — iowy) - (~T0) (ey) — ioer)

(4.5) = Z/M T () — iouy) - (T (ef,) — ioey,).

Proof. Simply expanding the left hand side we may write

= Z /aK T (uy,) —iouy) - (T (ey,) —ioer)
—222/ uk T(nk)(ek) —T(nk)(uk) -Ek).

0Ky,

As noted above T(®+)(e;) = T(™)(€;,) so that using Betti’s first identity [15] and the
fact that u; and €y satisfy the Navier equation we obtain

/ (u - T (&) — T () - &) = / (up - A% — & - A%wy)
8Kk ch

:w2pk/ (uk-ék—uk-ék)zo.
Ky,

This completes the proof. a
By using (4.5) we can obtain the UWVF scheme. Suppose element K; shares a
boundary with element Kj. The transmission conditions (2.3) imply that

(4.6) T (u,) — iouy, = —T(“f)(uj) —iou;, on Yy,

where we have taken into account that n; = —ny on X ;. Using the boundary
condition (2.4) on the exterior boundary I' and substituting these into (4.5) we obtain

(4.7) Z/

o1 - ( T(“k)(ek —ioey) Z/ _1X T(“k)(ek) —ioey)
i

K
- Z Qa Lx, - (TOw) (ep) — ioey) = 2/ (T0w) (ef) — icey)
k
where X}, = —T®*)(u;) — iou;, on dKj. To clarify the variational formulation we
can define the test function Y, = —T(™%)(e;) —ioce; on K. and define the operator

Fy : (L?(0K}))? — (L?(0Ky))?

(48) Fk(yk) = T(“k)(ek) —i0ey

on OKj. Then the above equation gives the UWVF of finding Xy € (L%(0K}))?,
k=1,2,...,N such that

D3 B R D) M N R )
(49) —Z[ QO’ IXk Fk yk Z[ o g Fk yk)
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for all Y € (L?(0Ky))?, k = 1,2,...,N. This makes it clear that the unknowns in
the UWVF are the traces X on K. Of course, once these have been computed it
is possible to find u and T(“)(u) on 0K}, for any k. For example, if K}, and K; share
a common boundary X, ; then

X; — X

(4.10) uls, | :%ofl(xij) and T () = =2

A similar formula holds on the exterior boundary using the exterior boundary condi-
tion.

We have not yet given details of how to choose o for each face. For some faces the
choice of ¢ may be dictated by modeling considerations. For most faces it needs to be
chosen as a positive definite matrix in a way that helps the conditioning of the linear
system resulting from the UWVF. There are many possible choices for the coupling
matrix o. In our experience the only requirement is that entries of o must be of the
order wp|c| where c is, for example, either cp or cs. Therefore on the boundary Xy ;
one could choose

(4.11) o=wpcpl

where p and ép are mean values of p and |cp|, respectively, across the boundary and
I is the identity matrix. On the external boundaries p and ¢p can be replaced with p
and cp, respectively.

Another possibility, more in accordance with the original philosophy of the UWVF,
is to utilize the absorbing boundary condition derived in Section 2.1. Again on the
internal boundaries the coupling parameter is written by means of the mean values
of the moduli of the appropriate quantities if the coefficients are complex.

(4.12) oc=wp(lpn®n+ iss ®s).

On the exterior boundary this form reduces to (2.17) and the boundary condition
equals to the absorbing boundary condition (2.16). This is the choice we use in our
codes.

5. Discretization of the UWVF. In this section we show how to discretize the
UWVF developed in the previous section. Clearly we need to discretize (L%(0K},))?,
1 < k < N, but we need a discretization that allows us to compute the operator Fj
defined in (4.8) easily. We are thus lead to use a plane wave expansion.

On each element the solution of the adjoint Navier equation (4.4) can be separated
into two components using the Helmholtz decomposition

e, = ey,p + eks

which satisfy V x ey p =0 and V - e, s = 0. In a homogeneous medium (i.e. on any
Q;,i=1,...,J and hence on any element K}) the compressional (P) wave ej p and
shear (S) wave e, g satisfy the Helmholtz equations

(5.1) Aeyp + Kkpegp =0,
(5.2) A€y 5 + Kgers = 0,

in Kj with the wavenumbers kp = w/cp and ks = w/cg. The corresponding wave
velocities cp and cg are functions of the Lame constants p, A and the density p on
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K}, and are given, respectively, by (2.7) and (2.8). These two component waves prop-
agate independently in the homogeneous medium in K but interact on the medium
interfaces.

Hence, we approximate the function A} using two sets of plane waves with the
wave numbers kp and kg

Dk
Xy ~ Zk: [mkpl (_T(l’lk)(ekliz) — iJekPJ)]

=1
Sk
(5.3) + [mf’[ (—T(“’“)(ef’l) — iaefvz) ]
=1
where
p | apsexp(ikpagy-x) in K
(5-4) Gkt = { 0 elsewhere
l P .
s _ | apy exp(iRsag, - x) in Ky
(55) Cht = { 0 elsewhere
and where ay, , = (a,lg’z,ai’(), lag,s] =1 and a,tz = (—a} , ak,).

As advocated in earlier studies with the Helmholtz eofuatién [4, 11], we use equi-
spaced directions on the unit circle

(5.6) ag = (cos (27r£_—1>,sin (27r£_—1>>, 1<?<yq,
q q

where ¢ is the number of directions (i.e. ¢ = s3, or ¢ = pg).
For k=1,...,N, let

Vi = Span{T(“k)(ef,z) +ioef ,, 1 <0< sy,
(5.7) T@) (ef ) +ioel,, 1< €< pk}

Then the discrete UWVF problem is to compute X, € V5, £ = 1,2,..., N, such
that

- Yk — -1 ,.7
Z/{)Kka X Yhok ZZ/E .U X Fohr)
(5.8) —2/ Qo™ th Fkyhk Z/ o ngThk)

for all Yk € Vi, k=1,2,..,N.

To obtain a discrete matrix problem corresponding to (5.8) we choose successively
Vi = ek yand YV, = ek , for each k and ¢. Substituting these into (4.7), the discrete
elastic UWVF problem can be written in the matrix form

(5.9) (I-D'C)X=D""b
with

— P P S S T
X = (Tygye oy Thpy ) TT] vy Ty 0)
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The matrix D is a block-diagonal matrix in which each block D* consists of four
sub-blocks

Dl 0 ... 0

0 . 0 0

D= 0 D 0 0
0 0

where

. (DI D
D‘(D§ D}

with the elements

Dbpn= [ o (=T (ef,) —ioel,.) - (~ T (ef,) — ioef,)

Dk, = / o (= T (ef ) — ive,) - (— TE(el,) — ioel,)

D,?f,l,m = /8K 071( - T(nk)(ekp,m) - Z‘C’-ekzp,m) : (_ T(nk)(e‘g,l) - iaef,l)
k

Dfym = / o (=T (e} ) —ioef ) - (— T (ef ) —ioes ).
w K, ' ’ : "~
The matrix C is also a block matrix with the blocks on diagonal
ck c¥
ko_ 1 2
o=(c o)
and off diagonal

Ck’j = ( 011?] Cé]:’] >.
cfi ok

The elements of the blocks are

Cli = [ Qo (=T (ef,) —ioef,) - (T (ef) e )
k

C’é“’,g’m = s Qa_l( — T(“k)(ef’m) — iaef’m) . (T(“k)(eie) - iaekp’z)
&

C’«f’e’m = . Qa_l( — T(""’)(eﬁm) — iae,ﬁm) . (T(“k)(eﬁl) — iaefyl)
k

Cf,l,m = . QJ*I( — T(“’“)(eﬁm) — iaeﬁm) . (T(“k)(eﬁl) — iae;‘il)
k

and
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Jsm Jsm

Obt= [ o7 (5, — ioef,) - (T (ef,) — ioel)
kj

k,j - nyg . T(ny) .
Ol = [ o7 (XIEL,) — ioed,) - (T (e ) — ioe)
kj

Ot = [ o (@65, — ire5) - (T (e ) — el
kj

The entries of the matrices C' and D can be computed exactly since they only involve
integrals of complex exponentials along lines. The linear system (5.9) is then solved
by applying the bi-conjugate gradient scheme.

After the vector X is computed, the solution X} on 0K} can be approximated
using (5.3) and the traction and displacement approximated by using (4.10).

6. Analysis of the elastic UWVF method. The method of analysis for the
acoustic UWVF presented in [4] applies to the elastic UWVF with very minor changes.
We now present an application of this theory to the elastic UWVF with sufficient
details to make this claim obvious. Unfortunately the final error estimate is not
currently available due to the need to analyze the approximation properties of the
elastic plane wave basis functions.

As in [4] we consider the simple case where all the coefficients in the problem are
real and constant. Thus we assume A, u, p and w are real and constant, and we choose
o = 1. The theory can be extended to more general piecewise constant coeflicients.
The domain Q is assumed to be a Lipschitz (and in practice a Lipschitz polygon).

First we need a global solution space. Thus we define

V =1L, (L2 (0K))?

with the inner product

N
u,v)y = u-vds
(u,v)v zzj/aK

and the norm ||ul|}, = 1/(u,u)yv. Even though this space depends on the mesh, we
don’t show this explicitly since this is the space for the continuous solution of (4.9).
However the fact that V' depends on the mesh complicates the analysis. Now we need
a global operator F': V — V defined such that if Y = (Jy,... ,yN)T € V then

F(y)|3Kk:Fk(yk)7 1SkSN7

where Fj, is defined in (4.8). Let ||F'||y—v denote the operator norm of F. The main
result underlying the analysis is the following, which also explains why Lemma 4.1 is
called the “isometry lemma”.

LEMMA 6.1. Assuming that the coefficients in the elastic UWVF are real and
constant and that o = 1, the operator F is an isometry so that |F|ly=v = 1, and
F*F = I where F* is the adjoint of F' in the V-inner product.

Proof. Let us define e, € (H*(K}))? to be the weak solution of

Aep 4+ w?pep =0 in Ky,
T (ey) +iex = -V, on 0Kjy.
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Then using the isometry lemma, and noting that since all coefficients are real we can
remove the complex conjugation in (4.4) we obtain

IEDIT =

M=

T2 (er) — ieklFr2(ar, )2

B
Il
A

I
M=

| = T™ (ex) — iexlltr2(ar,))

=
Il
A

I
M=

”yk”(QL?(BKk)P = ||y||%/

=
Il

1

This proves the isometry and since this holds for all Y € V' we obtain the property
that F*F = I. |

The final component of the analysis is an operator that corresponds to (4.6). Thus
we define 7 : V — V such that if ) € V then

(6.1) Vs, =V|g,;, for 1 <k,j <N, on interior edges,
(6.2) 7YIr, = QY|r, for 1<k <N, on the boundary I

Thus, for an interior edge, 7 just swaps the boundary data across an edge, while on
the boundary I' the boundary data is used. With this definition we see that if G € V
is defined by

| g8 only .

then we may rewrite (4.9) as the problem of finding X = (X1,...,Xx)T € V such
that

(X, )y — (nX, F(Y))v =(G,F(Y))y foralyeV

Using the adjoint operator F™* this can be written as the problem of finding X € V
such that

(I - F*n)X = F*G

and we can now see that, written as an operator equation, the elastic UWVF has the
same form as the acoustic UWVF in [4].

We next examine the properties of 7 defined in (6.1)-(6.2).

LEMMA 6.2. Provided |Q| < 1, the operator m satisfies the following estimate

ImY| = / (1QF - DIV ds + 1V

The proof of this result follows exactly the corresponding result in [4]. The slightly
contractive property of 7 when |@Q| < 1 allows us to prove error estimates on I'. Now
that we have verified all the properties of 7 and F' necessary for the UWVF theory
from [4] we may summarize a basic existence result for the continuous elastic UWVF
as follows.
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THEOREM 6.3. The continuous problem (4.9) has a unique solution provided
Q| < 1. If |Q| = 1 the problem has a solution provided w is not an eigenfrequency of
Q for the resonance problem associated with (2.1), (2.3) and (2.4).

‘We now consider the discrete solution of the UWVF problem. Let

Vi =T Vig

where V}, 1 is given by (5.7) and we assume that the directions of the plane waves on
each element are uniformly distributed as in (5.6). Let P, : V — V), denote the V
projection onto V}, so that for any Z € V, we define P,Z € V}, by

(PhZ — Z,yh)v =0 for all Y €V

The discrete elastic UWVF (5.8) may now be written as the problem of finding X}, €
V), such that

(Xn, Yn)v — (&, F(Vn))v = (G, F(Vn))v forall Y, €

and in terms of operators can be written as

(I — PpF*m) Xy = P F™(G).
Using the forgoing properties of F' and , the results of [4] show that if @ is chosen
so that there is a constant ¢ such that |@Q] < § < 1 then

|X = Xnll(L2(r))2 |X — PuX]lv.

2

SRV
On the one hand this estimate is lacking in that it does not allow us to estimate
the error of the discrete UWVF away from I' and it does not allow the important
case |@] = 1. On the other hand the constant in the estimate is quite specific.
Unfortunately the approximation properties of P, X are not available yet. However
the numerical tests shown in the next section suggest that ||X' — Xy||(z2(r))2 = O(h%)
for some constant o that increases as the minimum number of directions per element
increases.

7. Numerical results.

7.1. Wave propagation. For first example we study elastic wave propagation
through a rectangular domain Q = [0, 1] x [0, 1]. The exact solution is a plane wave
consisting both P- and S-waves

(7.1) u'™ = qaexp(ikpa - x) + fbexp(iksa - x).

The directions a and b are chosen so that a,8 € R and a-b = 0. This example is
chosen because it provides a very simple problem to test the accuracy of the elastic
UWVF for wave propagation.

Elastic properties of medium occupying the domain Q are E = 200 - 10°, v =
0.3 and p = 7800. Hence, S- and P-wave speeds are cp = 5875 and cs = 3140,
respectively. This gives a ratio cp/cs = ks/kp = 1.87. Single frequency examples
for this first model problem are computed with f = 2.0 - 10* which corresponds to
kp = 21.4. These parameters are not motivated by any particular application but the
ratio cp/cg is typical for a wide range of solid materials.
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The direction of the wave in all cases is a = (cos(w/§),sin(w/§))T where § =
max(py, s;). This choice does not coincide with any of the directions of the plane
wave basis functions a; . Furthermore, we choose the amplitudes of the incident
waves in all examples to be o = 1 and 8 = 1. The source term can be given now in
the form

g=(14Q)T™ (u'"®) —ig(1 — Q)u'™™ onT,

and we choose = 0.1. The coupling parameter ¢ is given by (2.17).

0.8

0.6

0.4

0.2

0 0.5 1 0 0.5 1
(@) (o)

FiGure 7.1. Left: A typical uniform mesh used in UWVF simulations. Right: A mesh for the
FEM simulations. For the material properties and frequency used in the wave propagation study,
the ratio of P-wavelength and mesh parameter Ap/h is 0.83 for the mesh (a) and 10.38 for the mesh

(b).

Typical meshes used in simulations are shown in Fig. 7.1. Obviously, in this
example, we use uniform meshes so the number of P- and S-wave basis functions per
element (py and si) can be chosen independent of k. However, due to the difference
in the P- and S-wavenumbers, there may be an advantage to choosing different values
for p, and si. Thus we begin by studying how the choice of basis affects the accuracy
and the stability of the elastic UWVF approximation. In this and later studies we
compute the error in a discrete relative least squares norm as follows. First we average
the UWVF results at the nodes to obtain nodal values of the displacement (this is
motivated by our desire to compare to the FEM later). The discrete least squares
norm error is simply the unweighted sum of the squares of the nodal error.

In the top panel of Fig. 7.2 we show the error in the computed solution using
various ratios sy /py and increasing the number of directions per element to give more
degrees of freedom. The results suggest that the ratio of the number of S- and P-
wave basis functions (sj/py) should be approximately ks/kp in order to obtain the
best accuracy. In addition the bottom panel of Fig. 7.2 shows the conditioning of the
I—D~1C corresponding to the computations shown in the top panel. The choice that
s /pr should be of the order of ks/kp also improves the conditioning of the linear
system in most cases (except for very large numbers of degrees of freedom). Thus,
both from the point of view of accuracy and from the point of view of the stability of
the method, we should choose the ratio s;/py in the manner just described.

The behavior of the error and conditioning as a function of 1/h for a fixed number
of basis functions per element (i.e. fixed p; and s;) and variable mesh size is presented
in Fig. 7.3. From the left panel we can see that the error decreases O(h%) for a = 6.4
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Relative error

10*5 1 1 1 1 1
0 10 20 30 40 50 60

DOF per element

Condition number

DOF per element

FIGURE 7.2. Relative error and condition number of I — D1C as a function of the number
of degrees of freedom (DOF) per element for different ratios sy /py. Results are computed in the
mesh of Fig. 7.1 (a). The frequency is f = 2.0 - 10* and ks/kp = 1.87. The eventual blowup of
relative error in the top figure is due to the increase in condition number with the number of degrees
of freedom.
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FIGURE 7.3. Relative error (left) and condition number (right) as a function of the mesh
parameter 1/h. Results are computed with kp = 21.4, py = 10 and si/px = 1.5.

provided h is small enough. From the right hand panel of Fig. 7.3 we can see that the
maximum condition number of the matrix blocks Dy gives a good indication of the
condition number of the system matrix I — D~1C and hence, can used as a predictor
of the conditioning of the system matrix. Obviously it is much easier to compute the
condition number of the diagonal blocks of D than of the entire matrix I — D~1C.
Previously, this property has been utilized for choosing a stable set of basis function
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for the Helmholtz problem [11]. In practice we use a similar approach for the elastic
UWVF.

o 10
~©~ Cond( I-D'0)
» A~ Max(Cond( Dk))
10 5
. FoIURT)
3 210
S 102 2
o c
2 S
o -3 =
210 210° ;
107 ° K
&\*g“:f&_*« A
107 10° e
10 20 30 40 50 60 10 20 30 40 50 60
¥p Kp

F1GURE 7.4. Relative error and condition number as a function of the wavenumber kp when
px = 16 and s /pr = 1.5. Results are computed in the mesh of Fig. 7.1 (a)

Next, in Fig. 7.4, we examine the behavior of the elastic UWVF on a fixed mesh
with a fixed basis, but varying w so that kp and kg both vary while keeping xs/kp
fixed. For low kp the conditioning of the UWVF matrix I — D~1C is very poor since
all plane waves are almost constant on each element. As kp increases, the conditioning
improves and an accurate solution is obtained. As kp increases further, the error then
increases as can be expected from analyzing how a plane wave is approximated by a
sum of other plane waves not traveling in the same direction. It is again useful to
note (from the right hand panel of this figure) that the maximum condition number
of the blocks of D is a good estimate of the condition number of the overall system
matrix.

Finally, we compare the piecewise linear finite element method with the UWVF
for the same wave propagation problem. The discrete relative least squares error in the
FEM solution against the reciprocal of the element size 1/h, for a fixed frequency and
wavenumber, are shown in the left hand panel of Fig. 7.5. The solution converges with
an error that is O(h?) as is to be expected for the piecewise linear FEM. Comparing
the left panel of this figure with the left hand panel of Fig. 7.3, it is obvious that
much finer meshes are needed in the finite elements scheme than in the UWVF to
obtain equal accuracy. In the right hand panel we examine the dependence of the
error of the FEM solution on the wavenumber xp (keeping the ratio kg/kp fixed).
As is to be expected, the error increases with kp (due to accumulating phase error).
Compared to the right hand panel of Fig. 7.4 we see that the finite element method
is free from the low frequency conditioning problem that afflicts the UWVF.

Even though the FEM requires a much finer grid than the UWVF to obtain
similar accuracy, we need to be careful in comparing the efficiency of the two schemes
because the UWVF has multiple degrees of freedom per element. To try to compare
the methods more directly, we show in Fig. 7.6 a plot of the error in the FEM
and UWVF schemes as a function of the number of non-zero entries in the resulting
matrices. We consider both the ~-UWVF where we fix the basis on each element and
decrease the mesh size h to obtain an accurate solution, and the p-UWVF where we
increase the number of directions per element on a fixed mesh. Using either strategy
the resulting matrix system is more dense in the UWVF than in the FEM. However,
the overall storage needed to reach a desired accuracy is lower for the UWVF than
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for the FEM (see Fig. 7.6). Perhaps this not surprising since the solution is smooth
and hence a higher order method (like UWVF) should be more efficient than a low
order method like FEM.
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FiGURE 7.5. Left: A log-log plot of the relative error as a function of the mesh parameter 1/h
in the finite element scheme. Results are shown for f = 2.0 -10%, i.e. kp = 21.4. Right: Relative
error against the wavenumber kp in the mesh of Fig. 7.1 (b).
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FIGURE 7.6. Relative error as a function of storage, i.e. the number of nonzero elements in
resulting matriz system. The abbreviation FEM refers to the piecewise linear finite element method;
h-UWVF to the elastic UWVF with constant number of basis functions (py, = 10 and sy /pr = 1.5)
and varying element size h; and p-UWVEF to the elastic UWVF with fized mesh (the mesh of Fig.
7.1 (a) and sy, /py = 1.5) and varying number of basis functions py. Results are for f =2 -10%.

The results from this example suggest a number of conclusions that are supported
by our experience with the UWVF and FEM for other problems:
e The UWVF compares well to the piecewise linear FEM.

o It is necessary to choose the number of S- and P-wave directions depending

on the ratio kp/kg to improve both the accuracy and conditioning of the

elastic UWVF.

e The conditioning of the linear system resulting from the UWVF can be es-
timated from the conditioning of the diagonal blocks of D, and hence the
basis on each element may be chosen locally and still provide control over the
overall condition number.

e The accuracy of the UWVF, for a fixed mesh and elementwise basis, dete-
riorates as the frequency w increases, thus we see that the UWVF does not
escape from buildup of phase error that afflicts the FEM.
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TABLE 7.1
Material properties

Ex. Figs. Domain E v P cp ¢cs | cp/es
1 7.7-7.8 r <0.5 200-10° | 0.30 | 7800 | 5875 | 3140 1.87
05<r<1.0|200-10° | 0.47 | 7800 | 12413 | 2953 | 4.20
2 7.9-7.11 r < 0.5 200-10° | 0.30 | 7800 | 5875 | 3140 | 1.87
05<r<1.0| 14-10° | 0.25 | 1800 | 3055 | 1763 | 1.73

7.2. Transmission. As a second model problem we analyze the transmission of
elastic plane waves through a circular inhomogeneity with radius r = 0.5 embedded
in an infinite homogeneous background material. Similar problem has been studied,
for example, in [18]. Since the problem is physically unbounded, we truncate the
computational domain by another circle with radius » = 1 where we use the absorb-
ing boundary condition developed in Section 2.1. We analyze transmission in two
examples for which material properties of the inhomogeneities and backgrounds are
shown in Table 7.2. In all simulations the frequency is f = 1.0 - 10%.

The incoming wave is of the form (7.1). In some examples, however, we study
separately cases with incident P- and S-waves. The direction of propagation of the
incident wave in the both cases is a = (1,0).

We approximate the problem in the ultra weak scheme by using (2.17) as the
coupling parameter, setting Q = 0 and

g = T™ (u'"®) — jou™ onT.

If we assume that the solution of the problem now consists of the incoming and
scattered fields u = u!™® + u®¢, these particular choices correspond to the first order
absorbing boundary condition (2.16) for the scattered part u®c.

For comparison, an accurate approximation to the physical transmission problem
is computed using a truncated Fourier-Bessel series. This method is described in full
detail in [18]. We truncate the infinite Fourier series when the relative change of
solution due to an additional Fourier mode is less than 107°.

There are three sources of error in the UWVF calculation. First, we are comput-
ing on a bounded domain with an absorbing boundary condition. This is probably
the main source of error. Second, the interior circle is approximated using a poly-
hedral approximation (in our work on the Helmholtz equation we have implemented
the UWVF with curved boundaries and that work needs to be extended to the elastic
UWVF). Finally, of course, there is the approximation error due to discretizing the
problem on the bounded domain by the UWVF. Due to the first two approxima-
tions a discrepancy of the order 5 — 15% can be expected between the UWVF and
Fourier series approximations even for very fine grids or large numbers of directions
per element. In fact, we see that the asymptotic error of the method is around 10%.

Because the mesh, shown in Fig 7.7, is unstructured and the elastic properties
depend on position it is helpful to vary the total number of basis functions, and the
ratio of S- and P-wave basis functions element by element. Since the accuracy of the
UWVF approximation depends on both of these factors, we analyze them separately.
In the first part of the study, we fix the ratio of the S- and P-wave basis functions, and
seek a feasible method to choose the total number of basis functions in each element.
In the second part of the study, we show the effect of the S- and P-wave composition
of the basis functions on the UWVF approximation.
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h=0.2681 Solution for incident (P+S)-wave
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Figure 7.7. Left: The mesh used for the transmission problem. Bottom right: The real
part of the solution of the transmission problem with the incident wave consisting of both P- and
S-components.

The results of the wave propagation example (Section 7.1) suggest that the ratio
of S- and P-wave basis functions si/py should be about the local ratio of the wave
numbers kg/kp. By setting si./pr, = ks/kp, we compare two approaches for choosing
the total element by element number of basis functions. The first, and the most
obvious method, is to use equal number of P-wave basis functions in all elements.
Naturally, the total number of basis functions is then defined by the local ratio sy /px, =
ks/kp. The second method is to choose the total number of basis functions for each
element K, so that the condition number of the corresponding matrix block Dy, is
below a user supplied allowed limit. More precisely, we use the highest number of
P-wave basis functions which results in the condition number below an this limit.
This approach is similar to that used in [11] for the ultra weak approximation of the
Helmholtz problem. By varying the desired condition number we can vary the number
of directions per element. The mesh is fixed (Fig. 7.7) so we are essentially using
the p-UWVF studied in Fig. 7.6 (in particular the polygonal approximation of the
circular scatterer does not improve with more degrees of freedom).

In this part of the study we use the material parameters listed for Ex. 1. in Table
7.2. Note that the inhomogeneity and the background materials have a remarkably
different ratios cp/cs. Accordingly, the ratio si/pr has the same variation between
the two domains. The solution of the problem for (P+S)-wave incident field (i.e.
a=1,8=1in(7.1)) and for f = 1.0- 10* is shown in Fig. 7.7.

The error and the maximum condition number of D;, as a function of the number
of degrees of freedom (DOF) for a fixed and nonuniform number of P-wave basis func-
tions are shown in Fig. 7.8. Relative error refers to difference between UWVF and
Fourier series solutions. We note that the uniform number of P-wave basis functions
deteriorates rapidly the conditioning of the problem which blows up the error. There-
fore, in the following examples, the number of basis functions is chosen according to
the conditioning of Dy.

Although the wave propagation example indicates that the ratio of S- and P-
wave basis functions should be about the ratio of the S- and P-wavenumbers, it
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Ficure 7.8. Comparison of two approaches for choosing the total number of basis functions.
The nonuniform number of P-wave basis functions py for the element Ky is chosen based on the
condition number of the matriz block Dy. In both cases the number of S-wave basis functions is
defined by the local ratio of wavenumbers as sy /py = Ks/kp.

is worthwhile to confirm this hypothesis also for a more complex problem. As in
the previous section, we study next the effect of the choice of the ratio sj/pj of
the basis functions on the accuracy of the elastic UWVF approximation. To obtain
almost homogeneous ratio of the wave numbers in the whole computation domain,
we use the material parameters of Ex. 2. from Table 7.2. The wavenumbers for
the two subdomains are different, causing significant scattering of waves from the
interface, but the ratio cp/cg is approximately equal for both materials. This allows
a straightforward comparison between the ratios sy /py and ks/kp; and performance
of the UWVF.

Since the number of basis functions for each element is chosen now according to
the condition number of Dj,, we show the relative error as a function of the maximum
allowed condition number in Fig. 7.10. The composition of the basis is varied by
changing the ratio of S- and P-wave basis functions sy /py. The results are computed
for both P- and S-wave incident fields for which the solutions are shown in Fig. 7.9.

The error for the same set of simulations is shown as a function of the number
of degrees of freedom in Fig. 7.11. It is notable that the error in the solution can be
controlled by choosing the desired maximum condition number (this in turn effects
the convergence rate of the bi-conjugate gradient scheme which may not converge if
the condition number is chosen too large). Of course the asymptotic error in the
computed solution is different for S- and P-incident waves because of the differences
in the scattered wave in each case.

8. Conclusions. We have formulated a discrete UWVF scheme for approximat-
ing the time harmonic elastic wave equation in 2D. The method obviously extends to
3D. This requires, however, an additional set of S-wave basis functions, since in 3D
the elastic wave consists of the P-wave and two polarizations of S-waves known as
horizontal (SH-) and vertical (SV-) waves.

Our numerical results show that the method can compare favorably to low order
finite element methods, and that potential conditioning problems can be controlled
by choosing the plane wave basis in the right way. Ultimately our goal, to be reported
in a future publication, is to use the elastic UWVF together with acoustic-UWVF to
obtain a high order coupled fluid-structures code.
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Solution for incident P-wave Solution for incident S—wave
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Ficure 7.9. Left: The real part of the solution of the transmission problem with the incident
P-wave. Right: The real part of the solution of the transmission problem with the incident S-wave.
Both solution correspond to f = 1.0 -10%.

The theoretical analysis of the elastic UWVF (and other UWVF methods) needs
more work. The current analysis of the elastic UWVF only proves that a discrete
solution exists. We are currently working on improving the error analysis.
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Ficure 7.10. Relative error as a function of mazimum condition number of the blocks Dy,.
Each curve shows the error for a fized ratio of sy /py. The mazimum accuracies for the incident P-
and S-waves are 8% and 15% respectively. The discrepancy of this order between the Fourier series
and UWVF approximations are due to low order absorbing boundary condition and the approrima-
tion of the curved boundary by the UWVE.
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FiGure 7.11. Relative error as a function of the number of degrees of freedom.
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