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Augmented systems of conservation laws

Consider a system of conservation laws
d
(1) du+ > 0uf*(u)=0, t>0,z¢€ R,
a=1

where u(x,t) € IR" is the unknown and f® are given smooth fluxes. Recall that the
existence of an additional conservation law

(2) Om(u) +3_ 0aq”(u) =0,

compatible with (1), and where 7 is a (scalar) function, strictly convex in the sense that
D?*n > 0, ensures that (1) is hyperbolic in the direction of the time ¢. See [7, 9, 11] for
instance. Actually, it allows to symmetrize (1) in the form

(3) A%(2)0iz + Y A%(2)0az = 0,

where z := dn(u) is the “dual variable”. Symmetrization means that the matrices A%(z),
A%(z) are symmetric, the first one being positive definite. As is well-known, the symmetric
form (3) has nice consequences for the Cauchy problem (see [7] for instance):

i. Given an initial data of class H*(IR") (actually, uniformly locally in H* is sufficient)
with s > 1 4 d/2 (which ensures that H* C C'), there exists a positive time T and
a unique classical solution in the strip (0,7) x IR".
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ii. The uniqueness holds in the following stronger sense: The classical solution, when it
exists, coincide with every weak entropy solutionsThe latter are essentially bounded
fields which satisfy (1) in the distributional sense, together with the “entropy in-
equality”

) Om(u) + 3 0. (u) < 0.

Obviously, the convexity of the entropy (which turns out to be the mechanical energy
in isothermal models) is only a sufficient condition for hyperbolicity, but not a necessary
one. It has been well-known for a long time that the mechanical energy of a hyperelastic
material cannot be convex (see [4].) This observation led C. Dafermos [7] to the following
procedure (see also [8].)

Assume that the system (1) is compatible with some special conservation laws, where
the conserved quantities will be denoted by the vector P:

(5) 0. P(u) + Zaawa(u) = 0.

Although the components of P play a role very similar to that of 5, we are reluctant to
call them entropies. It turns out that the conservation laws (5) do not always depend
on the equation of state of the underlying medium. On the contrary, it is common in
thermodynamics that the knowledge of the entropy n determines completely the equation
of state.

Assume now that the, a priori non convex, entropy can be rewritten as a strictly
convex function of (uq,...,u,, Pr,..., P.):

n(u) = o(ug, ... un, Py P, D*¢ > 0.

Then we are tempted to increase the number of unknowns as well as of equations by
writing a system

(6) du+ > 0uf*(u) = 0,
(7) WP+ 0.7 (u) = 0,

expecting that ¢ is an entropy of the resulting system. If it were the case, then the
augmented system would be symmetrizable and the existence and uniqueness properties
mentionned above would apply. Furthermore, the new system contains (1) in the sense
that if an initial data (u®, PY) satisfies P° = P(u°), then the classical solution will satisfy
identically P = P(u), and therefore u will be a classical solution of (1) with data u".
Hence the existence and uniqueness properties hold also for (1).

The situation is not so simple however, because ¢ is not in general an entropy of the
augmented system ! It is clear that there is not a unique way (if any) to write n as a
convex function of (u, P), and one needs to find one such function that is an entropy. Also,
the fluxes f* and 7® may need to be rewritten as functions of (u, P) instead of u only,



and they do in general. For this reason, there does not exist yet a satisfactory theory of
augmentation of systems of conservation laws. We content ourselves to treat each system
of physical interest on a case-by-case basis. This is what Dafermos did for the system
governing the motion of a hyperelastic material. The purpose of the present note it to give
a convenient treatment of the non-linear models of electromagnetism. Our work has been
partly influenced by that of Y. Brenier [3], who treated the special case of the Born—Infeld
model. We emphasize that, thanks to the very special structure of the Born—Infeld model,
Brenier could extend it to a rather simple system of ten equations/unknowns, with pretty
accurate information such as the knowledge of the wave velocities, while in the general
case, our extension consists in nine equations with a pretty involved nonlinear structure.
In particular, our work does not contain that of Brenier.

The Coleman—Dill model for electromagnetism

We place ourselves in the context of an electromagnetic field (£, B) obeying to a non-
linear system of conservation laws. The ambiant space is IR® (d = 3.) The law of Faraday
0;B 4 curl E = 0 must be completed by the Ampere’s law 0;D — curlH = 0 (assuming for
simplicity that there are neither charges nor currents.) In standard Maxwell’s equations,
the equations of state are linear: D = e¢F and H = uB, where € and p are constant
symmetric tensors (often scalars.)

There are several reasons for dropping the standard, linear Maxwell’s equations. On
the one hand, there are media where the equations of state become non-linear. On the
other hand, the electric field in the vacuum grows like r=2 near a punctual charge, and
this growth is responsible for a infinite total energy ! Several corrections of the electro-
magnetic theory have been made to resolve this contradiction, and one of them was to
postulate a non-linear energy density which forces the electromagnetic field to remain
finite, though behaving like 7=2 in the far field, which is harmless. The most famous
model in this respect is certainly that designed by M. Born & L. Infeld [2].

A general theory of non-linear electromagnetic models is due to B. D. Coleman & E. H.
Dill. Tt assumes that the model be compatible with some energy conservation, where the
stored energy has the form of a smooth function W(B, D). Then, taking the conserved
quantities B and D as primary variables, the equations of state read

ow ow
E; = Dy H;:= 0B
hence the system
ow ow . .
(8) 0B + curl 3D = 0, 0D — curl 35 = 0 divB =divD =0.

This system is compatible with the energy conservation law

9) OW + div(E x H) = 0.



The energy flux I/ x H is often called the “Poynting vector”. When W is a convex function
of u := (B, D), we conclude as usual that the system (8) is symmetrizable hyperbolic,
and therefore that local existence and uniqueness properties hold.

However, it is not always the case that W is convex. For instance, in the Born—Infeld
model, one has

Wai(B, D) :=\/1+ | B| + | D|? +||B x D|?,

which fails to be convex far away from the origin, though (8) remains hyperbolic as is it
well-known. When W is not convex, the theorems of Chapter 5 in [7] do not apply. Even
Theorems 5.3.1 and 5.3.2, which deal with systems with linear differential constraints
(called “involutions”), do not apply, since they require that the entropy (here the energy)
of the system be strictly convex in the directions of the “involution cone” C. In our
context, the involutions are divB = 0 and divD = 0, hence the cone is IR®, meaning that
the convexity along the cone is the usual convexity. Hence the local existence and the
stability of classical solutions remain open questions when W fails to be convex.

Remark: In the relativistic formalism, the Ampere’s law is viewed as the Euler-La-
grange equation of a Lagrangian £L(B, F) = L(||E||* — || B||*, E - B), constrained by Fara-
day’s law. This gives the relations

oL oL
D:i=—, H:=—— =D -F-L.
OE’ dB’ W £
More precisely,
(10) W(B,D)= sup{D-e— L(B,e)}.
eeR?

The fact that £ depends only on two scalar quantities || E]|* —|| B||? and E- B is due to the
invariance under Lorentz transformations: The electro-magnetic field must be viewed as
the 2-differential form Qg := dt A (F-da) 4+ da A (B x dx). The invariants of differential
forms of degree two under the action of the Lorentz group O(1,3) turn out to be the
above quantities. In this formulation, it is desirable to express the convexity of W in
terms of a property of L.

The extra dependent variable

The key observation is that, for physically relevant solutions, that is those satisfying the
natural constraints divB = divD = 0, the vector P := B x D obeys to some conservation
law

(11) 0P + div(E;D + HB)+ 0;(W — E-D — H-B) =0.

[t is amazing that equation (11) is not any more in conservation form when B or D fails to
be solenoidal. This fact ressembles much the case of a hyperelastic material, where extra
conservation laws hold only when the tensor part of the unknown is a deformation tensor.
In both situations, the constraints have the form Lu = 0 where L is a linear differential



operator in the space variable, which are compatible with the evolution in the sense that,
if they are satisfied at initial time, then they persist when time increases.

We point out an important difference however, in that (11) does involve W itself.
Therefore, its Rankine-Hugoniot conditions are usually not compatible with those of (8)
once shock waves develop. An exception to this flaw is the Born-Infeld model, since its
characteristic fields are linearly degenerate.

The advantage of augmenting the system becomes clear in the Born—Infeld case. Then
the energy density W becomes a convex function of (B, D, P), when written in the form

I+ B2+ D)2 + || P2

There remains however to find a new way to write the fluxes in (8, 11), in such a way
that the above function be an entropy of the augmented system. More precisely, what we
need is the following. Given a convex function ¢(B, D, P) that coincides with W on the
“equilibrium” submanifold

S :={(B,D.BxD); B,D € IR*}

find a system

(12) OB+curlE = 0, divB =0,
(13) oD —cuwlH = 0, divD =0,
(14) HP+DivT = 0,

where

i. ¥ = E(B,D,P), H = H(B,D,P) and T = T(B, D, P) coincide, on X, with
owW/oD, 0W /0B and E@ D+ H®@ B+ (W — FE-D — H - B)I; respectively,

il. ¢ is an entropy of the resulting system.

Of course, the second point is the difficult one. Once this program is achieved, we may
apply the local existence and uniqueness properties to (12, 13, 14) and, whenever P =
B x D holds at initial time, this remains true for every time. In the latter situation,
(B, D) is a classical solution to (8).

The augmented system

As mentionned above, there is not yet a systematic method for solving the above pro-
gram. Thus we give the system that fits the above requirements, without convincing
explanations. To begin with, the chain rule suggests natural equations of state for £ and
H:

99 99 99 99



There remains to choose T'(B, D, P) in an appropriate way and this is the less clear point.
The following choice works:
99 99 99
16 T(B,D,P) = —®B+—®D—-P®—
0 0 0
¢ ¢ P —¢) Is.

+(¢—B'a—B—D‘a—D— P

The fact that 7" coincides with
Ty =E@D+H@B+(W—-E-D—-H-B)I;

on the equilibrium manifold P = B x D is tricky. It involves the following crucial identity
for vectors X, Y, Z € IR

(XxY)@Z+(Y xZ2)0X+(ZxX)@Y =det(X,Y,7Z) Is.

Last but not least, one obtains the following entropy identity:

: : 9o\ 99
(17) 0p(B, D, P)+div(E x H) = div (((P B xD)- ap) ap) .
Notice that the right-hand side in (17) vanishes identically when the solution comes from
a solution of (8). Then (17) reduces to (9) as expected.

To summarize, we have built a system (12, 13, 14) of nine conservation laws in nine
unknowns, where the equations of state are (15, 16). We call it the “augmented system”.
It is endowed with the entropy ¢, meaning that it is formally compatible with (17). We
therefore may apply Theorem 5.1.1 of [7]:

Theorem 1 Assume that the function U := (B, D, P) — ¢ is strictly convex, that is
D?*¢ > 0, and smooth enough. Assume a C*(IR*)-initial data U° that takes values in some
compact subset O of IR?, and such that VU® € H® for some s > 3/2. Then there exists
7 > 0 and a unique C'-solution U of the initial-value problem of the augmented system
for 0 <t < 7. Furthermore,

V..U € C°([0,7); H*(IR?)).

Since the equation of state coincide with that of the Maxwell’s equation on the equilibrium
manifold, we have the following corollary, which we prove by choosing P° := B® x D°.

Theorem 2 Assume that the function (B, D, P) — ¢ is strictly convez, that is D*¢ > 0,
and smooth enough. Assume a C(IR)-initial data V° = (B°, D°) that takes values in
some compact subset O of IR®, and such that VV° € H* for some s > 3/2. Then there
evists T > 0 and a unique Cl-solution V of the initial-value problem of the Maxwell’s
equations (8) for 0 <t < 7. Furthermore,

VeV € CO[0, ) HY(IR)).



We warn the reader that weak entropy solutions of (8) do not solve (12, 13, 14) in
general, because the Rankine-Hugoniot relations of (11) are not compatible with those
of (8). This phenomenon is studied in greater details below. For the moment, let us say
that it prevents to transfer the weak-strong uniqueness property (Theorem 5.2.1 in [7])
from (12, 13, 14) to (8). Hence the augmentation of Maxwell’s system resolves the local
existence question and the uniqueness within classical solutions, but not the weak-strong
uniqueness. For classical solutions, we have:

Theorem 3 Assume that the function (B, D, P) — ¢ is strictly convez, that is D*¢ > 0,
and smooth enough.

Suppose V' and V are classical solutions of Mazwell’s equations (8) on [0,7), taking
values in a compact subset O of IR®, with initial data V° and V°. Then

/m|<R IV () = Via, 1) 2de < ac” | IVO(x) = Vo(a)|da

|z|<R+Mt

holds for any R > 0 and t € [0,7), with positive constants a,b and M that depend only
on O, except for b, which depends also on the Lipschitz constants of the solutions.

Evolution of P — B x D. One checks easily that § := P — B x D satifies the evolution
equation

(99 9 09
(18) 0,6 = (8—P : v) 5+ (dwa—P) 5+ (va—P) s,

where in the last term (V.X)d stands for the vector of components (9,X)-d. Equation (18)
confirms that the augmented system is compatible with the nonlinear Maxwell’s system,
in the following sense:

i. Given a classical solution (B, D) of (8), then (B, D, B x D) is a classical solution of
the augmented system,

ii. Given a classical solution (B, D, P) of the augmented system that satisfies P =
B x D at initial time (Maxwell-type initial data), then P = B x D remains true for
positive time and (B, D) is a solution of (8).

Compatibility of the Rankine-Hugoniot relations

We prove here what we claimed in the previous sections.

Theorem 4 Let (B, D) be a piecewise smooth solution of the Mazwell’s system (8).
Hence (B,D,P := B x D) is a solution of the augmented system, except perhaps ac-
cross discontinuities.

Assume moreover that (B, D, P = B x D) satisfies the jump relation for (14) (this
means that it is a weak solution of the augmented system.) Then (B, D) also satisfies the
Poynting equation (9)



In other words, a field that satisfies the augmented system and that keeps P = B x D
does not have dissipative shocks. We expect that its discontinuities are contacts.

Proof.

Let (B, D, B x D) be a discontinuous solution of the augmented system. Obviously,
(B, D) is a weak solution of the Maxwell system. Consider a discontinuity accross a
smooth hypersurface. We denote by v the unit normal to the surface, and o its normal
velocity. The Rankine-Hugoniot relations for (12, 13, 14) are

o[B] = —[Exv],
o[D] = [H xv],
olP] = [(D-v)¢p+(B-v)op —(¢p-v)P]

+l¢p—B-¢p—D-¢p— P - dplv.

Starting from these identities, plus the fact that P = B x D, we have to show that the
jump condition [E x H]-v = o[¢] associated to (9) holds true.
As usual, [g] := g7 — ¢~ is the jump of a quantity g. We shall also use the notation

(9) = %(9+ +97).

We point out that, for every bilinear map (), there holds

[Q(g, )] = Q([g], (k) + Q{g), [2]).

To begin with, we eliminate the derivatives ¢ and ¢p by using the equations of state,
and the vector P by using the assumption. This yields to the following form of the third
jump relation:

o[Bx D] = [(D-v)E+(B-v)H]|+[p—B-H—D-E+(BxD)-¢plv
H[(D-)B x ép+ (B-v)ébp x D+ (¢p - v)D x B].

Because of circular symmetry, the brackets in the last line equals [det(D, B, ¢p)]v. Hence
there remains

c[Bx D =[(D-v)E+(B-v)H +[¢—B-H—D - E]w.
Let us develop the bilinear terms. First of all:
o[B x D] = o([B] x (D) + (B) x [D]).
Together with the Rankine Hugoniot relations, that gives
og[B x D] =(B) x [H xv]+ (D) x [E x v].

Next,
[(D-v)E] = (D -v)[E]+[D-v|(E),
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and similarly

(B v)H] = (B - w)[H] + [B - v){H).

Using then the formula
(19) Xx(YxZ)=(X-2)Y —(X-Y)Z,
there comes

(0= B-H—-D-Elv=-(B)-[H]))v = (D) -[E])y = [B-v|(H) = [D-v|(E).
Developing again, we obtain

[6lv = ([B] - (H))v + ([D]- (E))v = [B-v[(H) = [D - V|(E).
Then using again Formula (19), we have
[0l = [B] x (v x (H)) + [D] x (v x (E}).

We multiply by o and use again the Rankine-Hugoniot relation, to end with the equivalent
relation

olplv=1FE xv] x (H xv)+(F xv)x[H xv].

This exactly means that

olely = [(E xv) x (H xv)],

or in other words

(o] + [H x E] - v)v =0,

which implies the desired identity.
QED
Examining these calculations, we see that we have proved the following. For every
discontinuous field that satisfies

(20) o[B]=—[E xv], o[D]=[H x|
plus the equations of state, there holds

FBx D] = ol(D v)éw+ (B v)és — (op - 1)B x D]
—olB-¢p+ D -¢op+(BxD)-éplv+ ([Ex H]-v)v.

Assume now that (B, D) is an admissible weak solution of Maxwell’s system, meaning
that it satisfies (20), together with the “entropy” inequality

e:=op]—[E x H]-v>0.
Then we derive, denoting P := B x D,

(21) o*[P] = o[(D-v)ép + (B-v)¢p — (¢p-v)P]
tolp—B-¢dp—D-odp— P dplv — ev.
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This identity may be converted into an integral formula. Assume that (B, D) is smooth
away from a smooth hypersurface ¥ C (0,7) x Q. Then let § € D((0,7) x Q)® be a test
field. Then there holds

(22)

/Tdt/(P-ateJrT:vxe)dx:/Tdt/ 9. vdS(2).
o Ja o Jrw o

In particular, we have a new kind of entropy inequality:

(23)

1 T
L > : > .
(9 U_oonz):>(/0 dt/Q(PateJrT vxe)dx_o)

Open questions

We list now a few open questions that seem of some mathematical interest.

1.

il.

iil.

What is the physical meaning of (23) 7 Does it always make sense, or can the normal
velocity o vanish 7

What are the wave speeds in either the Maxwell’s equations or the augmented
system 7 So long as we restrict to the equilibrium manifold, the Maxwell’s velocities
are part of the “augmented” velocities. The three extra velocities can be computed
by linearizing (18) around a constant solution that is at equilibrium. We obtain

1 aqb /
00" = (aP-V)é,

where ¢’ stands for the infinitesimal perturbation of ¢, namely 6’ = P’ — B' x D —
B x D', with obvious notations. Therefore the extra velocities merge into a unique
one with multiplicity 3,

99

9P €.

Does this multiplicity persist away from the equilibrium manifold 7 If it did, the
corresponding characteristic field would be linearly degenerate and “integrable”,
according to a theorem of G. Boillat [1] (see also [11] vol I, page 81.) This does not
seem to be the case.

AU €) =

Identify, among the energies W that come from an invariant Lagrangian L(||F|]* —
|B||?, E - B), those which can be written as convex functions of (B, D, B x D).
We know that the Born—Infeld energy works. Presumably, a small and localized
disturbance of Lp; yields an admissible energy. The difficulty here is that, given an
energy, there is a lot of freedom when writing it as a function of (B, D, B x D), since
we are completely free outside the equilibrium manifold P = B x D, a non-convex
set.

Given the Lagrangian L(v,d), with v := (||E||* — ||B||*)/2 and § := E - B, there
is however a “natural” (although non unique) way to define ¢(B, D, P) such that
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W(B,D) = ¢(B,D,B x D). We shall assume that L is even with respect to 9,
which means that it is Lorentz- and orientation-invariant. We start form Definition

(10). Given B and D, we write

sup = sup sup,
eeR® ¥, e\, 8

where sup,,, s is a supremum over e, constrained by (llell* = 11BlI*)/2 = ~ and
e-B = 4. To begin with, we solve this sub-problem, where L remains constant. The
maximum of D - e is achieved at some point e that belong to the plane spanned by

B and D. With the two constraints, the possible points are the intersections of a
sphere with a line,

)
e=-——B+a(BxD)xB,
| BI?

where a obeys to
2

181"

The supremum is achieved when a is positive. We obtain

+a’|| BIP|B < D|I* = || BII* + 2.

dB-D+[[Bx DI/IB|* +2+]BJ]* — 42
e\,

Since L is even with respect to é, we may replace B - D by its absolute value. Then
the expression |B - D| equals (|| B||*||D||* — || B x DH2)1/2. Finally, we may write

(24) W(B, D) = h(||B|[, |1 DI, [|1B x D)),
Wlth 5 bZd? 2 b4 62 52
./ _ \/T
(25) h(b,d, p) == su?{ P “;2 2 —L(7.6)}.
Y

The convexity of &(B, D, P) := h(||B|, || D||,||P||) is equivalent to that of h. Hence
we obtained a sufficient condition (a rather obscure one, indeed) in order that an
augmented system with a convex energy exist. Can we make this condition more

explicit 7 Is this condition necessary 7 We leave these questions open. Remark that
formula (25) can be used to find H in the Born—Infeld model:

Lpr=—1+|BI? = |E|? = (£ B)2, Wy =1/1+|B|?+|[D|I? + || P||?.

Notice that Formula (25) also reads

1 . p? — b
h(b,d,p) = 5 SUP {,os/b%l2 —p? cos@ + ppsinf — bl ( 5 ,pbcos@)},

where the supremum is taken over p > 0 and 0 € [0, 7/2].
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Planar waves

We consider now solutions of Maxwell’s equations that depend only on time and a single
space variable, say x;. Then B; and D; depend only on time and may be considered as
prescribed data. To avoid complications due to inhomogeneity, we assume that By and D,
are constant initially, hence constant forever. Without loss of generality, we may assume

that By = Dy = 0, up to a composition of the energy by a translation. Denoting = := 24,
Maxwell’s equations reduce to

&Bz - &A@W/@Dg) — 0, ath —|— &A@W/@Dg) — 0,
Dy + 0.(0W/9Bs) = 0, & Ds — 0,(0W/0B,) = 0.

We assume a form (24) for the energy. Then the above system rewrites, in complex

variables w := By + 1Bz and z := D3 — 1D,

Oy — Oy (hpyw) — 0, (%hdz) = 0,

Oz — Op(hpz) — 0 (%hbw) = 0.

In general, this system of four equations does not decouple into closed proper sub-systems.
We remind the reader that the analysis done in [10] concluded to the existence of a weak
entropy solution for any bounded initial data, provided W has the form of a function of
(|| B)|* + || D||*)"/?, with suitable convexity properties. But such an assumption fits hardly
with the requirement that W comes from an invariant Lagrangian. Therefore, we wish to
relax it. The main property that we wish to preserve is the decoupling of the system. It
turns out that an energy of the form

W(B,D)=h(r,p), r=Vb+d?

is convenient. For then the system rewrites
1
u(w + 2) = Dl (w0 + 2)) — Do (;hr(w + Z)) .

Ow — 2) — Dp(hyw — 2)) + O (lhr(w - z)) )

7

Hence, writing w+z =: pexp(if) and w—z =: o exp(iar) (polar decomposition of complex
numbers), we obtain a 2 X 2 system in (p,0):

|

(26) Op = 0ulhop) = 0. (hup) = 0,

(27) 0ro — 0y (hyo) + 0, (lhra) = 0.
T

The fact that the above system is closed follows from the identities

2r = p® + 02, 4dp = p? — o’

12



We emphasize that the energy (in)equality (9) reads in terms of (p, o) only and hence can
be used as an entropy criterion for the system (26, 27):

Ouh(r,p) + 0s ((r=2h% + h2)p — 2rh, h,) < 0.

In particular, our analysis above gives us the non-trivial fact that the strict convexity of
h implies the hyperbolicity of the sub-system.

We postpone the study of the Cauchy problem for this 2 x 2 system to a future work.
For the moment, let us just say that, given a weak entropy solution of (26, 27) that is
non-negative (p > 0, o > 0), we may build a weak entropy solution of the plane wave
system by solving the following transport equations

1 1
(at s — —h,,ax) 60, (at s+ —h,,al,) o= 0.
T T

We recall that, following the procedure in [10], we actually may solve the conservation
laws

0 f(0)) ~ o (0)) — 0. (Thop(0)) = 0.
Oi(og(a)) = Bu(hyog(a)) + D (%hrag(a)) _—

for every smooth functions f and ¢ simultaneously. The choices of the sine and cosine
functions give exactly the Maxwell’s equations for planar waves.

An interesting problem in the relativistic context is to characterize those energies of
the form h(r,p) that derive from an invariant Lagrangian L(v,d). We leave this question
for a future work too.

Acknowledgements. The author thanks C. Dafermos and Y. Brenier for fruitful dis-
cussions, and the later for providing a preliminary version of [3].
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