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Abstract

The equilibrated residual method for a posteriori error estimation is
extended to non-conforming finite element schemes for the approximation
of Darcy’s equation governing flow in porous media, where the permeabil-
ity is allowed to undergo large jumps in value across interfaces between
differing media. The estimator is shown to provide a computable upper
bound on the error, and, up to a constant independent of the mesh-size,
provides two-sided bounds on the error. The robustness of the estimator is
also studied and the dependence of the constant on jumps in permeability
is given explicitly.
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1 Introduction

A posteriori error estimation for conforming finite element schemes has been
the subject of extensive investigation and such methods are now routinely in-
corporated in adaptive finite element procedures by the engineering and sci-
entific computing community. In contrast, the treatment of non-conforming
methods [8] has been subject to sporadic yet sustained attention over the past
decade.

The early work of Agouzal [1] was concerned with a posteriori error esti-
mation for non-conforming finite element approximation of Poisson type prob-
lems. The important contribution of Dari et al. [10] presented an explicit a
posteriori error estimator based on evaluation of norms of residuals supple-
mented by jumps in fluxes across inter-element edges, and showed that the
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estimator provides two-sided bounds on the error up to generic, unknown
constants that are independent of the mesh size. This was subsequently ex-
tended to non-conforming mixed finite element approximation of Stokes flow [9]
and non-Newtonian flow [3]. The application of hierarchic basis estimators
to non-conforming finite element approximation was considered by Hoppe and
Wohlmuth [15], where the usual hierarchic basis estimator is augmented with an
additional term comparing the non-conforming approximation with a smoothed
approximation. Two-sided bounds were obtained [15] under the assumption
that a saturation condition is valid. In a related approach, Schieweck [17] pro-
posed a residual based estimator supplemented with the same additional term
as in [15]. However, the analysis of efficiency in [17] was based on additional
rather strong assumptions on the regularity of the mesh and the true solu-
tion. Carstensen et al. [6], derived estimators based on gradient averaging (or
smoothing) techniques and obtained two-sided bounds. All of the above es-
timators involve generic, unknown constants, and as such provide refinement
indicators rather than actual numerical bounds on the error.

Destuynder and Métivet [12] derived a posteriori bounds for the error in a
conforming approximation obtained by smoothing the non-conforming approxi-
mation. Explicit, computable upper bounds on the error measured in the energy
norm were obtained for approximation of Poisson’s equation. In order to show
the bounds are efficient, the authors made additional regularity assumptions on
the mesh and the true solution, and showed that the estimator decays at the
same rate as the true error. Unfortunately, these regularity assumptions on the
mesh and the true solution generally fail to hold in the context of the solution
of practical problems on adaptively refined meshes.

A technique that has proved particularly effective and robust for a posteriori
estimation of the error in conforming finite element schemes is the equilibrated
residual method, as described for example in [2]. One goal of the present work
is to extend the equilibrated residual method to non-conforming finite element
schemes for the approximation of Darcy’s equation governing flow in porous
media. The permeability is assumed to be piecewise constant on subdomains
corresponding to different media, but is allowed to undergo large jumps across
interfaces. Particular attention is paid to the robustness of the a posteriori
error estimator with respect to the size of the jumps. This issue has also been
studied in the setting of conforming finite element approximation by Bernardi
and Verfiirth [4].

The approach is based on the idea of Dari et al. [10] involving an orthogo-
nal (Helmholtz) decomposition of the error into a conforming part and a non-
conforming part. The conforming part is treated using a modification of the
standard equilibrated residual method where the weakened continuity require-
ments for a non-conforming element are fully exploited. Indeed, the usual
procedure for conforming approximation can be dramatically simplified to the
extent that in its final form the estimator resembles an explicit estimator with,
however, the advantage that there are no unknown constants. The remaining
non-conforming part of the error is estimated using the difference between the
non-conforming approximation and a smoothed non-conforming approximation
similarly to [15], and this is shown to give an upper bound without recourse
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to unknown constants. The final form of the estimator resembles those derived
in [10,12,15,17]. However, one by-product of the method of derivation is that
the estimator can be shown to provide computable upper bounds on the error—
a feature characteristic of the equilibrated residual method. Furthermore, the
bounds are shown to be efficient in the sense that the estimator is bounded
above by the true error up to a constant independent of any mesh-size. This
result is proved without additional assumptions on the regularity of the true
solution and the mesh is allowed to be locally refined, as would be the case
of adaptive refinements. However, in order to circumvent the saturation as-
sumption [15], we shall assume that the oscillation of the data is sufficiently
small. This extends the ideas of Doérfler and Nochetto [13] to non-conforming
finite element approximation. Moreover, the analysis takes full account of the
large jumps in the permeability across material interfaces, and shows that the
estimator is robust with respect to the jumps in certain circumstances (such as
if the hypothesis assumed by Bernardi and Verfiirth [4] is satisfied).

Gradient smoothing procedures are frequently adopted in the setting of
conforming finite element approximation. However, for the non-conforming
schemes considered here, smoothing is applied directly to the (discontinuous)
finite element approximation, as opposed to its gradient. Interestingly, in the
case of Laplace’s equation, the exact solution of the local residual problem
vanishes identically. This means that the estimator reduces to a recovery based
estimator, and in view of the upper bound property, we arrive at the somewhat
surprising conclusion that the recovery based estimator provides a guaranteed
upper bound on the error (even though the true solution may have singularities
and the mesh may be highly unstructured).

The remainder of this paper is organised as follows. After describing the
details of the finite element scheme and the conditions on the mesh, the de-
composition of the error into a conforming and non-conforming component is
presented. The main results of the paper are then outlined, and illustrative
numerical examples are presented. Subsequent sections are concerned with the
derivation of the upper and lower bounds for each source of error.

2 Preliminaries

2.1 Model Problem
Consider Darcy’s equation governing flow through a porous medium
—div(Agradu) = f in Q (1)

subject tou = qon I'p and n-A grad u = g on 'y, where (Q is a plane polygonal
domain, the disjoint sets I'p and I"y form a partitioning of the boundary I' = 052
of the domain. The data satisfy f € La(), g € Lo(Tn), ¢ € HY(T'p) and
A € Loo(92;R?*?) is positive definite. For simplicity, it will be assumed that the
permeability matrix A is piecewise constant on sub-domains of 2. However, the
value of A across a sub-domain boundary may undergo jumps of many orders
of magnitude, corresponding to transition between regions of widely differing
permeability.
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The variational form of the problem consists of finding v € H'(£2) such that
u=qon['p and

(Agradu, gradv) = (f,v) —|—/ guds Yv e HE(Q) (2)
I'n

where HL(Q) = {v € HY(Q) : v = 0on I'p}. In general, we shall use the
notation (-,-), to denote the integral inner product over a region w, and omit
the subscript in the case where w is the physical domain €.

Consider a family of partitions {P} of the domain € into the union of
non-overlapping, shape regular triangular elements such that the non-empty
intersection of a distinct pair of elements is a single common node or single
common edge. The family of partitions is assumed to be locally quasi-uniform
in the sense that the ratio of the diameters of any pair of neighbouring elements
is uniformly bounded above and below over the whole family.

In addition, whenever possible, the partitioning is chosen to reflect the struc-
ture of the permeability matrix in the sense that individual elements do not
straddle a sub-domain boundary where the value of A undergoes a large jump.
This requirement is reflected in the assumption that, for every element K € P,
there exist positive constants Ax and Ag satisfying

A PN 7,0 < (AP, P)K < Ak Pl k) P € La(K)? 3)

such that the ratio Tx = Ag/Ak is uniformly bounded over the whole family
of partitions. It will be important to develop a posteriori error estimators
whose reliability and efficiency is insensitive to the magnitude of the jumps in
permeability between differing regions, but which are allowed to depend on the
variation of A within a region.

2.2 Non-conforming Finite Element Approximation

Let A index the set of element vertices, OP denote the set of element edges,
M = {m, : v € OP} denote the set of points located at midpoints of edges
and let P; denote the space of polynomials of total degree at most one. The
Crouzeiz—Raviart finite element space [8] is defined by

X" = {v Q—>R:vygelP; VK eP, wviscontinuous at m, € M\F}
with the subspace XF defined by
X ={veX":v(m,)=0foryCIp}.

Functions belonging to the space X" and X7~ may have discontinuities across
element interfaces, meaning that X" is not a subspace of H'(f2) and therefore
constitutes a non-conforming approximation space [5,7]. The non-conforming
finite element approximation of problem (2) consists of finding un. € X" such
that

(Agrad, unc,grad,.v) = (f,v)+ fFN gvds Yv e X @

unc(my) = q(m,) VyCIp
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where grad,,. denotes the operator defined by
(grad,.v) x = grad(vg), K€P.

A Lagrange type basis {6} for the space X" may be constructed by choosing
, € X" to be the function uniquely defined by the conditions

6y(my) =0y, ~ €0P. (5)

A non-conforming interpolation operator Ine : H'(€2) — X" is defined by
the conditions

/anvds:/vds Yy € OP. (6)
gl gl

The representation of the operator relative to the basis (5) is given by

Mocv=Y_ 0,0, (7)

~yCIOP

where v, denotes the average value of v on an edge 7. Observe that the re-
striction of II,c v to a particular element K is defined entirely in terms of the
averages of the function v on the edges of the element and, moreover, II,c
locally preserves constants. These properties (in conjunction with standard
scaling arguments) may be used to deduce that there exists a positive constant
C independent of any mesh-size such that the following local element-wise ap-
proximation property holds:

1/2
[v—=Tacvll1,x) + hil® o — e vl 1,01y < Chi |lgrad vl , gy - (8)

2.3 Data Oscillation

It will be necessary to impose some notion of regularity of the underlying prob-
lem. Often, a saturation condition [15] is assumed, but this assumption makes
reference to the (unknown) true solution w meaning that it is difficult to ver-
ify a priori. Dorfler and Nochetto [13], working in the context of conforming
piecewise affine approximation, showed that the saturation assumption can be
removed in favour of an assumption on the magnitude of the data oscillation.
This condition has the advantage of being formulated directly in terms of the
known data for the problem and can therefore be verified a priori. We shall
show that a similar conclusion holds in the non-conforming setting considered
here.

The oscillation of the data f € Ly(€2) over the finite element partition
P = {K} is defined by

osc(f,{K : K e P})? = Z meas(K) ||f - TK”;(K) . 9)
KeP

where f is the average value of f over element K. The data oscillation quan-
tifies the variation in the data f with respect to the partition P. Likewise, the
oscillation of the Neumann data ¢ is defined by

osc(g,{v:y CTw})?= ) meas(y)|g _%Him) :
yCI' N
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The appropriate quantity for the Dirichlet data turns out to be

o0
osc (8q/ds,{y:yCcTp})?= Z meas(y) H8_z My
7CI'p

2
La(v)

Here g, and ji, denote the average value of g and dg/0s on edge 7.

2.4 Path Permeability

Let Q,, denote the patch composed from those elements with a vertex located
at @y, and let K, K’ C Q, be distinct elements. It is useful to introduce the
notion of permeability Ax i’ between a pair of elements. Roughly speaking, this
measures the permeability of the ‘most permeable’ route between the elements.
The precise definition is based on the observation that there is always at least
one connected path p(K, K’) passing from K to K’ through adjacent elements
belonging to the patch €2,. The smallest permeability of all the elements in
the path p(K, K’) is given by min{\y : M € p(K,K’)}. If @, is an interior
vertex, then there are two such paths and in this case we take p(K, K’') to be
the path *(K, K') which maximises the value of this quantity, and define

Agrr = min {\y : M € p*(K,K')}. (10)

If a vertex x,, of element K lies on the Dirichlet boundary I'p, then the element
may be linked to I'p by a connected path p(K,I'p) passing through adjacent
elements as before. The permeability Agr,, between element K and the Dirich-
let boundary is then defined using (10) with p*(K,T'p) in place of p*(K, K').
The ratio )

Ty = e Are) ()

KK

measures path permeability relative to the least permeable of the two elements
K and K’ at the endpoints of the path.

If , is contained either within a sub-domain, on the interface between
two sub-domains or at the cross-point of three sub-domains, then the relative
path permeability is always unity, see Fig. 1(a)-(b). However, the relative path
permeability may be arbitrarily large at cross-points where four or more sub-
domains meet, as would be the case in Fig. 1(c) if @ < 1. This means that the
relative path permeability remains bounded only under additional hypotheses.
For example, if, as in Bernardi and Verfiirth [4, Hypothesis 2.7], it is assumed
that there is always a path between any two elements on which the permeability
increases monotonically, then the relative path permeability is always unity,
even at boundary nodes x,, € I'p.

3 A Posteriori Error Estimator

3.1 Decomposition of the Error

The purpose of the present work is to develop methods for obtaining computable
estimators for the error e = v — upc in the non-conforming approximation mea-
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Figure 1: Value of relative path permeability (11) for some typical config-
urations. (a) Node on interface: YTggs = 1. (b) Node at cross-point of
three sub-domains. YTxg = 1. (c) Node at cross-point of four sub-domains
(e € 1). Tggr = 1/max(min(l,«),€). (d) Node on Dirichlet boundary.
TKI‘D = AQ/ rnax(min()\l, Ag),min()\g, )\3))

sured in the energy norm denoted by (Agrad, e, grad, e)'/2. The following

Helmholtz type decomposition is essentially taken from Dari et al. [10].

Lemma 1 Let

H:{wEHl(Q):/wdwzoandZ—wzo onFN}.
Q

S

The error e may be decomposed in the form
Agrad,.e = Agrad ¢ + curl ¢ (12)
where ¢ € HL(Q) satisfies
(Agrad ¢, gradv) = (Agrad, e, gradv) Yo € H(Q) (13)
and ¢ € 'H satisfies
(Al curl o, curlw) = (grad, e, curlw) VYw € H. (14)
Moreover,

(Agrad, e, grad, e) = (Agrad ¢, grad ¢) + (A~' curl ¢, curl ).  (15)
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Proof. An application of the Lax-Milgram lemma shows that ¢ exists and is
unique. Denote w = A(grad, e — grad ¢) € Ly(2)2. With the aid of Green’s
formula and equation (13), we deduce that

O:/vdivwd:c—i—/vn-wds Vv € HL(Q).
Q T

Consequently, w is divergence free in 2 and n-w = 0 on I'y. Applying
Theorem 3.1 in [14] shows that there exists ¢ € H'(Q)/R such that

A(grad,. e — grad ¢) = w = curl .

Furthermore, n - curl ¢y = n-w =0 on I'y, and we conclude that » € H. The
characterisation (14) and the orthogonality property (15) hold provided that

/gradqb-curlwdcc =0 YweH.
Q

This follows directly from an integration by parts on recalling that ¢ vanishes
on I'p while n - curl w vanishes on I'y. O

Lemma 1 means that the error e in the non-conforming approximation may
be split into two parts, as in equation (12). The nature of the contributions
1 and ¢ defined in Lemma 1 may be identified as follows. First, suppose that
the non-conforming approximation unc happens to be conforming, by which we
mean u — unc € H5(2). The right hand side of equation (14) then simplifies to

(grad,.e,curlw) = (grad e, curl w) = / en-curlwds =0,
r
since e vanishes on I'p and n - curlw = 0 on 'y for w € H. Hence, if
the approximation wu,c is conforming, then the contribution 1 vanishes. For
this reason, we shall refer to ¢ as the non-conforming error. The remaining
contribution, ¢ is referred to as the conforming error.

The splitting of the error into non-conforming and conforming components
defines an orthogonal decomposition in the sense that the Pythagorean iden-
tity (15) holds. This means that the problem of obtaining a posteriori error
estimators for the total error reduces to the derivation of estimators for the con-
forming and non-conforming errors independently. An estimator for the total
error is then given by summing the estimators for the independent contribu-
tions.

3.2 Overview of Main Results

For ease of exposition, we state the main results proved in Sect. 5 and 6 assuming
the data oscillation vanishes. For K € P, let ok denote the function o =
— 1 fk(®— ), where xx denotes the element centroid, then direct evaluation
reveals that

3
_ 1 —2 _
nax = (ATloK, oK), = EmeaS(K)fK;sz Ly (16)
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where wy is the position vector of vertex £ of the element relative to the centroid.
This quantity defines an upper bound for the conforming error, as shown by
combining Lemma 2 and Theorem 6 to obtain:

(Agrad ¢, grad ¢) < > nZ k.
KeP

Moreover, Theorem 6 implies that this bound is efficient in the sense that

nex < CYk(Agrad ¢, grad ¢)x

for all K € P. The estimator for the non-conforming error is defined in terms
of a piecewise affine function S(unc) on P obtained by smoothing the non-
conforming approximation with values at vertices given by

q(xy), ifxelp

S(unc)(n) = > Wi tne (%), otherwise (17)
KeQy,
where the weights wg ,, are defined by
A2
WKn = ﬁ (18)
ZK’CQn AK’

Any choice of weights satisfying the condition

> wgn=1 (19)

KcCQp

is permissible. The requirement (19) leaves considerable latitude in the selection
of the weights. For instance, one might even choose all but one of weights to
vanish as suggested by Schieweck [17]. The obvious choice whereby the weights
are chosen to be equal has been utilised by Oswald [16] in the context of multi-
grid methods. An alternative choice, advocated by Destuynder and Métivet [12,
eq. (17)], is to take wg ,, proportional to the area of element K. If the mesh is
locally quasi-uniform, then the latter two choices are not significantly different.
Here, we are specifically concerned with the approximation of problems with
highly varying local permeability, and the choice of weights given in (18) re-
flects this by depending on the value of the local permeability. The weights (18)
are equal if the node «,, is located inside a sub-domain where the local perme-
ability is constant, but differ markedly on interfaces and cross-points between
sub-domains.
The estimator for the non-conforming error on element K is given by

77r21c,K = (Agrad,(unc —S(tnc)), grad,(unc _S(unC)))K . (20)

Lemma 8 shows that the non-conforming error is bounded above by

(A_1 curl ¢, curl 1/}) < Z nr%c,Ky
KeP
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Ndofs True Estimated | Effectivity
44 [887(-2) | 2.26(-1) 1.60
99 4.02(-2) | 9.97(-2) 1.57
154 | 2.15(-2) | 5.15(-2) 1.55
209 | 1.41(-2) | 3.25(-2) 1.52
264 | 1.11(-2) | 2.50(-2) 1.50
446 | 5.86(-3) | 1.35(-2) 1.52
640 | 3.86(-3) | 8.84(-3) 1.51
933 | 2.60(-3) | 5.96(-3) 1.51
1487 | 1.57(-3) | 3.57(-3) 1.51

Table 1: Comparison of estimated and true error for L-shaped domain.

while Theorem 10 shows this bound is efficient in the sense that
nr%gK S CTKK/ (Ail curl ’l)[), curl ’IJZJ)R. .

where K is the patch composed from element K along with its neighbours.

The above results show that the total error is bounded above by the sum
of the local estimator (16) for the conforming error and the non-conforming
error (20)

(A gradnc €, gradnc 6) S Z (ngf,K + 77r21c,K) . (21)
KeP

This estimator is reminiscent of the estimators found in [10,12,15,17]. Here,
it is shown that the estimator provides a numerical upper bound for the total
global error which does not involve unknown constants. Moreover, the estima-
tor (21) is shown to be efficient and robust, without additional assumptions on
the regularity of the true solution or on the mesh.

4 Numerical Examples

The behaviour of the estimator (21) is illustrated for some simple representative
problems in this section.

4.1 Laplacian on L-shaped domain

Figure 2 shows the sequence of adaptively refined meshes for the solution of
Laplace’s equation on an L-shaped domain with pure Dirichlet boundary con-
ditions chosen so that the solution is given by wu(r,#) = r2/3sin(26/3). The
conforming error vanishes in this case and the local error estimator on element
K reduces to nnc k. The effectivity index is found to vary in the range 1.5-1.6
in this example, as shown in Table 1. The sequence of meshes was constructed
adaptively by selecting for refinement all elements where the local error indica-
tor exceeds 30% of the value of the largest local indicator.

4.2 Non-zero source term

Figure 3 shows the sequence of adaptively refined meshes for the solution of
Poisson’s equation with homogeneous Dirichlet boundary conditions and source
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Figure 2: Sequence of adaptively refined meshes for Laplace example.

Ndofs True Estimated | Conforming | Non-conform | Effectivity
36 | 4.75(-1) | 8.86(-1) 2.13(-1) 6.73(-1) 1.37
119 | 1.92(-1) | 3.58(-1) 7.37(-2) 2.85(-1) 1.36
219 | L11(-1) | 2.15(-1) 4.43(-2) 1.70(-1) 1.39
384 | 6.62(-2) | 1.28(-1) 2.73(-2) 1.00(-1) 1.39
647 | 3.99(-2) | 7.61(-2) 1.54(-2) 6.07(-2) 1.38
923 | 2.61(-2) | 5.19(-2) 1.08(-2) 4.11(-2) 1.41

1377 | 1.84(-2) | 3.62(-2) 7.94(-3) 2.82(-2) 1.40

2633 | 9.05(-3) | 1.71(-2) 3.59(-3) 1.35(-2) 1.38

3302 | 7.10(-3) | 1.36(-2) 3.06(-3) 1.05(-2) 1.38

Table 2: Comparison of estimated and true error for Poisson.

term chosen so that the solution is given by u(r,0) = (r%/3 — r2)sin(26/3). In
this example, the conforming and non-conforming errors are both non-zero.
The performance of the error estimator is shown in Table 2 along with the
contributions from the conforming and non-conforming components of the error.

4.3 Variable permeability

The performance of the estimator in the case of variable permeability will be
illustrated by considering the simple problem on the domain shown in Fig. 4
with scalar permeability A = a,I on €, and prescribed flux g = n-grad(z%—y?)
on 99Q. The true solution on subdomain € is given by u(z,y) = (2% — y?)/as.
Consider the situation where the local permeability is given by a1 = 1, as = a?,
a3 = 1 and a4 = o with an initial mesh consisting of four elements coinciding
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Figure 3: Sequence of adaptively refined meshes for Poisson problem.

with the sub-domains shown in Fig. (4).
y

(1,1)

-

(-1,-1)

Figure 4: Geometry and subdomains for problem with variable permeability.

The ratio of the estimated error to the true error, Eff(a), of the estimators

obtained using the standard smoothing operator S with equal weighting and
the estimator obtained using the weighted smoothing operator with weights

depending on the permeability as in (18), can be computed explicitly on the

initial mesh. For the standard scheme, we obtain
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whilst for the weighted estimator,

27
N +0(a™!) asa— oo

%—i—(’)(a) as a — 0

Eff(a)? =

The performance of the standard estimator clearly degenerates rapidly as the
local permeability a is varied. The performance of the estimators when a?
is taken to be 0.1 is presented in in Fig. 5. As would be expected, as the
mesh is refined, both estimators tend to give the same value. However, even
with this relatively modest value of «, the standard scheme provides very poor
estimates for the error on the coarser meshes. The distribution of the local error

Error

—e— True Error

—o— Standard Estimator
=0~ Eff. (Standard)

—v— Weighted Estimator
- Eff. (Weighted)

10° 10’ 10° 10° 10*
No. of DOFS

Figure 5: Comparison of standard estimator with weighted scheme for model
problem with variable permeability.

estimates is compared with the actual local errors is shown in Fig. 6. Obviously,
the estimators coincide away from interfaces. However, on interfaces and at the
cross-point, it is observed that the weighted estimator gives a more accurate
picture of the distribution of the true error. Here, the true error was used
to construct the sequence of adaptively refined meshes. Essentially the same
sequence of meshes would be obtained if the weighted estimator were used,
whilst if the standard estimator were to be used, then one would obtain a
completely different sequence of meshes.

4.4 Neither term can be dropped from the estimator

The fact that the estimator provides an upper bound for the solution of the
Laplace equation shows that the non-conforming term must be present in the
estimator. It is less clear that the interior residual term must also be present.
Consider the Poisson equation on a unit square with pure Neumann data cho-
sen so that the true solution is given by 3z — 2zy + 3y®. Observe that the
oscillation of f vanishes. Suppose that the solution is approximated using the



Robust a posteriori estimation for non-conforming finite elements 14

A ATETATATATAw
V_%WA‘FAT

N
<9

(c) Mesh 4

Figure 6: Distribution of true local error (left) and estimated local error for
weighted (centre) and standard (right) estimators applied to model problem
with variable permeability.

mesh obtained by sub-dividing the square into a uniform mesh of right-angled
triangles with hypotenuse in the direction (1,1). In this scenario, it is found
that the non-conforming finite element approximation unc is actually conform-
ing, which means that the non-conforming term vanishes, yet the true error
is obviously non-zero. This example shows that the interior residual term is
essential for the upper bound, and therefore cannot be removed in general.

5 Estimation of the Conforming Error

5.1 Equilibrated Residual Method

The equilibrated residual method of a posteriori error estimation is based on
the solution of independent local residual problems posed over each element K.
The solution of the local problems is sought in the space

Hp(K) = {vlx : v € Hp(Q)} (22)

consisting of restrictions of functions belonging to the space H}S(Q) to a single
element.

The equilibrated residual estimator requires a set of equilibrated fluxes.
The functions {gx € L2(0K) : K € P} are said to be equilibrated fluzes if the
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equilibration condition,
(f,v)K + / grvds — (Agrad,  unc, grad, . v)g =0 Yve X" (23)
oK

and the consistency condition

Z/ gdes:/ guds VUGH}E(Q) (24)
oK 'y

KeP

are satisfied. Given a set of equilibrated fluxes, the estimator is defined in terms
of the solution ex € HL(K) of the local equilibrated residual problem:

(Agradeg, gradv)k = (f,v)KJr/ grvds — (Agrad,c unc, grad v)x, (25)
oK

for allv € HL(K). The local error estimator is given by (A grad e, grad e ) k.
The main property of this method is that it provides an upper bound on the
error.

Lemma 2 Let {gx : K € P} be a set of equilibrated fluzes. Then, there exist
solutions {ex : K € P} of the local residual problems (25). Moreover,

(Agrad ¢,grad ¢) < Z (Agradeg,gradeg) k. (26)
KeP

The proof is practically identical to the argument used in the conforming case,
see, for instance [2], and is therefore omitted.

Equilibrated fluxes are not uniquely determined by conditions (23)-(24).
The construction of equilibrated fluxes for conforming finite elements is dis-
cussed in detail in [2]. One benefit of using the non-conforming elements is that
it is markedly easier to define a set of equilibrated fluxes:

Lemma 3 Let g € Lo(OK) be defined by the rule

1
9K = e {(grad, . unc, grad, GV)K - (f, 9'7>K} ony C OK\I'y (27)
Y

with gx =g ony CIOK NTy. Then {gk} is a set of equilibrated fluzes.
Proof. 1t suffices to verify the equilibration condition (23) in the case v = 6,.

If v ¢ I'y, then

/3 gKe’Y ds = h’Y gK|7 = (gradnc Unc; gradnc Q’Y)K - (f? HV)K
K

and the condition is satisfied. Alternatively, if v C I'y then 6, is supported on
a single element K and the equilibration condition is equivalent to

(grad,c unc,grado,) = (7.0,) + [ g0, s

I'n

which is simply equation (4) with v = 6,,.
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It remains to verify the consistency condition (24) holds. Suppose elements
K and K’ share the common edge 7. Then 6, is supported on K U K’ and so,

h7 (gK + gK’)'»y = (fv 97) - (gradnc Unc, gradnc 07) =0 (28)

thanks to equation (4) with the choice v = 6.,. Let v € H(f2) then

Z/ gdes:/ guds
oK I'y

KeP

since the contributions from the internal (shared) edges cancel pairwise in view
of (28). O

We can take advantage of the explicit expression (27) for the equilibrated
fluxes to simplify the data for the local residual problem (25). Let v € H5(K)
and let IIcv € X" denote the non-conforming interpolant. Applying inte-
gration by parts allows the right hand side of equation (25) to be rewritten
as

(f)v)K ""/(9 (QK — Nk - Agradnc unClK)UdS
K

since div(A grad, . unc) vanishes. Now, thanks to the equilibration condition,
the right hand side vanishes for v € X" and we may replace v by v — I v,
giving the following expression for the right hand side of (25):

(f,v—Ihev)rx + / (9x — ni - Agrad,. unc|x) (v — Hncv) ds.
oK

Noting that | o a(v — Hpcv)ds vanishes for constants «, and that gx and

Agrad, unc are constant on interior edges, the second term collapses to |, SKAT g(v—

IInc v)ds. In conclusion, we have the following alternative characterisation for

the local equilibrated residual problem:

(Agradeg, gradv) g = (f,’u—an’U)K—i—/ g(v =TI cv)ds.  (29)
OKNI'y

for all v € HL(K). For future reference, we observe that equations (13) and

(29) also yield an alternative expression for the conforming error defined in (13):

(Agrad ¢,gradv) = (f,v —lcv) + / g(v—1lhcv)ds (30)
I'n
for v e HL ().

The upper bound of Lemma 2 holds regardless of the selection of equilibrated
fluxes. However, the sharpness of bound depends on the particular choice. The
next result shows that the construction given in Lemma 3 is quasi-optimal up
to the addition of a higher order term measuring the local data oscillation.

Lemma 4 Let {gx} be the equilibrated fluzes defined in Lemma 3. Then, there
exists a constant C, independent of any mesh-size, such that

(Agradeg, grad aK)}(/Q

<C {T}Q(A grad ¢, grad qb)}(/g + min(1, AK)_l/QAK} (31)
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where Ag = osc(f, K) + osc(g,{y C I'n NOK}) is the local data oscillation
over element K.

Proof. Let v € HL(K). Then, since f7 G (v—Ilsc v) ds vanishes for constant
g, the right hand side of (29) may be rewritten as

(fa Gl HnC U)K + Z (g - gfy)(v - HnC 1)) ds.
~COKNT V7

This may in turn be bounded above using (8),

CLhilflamy + Do B2 l9=34ll, ¢ leradollp, k) .
'7C8KDFN

Using the triangle inequality, the term in parentheses may be bounded above
by

hi ”7K”L2(K) +osc(f, K) + Z h#/Q lg - g’YHLQ(y)
YCOKNI' iy

while the multiplicative factor is bounded using (3),
|grad v||L2(K) < )\;{1/2 (Agradv, grad v)}f.

By choosing v = €k in (29) and applying the Cauchy-Schwarz inequality, we
find that

(Agrad ek, grad EK)}(Q (32)
< AP {hK 17 sell i) + 05¢(f, K) + 0sc(g, {y € Ty N aK})} .

Let x € Hi(K) be the cubic (bubble) function whose value is unity at the
element centroid. Then, up to constants independent of the element size hx,

Axm%@;mbwww;mwumwwl

Thanks to (3), the latter estimate implies that (Agrad y,grad x)x < CAk.
Choosing v = x in equation (30) gives

(Agrad ¢,grad x) = (f, x)x

since I, x = 0. Equally well, for constant f,

fr(l,x)k = (Agrad ¢, grad x)x — (f — fx. X)K

and so, applying Cauchy-Schwarz inequalities and the properties of x recorded
above, we deduce that

| Fre(LxX)r| < C{A%Q(A grad ¢, grad ¢);/* + hic || f _?KHLz(K)}'

Again exploiting properties of x, we deduce that, up to constants independent
of the mesh-size, hx ||fKHL2(K) ~ ‘fK(17X)K| and hence

hi ||7KHL2(K) <C {A}(Q(Agradqb, gradqb)}(/2 + osc(f, K)} . (33)

Inserting this estimate into (32) gives the result as claimed. O
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5.2 Inexact Solution of the Residual Problem

The solution of the local residual problem (25) cannot be computed exactly,
and a practical alternative is required. Let T denote the centroid of element

K, and define .
oK = =5 k(T —Tk) (34)

where f denotes the (constant) average value of the data f on element /&. The
main result in this section is to show that the field o may be used to define
a computable estimator that provides reliable and efficient bounds on the true
solution of the local residual problem (25) provided the data oscillation (9) is
sufficiently small. Before turning to the main result, we first establish that the
function ok has the following important property:

Lemma 5 Let ok be defined as in (34). Then,
(ox,gradv)g = (frc,v — e v)g, Yo € Hy(K). (35)
Proof. Let v € H},(K). Then, integration by parts gives

(o’K,gradv)K:—/ vdivaKd:c+/ vk - oK ds
K oK

where nx denotes the unit outward normal on 0K. Inserting the expression
for ok into the first term on the right hand side gives

—/ vdivegde = (fx,v)x
K
since fj is constant. It therefore suffices to show that the second term satisfies

/ wng -oxds = —(fr,Hncv) k- (36)
0K

Substituting the expression for o i gives

1_
/(9KvnK-aKd5:—§fK Z /vnK-(m—EK)ds.

yCcoK VY

Elementary geometry reveals that ng - (x —Tg)|, = 2meas(K)/3meas(vy),

and hence

g

_ 2 _

/vnK (x—Tg)ds = 3 meas(K)v,
v

where 7, denotes the average value of v on the edge v, and the left hand side
of (36) may therefore be written in the form

1 _
/ g - ogds = ——- meas(K) f Z Tsy. (37)
oK 3
YCOK
An elementary computation using (6) reveals that
1
/ IIc vde = = meas(K) Z Ty,
K 3
YCOK

and the identity (36) now follows by combining this result with (37). O
The main result of this section may now be stated:
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Theorem 6 Let e denote the solution of the approximate local residual prob-
lems (25) and ok denote the field given in (34). Then, there exist positive
constants ¢ and C, independent of any mesh-size, such that

(Agradeg, gradaK)%2 < (Aflo'K, O'K)Z2 + C’)\;ﬂAK (38)
and
c(A™ O'K,O'K)l/2 < TI/Q(Agradgb, gradgb)l/2 _1/2 osc(f, K) (39)
where A denotes the local data oscillation defined in Lemma 4.
Proof. Let v € H,(K). Equations (29) and (35) imply that

(Agradeg — ok, gradv) g
OKNI'y

The first term on the right hand side may be bounded using the Cauchy-Schwarz
inequality and then applying (8) to obtain

(f—TKaU—anU)K < ChK”f—?KHLz(K) ||grad”U||L2(K)

Property (6) means that f7 G(v — Ilhc v) ds vanishes for constant g., which
enables us to rewrite the second term on the right hand side of (40) as

/ 9—9,)(v—TIncv)ds.
0l

Applying the Cauchy-Schwarz inequality and (8) reveals that

/ g(v—Ilpcv)ds < C ||gradU||L2(K) Z h%/Q Hg _y”/”Lz(V)
K ~yCOKNTy

YCOKNI'

With the aid of these estimates and (3), we obtain
(Agradeg —og,gradv)xk < CAg|lgradv|,, k)
< C’)\}lmAK(A grad v, grad v)}f.
Now, choosing v = ex we deduce that

(Agradeg,gradeg )k

< (ok,gradeg)g + CAg ||g1[‘ad<€K||L2 K)
< {(A_IO'K,O'K>}(/2+O)\;<1/2AK} (Agradeg, gradEK)l/2

which proves the upper bound. For the proof of the lower bound, we first use (3)
and (16) to deduce that

_ _ - 2
(A 1O'K, O'K)K S C)\th%( ||fKHL2(K) .
and then, thanks to (33), we obtain
(A oy, O'K>}</2 <C {T}(Q(A grad ¢, grad gb)}(/Q + )\;(1/2 osc(f, K)}

which completes the proof. O
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6 Estimation of the Non-conforming Error

We turn to the problem of estimation of the non-conforming component of the
total error defined by (14). The following result forms the basis for developing
upper bounds.

Lemma 7 Let ¢ be defined in equation (14), then

(A 'curl ,curl ) = min  (Agrad, (u* — unc), grad, (u* —unc)). (41)
u*eH(Q):
u*=qonl'p
Proof. Let u* € H(Q) satisfy u* = g on I'p. In particular, u —u* € H1(2)
and hence, applying Green’s formula gives for each w € H,

(grad, (u — u*),curlw) = /
o0

since the first term vanishes on I'p while the second vanishes on I'y. Conse-
quently,

(u—u*)g—wds:o
s

(A~ curl ¢, curlw) = (grad, e, curlw) = (grad, . (u* — unc), curlw).

Therefore, choosing w = ¢ and applying a Cauchy-Schwarz inequality reveals
that

(A7 curl o, curl ¢) < (Agrad, (u* — unc), grad, . (u* — tne)).

It remains to show the lower bound is attained. Let ¢ € H(Q) be defined as
in equation (13), and choose u* to be the function u — ¢. Identity (12) reveals
that

Agrad, (u* — unc) = Agrad, (e — ¢) = curl ¢

which shows the lower bound is attained. O

The significance of Lemma 7 is, given any admissible function v* in equa-
tion (41), we immediately obtain an upper bound on the non-conforming error.
The accuracy of the bound will of course depend on the particular choice of
function u*. Equally well, the ease with which the bound may be evaluated will
depend on the actual form of the function. Simple choices of u* are ruled out by
the condition on the Dirichlet boundary (except those where the Dirichlet data
q is trivial), and it will be worthwhile to relax this restriction (at the expense
of introducing an oscillation term for the Dirichlet data). We shall base our
choice of u* on a continuous, piecewise affine function S(unc) obtained by post-
processing the non-conforming approximation. The restriction of the function
S(unc) to the Dirichlet boundary is chosen to be the continuous piecewise linear
interpolant g; of the Dirichlet data ¢ at element vertices on ['p.

Lemma 8 Let S(unc) be any piecewise affine function whose restriction to the
Dirichlet boundary U'p coincides with qr. Then, there exists a constant C' inde-
pendent of any mesh-size, such that

(fr1 curl ¢, curl ¢)1/2 < (Agrad, (tunc —S(unc)), grad,(unc —S(unc)))1/2
+ C’Allﬂ/; osc (0q/0s,{v:vCTp}) (42)

where Ap, = max {Ag : K has an edge on I'p}.
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Proof. First, let v C 0P NI'p and observe that ¢ — g7 € HééQ('y). Moreover,
/

the convexity of the H302—norm and standard (one-dimensional) approximation
properties of the interpolant reveal that

la = arl3ar2,) < Chy 190/05l17, )

The same argument applies if we replace ¢ by ¢ — as, where a € R is arbitrary
and s denotes the arc-length, yielding the estimate
. 2 _ 2

llg = arll a2,y < C'meas(y) inf [0¢/0s — allz,(,) = Cosc(9g/0s,7)".  (43)
The function u* is then chosen to be u* = S(unc) + &. The function & € H()
is defined element-wise by {x = q¢— g on K NT'p, §{x = 0 on OK\I'p and
extended onto the domain interior as a harmonic function so that [|£[[ ;1 (x) <
Cllqg— qj”Héf(aKmFD)' Hence, thanks to (3) and (43),
(Agrad ¢, grad €)'/? < C’A}(/2 osc(0q/0s,{v:v CI'p}).

Inserting this choice of * in Lemma 7 and applying the triangle inequality gives
the result claimed. O

6.1 Local Smoothing Operator

Given a particular choice of the function S(unc), Lemma 8 shows how to obtain
computable upper The tightness of the bound and the efficiency of the resulting
estimator will hinge on the particular construction chosen for S.

The affine function S(unc) is uniquely defined by the values at the nodes
of the partition given in equation (17). It is clear that S is a linear operator.
The next result shows that S is continuous and can be bounded in terms of
the choice of weights and the path permeability between elements discussed in
Sect. 2.4:

Lemma 9 Letn €N and K € Q,. Then
|Unc|K(mn) - S(UnC)(mn)‘
2

(A7! curl ¢, curl w)gf dKICQ, wK/’n)\I_{llé, , ifxn, €Tp
<C

= )\I;lr/i (A_l curl v, curl ¢);2/n2 + 0sc(0q/0s, {y € &, NITp}),
if ¢, € I'p.

Proof. Case (i): @, ¢ I'p. Inserting definition (17) and using property (19),
we obtain

unc|K(wn) - S(Unc)(wn) = Z WK’ n (unc|K(wn) - Unc|K’(wn)) . (44)
K'cQpn

To begin with, we consider the contribution to this quantity arising when an ele-
ment K’ shares a common edge v with element K. An elementary computation
reveals that

h~ | Oun
Unc|k (Tn) — Unc|g' (Tn) = 77 [WC] ., v=0KnoK' (45)
v
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Let 3, denote the continuous piecewise quadratic function that takes the value
3/4 at the midpoint of edge v and vanishes at all remaining nodes and mid-
points. The function 3, is supported on the patch K U K’. In equation (14),
we choose w € H to be the difference between 3, and its (constant) average
value over the domain €2 to obtain

(A7 curl ¢, curl By)kuk' = (grad, e, curl 3,).
Integration by parts allows the right hand side to be rewritten in the form
5] unc:| hy 0 Unc
Byds = —
[ 9s |, 2 L 0s |,
where the fact that the jump is constant on an interior edge has been used.
Together with (45), this identity implies

(A~ curl ¢, curl By) kUK’ = /

Y

Unc|K (Tn) — Unc| k' (Tn) = (A~ curl 4, curl By) KUK - (46)

This relation is valid for pairs of elements K and K’ sharing a common edge
~. More generally, suppose elements K and K’ share only a common node x,,.
The path p*(K, K') appearing in (10) links the elements through a set of edges
having an endpoint at @,. Relation (46) holds on each edge along the path,
and so, by summing (46) over edges, we obtain a telescoping sum of differences
of unc across neighbouring edges which simplifies to give

Unc|k (Tn) — Unc|rr (®n) = (A*1 curl ¢, curl 6KK/)

where Br g = Zvep*( KK B3y. Here, with a harmless overloading of notation,
p*(K, K') is used to denote edges on the path. Applying the Cauchy-Schwarz
inequality gives the upper bound

‘Unc|K(wn) - unc|K’(wn)| (47)

< (A_1 curl ¥, curl w)sll/j (A_l curl Sk g, curl BKK/)l/Q.

The permeability on each element in the path p*(K, K') is bounded below by
Ar i implying that

(A_l curl ﬁKK/,curl ﬁKK’) S )\;(1}(, ||curl ﬂKK/”Z S C}\;{l}(,

where C'is independent of any mesh-size. Inserting this estimate into (47) and
recalling (44) completes the proof in the first case.

Case (ii): If &), € I'p, then S(unc) interpolates the Dirichlet data ¢ at the node,
S0

Unc|K(‘1’n) — S(unc)(®n) = unC|K(‘1’n) —q(@n).
First consider the case when element K abuts the Dirichlet boundary I'p. It is
not difficult to show that
hy O unc

nciic(@n) — al@n) = 3+ S|~ (a(@n) —a(m,)).  (48)
v
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Let ji, denote the average value of 0gq/0s on edge v, then, again using (14), we
obtain

hy Ounc
2  Os

(A_1 curl v, curl ﬁv) =

- /7 (? . M) By ds— (a(an) — alawm)).

Subtracting this from (48) gives
unc|K(xn) - S(unc)(xn)

= (A curl peurl 5,) + [ (? - M) B, ds + q(ms) — & (aln) + alen).
v

Applying the Peano Kernel Theorem [11], we write

q(my) — ; (q(xn) + q(xm)) / = / (% — ,u7> wds

where w = 1/2 on (@,,, m,) and w = —1/2 on (m.,, x,). As a consequence, we
obtain

’U,nc|K($n) - S(unc)(-’ﬂn) = (Afl curl 1/}, curl 67) +/ (% — :U”‘/> (ﬂ7 — w) ds.
y

Bounding the second term above by the oscillation of 9g/0s on v, leads to the
estimate
‘Unc|K($n) - S(unC)(wn”
< C)\;F/LQ) (A™" curl ¢, curl w) + Cosc(0q/0s, ).
This proves the result in the case of an element K € €2, which has an edge ~
on I'p. The result may be extended to cover a general element K’ C €, by

connecting to the exterior boundary along the path p*(K,I'p), and arguing as
before. O

6.2 Efficiency of the Estimator

The next result concerns the efficiency of the estimator when the weights are
chosen as in (18).

Theorem 10 Let S(unc) denote the post-processed approximation defined in
equation (17). If K € P has no vertices belonging to I'p, then there exists a
positive constant ¢, independent of any mesh-size, such that

c (Agrad,(unc —S(unc)), grad,(unc —S(unc))) i
< (A"t curl ¢, curl V)i Z Y i (49)

K'CK

where K denotes the patch formed from those elements sharing a common vertex
with element K. In the case where K has a vertex x, € I'p, then the same
estimate holds if the right hand side is supplemented with the term

Yxr, (At curl 4, curl V) +o0sc(0q/0s, {y € E, N I'p}) (50)
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Proof. Applying (3) and an inverse estimate shows the left hand side of (49)
is bounded above by

OAKh}_(z ”Unc _S(unC) ”%2(K)

and then evaluating this integral (using, for instance, the quadrature rule based
on edge midpoints which is exact for quadratic functions) gives

CAk Z |unc(m7) _S(UnC)(mw)F-
YCOK

The restriction of uncjx —S(unc) to an edge v C 9K is a linear function of arc-
length, which means that the value at the midpoint m,, is the average of the
values at the endpoints of the edge, and therefore,

|tnc(1m2y) — S(unc)(my)| < % Z ‘uncu{(a’n) - S(unC)(wn)| .
Ty

Hence,

(Agrad,(unc —S(unc)), grad(unc —S(unc))) x
<COAx Y unci () — S(unc) ()| (51)

xpneEK

Suppose that no vertex of K belongs to I'p, then the first estimate in Lemma 9
gives the following upper bound for (51)

Z (A~ ! curl ¥, curl w)ﬂn Z min(Ax, Axr)

A ,
®neK K'CQn KK

which in turn may be bounded above by the right hand side of (51). If K has
a vertex , € I'p, then the second estimate in Lemma 9 must be used, which
gives rise to the additional term (50). O
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