TVD Fluxes for the High-Order ADER Schemes

E. F. Toro! and V. A. Titarev?

I Laboratory of Applied Mathematics, Faculty of Engineering, University of Trento, Trento,
Italy, e-mail: Toro@ing.unitn.it, web page: http://www.ing.unitn.it/toro/

2 Department of Mathematics, Faculty of Science, University of Trento, Trento, Italy,
e-mail: Titarev@Qscience.unitn.it, web page http://www.science.unitn.it/~titarev

Abstract

Within the class of high order schemes for hyperbolic conservation laws, those that
make use of a first-order monotone flux as the building block, are amongst the most
successful. Examples include TVD methods, ENO/WENO methods and ADER methods.
In this paper we propose to use a TVD flux, instead of a first-order monotone flux, as the
building block for designing high-order methods; we implement the ideas in the context
of ADER schemes via a new flux expansion. Systematic assessment of the new schemes
shows substantial gains in accuracy; these are particularly evident for problems involving
long time evolution.

Key words: high-order schemes, ADER, essentially non-oscillatory, generalised Rie-
mann problem, flux expansion, TVD flux, WAF flux.



1. Introduction

We are concerned with shock-capturing numerical schemes of high-order of accuracy
for computing solutions to hyperbolic conservation laws. It is well known that reconciling
high-order of accuracy and absence of unphysical oscillations in the vicinity of discontinu-
ities, such as shocks, poses a serious challenge to the algorithm designer. In fact, Godunov
[5] proved about half a century ago that linear methods that are free from spurious oscil-
lations cannot be of accuracy greater than one. Much work has been done since then to
circumvent Godunov’s theorem, which involves the design of schemes that must necessar-
ily be non-linear, even if applied to linear problems. Amongst successful developments in
this direction we have TVD methods [8, 23, 44, 19, 14, 31], ENO and WENO methods
[9, 15, 7, 1], and more recently, ADER methods [35, 38, 26, 40, 21, 24].

This paper is about the class of ADER schemes for computing solutions to hyperbolic
conservation laws. ADER [35] is a Godunov-type approach that allows the construction
of schemes of an arbitrary order of accuracy in both space and time [38, 26, 21, 24].
A precursor to ADER is the Modified GRP (MGRP) method [32], which in turn results
from a simplification to the GRP (Generalised Riemann Problem) scheme [3], in which the
initial data for the local Riemann problem consists of two piece-wise linear distributions.
See the related works of Men’shov [18, 16, 17]. In the MGRP one replaces the difficulty of
solving the generalised Riemann problem with piece-wise linear data with that of solving
two conventional Riemann problems, namely a non-linear problem for the state variables
and a linear Riemann problem for the gradients of the state variables. It appears as if it
was Kolgan [11, 12, 13] who first proposed to generalise the Riemann problem from that
with piece-wise constant data to that with piece-wise linear data, producing in this manner
a Godunov-type scheme of second order spatial accuracy. This scheme is often referred to
as the Godunov-Kolgan scheme. Spurious oscillations are controlled by applying Kolgan’s
principle of minimal values of derivatives. More well-known developments are due to van
Leer [41, 42] and many others.

The ADER approach takes the Modified GRP approach (MGRP) a step further by
considering a generalised Riemann problem with initial conditions consisting of two data
states defined by two polynomial functions of arbitrary degree [38]. This generalised
Riemann problem is solved in the same manner as for the MGRP scheme, that is one solves
a non-linear Riemann problem for the state variables and (m—1) linear Riemann problems
for the derivatives of the state variables; here (m — 1) is the order of the polynomials and
m is the order of accuracy in space and time of the resulting schemes.

For linear equations, the formulation of the ADER schemes goes through in two and
three space dimensions [35]. Implementations of ADER schemes of up to 10" order
of accuracy in space and time in one and two space dimensions are reported in [35, 21].
Extension of the ADER approach to nonlinear systems relies on the solution of the relevant
generalised Riemann problem reported in [38]. The solution procedure is also valid for
systems containing source terms. Corresponding numerical schemes are reported in [25,
39, 26, 40, 24]. In addition to reaction terms, the ADER formalism extends directly to
include diffusion terms, which, in a very natural way, enter the flux computation via the
solution of an inhomogeneous generalised Riemann problem; see [25, 40, 29] for numerical
implementations for the nonlinear scalar case. The ADER approach as outlined so far
relies on a Taylor series expansion in time of the solution of the generalised Riemann
problem as represented by a state vector. We call this state-ezpansion ADER.



In this paper we first present a new version of the ADER approach in which the
Taylor expansion is performed in terms of the flux vector. We call the scheme fluz-
expansion ADER. We build the flux rather than the state expansion in time to achieve an
arbitrary order of accuracy both in space and time. Different fluxes can then be used as
the building block, such as upwind or centred monotone fluxes. Then, by re-interpreting
the fully expanded ADER scheme for the model hyperbolic equation, we propose to use
a TVD flux, instead of a first-order monotone flux, as the building block. Of the upwind
TVD fluxes available we find that the Weighted Average Flux (WAF) [33, 34, 31] is the
most easily applied. The WAF flux achieves second order in space and time without
performing data reconstruction, that is, by solving the conventional Riemann problem
associated with the first-order Godunov scheme. This feature of the WAF method makes
it particularly suitable for use in the ADER flux expansion. The resulting schemes are
superior to both the original ADER schemes and the original TVD WAF scheme. In
particular, the ’squaring’ effect of TVD schemes on smooth regions, when used with
compressive flux limiters, is eliminated; in addition, we retain the desirable property of
high resolution of discontinuities associated with linearly degenerate fields provided by
TVD schemes with compressive limiters. These advantageous properties of the resulting
ADER-WAF schemes do not depend on tuning parameters. Conventionally, the limiting
case of no reconstruction of data (piece-wise constant data) leads to the basic first-order
scheme associated with the first-order monotone flux used as the building block. For the
schemes presented in this paper the limiting case of no data reconstruction produces a
second-order TVD scheme.

We carry out a systematic assessment of the constructed numerical schemes. We do
so for a set of carefully selected test problems, with particular emphasis on testing the
accuracy of the schemes for wery long time evolution, as it is long-time evolution for
which the sophistication of high-order must be justified. We compare results against
exact solutions and against reference solutions computed with very fine meshes. The new
schemes are systematically compared with conventional TVD methods, such as the WAF
method, and state-of-the art WENO and MPWENO schemes.

The rest of the paper is organised as follows. In Section 2 we review the state-expansion
ADER approach. The flux-expansion ADER is described in Section 3. In Section 4 we
briefly review the Weighted Average Flux (WAF) method. In Section 5 we introduce
the WAF flux in the ADER flux expansion. Numerical results are given in Section 6.
Conclusions are drawn in Section 7.

2. State-expansion ADER schemes

We consider hyperbolic systems in conservation form

Q4+ 09, F(Q)=0 (1)

along with initial and boundary conditions. Here Q(x,t) is the vector of unknown con-
servative variables and F(Q) is the physical flux vector. Consider now a control volume
in & —t space I; x [t",t"*!] of dimensions Az = x;41/5 — 24172, At = "1 — 1" where
I; = [2i_1/2, i1/2]. Integrating (1) on I; x [t", t"*!] we obtain

At
Q' =Qf - Ay (Fivijo = Fiovpa) (2)



where QF and F;1,/, are given by
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For a given (arbitrary) order of accuracy m the numerical flux of the corresponding ADER
scheme is computed in the following way. At each cell interface x;,,/, we pose the gener-
alised Riemann problem (GRP,,_;) with initial condition consisting of two polynomials
of order (m — 1)™ namely

PDE:  9,Q+d.F(Q) =0
z) = pi(z), T < Tiy1/2 (4)

r) = piyi1(r), *> 21/

IC: Q(z,0) = {

The polynomials p;(x) represent reconstructed point-wise values of the solution in each
cell. In all numerical examples given here we use WENO reconstruction in characteristic
variables, in much the same way as in WENO schemes [9, 7, 22]. A WENO reconstruction
polynomial is defined as a weighted combination of all polynomials from r stencils of the
underlying 7" order ENO schemes. The nonlinear WENO weights are written as

ay, Cy
, = ——.
Til - (5 _I_ ﬁk)p
(=0

(5)

Wr =

Here ('}, are optimal weights for the linear scheme, ¢ is a small parameter to avoid division
by zero; we set ¢ = 107%° for ADER schemes. The smoothness indicator 3y is designed in
such a way as to be of order of unity when Q(z,#") is discontinuous in the k" stencil and
Br = O(h*) when Q(z,t") is smooth. As a result the discontinuous stencils are assigned
weights which are of order O((e + h?*)?) and the reconstruction procedure emulates the
ENO idea. An important issue is the choice of the parameter p. In general p = 2
works well for WENO schemes with weighted piece-wise linear and piece-wise parabolic
reconstruction. In the ADER approach, however, the nonlinear weights have to control
possible oscillations in the derivatives which are of order of O(h!~") for the r*® order
ADER scheme. Because of this we require that 2p + 1 — r be positive and large enough
to suppress oscillations. We find that p = 2 works well for third and forth order ADER
schemes. However, for higher order we use larger values, e.g. p = 4. Note that p — oo
leads to an ENO-type reconstruction; thus one should not use very large values of the
parameter p.

According to the method developed in [38] the approximate solution Q(x;11/2,7) of
(4) is sought as a Taylor expansion in time for the interface state

m—1 k

-
Q($i+1/277) = Q($i+1/270‘|‘) + Z {aik)Q(l'iH/zaO‘F)} E ’ (6)
k=1 :
where
(k) o o
at Q(l‘,t) = %Q(l',t), 0+ = Tli)%l_l_T



The leading term Q(2;41/2,0+) accounts for the interaction of the boundary extrapolated
values Qr(zi41/2) and Qp(zi41/2) in (4) and is the Godunov state of the conventional
nonlinear (piece-wise constant data) GRF,

PDE:  8,Q+ 0,F(Q) =0
QL(xi-I—l/Q) lf xr < xi-l—l/? (7)
QR(%+1/2) if x>

IC: Q(x,0) = {

The Cauchy-Kowalewski procedure is then applied to replace all time derivatives in
expansion (6) by space derivatives. A detailed description of this procedure for the Euler
equations can be found in [9]. Using the algebraic manipulator MAPLE we have produced
an optimised FORTRAN code implementing the Cauchy-Kowalewski procedure for the
Euler equations. In this code time derivatives of the conservative variables are expressed
in terms of their spatial derivatives. This MAPLE program is available from the authors
on request.

An observation of key value for the ADER schemes is that the k" spatial derivative
of the solution Q¥ = ) Q obeys the following inhomogeneous evolution system:

QY + A(Q)2,QY = Gy(Q,QY,....Q"Y), (8)

where A is the Jacobian matrix of system (1). The equations (8) are obtained by ma-
nipulating derivatives of (4) and making use of the Cauchy-Kowalewski procedure. The
right hand side Gy is an algebraic function of Q and its lower-order derivatives and van-
ishes when the governing system is linear with constant coefficients, that is when A is a
constant matrix. As we only need Q) at the first-instant interaction of left and right
states (time approaches zero from above) we can neglect the effect of the source terms
in (8). Thus, to find the relevant term in the expansion we solve the following linearised
conventional Riemann problem
PDE: atQ(k) + Ag:)-)l/zaxQ(k) =0, AE:)—)1/2 = A(Q(xi-l—l/?v 0"’))

*) ag(;k)QL(xi-I—l/Q)? T < Tit1/2 (9)

IC: QW (z,0) = ok

QR(Tig1y2), T > Tig1)e

The vector-valued function Q*)(x/7) is a similarity solution of (9) and the relevant value
at the interface is obtained by evaluation this vector at (z — x;41/2)/7 = 0; we call this

value, the Godunov state. Note that the Jacobian matrix A s the same for all Q¥

i+1/2
and is evaluated only once.
Finally, having evolved all space derivatives at the cell interface x;1/, we form the

Taylor expansion (6), which becomes:
Q(:z;i+1/2,7') =bo+bimr+bam? 4+ .. b7, 0< T <AL (10)

and which approximates the interface state for 0 < 7 < At to m'™® order of accuracy.
Here the coefficients by are constant vectors, independent of time. Having obtained the
solution of the generalised Riemann problem we now evaluate the intercell numerical flux,
for which there are two options. The first one (reported in [26]) is to use an appropriate



Gaussian rule applied to the time integral in (3) with the intercell state Q(z;11/2,7) given
by (10):

K

Fiyi2 =Y F(Q(i41/2, 72 Al)) wa, (11)
a=0

where v; and w; are properly scaled nodes and weights of the rule and K, is the number
of nodes. The second option (new) is discussed in the next section.

3. Flux expansion in the ADER approach

The idea of the flux expansion in the ADER approach is the following. First we solve
the generalised Riemann problem at the cell interface x;1,/, and obtain the approximate
solution Q(z41/2,7) as given in (10). Next, instead of integrating this approximate
solution as in (11) we seek the Taylor expansion of the flux in time at x;11/2, namely

m—1 Tk
F(iz12,7) = F(iga2,04) + ) [8}’“)F(:pi+1/2,0—|—)} o (12)
k=1 '
From (3) and (12) the numerical flux is now given by
m—1 *) Atk
Fivi2 = F(wip12,04+) + Y {at F($¢+1/270+)} T (13)
k=1 '

The leading term F (24,2, 0+) accounts for the first interaction of left and right boundary
extrapolated values and is computed as a certain monotone flux of the GRF, (7). Use
of the Godunov flux produces the scheme which has the same formal accuracy as the
state-expansion approach. Of course, we can also take F(z;41/2,0+) = F(Q(211/2,04))
as well. However, we can improve upon this by using a higher order non-oscillatory flux.
This will be discussed in Section 5.

Several options exist to evaluate the remaining higher order terms. In this paper we do
it in the following way. We express time derivatives of the flux in (13) via time derivatives
of the intercell state Q(x;y1/2,7). As an example, we consider here the particular case of
the time-dependent, one dimensional compressible Euler equations for a polytropic gas:

2:Q+ d,F(Q) =0
Q= (p,m, E)"
F(Q) = Qu+(0,p,pu)"
p=(v—1)(E—jpu?)

where p, u, p and E are density, velocity, pressure and total energy, respectively; m = pu

(14)

is momentum and + is the ratio of specific heats. The time derivatives of the flux are
expressed via time derivatives of the dependent variables as, for example,

OF(Q) = (mi, meu+mug+ po, i E+p)+u(Er+ p))”
a,fz)F(Q) = (M, myu + 2meuy + mug + pe, (15)
we £+ p) + 2ui( By + po) + u( By + pu))’
It is obvious that this procedure can be carried out for any given order. Again, an algebraic

manipulator can be used to produce the FORTRAN output. All terms on the right hand

6



side of (15) are the evolved values of conservative variables and their derivatives, see (10).
No numerical quadrature is then required to compute the numerical flux.

Another way of evaluating higher order terms in the flux expansion (13) is to derive
evolution equations for spatial derivatives of the flux and then substitute the time deriva-
tives a,fk)F by spatial derivatives via the Cauchy-Kowalewski procedure. Again the state
expansion must be carried out to compute all evolved time and spatial derivatives of the
conservative variables. Results for fifth order ADER schemes using this approach applied
to Burgers’ equation can be found in [24]. They show that the derived schemes retain
very high order of accuracy. A detailed evaluation of this variant for nonlinear systems
will be reported elsewhere.

Both formulations of the ADER approach perform very satisfactorily as compared
with state-of-art schemes such as the ENO/WENO schemes. However, as observed earlier,
discontinuities associated with linearly degenerate fields, such as contact discontinuities
and shear waves, are badly smeared for very long time evolution . In fact, this observation
applies also to other very-high order methods such as ENO/WENO schemes. On the other
hand, it is also known that some upwind TVD methods, e.g. the Weighted Average Flux
(WAF) method [33, 34, 31], have the capability of providing much sharper resolution of
this type of waves.

One of the motivations of this paper is to enhance the accuracy of the ADER schemes
by making use of the WAF flux as part of the flux expansion of the solution of the
generalised Riemann problem (4). That is, we propose to use a TVD flux rather than a
first-order monotone flux as the building block of our high order methods. In the next
section we first briefly review the WAF scheme for one-dimensional scalar and compressible
Euler equations, as it will be the WAF flux that will be incorporated in the framework of
ADER schemes in section 5.

4. Review of the WAF method

The Weighted Average Flux (WAF) method [33, 34, 31] defines an intercell flux as

1 1 t2 @2
FVAr = / / F(Q*(x,t)) dxdt. 16
Ve I (Q*(z,t)) d (16)

A special case is the formula

1 Az/2 ”
P E/_M/z F(Qip o, t" + AL/2)) dx . (17)

Assuming further that Q;4,/; is the solution of the conventional piece-wise constant Rie-
mann problem (GRF,) with initial data Q} and Q¥ ; we may write

L, " 1Y k
sz/]; = §(Fz +F) - ) kZ: CkAF£+)1/2 ) (18)
=1
where ¢, = % is the Courant number associated with wave k of speed S in the solution

of the Riemann problem GRPF,. Flux (18) when used in (2) gives a second order accurate
scheme in space and time. It is important to realise, at this stage, that such second-order
accuracy is achieved without data reconstruction. This feature of the WAF method will
make it particularly useful in the context of higher-order ADER schemes, see section 5.



Scheme (18) is linear and thus oscillatory. A non-oscillatory, TVD, version is given by

1
WAF n
Fi—|—1/2 - 2(F + Fz—l—l +1/20

[\Dl»—\

N
Z sign(cy) AkAF( ) (19)

where A 1s a WAF flux limiter related to a conventional flux limiter Bj via
Ak =1- (1 — |Ck|)Bk (20)

The flux limiter Bi(r) depends on a flow parameter r*) which refers to wave k in the
solution of the Riemann problem and is the following ratio
qu( )1/2

qu(—l—)l/Z

if ¢, >0,

k
qu(+):)>/2

qu(—l—)l/Z

if ¢ <0,

where ¢ is a suitable variable depending on the problem being solved. This variable
must change across each wave family in the solution of the Riemann problem:; Aql(i)l/z
denotes the jump in ¢ across wave k in the self-similar solution Qu4/2(¢, 7) in the Riemann
problem with data (Qf, Qj,). For the Euler equations the choice ¢ = p (density) usually
gives very satisfactory results.

The WAF method can be used with any Riemann solver available. It is recommended
to use ’complete’” Riemann solvers, that is those including all waves in their structure.
We particularly recommend the HLLC Riemann solver [30, 36, 37], which is an improved
variant of the HLL solver [10]. See also [2, 6]. An updated version of HLLC is found in
[31]. For the 3D Euler equations

F,. it 0<S,
F..=F;+50.(Q —Qp), if 5p<0<85,,

Ffﬁ?g Y Far=Fp+ Sr(Q.r —Qr), if S.<0< Sk, (22)
Fr, if 0> Sk

where for the WAF method (no reconstruction) L =i, R =4+ 1 and

1
Sk
Sk — UK) VK
«K — PK \ & & 23
Q= (55 wi )
Fg PK
+ (e —ug)[Se + —5——
L PK ( o )[ ,OK(SK - UK)] i

for K = L and K = R. The wave speeds Sp, S, and Sgr must be estimated. We use the
pressure-velocity estimates of Sect. 10.5.2 of [31].



Another possible version of WAF is obtained if one first defines a weighted average

state as
e = (Qz + Qit1) — Z CkAQZH/Q, (24)
with a corresponding TVD version analogous to (19). The intercell flux is then
Fiti2 = F( Kf/];) (25)

Computationally, this state-average scheme is more efficient than (19) because it involves
only one evaluation of the flux. For linear systems with constant coefficients (18) and
(24)-(25) are equivalent. However, for the nonlinear systems, such as the Euler equations
of gas dynamics, they are not and we recommend using the flux averaging (19) rather
than state averaging.

5. TVD fluxes in the ADER approach

Consider the scalar linear advection equation:

PDE: 0+ 0:f(q) =0, f=Xg, A=const

(26)
IC: q(z,0) = qo(x)
The scheme is now written as
" VAN
q; = q; — E (fi-|—1/2 - fi—1/2) (27)
with flux expansion in time as
m—1 *) Tk
f($i+1/27 7') = f(fl?z’+1/27 0‘|‘) + Z {at f($i+1/2, 0‘|‘)} E (28)
k=1 :

We note that since f = Ag the state-expansion and flux-expansion schemes are identical;
we have

O f(a,t) = (=N f(w, 1) (29)

and the numerical flux has a closed form expression given by

(—AA)*

E+ 1) (30)

fi+1/2 = f($i+1/27 0‘|‘ { 2—|—1/27 0+ )}

?vMS

The flux f and its spatial derivatives 9F) f = f( 0,...,m — 1 satisfy the same
advection equation as the unknown Varlable

PDE: O f® + 29, f*)
IC: f(z,0) = { 1= A@é’“)qL(le/z) it @ <wipay (31)
f](%k) = )\a;k)QR([L'H_l/Q) lf T > xi-l—l/?

On the other hand, they can be computed as fluxes from the Riemann problems for

q® = 0Wq(x,t):
PDE: Drg™) 4+ X0,q™ =0
10 ge,0) = { ar) = auwigp) i @ < (32)
= axQR([EH_l/Q) lf T > xi-l—l/?
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Substitution of the numerical flux into (27) gives the sought solution at time level
(n+ 1) and the full scheme may be written as

n+l _  n (At)o (0) (0)
4 =4 N ()‘p¢+1/2 - )\pi—l/Z)
(Ab) ¢y (1) (1)
N ()\pi—l—l/Q - )‘pi—l/2)
33)
(At)k ¢y () (k) (
N ()\pi—l—l/Q - )\pi—l/Q)
(At)m—l m—1 m—1
N ()‘p£+1/2) - )‘pg—1/2))
with (A )k-|—1
k k l
p£+)1/2 = (—)\)qu(+)1/27 (At), = e (34)

The first line of (33) is the Godunov first order upwind method applied to the state
variable ¢ = 9%)q, if piece-wise constant reconstruction is used. The second line could be
interpreted as solving an equation for the evolution of gradients ¢(*) = 9{q, also using
the Godunov first order upwind method. Similar interpretations apply to the remaining
lines of (33).

Now the idea is to substitute the use of the Godunov first order upwind flux by some
high order but non-oscillatory flux such as a flux of a Total Variation Diminishing (TVD)
method. Such procedure could be applied at least to the first line of (33) Also, it seems
to be beneficial to apply the procedure to all terms in the expansion.

Of the upwind TVD fluxes available it seems as if the flux-limited WAF method is
the most suitable. Most of the modern TVD fluxes achieve non-oscillatory behaviour by
applying a certain monotonicity constraint on the boundary extrapolated values. Thus,
they cannot be used with the ADER approach because the application of such a constraint
to boundary extrapolated values Qgr(x;y1/2) and Qp(xiy1/2) would conflict with the sought
order of accuracy of the ADER scheme. To our knowledge the only upwind second order
TVD flux which does not need any constrains on Qr(;41/2) and Qr(2i41/2) is the WAF
flux, described in the previous section. We note that for the m'" order ADER scheme
with WENO reconstruction we have Qg(i41/2) — Qr(2iy1/2) = O(Az*™~1) whenever the
solution is smooth, and thus taking a weighted average of the solution of the generalised
Riemann problem with data Qg(241/2) and Qr(z41/2) does not change the formal order
of accuracy.

The ADER-WAF schemes are obtained by using the WAF flux for the solution of
(31) or WAF state in (32) with a TVD limiter. The numerical flux of the scheme can be
evaluated either as the integral of the state expansion or the integral of the flux expansion
at the cell interface.

10



The flow parameter for the £ Riemann problem (including k = 0) is computed as

k k
ql(%,z'—1/2 - qj(:,z)'—1/2

(k) _ k) ’
4Rit1/2 — 9Li41/2
r = (35)
(k) _ k)
4Rit+3/2 — 9Li+3/2 ¢

(k) _ (k) ’
driv1/2 — 9L,i+1/2

if e>0

c<0

where ¢ = % is the Courant number.

The computation of the ratio r in (35) requires special attention when the denominator
D issmall, |D| < ¢, say, where ¢ is a small positive number. For TVD methods, experience
shows that the robustness of the methods does not depend too crucially on the way this

step is handled, while accuracy does. The following two procedures are usually applied:

S (36)
T =
D+e
N o esign(1, X), if |X|<e,
r=-—=, X = (37)
D X, otherwise.

Procedure (37) leads to more accurate results and it can be easily seen that for nearly
uniform flow r & 1, leading to second order accuracy, the correct behaviour of a TVD
scheme. This is not the case with procedure (36), which results in larger artificial diffusion.
There is a third procedure given by

N
—, 1 D| >

r=1 of D]z e, (38)
0, otherwise.

For the computations reported in this paper, procedure (37) was used successfully, except
for a particular case, namely the linear advection equation for the forth order ADER-
WAF scheme, for the second test problem and for the longest evolution time ¢ = 2000.
For such case procedure (38) was applied with satisfactory results. It seems to us as if
the implementation of TVD criteria in the context of this paper, namely the construction
of very high-order methods, may require some further investigations.

We find that the resulting ADER-WAF schemes show a very marked improvement
in overall accuracy, particularly for very long time evolution (hundreds of thousands of
time steps) of both smooth and non-smooth features. The performance, though, does
depend on the particular choice of flux limiters but in general compressive limiters, such
as the SUPERBEE limiter of Roe [19], give the best results. Isolated discontinuities
associated with linearly degenerate fields are propagated indefinitely without smearing and
the squaring effect of compressive limiters when used in conjunction with TVD methods
is removed by the higher order terms in the flux expansion.

Now we turn to the nonlinear system case. In the expression for the numerical flux
(13) we evaluate the leading term F(x;11/2,0+) as the WAF flux with the HLLC Riemann
solver. When the solution contains strong shocks we find it beneficial to use characteristic
pro%ections of the fluxes when applying TVD constraints in the following manner. Let
REEIJ—I/2 be a matrix whose columns are the right eigenvectors of the local Jacobian matrix

11



defined in (9), and LE:J_)I/Q = (Rgg_)l/z)_l be a matrix whose rows are left eigenvectors
of A

i+1/2- Lhese constant matrices of eigenvectors will be later utilised in the solution of
the derivative Riemann problems. The projected values of the fluxes are then given by

0
A£+)1/27

= (k 0 k
F£+)1/2 = L£+)1/2F£+)1/2 (39)

where k denotes the wave k& in the Riemann problem solution and should not be confused
with the spatial derivative of order k. We evaluate the flux in terms of projected values

. 1o - 1. - (k
Pl = 5(FL+Fr) — 5 kz sign(cx) ALAFY), , . (40)
=1
The flow parameter r for the TVD limiter is given by (21). Finally, the leading term of
the flux expansion is computed as the back projection:

F(2i11/2,04) = szf; =R

YR v (41)

i+1/2

As to the remaining terms in the flux expansion they are evaluated as described in
Section 3. The spatial derivatives Q(k)($i+1/2, 0) are computed as the WAF state of the
linear derivative Riemann problems (9), see (24), limited as in (19). As the flow parameter
for the TVD limiter we use the first component of Q¥ that is the k" spatial derivative
of density. The evaluation of the higher order terms is complete after we carry out the
Cauchy-Kowalewski procedure. The flux is then given by (13).

6. Numerical results

In this section we show numerical results for the original ADER schemes [35, 26] and
the new ADER-WAF schemes introduced in this paper. We compare the results of these
schemes with those of other state-of-the art high order shock-capturing methods, such as
WENO5 [7] and MPWENO9 [1], and also with conventional TVD schemes, such as WAF
[33, 34, 31]. Here we use the finite-volume versions of WENO5 and MPWENOY methods
with third order TVD Runge-Kutta time stepping; we do so because we are computing
discontinuous solutions and this rules out the use of higher order linear Runge-Kutta
time discretisation methods used in [1]. For these schemes we set ¢ = 107° in the WENO
weights (5), as suggested in the original papers.

The linear stability condition for the WAF, WENO5, ADER and new ADER-WAF
schemes is CFL < 1, where CFL is the maximum Courant number for each time step;
we use CFL=0.95 for these schemes. The monotonicity-preserving constraint used in
the MPWENQOY scheme requires that CFL be lower than 0.33. In some cases, however,
especially when the discontinuities are weak, larger CFL numbers might be used without
introducing oscillations; such choice of the CFL numbers is problem-dependent and cannot
be made in advance in practical calculations. On the other hand, lower CFL numbers allow
the scheme to achieve higher convergence rate for smooth solutions. To be consistent,
we set CFL=0.3 in all calculations made with the MPWENQY9 scheme. Note that the
WENO5, ADER3 and ADER3-WAF all use the same 5-point cell stencil; MPWENQOY,
ADERS5 and ADERH-WAF use the larger 9-point cell stencil.

An important issue is the choice of test problems. We would like to emphasise here the
importance of using really long time evolution problems, involving hundreds of thousands
time steps, with solutions consisting of both discontinuities and smooth parts.
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6.1 Scalar linear advection

FExample 1. First we check the convergence properties of the new schemes. We solve
the linear advection equation

Oqg+ 0:q=10 (42)
with the initial conditions
q(x,0) = sin(rx) (43)
and
q(x,0) = sin*(7x) (44)

defined on [-1,1]. Periodic boundary conditions are used. The error of cell averages is
measured at the output time t = 1. Tables 1 and 2 show convergence rates and errors in
different norms. We observe that all ADER and ADER-WAF schemes reach the designed
order of accuracy. The size of errors shows that use of the TVD flux with the SUPERBEE
limiter does not affect the formal accuracy of the ADER-WAF schemes. As expected, the
errors of WENO5 and MPWENOY schemes decrease with third order only. We note that
our results for the MPWENQO9 scheme differ from those of [1] because we use the third
order TVD Runge-Kutta scheme, whereas in [1] a linear 9" order Runge-Kutta method
is used. However, as in [1], MPWENOO9 is more accurate than the WENO5 scheme by a
factor of ten for the CFL numbers used. Thus, increased order of spatial discretisation
coupled with the smaller Courant number does improve the accuracy of this scheme. We
observe that third order ADER schemes are more accurate than the WENOH scheme
and comparable with the MPWENO9 scheme, whereas both fifth order ADER schemes
converge much faster than the WENOS5 and MPWENQ9Y schemes. As expected, all higher
order schemes outperform the second order WAF scheme when the mesh is refined. We
note, however, that for initial condition (44) the WAF competes well with the WENO5
scheme up to a rather fine mesh of 80 cells. We also found that for this initial condition
the accuracy of the WENOS5 scheme is not sensitive to the choice of the CFL number and
does not improve when the CFL number is decreased.

FExample 2. Now we solve the model equation (42) for the following initial condition [7,

22, 1].

exp (In2 (z 4 0.7)2/0.0009), —0.8 <z < —0.6
1, —04 <2< —0.2
q(z,0) = 1 — |10z — 1], 0.0<x<0.2 (45)
(1 —100(x — 0.5)%)Y/2, 0.4<2<0.6
0, otherwise

This initial condition consists of a discontinuous square pulse and several continuous but
narrow profiles. We use a baseline mesh of 200 cells and periodic boundary conditions.
We compute the numerical solution at output times ¢ = 20 and ¢ = 2000. Note that for
the last output time the initial profile is propagated 1000 times over the spatial domain.
When CFL number of unity is used, this output time corresponds to 2 x 10° time steps.
Results are shown in Figs. 1-8. In all figures the continuous line corresponds to the exact
solution and symbols correspond to the numerical solution.

Figs. 1 and 2 show the results of the WAF scheme with the van Leer and SUPERBEE

limiters. The numerical solution obtained with the van Leer limiter is acceptable for
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Table 1: Convergence study for various schemes as applied to the model equation (42)
with initial condition (43) at output time ¢ = 1. Schemes WAF, WENO5, ADER and
ADER-WAF used with CFL=0.95 and MPWENQ9 used with CFL=0.3

Method N L., error L., order Ly error Ly order
WAF 10 2.93x 1072 1.88 x 1072
van Leer 20 1.30x 1072 1.18 8.62 x 10~3 1.12
limiter 40 4.70 x 1073 1.46 1.53x 1073 2.49
80 1.93 x 1073 1.28 4.17 x 1074 1.88
160 7.76 x 10~* 1.31 1.01 x 10~* 2.04
WENO5H 10 5.05 x 1072 5.99 x 1072
20 4.51x 1073 3.48 5.52 x 10~3 3.44
40  4.66 x 10~¢ 3.28 5.95 x 104 3.21
80 5.51 x 107° 3.08 7.04 x 1075 3.08
160 6.80 x 107° 3.02 8.68 x 107 3.02
MPWENO9 10 1.22x 1073 1.45 x 1073
20 1.07x 107* 3.50 1.38 x 107% 3.39
40  1.36 x 107° 2.98 1.73 x 107> 3.00
80 1.71x 107 2.99 2,17 x 1076 2.99
160 2.14 x 1077 3.00 2.72 x 1077 3.00
ADERS3 10 4.62x 1073 3.92 x 1073
20 2.05x 10~¢ 4.50 1.97 x 10~¢ 4.32
40  1.95x 107° 3.40 2.06 x 1075 3.25
80 2.29x 1076 3.09 2.79 x 107 2.89
160 2.82x 1077 3.02 3.56 x 107 2.97
ADER5 10 1.14x 10~* 1.45 x 10~*
20 7.66 x 1077 7.21 7.84 x 1077 7.53
40 1.98x 1078 5.27 2.52 % 1078 4.96
80 6.07 x 10710 5.03 7.73 x 10710 5.03
160 1.84 x 107! 5.05 2.34 x 10711 5.05
ADER3-WAF 10 2.64 x 1073 2.65 x 1073
20 244 x 107* 3.44 1.62x 10~* 4.04
40 223 x 107° 3.45 1.38 x 107> 3.55
80 2.36 x 1076 3.24 1.55 x 1076 3.16
160 3.04 x 1077 2.95 1.89 x 1077 3.04
ADER5-WAF 10 1.32x 10~ 1.46 x 10~
20 1.41x10°° 6.56 1.49 x 1076 6.61
40 524 x 1078 4.75 4.53 x 1078 5.04
80 1.44 x 1079 5.18 1.24 x 1079 5.19
160 4.40 x 10711 5.04 4.46 x 10711 4.80
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Table 2: Convergence study for various schemes as applied to the model equation (42)

with initial condition (44) at output time ¢ = 1. Schemes WAF, WENO5, ADER and

ADER-WAF used with CFL=0.95 and MPWENO9 used with CFL=0.3

Method N L, error L., order Ly error Ly order
WAF 10 1.36 x 107! 1.09 x 1071
van Leer 20 4.74x 1072 1.52 3.46 x 1072 1.66
limiter 40 1.84 x 1072 1.36 6.73 x 1073 2.36
80 7.67x 1073 1.26 1.92 x 1073 1.81
160 3.10 x 1073 1.31 4.84 x 1074 1.99
WENO5 10 4.15x 107! 3.68 x 107!
20 1.22x 107! 1.76 1.20 x 10! 1.61
40 242 x 1072 2.34 2.15 x 1072 2.48
80 2.49x 1073 3.28 2.34 x 1073 3.20
160 2.81 x 10~* 3.14 2.78 x 1074 3.08
MPWENOQO9 10 1.87x 107! 1.50 x 1071
20 248 x 1072 2.92 2.45 x 1072 2.61
40 1.82x 1073 3.77 1.30 x 1073 4.24
80 1.92x107* 3.24 1.11 x 10~* 3.55
160 2.81x 1075 2.77 1.14 x 10~° 3.28
ADERS3 10 1.13 x 1071 9.02 x 1072
20 1.79 x 1072 2.66 1.25 x 1072 2.85
40 1.77 x 1073 3.34 1.47 x 1073 3.09
80 3.11x107* 2.51 1.35 x 107* 3.44
160 3.97 x 107° 2.97 1.42 x 107° 3.25
ADERS5 10 7.50 x 1072 6.17 x 1072
20 2.73x 1073 4.78 2.84 x 1073 4.44
40  4.95 x 1074 2.46 1.35 x 1074 4.40
80 3.27x 107 7.24 1.02 x 1076 7.04
160 2.63 x 1078 6.96 1.32 x 1078 6.27
ADER3-WAF 10 1.08 x 107! 9.21 x 1072
20 9.89 x 1073 3.45 8.17 x 1073 3.50
40 1.48 x 1073 2.74 1.22 x 1073 2.75
80 3.50 x 10~* 2.08 1.20 x 1074 3.34
160 4.38 x 107° 3.00 9.97 x 107 3.59
ADERS-WAF 10 7.35x 1072 6.01 x 1072
20 2.61x 1073 4.82 2.29 x 1073 4.71
40 429 x 1074 2.61 1.29 x 10~4 4.15
80 2.54 x 1076 7.40 1.09 x 1076 6.90
160 3.19 x 1078 6.31 1.92 x 1078 5.82
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t = 20 but unacceptable for ¢ = 2000, since it does not contain any of the features
present in the exact solution. When the SUPERBEE limiter is used the accuracy of
the scheme is much higher (Fig. 2). In particular, we observe that the square pulse
is well represented for all output times with almost the same number of cells across its
two discontinuities. However, the semi-circular profile is 'squared’ by the scheme. We
remark that the error persists when the mesh is refined. This behaviour of TVD schemes
associated with overcompressive limiters is well known.

Figs. 3 and 4 show results of the WENOS5 scheme and the original ADER3 scheme. We
observe that for the Courant number used the numerical solution obtained by the WENO5
scheme contains over and undershoots. These are significantly reduced when the Courant
number is decreased three times; mesh refinement does not help. The numerical solution
obtained by the ADER3 scheme is quite accurate for ¢ = 20 but becomes unacceptable for
t = 2000 (Fig. 4); the oscillations should be attributed to the essentially non-oscillatory
nature of the scheme. It is likely that the small oscillations at the level of truncation error
admitted at every time step have accumulated.

A surprising observation is that for the given mesh the overall accuracy of the WENO5
and ADERS3 schemes is essentially the same as that of WAF with the van Leer limiter and
much worse than that of WAF with the SUPERBEE limiter. It is commonly believed that
higher order schemes produce better results for long time evolution problems. However,
in this special case, a good second order (only first order in Lo, norm) TVD scheme is
more accurate than the WENO5 and ADER3 schemes; compare Fig. 2 with Figs. 3 and
4. Both the WENO5 and ADER3 smear the square pulse into a smooth Gaussian-like
wave as much as the WAF scheme with the more diffusive van Leer limiter.

Fig. 5 shows results of the MPWENQOY9 scheme. We observe that this scheme is
considerably more accurate than the WENO5 and ADER3 schemes, especially for the
larger output time ¢ = 2000. The numerical solution has all features of different shapes;
note that the solution is fairly symmetric. This result is in line with the observations made
by Balsara and Shu [1] that increasing the order of spatial discretisation can improve the
quality of results even though the formal accuracy of the scheme remains that of the ODE
solver, namely third order in the present computation. It is apparent, however, that even
the scheme with such a high order of spatial discretisation cannot accurately compute
contact discontinuities for long time evolution. We see that the square pulse has lost its
top value and the two discontinuities are smeared to such an extent that at ¢ = 2000
the square pulse resembles the semicircular profile. We conclude that all very-high order
schemes considered so far, cannot resolve contact discontinuities as well as a conventional
second order TVD scheme with a compressive limiter, such as the TVD WAF scheme
with the more compressive SUPERBEEFE limiter.

Figs. 6 - 8 show results of the new ADER-WAF schemes of different orders. We
observe that these schemes are superior to other schemes for all output times. The most
obvious improvement over other methods is in the resolution of the square pulse; third
and forth order schemes (Figs. 6 and 7) do not smear it as time evolves. We would like
to stress that each discontinuity has five cells across it for all output times, that is, once
the initial smearing of the discontinuity has been established it is propagated as a steady
profile with a constant number of cells across it. Thus, ADER-WAF schemes combine
the excellent resolution of contact discontinuities, typical of the WAF scheme with the
SUPERBEE limiter, and higher order of accuracy in smooth regions, without the typical
‘squaring’ effect of TVD schemes with compressive limiters. We note that the ADERS5-
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WAF scheme does smear the square pulse for longer times. This is again expected since
the higher order terms in the flux expansion weaken the effect of the compressive limiter.
We also observe improvements in accuracy in the other parts of the solution when we
move from the third to the fifth order scheme. The results of the ADER6-WAF scheme
are only slightly better than those of ADER5H-WAF and thus are omitted.

The importance of using very large output times and solutions containing both smooth
and non-smooth features is quite clear here. Although higher order methods usually
outperform conventional TVD schemes in convergence studies for short and moderate
output times and very smooth solutions, TVD schemes are much faster and simpler and
thus the difference in accuracy can be compensated by the use of a finer mesh. We observe
that for the output time ¢ = 20 most of the schemes give acceptable results. It is only the
larger times which show the real difference in accuracy between different methods.

Table 3 shows a convergence study for different schemes at ¢ = 2000. We present the
errors of cell averages of the solution in the L; norm; in this norm all schemes should
converge with the first order of accuracy. We observe that the WAF scheme with the
SUPERBEE limiter converges very slowly when the mesh is refined. This is again expected
due to the use of the SUPERBEE limiter. The WAF scheme with the van Leer limiter and
the WENOJS scheme converge with the same speed and have virtually the same accuracy.
However, the error of WENO5 for the mesh of 800 cells is still larger than that of the
WAF scheme with the SUPERBEE limiter on the mesh of 200 cells. The WENOH scheme
is also oscillatory for the given Courant number. We note that when CFL=0.3 is used the
numerical convergence rate of WENOS5 is much worse but the scheme becomes monotone.
The MPWENOQO9 scheme is far superior to the WENO5 scheme and converges with the
expected first order (for cell averages). From the results of Table 3 the most accurate
schemes are the ADER-WAF schemes. This is apparently due to the excellent resolution
of the square pulse which is resolved very satisfactorily by these schemes. On the finest
mesh of 1600 cells ADER3-WAF is more than 10 times more accurate than the WAF and
WENOS5 schemes and around 3 times more accurate than the MPWENO9 scheme. The
ADER4-WAF scheme is in turn more accurate than the ADER3-WAF scheme by a factor
of two for all meshes. The convergence rates of the ADER3-WAF and ADER4-WAF
schemes actually exceed the theoretically expected rate of one (for cell averages). Figs.
9 and 10 show numerical results of ADER3-WAF and MPWENQOY schemes for meshes
containing 400 and 1600 cells. We see that on the finest mesh the ADER3-WAF scheme
seems to have converged to the exact solution, whereas the MPWENQO9Y scheme still shows
significant smearing of the square pulse. These results are in line with Table 3. We note
that on a personal computer for one-dimensional linear scalar advection MPWENO9 is
around 5 times slower than ADER3-WAF and 3.5 times than ADER4-WAF when ran with
the same CFL number. This is due to the fact that reconstruction step in the MPWENQO9
scheme involves calculation of complicated and expensive smoothness indicators and has
to be done three times for the third order Runge-Kutta time stepping. On top of this
difference in efficiency one has to add a factor of three due to the smaller CFL numbers
used in the MPWENQ9 scheme, namely CFL=0.3 instead of CFL=0.95 for ADER-WAF
schemes. This leads us to believe that for the one-dimensional linear scalar advection
equation the finite-volume ADER-WAF schemes are superior to finite-volume version of

WENO/MPWENO schemes for long time evolution problems.
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Table 3: Convergence study for various schemes (for cell averages) as applied to the model
equation (42) with initial condition (45) at output time ¢ = 2000. Schemes WAF, WENOS5,
ADER and ADER-WAF used with CFL=0.95 and MPWENO9 used with CFL=0.3

WAF, van Leer WAF, SUPERBEE WENO5
N Ll 8] L1 ™ Ll ™
200 5.52 x 107! 9.86 x 1072 5.62 x 107*
400 3.47 x 107! 0.67 8.38 x 1072 0.24  3.25 x107'  0.79
800 1.87 x 107! 0.90 8.05 x 1072 0.06 1.92x10"Y 0.76
1600 9.85 x 1072 0.92 8.03 x 1072 0.00 9.63 x1072  0.99
MPWENO9 ADER3-WAF ADER4-WAF
N L4 r1 L4 r1 L4 ry
200 2.52 x 107! 1.54 x 1071 7.00 x 1072
400 1.01 x 107! 1.31 5.95 x 1072 .37 295 x107% 1.24
800 4.95 x 1072 1.04 2.46 x 1072 1.27 111 x107% 1.42
1600 2.40 x 1072 1.04 8.92 x 1072 1.46 454 x 107 1.29

6.2 Euler equations of gas dynamics

We now assess the performance of different schemes for the one-dimensional FEuler
equations for a y-law gas (14), with v = 1.4 in all the results shown here. For WAF and
ADER-WAF schemes we use the HLLC Riemann solver of Section 4. For WENO and
MPWENO schemes we use the adaptive approximate-state Riemann solver described in
Chapter 9 of [31]. This solver utilises a combination of the linearised Riemann solver,
two-rarefaction Riemann solver and two-shock Riemann solver. We note that usually
WENO schemes use Rusanov-type fluxes [20] as the building block for higher accuracy,
see [15, 7, 1]. However, the use of an upwind flux based on a ’complete’ Riemann solver
with all waves in the solution of the Riemann problem leads to much more accurate
results whereas the cost of the scheme rises only by 10%, see [28, 27] for the evaluation
of fluxes in WENO/MPWENO schemes. For the WAF and ADER-WAF schemes we
find it helpful, but not crucial, to use characteristic projection as given by (39) - (41)
for problems involving strong shocks. However for the kind of test problems as those
presented here we find that there is no visible difference in the results obtained with
and without characteristic projection. For ADER, ADER-WAF, WENO and MPWENO

schemes the finite-volume WENOQO reconstruction is carried out in characteristic variables.

Fxample 3. Modified shock/turbulence interaction.
We use a test problem that is a variation of the shock/turbulence problem proposed
in [7, 1]. We solve the Euler equations (14) on [—5, 5] with initial condition

(1.515695, 0.523346, 1.80500), © < —4.5
(psu,p) = (46)

(1 +0.1sin2072,0.0,1.), x> —4.5

which consists of a right facing shock wave of Mach number 1.1 running into a high-
frequency density perturbation. As the shock moves into this perturbation it spreads
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upstream. The solution contains physical oscillations which have to be resolved by the
numerical method. It is for such type of problems when sophisticated higher order schemes
should give better results than lower order ones.

We compute the flow at the output time ¢ = 5 which is more than ten times larger
than that of the standard shock/turbulence problem [1]. For the calculations shown here
we choose a coarse mesh of 1000 cells so that there are only four-five cells between each
extrema in the physical oscillations. Again we use CFL=0.95 for WAF, WENO5, ADER
and ADER-WAF schemes and CFL=0.3 for the MPWENO9 scheme. Note that since the
shock wave is weak here it might be possible to run the MPWENO scheme with higher
CFL numbers; however, to be consistent we still use the CFL number which is required
by the monotonicity constraint. Results are shown in Figs. 11 - 19. In all figures symbols
denote the numerical solution and the solid line denotes the reference solution, computed
using the ADERH-WAF scheme on a mesh of 5000 cells.

All calculations have been run on a personal computer with Athlon-XP 1700+ pro-
cesser (1.533 Ghz clock frequency). We use Compaq Visual Fortran Compiler 6.0 with
full optimisation to generate the corresponding code. Computing times are given for the
whole run on the given mesh for each scheme used with its corresponding CFL number.

Figs. 11 and 12 show that on the mesh of 1000 cells the WAF and WENObS schemes
severely damp the acoustic disturbance which spreads upstream of the shock. The result
confirms the observation in [43] that for such meshes with very few cells per wave length
the WENO5 scheme quickly loses accuracy. The MPWENQO9 scheme (Fig. 13) again
is much more accurate than WENOS5. It is interesting to see that this problem is more
sensitive to the spatial discretisation than to the formal order of accuracy; on a similar
problem the MPWENQOY scheme outperforms WENO5 scheme although both schemes
use the third order ODE solver [1].

The accuracy of the original ADER schemes (Figs. 14-16) improves as we go from the
third order to the fifth order scheme. ADER3J is slightly more accurate for this problem
than WENOS5 (Fig. 12) but still the resolution is very poor due to the same reason as for
the WENOS5 scheme. Forth and fifth order ADER schemes are more accurate. However,
we see that the ADERS scheme is slightly less accurate than the MPWENQO9Y scheme for
this problem.

Finally, we observe that new ADER-WAF schemes of this paper (Figs. 17-19) are far
superior to the corresponding original ADER schemes (Figs. 14-16). The difference in
accuracy is evident for schemes of all orders. Clearly, the ADER4-WAF achieves the same
accuracy as the MPWENQO9 scheme does and outperforms the ADERS5 scheme (Fig. 16).
The ADER5-WAF (Fig. 19) is the most accurate scheme for this problem.

When comparing computing times of the WENO5, MPWENQ9 and ADER-WAF
schemes we see that the ADER-WAF schemes are the fastest schemes. There are two
major reasons for this. Firstly, the ADER-WAF schemes are one-step schemes whereas
WENO/MPWENO schemes use the three stage Runge-Kutta method for time discretisa-
tion. Procedures such as data reconstruction, characteristic decomposition, evaluation of
nonlinear WENO weights, back projections and evaluation of the lux must be done at each
stage. Of course, the ADER-WAF schemes have the additional expense of solving the lin-
earised Riemann problems for spatial derivatives and performing the Cauchy-Kowalewski
procedure. However, all linearised Riemann problems have the same matrix A this
greatly reduces the cost of solving the derivative Riemann problems. Secondly, the range

+1/22
of CFL numbers that a given scheme can use in practical computations must also be a
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Figure 1: Computed (symbol) and exact (line) solutions for the linear advection equation
(42) with initial condition (45) at output times ¢ = 20 (top) and ¢ = 2000 (bottom).
Method used: WAF with van Leer limiter, CFL=0.95 and N=200 cells

factor in discussing efficiency. The ADER-WAF schemes use much higher CFL numbers
than WENO/MPWENO schemes; namely 0.95 versus 0.3 for the MPWENO9 scheme.
All these factors result in the observed difference in speed, shown in the legends of Figs.
12-19. In two space dimensions, finite-difference schemes are in general expected to be
faster than finite-volume schemes. However, the difference should be smaller for AD-
ER and ADER-WAF schemes than for WENO schemes, because the former are one-step
schemes and can use higher CFL numbers.

We note that the test problem for the Euler equations contains a rather weak shock
and therefore the test does not assess the robustness of the schemes for strong shock waves.
We remark however that we have successfully solved the complete suit of very demanding
test problems proposed by Toro [31] and the blast wave interaction problem of Woodward
and Colella [44] using ADER-WAF schemes of this paper; results are omitted.
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Figure 2: Computed (symbol) and exact (line) solutions for the linear advection equation
(42) with initial condition (45) at output times ¢ = 20 (top) and ¢ = 2000 (bottom).
Method used: WAF with SUPERBEE limiter, CFL=0.95 and N=200 cells
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Figure 3: Computed (symbol) and exact (line) solutions for the linear advection equation
(42) with initial condition (45) at output times ¢ = 20 (top) and ¢ = 2000 (bottom).
Method used: WENO5, CFL=0.95 and N=200 cells
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Figure 4: Computed (symbol) and exact (line) solutions for the linear advection equation
(42) with initial condition (45) at output times ¢ = 20 (top) and ¢ = 2000 (bottom).
Method used: ADER3, CFL=0.95 and N=200 cells
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Figure 5: Computed (symbol) and exact (line) solutions for the linear advection equation
(42) with initial condition (45) at output times ¢ = 20 (top) and ¢ = 2000 (bottom).
Method used: MPWENQY, CFL=0.3 and N=200 cells
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Figure 6: Computed (symbol) and exact (line) solutions for the linear advection equation
(42) with initial condition (45) at output times ¢ = 20 (top) and ¢ = 2000 (bottom).
Method used: ADER3-WAF, CFL=0.95 and N=200 cells

25



o ®

Figure 7: Computed (symbol) and exact (line) solutions for the linear advection equation
(42) with initial condition (45) at output times ¢ = 20 (top) and ¢ = 2000 (bottom).

Method used: ADER4-WAF, CFL=0.95 and N=200 cells
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Figure 8: Computed (symbol) and exact (line) solutions for the linear advection equation
(42) with initial condition (45) at output times ¢ = 20 (top) and ¢ = 2000 (bottom).
Method used: ADER5-WAF, CFL=0.95 and N=200 cells
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Figure 9: Computed (symbol) and exact (line) solutions for the linear advection equation
(42) with initial condition (45) at output time ¢t = 2000. Method used: ADER3-WAF,
CFL=0.95, N=400 cells (top) and N=1600 cells (bottom)
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Figure 10: Computed (symbol) and exact (line) solutions for the linear advection equation
(42) with initial condition (45) at output time ¢ = 2000. Method used: MPWENO9,
CFL=0.3, N=400 cells (top) and N=1600 cells (bottom)
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Figure 11: Computed (symbol) and reference (line) solutions for the Euler equations (14)
with initial condition (46) at output time ¢ = 5. Method used: WAF, CFL=0.95 and
N=1000 cells. Computing time 1.5s

M‘ i ;\l\l\l\

IO
TS

uuuuuuuu

Figure 12: Computed (symbol) and reference (line) solutions for the Euler equations (14)
with initial condition (46) at output time ¢ = 5. Method used: WENO5, CFL=0.95 and
N=1000 cells. Computing time 6s.
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Figure 13: Computed (symbol) and reference (line) solutions for the Euler equations (14)

with initial condition (46) at output time ¢ = 5. Method used: MPWENOQO9, CFL=0.3
and N=1000 cells. Computing time 48s
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Figure 14: Computed (symbol) and reference (line) solutions for the Euler equations (14)
with initial condition (46) at output time ¢t = 5. Method used: ADER3, CFL=0.95 and
N=1000 cells. Computing time 2.5s.
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Figure 15: Computed (symbol) and reference (line) solutions for the Euler equations (14)
with initial condition (46) at output time ¢t = 5. Method used: ADER4, CFL=0.95 and

N=1000 cells. Computing time 6.5s.
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Figure 16: Computed (symbol) and reference (line) solutions for the Euler equations (14)
with initial condition (46) at output time ¢t = 5. Method used: ADER5, CFL=0.95 and

N=1000 cells. Computing time 11s.
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Figure 17: Computed (symbol) and reference (line) solutions for the Euler equations

(14) with initial condition (46) at output time ¢ = 5. Methods used: ADER3-WAF and
N=1000 cells. Computing time 6.5s
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Figure 18: Computed (symbol) and reference (line) solutions for the Euler equations

(14) with initial condition (46) at output time ¢ = 5. Methods used: ADER4-WAF and
N=1000 cells. Computing time 9.5s.
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Figure 19: Computed (symbol) and reference (line) solutions for the Euler equations (14)
with initial condition (46) at output time ¢ = 5. Method used: ADER5-WAF, CFL=0.95
and N=1000 cells. Computing time 15s.

7. Summary and future developments

In this paper we have first developed a new variant of the ADER approach based
on a flux expansion rather than a state expansion, as originally proposed in the ADER
approach. This variant makes it possible to use the full range of monotone first-order
fluxes available, and which are conventionally used as the building block for schemes of
high-order of accuracy. The second contribution of this paper concerns the proposition
of using a TVD flux, rather than a first-order monotone flux, as the building block. We
show that such TVD flux results in very substantial improvements to the accuracy of the
schemes and of their convergence rates. The improvements are most evident for problems
involving very long-time evolution, which are the kind of problems that fully justifies the
development of sophisticated schemes.

We systematically compare the numerical results of the schemes presented in this
paper with those obtained from other schemes, such as TVD methods, the original ADER
schemes, WENO and MPWENO schemes. The numerical experiments suggest that the
schemes of this paper are superior to all others by a clear margin.

Future developments will include extension of the ADER-WAF methods to non-
linear multidimensional problems, based on the successful preliminary results for two-
dimensional linear problems [35, 21], and application of the ideas of this paper to ENO,
WENO and MPWENO schemes and Runge-Kutta Discontinuous Galerkin methods of
[4]. We will consider not only upwind TVD fluxes but also centred TVD fluxes. See [27]
for centred and upwind ENO-TVD, WENO-TVD and MPWENO-TVD schemes applied

to one-dimensional Euler equations.
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