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Abstract

We consider the numerical solution of diffusion problems in (0,7) x Q for @ C R? and for T > 0
in dimension d > 1. We use a wavelet based sparse grid space discretization with meshwidth A and
order p > 1, and hp discontinuous Galerkin time-discretization of order r = O(|log h|) on a geometric
sequence of O(|log h|) many time steps. The linear systems in each time step are solved iteratively
by O(|log h|) GMRES iterations with a wavelet preconditioner. We prove that this algorithm gives
an L?(Q)-error of O(N~P) for u(z,T) where N is the total number of operations, provided that the
initial data satisfies uo € H®(Q2) with ¢ > 0 and that u(z,?) is smooth in « for ¢ > 0. Numerical
experiments in dimension d up to 20 confirm the theory.
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1 Introduction

The numerical solution of parabolic evolution problems by Finite Elements in a domain  C R¢ and by
implicit time-stepping in the interval (0,7") is used in numerous applications. There exists a sizeable and
well-developed literature on the numerical analysis of discretization schemes, see [17] and the references
there. For the solution of the linear system at each time step efficient solvers are available, e.g., based on
suitable multilevel schemes. Most of these developments have been focussed on problems in dimension
d<3.

In some applications, however, the efficient numerical solution of parabolic problems in dimensions
d > 3 is necessary. We mention here only the pricing of contracts on baskets of d assets, e.g., for an index
where d can be as large as 50, and the Kolmogoroff equations for diffusions in high dimensions.

Here, the straightforward application of standard numerical schemes fails due to the so-called ‘curse
of dimension’: the number of degrees of freedom on a tensor product Finite Element mesh of width
h in dimension d grows like O(h~%) as h — 0. This observation has led to the belief that parabolic
problems in dimension d larger than 3 can in effect not be solved by conventional, deterministic methods.
Therefore Monte Carlo methods are used where the error decreases like O(N~'/2) if one uses a work of
N operations. This holds for any d > 1, but only in a probabilistic sense.

In this paper we describe a Finite Element algorithm for parabolic equations in high dimensions with
an error of O(N~P) for a work of NV operations. Here p is the degree of the finite elements which can be
any integer > 1. The method is based on two observations:

(i) To reduce the number of degrees of freedom in high dimensions, so-called sparse tensor product
Finite Element spaces are used (see, e.g. [2, 5, 7] and the references there). Their number of degrees of
freedom grows like O(h~! [log h|*™') as h — 0, instead of O(h~%) for the full tensor product spaces. At
the same time, the approximation rate in H'(Q) for elements of degree p > 1 and smooth functions is
O(h?), the same as for full tensor product spaces. As we show in Proposition 3.2, this result requires
more regularity than HPT!(12) for the approximated function, and the amount of extra regularity increases
with d. In the contract pricing problem mentioned above, the initial data ug of the problem (the pay-off
function) is usually not smooth (typically ug € H?/2~¢(Q) for £ > 0). However, the solution operator
E(t) of the parabolic problem is an analytic semigroup and increases the smoothness of the solution u(-, t)
for t > 0. We prove that this parabolic smoothing effect suffices for optimal convergence of sparse space
discretizations at T' > 0 for any d, even for initial data that are just in L?(2).

(ii) Even with a sparse space discretizations the number Ny of spatial degrees of freedom is substantial
if d is large. Reducing the number of time steps (and thus, the number of spatial problems to be solved)
to pass from ¢t = 0 to the final time T is therefore essential. Time analyticity of E(t) implies analytic
time regularity of the solution u(t) for ¢ > 0, but not uniformly in (0,7'). As was shown in [13], this
allows to construct hp discontinuous Galerkin (DG) time-stepping schemes with ezponential convergence
in the number of spatial problems.

We analyze the fully discrete method with sparse tensor product Finite Elements of degree p > 1 and
meshwidth h in space, and hp DG discretization in time. Because of the exponential convergence of the
DG method in time it is sufficient to use O(|logh|) time intervals, and polynomial degree O(|logh|) in
time. We then obtain at the final time T for u(x,T) an L? error of O(h%?*%) where 6, € (0,1] is related
to the regularity of the elliptic problem in 2, and 6 = p/((p + 1)d — 1). The case that u(z,t) is smooth
in x for all ¢ > 0 corresponds to 6y = 1.

For each DG time step we have to solve a linear system of size (r + 1)]\7 1. We can decouple this and
obtain r + 1 linear systems of size Nj,. Each of these r 4+ 1 linear systems is of the same form as for the

backward Euler method, but contains complex numbers. We solve these linear systems iteratively with
GMRES and a wavelet preconditioner, and show that O(]log h|) iterations are sufficient.

The resulting algorithm requires N = O(h~! [log h|2d+6) operations. In the case where u(x,t) is
smooth in x for all + > 0 (corresponding to #y = 1) we obtain that the L? error of u(x,T') is bounded by
Ch*td < C'N—P,

Rather than covering the most general parabolic problems, we consider here the following model



problem: In the d-dimensional unit cube Q = (0, 1)¢, we consider

%—FAU:Q in (0,T)xQ, (1.1)
u=0 on (0,T)x 900N, (1.2)

with the initial condition
u(0) =wup in Q. (1.3)

Here A is a second order elliptic differential operator in divergence form

Au= -V -D(z) Vu + c(z) u (1.4)

with coefficients D € C*(Q)&%?, ¢ € C> () which are analytic in £ and satisfy, for all z € Q,
VEER: €T D@ > vl (1.5)
c(x) > — Kk > —00, (1.6)

with constants v > 0 and k independent of z. We emphasize that A in (1.4) is self-adjoint only to
reduce technicalities in the numerical analysis. Our algorithm works also for non self-adjoint operators
A with first order terms and for time-dependent coefficients of the form c(z,t) = ¢1(x)e2(t), dij(z,t) =
diji(x)d;j2(t); first order advection terms are admissible in all our results except in one nonsmooth data
error estimate, whereas time-dependent coefficients would require minor modifications in the convergence
proofs. The convergence rates and the complexity of our algorithm remain essentially unchanged. Finally,
it is sufficient to assume in (1.4) that ¢(xz) > 0, since the substitution w = exp(—xt)u implies

w' + (A + k)w = exp(—xt)gin J (1.7)
and A + & is of the form (1.4) with kK =0 in (1.6).

The outline of the paper is as follows: in Section 2, we present an abstract parabolic framework,
Section 3 is devoted to the space discretization by means of sparse tensor products of finite element spaces.
Section 4 presents an hp-time stepping scheme for parabolic problems and exponential convergence results.
Section 5 addresses the fully discrete approximation with hp-time stepping and sparse grids in space
and the practical realization of the time-stepping scheme, in particular preconditioning and incomplete
GRMES iterations for the linear systems of equations. Section 6 presents numerical results.

2 Abstract Parabolic Equations

For a variational formulation of (1.1)—(1.6) in = (0,1)%, we require Sobolev spaces. By H = L?(f2) we
denote the square integrable functions in Q and by H*({2), s > 0, the usual Sobolev-spaces; we need also
V ={ve HY(Q): v|pa = 0}. We identify H with its dual, H = H*. Then

VS H=12Q) = H* <& v*, (2.1)

with dense injection and the operator A in (1.4) is in £L(V,V*). We denote by (-,-)y xy« the extension
of the H inner product (-,-) : H x H = R to V x V*  and denote by || - ||, || - llv, || - ||y the norms in
H,V,V* respectively. With A € L(V,V*) we associate the bilinear form a(-,-): V x V — C via

a(u,v) = (Au,v)y«xv, u,v €V, Au e V*. (2.2)
The form a(-,-) is continuous,
Va0 € Vi a(u,v)] < allully o]y (2.3)
and coercive because of (1.5,1.6): there is 8 > 0 such that
VueV: a(u,u)> Blull} (2.4)
2



for some 0 < 8 < a < 0.
Then A € L(V,V*) is an isomorphism and

IAllcvvsy <ar [A7 evev) <1/8.
Then (1.1)—(1.6) is equivalent to the abstract ordinary differential equation: for t € J = (0,7,
u(t)+Au=g in V*, (2.5)
uw(0) =up in H, (2.6)

where H = L*(Q), V = H}(Q), V* = H71(Q) = (H}(Q))* and v’ is understood in the weak sense, i.e.
for u € L*(J, V)N H*(J,V*) we have u' € L?(J,V*). The variational form of (2.5), (2.6) reads: given

up € H, ge L*(J,V*), (2.7)
find u € L2(J,V) N H'(J,V*) such that u(0) = ug and
- [ @) Wit + [ aw) et = [ (g0, 0)vnv ot 28)
N N 7

for every v € V, p € C§°(J). The initial condition is well-defined in H since (e.g. [6])
LA(J; VYN HY(J;V*) c C°(J; H) (2.9)
Also from [6] we have that problem (2.7), (2.8) has a unique solution u(¢) and
lulleFm + lullzzvy) + 14 llL2) < Cllgllizacrve) + lluollm) - (2.10)

We now introduce a scale H; of Sobolev spaces adapted to the operator A in (1.4). By the spectral
theorem, A admits a countable family of eigenpairs (A, k), with real eigenvalues 0 < Ay < Ay < -+ <
Ar < ... accumulating only at infinity and eigenfunctions ¢, € V. We can assume that the ¢, are
orthonormal in H, i.e. (g, ;) = ok We then have Parseval’s equation

Vue H: lullf = [(u i)l (2.11)
k=1
and
N
u = A}gnoo ,; (u, o) pr in H. (2.12)

We now define, for s > 0, the scale of spaces H, by

H, = {u LX) S (W)l (u,pn)? < oo} (2.13)
k=1
equipped with the norm
Ml = (30 ) (s n)l?) (2.14)
k=1

Furthermore we define for s < 0 the spaces Hy := H*_ by duality. For s > %, let us denote by H}, the
functions in H*() with homogeneous Dirichlet condition:

Hp(Q) :=={ve H*(Q) | v|[p =0}
We then have the following characterization of H:

Proposition 2.1.
H*(Q) for0<s<3%
Hy = Hyl* () fors =14
Hy(Q)  for i <s<2



Proof. The case s = 0 follows from Parseval’s identity. The case s = 1 follows from ||ul|3;, = (Au,u) and
(1.3), (1.4). Then we obtain the result for 0 < s < 1 by interpolation. For s = 2 we use the fact that
is convex, hence Au € L?(Q) implies u € H?(Q). Interpolation then gives the range 1 < s < 2. O

Remark 2.2. There is some sg > 2 such that for s > s¢ the spaces H; and Hj,(2) will be different: The
proof of Lemma 3.1 in [17] gives that e.g.

Hs=A'Hy = A"'H) ={v| Av e HY(Q), Av|r =0,v|r =0}

We see that the space Hs has an additional boundary condition Av|p = 0. On the other hand there may
be functions v ¢ H?(Q) which satisfy Av € H'(Q) because of singularities in the solution at the points
where the boundary is not smooth.

The regularity (2.7) of the data uy, g is sufficient for existence. In order to prove convergence rates for
discretizations we will require slightly higher regularity, namely ug € He, and g € L>®(J; H_11.,) with
e1,62 > 0.

The problem (1.1)—(1.3) with g = 0 admits the solution u(t) = E(t)ug where the evolution operator

o0

E(tyuo := Y e ! (ug, or)ex
k=1

satisfies the following estimates which can be verified directly [14]
Proposition 2.3. There are C, d > 0 such that fort>0,l €Ny, 7>6>—1 holds
NEDONZ (11, 11,y < CA*TTTQ@L+ 1+ 7 — o)t~ CH7=0), (2.15)

For s > o > 0 there holds

IE(t)uollzr, < Ct~ =2 ju|lm,

3 Space Discretization

3.1 Wavelets in R

In the interval I = (0, 1), we define the mesh 7 given by the nodes j27¢, j = 0, ..., 2¢, with the meshwidth
he = 27¢. We define V! as the space of piecewise polynomials of degree p > 1 on the mesh 7¢ which are in
C?=1([0,1]) with 1 < p’ < p and vanish at the endpoints 0,1. We write N¢ = dim V¢, M¢ := Nt - N¢-1,
N~':=0; then N* =0(2),£=0,1,2,.... We employ a wavelet basis ¢§, j =1,...,M*, £=0,1,2,...
of V¢ with the properties:

V= span{t/Jf |0<0<L;1<j<M", diam (supp de) <Cc27t. (3.1)

Any function v € VI has the representation

S

M=

vl (3.2)

~
Il

o
<
Il

—

with vf = (v, Jf) where Jf are the so-called dual wavelets. For v € V' one obtains the series

S

M

vl (3.3)

~
Il

0

<
Il
—

which converges in L?(I) and in H}(I). Moreover, there holds the norm equivalence

00 M’

alolly, <> D [P 2* < clvlly,, 0<6< 1. (3.4)
=0 j=1

4



For v € L*(I) we can define a projection Pr: L*(I) — VI by truncating (3.3):
L Mt
Pro=Y" > wi¢l, Poy:=0. (3.5)
=0 j=1
This projection satisfies the approximation property
llw = Prullm, <e2” O |ullger), 0<0<1,0<t<p+1. (3.6)

The increment or detail spaces W' are defined by

Wt = span{tﬂf:lSjSMl},€:1,2,3,...
(3.7)
WO .= V0,
Then
Vi=vilgWifort>1, and V'=Wa . ---oW' (>0. (3.8)

and Q := P, — P,_; is a projection from L?(I) to W*.

3.2 Examples of wavelets

We give an example for p = p' = 1, i.e., for piecewise linear continuous functions on [0, 1] vanishing at

the endpoints 0, 1. Since there is no nonzero function on the whole interval [0, 1] we now define the mesh

T*¢ for £ > 0 by the nodes xﬁ =527 with j = 0,...,2¢". We have NIl =21 — 1 and M, = 2%
We now define the wavelets 1°ll; for level £ = 0,1,2,..., 7 =1,..., M, For £ = 0 we have Ny =

My =1 and ¢ is the function with value ¢o at 29 = 1.

For ¢ > 1 we have Ny = 2¢*! — 1. The wavelet ¢! has values 1{(z{) = 2¢;, ¥f(28) = —c, and zero at
all other nodes. The wavelet 1§, has values ¢4, (z,) = 2cq, ¥, (2,_1) = —c¢ and zero at all other
nodes. The wavelet ¢§ with 1 < j < M; has values ¢§(z5;_5) = —co, ¥5(a5;_1) = 2¢¢, Y(25;) = —c

and zero at all other nodes.

3.3 Sparse tensor product spaces and approximation rates

In Q = 1% = (0,1)% d > 1 we define the subspace VI as the tensor product of the one-dimensional
spaces:
vE=vig...@Vl (3.9)

which can be written using (3.8) as

vi= 3" wWhe..ewh (3.10)
0<6;<L

The space VI has O(24) degrees of freedom and is too costly if d is large. We shall use the sparse tensor
product space

Vo= Spaﬂ{iﬂfl(ml)'.wﬁj(md) | 1<ji <MY b+ 44y SL}

= Z Wfl ®...®W5d’ (3.11)

0<ty+-+€4<L

As L = oo, we have Ny, := dim(VL) = O(2¢L), and Ny := dim(VL) = O(L9-12L), i.e. the spaces V©
have considerably smaller dimension than V¥. On the other hand, they do have similar approximation
properties as V¥, provided the function to be approximated is sufficiently smooth: To characterize the
smoothness we introduce the spaces H* with square integrable mixed k-th derivatives: Let H° := L?((Q),
and define for integer k > 1

HE = {uec HYQ) | Du e L*(N), 0< a; < k} (3.12)
5



equipped with the norm

Wl

lulla = (3 1D ull3aey) " (3.13)
0<a; <k
i<i<d
We then define H?® for arbitrary s > 0 by interpolation.
For a function v € L%(f)) we have as a consequence of (3.3), (3.9)
v(@) = Y S it gl (ay) L i (za). (3.14)

l1,..,£420 1<jx<ng,

We then define the sparse projection operator pL: L*(Q) — VL by truncating the wavelet expansion:

(PLv)(z) = > il () L (), (3.15)
0< 1+ +Lg<L
1§jk§nzk,k=1,“,d

Po= Y Quo--2Qu (3.16)

0<b1+++La<L

We next establish some properties of the sparse grid projection ]3L: vV - VL.

Proposition 3.1. (Stability of ISL) For 0 <0 <1 andv € Hyp we have
1PLollm, < Cllvllm, - (3.17)

Proof. For 6 =0, we have with

2
l1...0
LTS SR S (3.15)
£ =0 1<_7k: <’I’L[k
k=1,...,d
that
1Prolli, < Cr[[Pov]|, < Callolly < Callolliagon
We also have from the norm equivalence (3.4) that for every v € H(Q):
C- l1...0 2 2
ol <cs Y 3 ‘vj;;;;j; (1420 4 4 20y = ol . (3.19)
4=0 1<ju<ne,
k=1,...,
It follows R R
1Peolln < Cs || Prof| < Callol, < Callolln -
Interpolation gives (3.17). O

Proposition 3.2. (Approzimation property of ]3L) Assume that the component spaces V' of VL have
the approximation property (3.6). Then for 0 < s <p' + % and s <t<p+1

Che+t log B2 |lullsps: if s =0 andt=p+1

3.20
Cht=%||u|| 3 otherwise (3.20)

llu — JBLU||HS(Q) < {

Proof. We follow [5, Prop. 6] and [7]. We first consider the case 0 <t < p+ 1. In the one-dimensional
case, for 0 <t < p+ 1, we have

2 2
S 2 Qull* < Cllull s (3:21)
£=0...00
Using tensor product arguments (cf. e.g. [7]) we obtain that, for u € H! and 0 <t < p+ 1,

oo

> 2 D19y, @ - @ Queull* < Clull. .
£y,...,£4=0



As in [5] this implies, for t < p+ 1 and £ := ({y,...,£44),

[|lu — ﬁLU“iIS(Q) <C ||’LL||§_” lrlﬂl;l)i 92sl€], —2t|¢| <C ”u”iﬁ C'92(s—t)L

as the maximum is attained at e.g. £ = (L + 1,0,...,0).

In the case of t = p+ 1 we have in the one-dimensional case instead of (3.21) only 2 ||Q.u|l <
C'lull g+ (), and one obtains with tensor product arguments as in [5]

1Qe; @ -+ ® Qeyull < C271 |Jull,,.

and from that

lu— Prul

p 2 s - 2 s— s—t)(m—
qu(g) < Clfull, E ( 928(¢| o —2¢1€] — C ||ull3, 92(s—t)L E ( 22(s—t)(m—L) 4
[e|>L m=L+1

with A = 3702, 225([tlc=m)  For s = 0 we have A,, < Cm®! whereas, for s > 0, A,, < C holds. O

Remark 3.3. This result and the proof also apply for discontinuous wavelets with p > 0, p' = 0, e.g.
the Haar wavelets with p = p’ = 0. The case of the Haar wavelets also illustrates that the logarithmic
term is necessary in the case of s = 0 and ¢ = p+ 1: Consider the function f(z) = z; - - - 4. The wavelet
coefficients of f satisfy f;;;‘; = 27 3/2(lit++La) and therefore

fay 2 2 Y —9 e
TR D DD DI D DI i

b4 +Ly>L j1,.00da bite+la>L

Now we see that already Y, .., _; 4 27 2(F "+ > 0272L [4=1 which shows that the convergence
rate in 3.20 is sharp. For the case d = 2 see also [7].

Remark 3.4. Sparse grid spaces based on interpolation (see e.g. [2]) do not exhibit semiorthogonality
like our wavelet based sparse spaces. For such interpolation-based sparse grid spaces there is an additional
logarithmic term in the H' approximation rate.

Remark 3.5. We can express the convergence rates (3.20) in terms of the number of degrees of freedom
using N, = O(h~! [log h|*™"), yielding a bound O(N*~*(log N1,)?) with 8 depending on d. It was shown
in [4] for p = 1 that one can avoid this logarithmic term by using smaller spaces than VL and higher
regularity of v than HP*!.

3.4 Regularity of parabolic problems and sparse approximation rates

To characterize the approximation properties of VL we define the scale of interpolation spaces

Xg,p = (Hy(Q),H" )y 0<0<L1. (3.22)

)

We have H!'*% C X, , C H};rep for 0 < 6 < 1 where the inclusions are strict for 0 < § < 1. From
H} = Xo, and HXPTY © 34p+1 = X, , we obtain with interpolation that

Hy )« xy, (3.23)

for0 <0 <1.
For u € H} () we have from Proposition 3.1 that Hu - ]3LuHH1(Q) < Cllullg1(q)- Interpolating the
bound with (3.20) for s =1, ¢t =p+ 1 gives for u € Xy,

Hu - ﬁLuHH < Ch |ully, (3.24)

L)



Now let u(t) be the solution of the parabolic problem (1.1)—(1.3) with up € L?*(Q) and g = 0. To
estimate the approximation rate Hu(to) - ﬁLu(to)HHl(Q) for to > 0 we use that u(tyg) € H, for any s > 0.

For a smooth domain € we would have
Hpprya C HPHDE C Pt = Xy, with § = 1.

But this is in general not true for the domain Q = (0,1)% as the boundary is not smooth: since H, =
A~3/?[2(Q) this space can contain functions which are not in H*(Q) for s > 2: there may exist singular
functions v ¢ H*(Q) in H, such that Av € H*~2(0). Since ) is convex we always have Hy = A7'L?(Q2) =
H2(9) C Xy, for 6 = (d(p+1) — 1) by (3.23).

Hence there always exists some 6y € (0,1] such that
Hpt1ya C Xoo,p- (3.25)

which depends on the singularity functions for the operator A at the singular points of 9. If 8y < 1, we
expect the reduced convergence rate h?? instead of h?.

Remark 3.6. In certain cases, we obtain in (3.24) the full approximation rate h?. Let us consider
A= —-Au+cuin Q = (0,1)¢ where ¢ is smooth on Q. We denote by T = R/(2Z) the interval
[—1,1] with the boundary points identified. A function v on I¢ can be extended to an even function
v® on T? by v*(z) := v((|z1],...,|7q|)). Similarly we can define the antisymmetric extension v° by
v°(z) = sign(xy) - - -sign(zqg)o((|1], . - ., |za])). We now assume that ¢® is smooth on T%. Then we may
assume without loss of generality that ¢ > ¢o > 0 because of (2.13). We define the operator A1 as the
solution operator of the problem —Au + cu = f on T?. For f € L?(I?) and u = A~ f, we then have
u® = A1 f°. Therefore,

Hy={ (A2

Lreranyc{ary| | rerray ) = man.

Hence 6y = 1 in (3.25), under the assumption that ¢® is smooth. We can relax this assumption. Since
the solution of an elliptic boundary value problem is smooth at points where the boundary is smooth we
only have to assume that ¢¢ is smooth in a small neighborhood of the singular part of the boundary.

Remark 3.7. If the principal part of A is different from —A (even if A has constant coefficients) we can
no longer expect that 8y = 1, and we will get a lower approximation rate O(h%?). But this also happens
for the full grid space V' : if the function u has only regularity v € H'**~¢(Q) with so < p then we
obtain only the lower approximation rate ||u — Prul| g q) < Ch* ™ instead of O(h?).
3.5 Approximation of the elliptic problem
In Q = I? consider for the operator A in (1.4) the problem

Au= fin Q, ulasqg =0 (3.26)
associated with (1.1). In weak form:

u € HY Q) : a(u,v) = (f,v) Yve HI(Q). (3.27)

The corresponding solution operator 7' is continuous, i.e. u =T f : H_; — H; boundedly.

Let 4L = Ryu € VL be the sparse Galerkin approximation of u, defined by
al e VL. a@, o) = (f,0%) vol e VF (3.28)
and denote by T, f= Riu the approximate solution operator. We have for 0 < 6 < 1, using (3.24),

lu — @ g9y < CROP|Jullx,,, - (3.29)



Now a standard duality argument gives

_ 5L _ 7L _p
u—ab| < sup (u —u",v) — sw a(u — 0", wy, — Prw,)
veL2(R) [|v]] veL2(R) [|v]]
5 (3.30)
<Ol ey sup eI
veL?(Q) [|v]]
where w, denotes the solution of
A*wy, =vin Q, wlpg =0. (3.31)
Since Q is convex and ¢ € C*°(Q), we have w € H?() and
lwollr2(0) < CllvllL2@)- (3.32)
Using (3.24) and (3.23) we obtain
[lwy, — ﬁva”Hl(Q) < Ch'P lwoll r-er+erosnya s, 0 < 9" <1. (3.33)
With 6’ := 1/[(p + 1)d — 1] we get from (3.33) and (3.32) that ||w, — @%|| 10y < Ch? where
p
0= ———. 3.34
(p+1)d—-1 (3-34)
Now (3.30) and (3.29) give for @* = Ryu the convergence rate
|u— Rpul < C P |y, (3.35)

Remark 3.8. For the Galerkin approximation of the elliptic problem 3.27 with a function u” in the
full space VX we obtain the approximation rates ||u — u”|| g1 (q) < ChP||ullgr+1(q) and [lu — ul|| 20y <
ChP|ul gr+1(q)- The Galerkin approximation ul on the sparse grid gives the same convergence rate
in the H'-norm as the full grid approximation. For the L2-error, however, we obtain for the sparse grid
solution only the lower rate O(hP*?) compared with the full grid approximation. The reason for this is
that the H2-regularity (3.32) of the adjoint problem only yields a rate h’ on the sparse grid but h' on
the full grid.

3.6 Spatial semidiscretization
We semidiscretize (2.8) in space: We choose an approximation for the initial value

al = Ppug. (3.36)

Then the solution @’ of the spatially semidiscrete problem is defined using a Galerkin approxi-
mation in space: Find @%(t) : J — V1 such that a”(0) = @} and such that

(%a{#)+a#mﬂ:@mmﬂ vl e VP, (3.37)

We first consider the homogeneous equation with g(t) = 0. In the case of smooth initial data we have
the following result.

Theorem 3.9. Assume that (3.25) holds with 0 < 6y < 1. Consider (2.8), (3.37) with g =0, p > 1 and
assume that uo € H,y1)q. Then

lu() == @)1 < CRP* fluoll o - (3.38)
Proof. The proof follows [17], Theorem 3.1. We use that by (3.35)

(T = Tp)fI| < Ch%PH|Tf|lx,, , (3.39)
9



and first consider instead of (3.36) the initial value %% = P ug, with P? the L?(Q)-projection onto VL.
Since ||a%(t)|| < ||@"(0)|| this causes an error contribution to (3.38) which can be estimated by

Hﬁguo - ﬁLuOH <2 Hﬁwo - uOH < Ch* log B2 ol s (3.40)
and, using (3.20) with s =0, t = 1/d and H'(2) ¢ H"/? we get
[ oo — Prowo|| < 2| Pruso — o < CRY4 fluollyra < CHY flugll sy - (3.41)
Interpolating between (3.40) and (3.41), we obtain
HﬁLOUO _ ﬁLUOH < CRPoP O (1-1/d)+1/d |10gh|00(d—1)/2 ||U0||x00,,, ’

This implies
| Phuo = Pruo| < chror* usly, < RO uslly
since 6 < 1/d for d > 1.
The error e(t) = u(t) — 4= (t) satisfies with p = —(Ty, — T)Au = (T — Tp)uy
Tpei+e=p, Ty e(0) = 0. (3.42)

Lemma 3.4 in [17] states that
lle®Il < Csup(sllp(s)ll + [lo()ID- (3.43)

The assertion then follows from
p(s)]| < ChPPHOu(s)||x,, , < ChPPTOllu(s) | myp0)y < CRPOP [Ju(0)|a, ).

and
slloc(s)ll < s C PP Juy(s)|lx,, , < 5 CBOPH (luy(s)l m, ).

= 5C hPPtI|| Au(s) < 5 C h¥orT9 s=1jy(0)

||H(p+1)d = ||H(p+1)d'
O

Estimate (3.38) assumed that ug € H(,41)q- Note that this not only requires smoothness in the
interior, but also that ug satisfies the compatibility ug = 0, Aug = 0,..., A¥uy = 0 on 9N for some
integer k (see Remark 2.2).

Next we prove an error bound valid for ug € L*(9).

Theorem 3.10. Assume that (3.25) holds with 0 < 6y < 1. Consider (2.8), (3.37) withp > 1, ¢ =0 and
uf = P ug. Then there is C > 0 such that, for any t > 0,

[[u(t) = @" (@)[| < C hPPHo =PI g | (3.44)
Proof. We follow the proof of [17], Theorem 3.2. Using (3.35) with # = 0 and Proposition 2.3 we obtain
1Ru(t) — u@l] < C B [[u®)lms @y < C Bt [luoll.
yielding the following bound for e(t) = u(t) — u(t):
le(®)]] < € 1 £ Juo] | (3.45)
We define the error operators FJ, (t) by

e(t) = Fy.(t)ub = By (t) Py uo — B(t) P uo = r (1) — u(t), (3.46)



where EL(t) denotes the solution operator of the semidiscrete problem with space VL. With ﬁ’L(t), the
claim (3.44) may be rewritten as

IFL () ug || < € RIoPH = 0d/2 gy (3.47)
We have [17], p. 42:

Furthermore, using Theorem 3.9,

AL‘L 5)Ug || = =) ugy - : ull.
|FL(8) B ub]| < Chorte B b, < Chores =iz )

Since A = A* we have (E(L) Fr,(£))* = Fr (%) E(L) and it follows that
|EG) FL(§)uf|| < Cheorte = enal jugy|,
and altogether
IFL () ugll < € hPorto =02y 4 C RO 43 || Fr (L) uo -
Iteration gives, for any integer s > 1,
[FL(8) ug || < € RPOPH = HDa2 |yl 4 € (B0 7 2)* || L (%) o] -

We choose s such that ds > 6op + &, and we find, using ||Fp(L)v|| < 2||v]|, that [|[Fy(t)ul| <
C hor+3 t=(P+1)d/2||y0|| which completes the proof. O

3.7 Inhomogeneous Problems

We now consider the inhomogeneous problem (2.5) with a nonzero function g(z,1).

Following [17] we obtain a result which gives the same convergence rate at time ¢ as in Theorem 3.10
if we assume that g is sufficiently smooth in [t — ¢, t]:
Theorem 3.11. Assume that (3.25) holds with 0 < 8y < 1. Consider (2.8), (3.37) with p > 1, and
ul = Prug. Then, for t > ¢, we have

t

t
a0 = ut)] < Cnr il + [ Nfllds+ [ (lully,,, + Ny, )] (348)

—e

Proof. As in the proof Theorem 2.3 in [17], we have, with e = u — G, p = Rlu — u,

le(®)l < e+ (o) + ol ds), (3.49)
o)l = || (R = Do | < Ch*P* Jully,, (3.50)
loell = | (RE = Due| < O (3:51)
yielding .
Ju=] < 13§ = ull + b7 (fuollx,,, + [l )- (3.52)

Now we proceed as in Theorem 3.6 in [17] and write u = uy + uy + us using cutoff functions so that us
satisfies a homogenous problem, and wuy,us satisfy inhomogenous problems with zero initial data with
fi=m=uy—Aug =0fort < tgp—e, f3 :=usy —Aug = 0 for t > tg — %5. Now we use (3.52) for
u; and Theorem 3.10 for us. For the error e;(¢) corresponding to f3 the argument in [17] gives, with
Theorem 3.10,

t0736/4 tO
leat®ll < cn2=2 [ (o)l ds < Ch (fuall + [ 171 ds)
0 0
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4 Time Discretization

In this section we analyze the time discretization of the parabolic problem. We wish to apply our
error analysis to two situations: (i) the continuous problem (2.5), (2.6) where the DG-discretization
leads to a semidiscrete problem (continuous in space, discrete in time), and (ii) to the spatially discrete
problem (3.37) where the time discretization leads to a fully discrete problem (see Section 5). In order
to accommodate both cases we introduce the abstract Gelfand triple

Vb g oy (4.1)

where in case (i) V = V, H = H and in case (i) V = V¥ equipped with || - ||, and # = V'’ equipped with
| -l;- We define the scale of spaces H, such that Ho = H, H1 =V, H_1 = V*, defining the intermediate
values of s € [—1, 1] by interpolation.

We assume that A € L(V,V*) and (Au,u) > « ||u||$; for all u € V and consider the abstract parabolic
problem

u'(t) + Au(t) = g(t) 0<t<T< o0, (4.2)
u(0) = wug (4.3)

with ug, g as in (2.7).
Solutions u(t) of this problem are analytic functions of ¢ € (0,7") if g(¢) is analytic. We build therefore

a high order time semi-discretization of (4.2) and prove its exponential convergence. We shall apply this
time discretization to the spatially semidiscrete problem in Section 5 below.

4.1 Time regularity

The solution operator of the parabolic problem (4.2), (4.3) generates an analytic semigroup E(t), i.e. the
solution u(t) becomes analytic in ¢ for ¢ > 0, provided the data g(t) € L>(J,V*) is an analytic function
of t € [0,T] taking values in Hy for some § > —1. We quantify the time analyticity of g by assuming
from now on that there are constants Cj, dAg such that

gD (O)ll3s < Cy (dg) W|g()|Los(0,7,2,) for allt € [0,T]and alll € Ny, —1<6<1. (4.4)

The solution u(t) of (4.2), (4.3) is a mild solution (see [9]) and can be represented as
t
u(t) = E(t)ug + / E(t—s)g(s)ds, 0<t<T. (4.5)
0

To address the time-analyticity of u(t), we write u(t) = uq (t) + u2(t) with

uy (t) + Auy (t) = 0, u1(0)
up(t) + Aus(t) = g(t),  u2(0)

Uo , (46)
0. (4.7)

By (2.15) with 7 = 1 we have

Proposition 4.1. Forug € Hy, 0<0 <1,

and there are C,c/l\> 0 such that for alll € Ny, t > 0 holds

[ul ()13 < CdZH=T (21 4 2 — 6) t~ D0y |12, (4.8)

.
Next, we have for us(t) in (4.7):

12



Proposition 4.2. Assume that g satisfies (4.4). Then,
t
/E’t—s s)ds, 0<t<T, (4.9)
0

and there are C’,(i> 0 such that for alll € Ng, 0 < ¢t <min{l,T} and 0 <6 <1
8”1 < Codg! T +2 = )t llgllF e 0,700 (4.10)

Proof. We set Vg = H_149¢ for 0 < 8 <1 and ¥V = V; = H; in this proof to simplify notation. From
(4.5) we have for I > 1

-1 t
ud (1) = 3" B () g!=179(0) + / E(s) g (t — s)ds, 1>1
1=0 0

and we estimate

(1
[’ @)l < Z IED N 2w llg* =2 (0) v, + /IIE MewsllgV (t = 8)llv, ds
=0

= S+1I.
We estimate S. By (2.15) (with 6 replaced by —1 + 26 and with 7 = 1)

IED N £vey) < CdH T (20 + 3 — 20)1/2¢=(1=0),

Using ['(22) = 777 22571 D(2) T(z + 1) with 2 =i + 3/2 — 6 gives
[(2i43-20)"2 < C2H (i +3/2—0)/’T(i+2-6)"/2 < 2+ T(i +5/2—9).

With (4.4), we estimate

-1
S<CY A T2+ 3 20)7 =V Cyllg(t) |y, dL T ).
i=0

and, using the log-convexity of the Gamma function,

-1

S < CCyllgt)llv, > (2d) 10T (i + 5/2 — ) 1=+ gl=G+D D1 — )
=0

-1

C Cyllg(®)|lv, max{2d,dg ' T1U+2-6)Y" PE+2-0P1—1) (1)t
i=0

T(+2-96)

IN

-1
ccC, d1l+1 llg(®ly, T+ 1) Z G
i=0

IN

For 0 < t < min{1,T}, we find that there are 0731 > 0 such that, for all [ > 0,
S <CCy(d) ! lg®)llv, T+ 1) 77,
and D(L+1)° <T(L+ 1T (I + 7) < CT(2L +2) 2720+ gives

52 < C ( )2l+1 20 ||g( )”ée t72l+20 F(2l + 2)

13



Analogously, we get from (2.15) with I =0, 0 < 6 < 1, the bound
t
1< G [ 5 gt = o)l dsCy ()"
5 (4.11)
< G Cy ()2 TU+ 1) ¢ |lgll s (o,yv0) -
Squaring and adding the bound, the assertion follows if we replace 6 by 6/2 and adjust d. O
Combining (4.8) and (4.10), we get the following result.

Corollary 4.3. Assume that ug € Hy and that g satisfies (4.4). Then there exist CN’g,gg such that the
following hold.

i) For 0 <t <min(1,T), 0 < 8 <1 and every integer 1 > 0,

D@3 < Co a2 T +2 = 0) {17 lug 3, + 24 gl morinry ) (412)

ii) Further, if 0 < a < b < min(1,T), then for nay integer I > 1 and 0 < 6 < 1,

/||u<l>(t)||$,dt <C,d’'T(2l+2-16) -

{ 2o, + a4 (b = @)llg3 = 0,10y | -

iii) If s > 1 is arbitrary, and 0 < 6 <1, 0 < a < b <min(1,T),

el (o vy < Co " (25 +2 = 0)a=>+ {flwolBy, + llglFwi0.130 110 } -

4.2 Discontinuous Galerkin time discretization

We discretize problem (4 2) in time. To this end let M be a partition of (0,7) into M (M) timesteps
{LIM_ Ly = (tme1,tm), 1 <m < M, of size ky, =ty — t;m—1. Define the one-sided limits of u € H
(or V) as

wlh = lim u(t,+s), 0<m<M-1,
s—0t
(4.13)
up = lim wu(ty, —s), 1<m<M,
s—0+
and [u]py, == ut —u,,, 1<m <M -1
Proposition 4.4. [13] The weak solution v € L?(J;V) N H(J;V*) of (4.2) satisfies
M
Bpa(u,v) = (uo,vg) + Z / V)= xy dt (4.14)
for all B
vEC,M;V):={u:J = V: u|I € C'(In; V), I, € M},
where
M M
Bpa (u,v) Z / {(W,v)vxy + a(u,v) } dt + (ug , v )u + Z ([U]mflyv:,rl,l)ﬂ .
m=1 j m=2

m
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The one-sided limits in (4.13), (4.14) are well-defined due to (2.9).

With time step k,, we associate an order r,,, > 0, and define the semidiscrete space
Sr(M;V):{u:J—ﬂ/:ub EPTW(Im;V),lngM}, (4.15)

with the order vector r = (rq,...,7rpn). If the orders are uniform, i.e. r, = r for all m, we write
S™(M;V). The number of unknown coefficient functions in V of u € S*(M;V) = S*(M)® V is
dim (S"(M Z T 4+ 1). (4.16)
m=1
The DG time-stepping scheme is given by: find U € §*(M;V) such that

M
Boc(U. W) = (v W) + 3 / W)y (4.17)

for all W € S*(M; V).

Problem (4.17) has a unique solution U which can be obtained by successively solving M spatial
problems for the r, + 1, m = 1,..., M, unknown coefficient functions in V (see Section 4). From (4.14)
and (4.17) we have the Galerkin orthogonality

Bog(u—U,W)=0 VYIW eS8 (M;V). (4.18)
On I = (—1,1), define for r > 0 and u € C°(I; V) the projector II" u € P"(I;V) by

/ (u—T"u,q)ydt =0 VYge P I;V), (T"u)(1)=u(l) €V. (4.19)
T

If r = 0, the first condition is void. On time interval (a,b) of length k = b — a > 0 we define H’("a’b) by

(=M (uoQ)) o (4.20)

where @ : (—1,1) — (a,b) is given by £ — z = L (a+b+£&k). The global DG-interpolant of u € Cy(M; V)
is then given by

Tu € ST (M;V) Iu|Im =I5 (u|lm) (4.21)
Theorem 4.5. The DG-solution U of (3.38) satisfies
1 - ay? 2
O+ Uy € (14 5) e Tl (422

Proof. We have for all u, W € S*(M;V):

1o —wj? ::/ ||U—W||idt+%||(U—W),‘M||i
J

IN

@ =Wl + an W[+ S 1@ =Wyl + [ v = ae
J

IN

%BDG U-W,U-W).
Hence we get

IU = Zull® < 87" Bog (U — Zu,U — Zu) = = Bpe(u — Zu,U — Tu).
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With © := U — Zu € §*(M; V) it follows that

U - Zu)? < 5~ / {=(u — Tu; ©)3} + a(u — Tu, ©) | dt
J

M-—1
+ 7 2_:1 (= Tu), (Ol + 67" | ((w = Tu)ys O3]

IN

g1 / falu - Zu,0)| dt < / llu = Tully |©]ly dt,
J J

S Nelde)” ([ lu-zulyar)” < 5101 llu=Tuliam
J J

IA

whence we find o
U = Zu| < 3 lu — Zul| g2 5v)-

Also
«a
u =V < IV =Zul + 17 = Tul < (1+5) u =0z

which completes the proof. O

Remark 4.6. If we have instead of (3.5) only the (weaker) Garding inequality
2 2
YueV: alu,u) + /<;||u||H >0 ||u||v

for some £, 3 > 0, we still obtain (4.22) with (1 + %) replaced by exp(xT)(1 + 3), this follows from the

substitution w = e *tu.

We see from (4.22) that the error at tpy = T of the DG solution U as well as its L?(J;V) error
is controlled by the quality of the interpolant Zu. We show now that M,r can be chosen such that
llu = Zull75 ., decreases exponentially in N = dim(S"(M)).

Definition 4.7. A mesh {I,}M_, in J = (0,T) is geometric with M time steps I, = (tm—1,tm),
m=1,..., M, and grading factor o € (0,1), if

to=0, t,=Tc™M™™ 1<m<M. (4.23)

Then
km =Xm—1, A\=(1—-0)/o, 2<m< M. (4.24)

We write Myr,s for such meshes.
We define v = max{1, A\}. We will also use variable orders {r,,}*_, on M ,:

Definition 4.8. The order vector {r,}M_, is linear with slope p > 0 on Mo, if 1 = 0 and if
Tm = LMmJ’ m:2,...,M.

We estimate the approximation error

M
[Ju — Iu||2L2(J;v) = |ju -1, “||2L2(11;V) + Z | w — 1077 “”iZ(IW;V) (4.25)

m=2
in each time step. We start with the first time step I; and recall that ry = 0.

Lemma 4.9. For u € Hy and g(t) satisfying (4.4) for some 0 < 6 < 1, we have for 0 < k <1
= T w2, ) < € (K ol + K4 g1 1) -
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Proof. Recall that r; = 0 and that by (4.19) II? u = u(k). As in (4.6), (4.7), u = u; + u and
k 4
[ ) - uwlp e < ¢ 3 1,
0 =1
k k k k
7y = [ JuaolFsdt T2 = [ (1R dt, Ta = [ lua@lp e, T = [ fua(l de.
0 0 0 0
Ty, T, are estimated as in [13]; consider T5: using (4.12) with I = 0 givesfor 0 < § <1

k k
n:/wmm&ﬁsc/ﬁmmﬁﬂwﬂﬂw
0 0

Analogously, from (4.10) with [ = 0 it follows that

Ty = klluz(B)I5 < CE gl 0070110

For the intervals I,,, with m > 2 we have the following result.

Lemma 4.10. Assume (4.4). Then for every o € (0,1) there exist constants C,d > 0 such that for
I e~/\/lM,a'; Tm 2 17 m227 andfor0§9§ 1:

||U - H?:: u||i12([m;v) S CU(M_m—i_l)e(f'yc/l\(a))rm { ||u0||’2Hg + ||g||i°°(J;’H_1+9)} (426)

where v = max{1l,(1 —o)/o} and

Proof. We write I in place of I, and t in place of t,,_1, and a,r, s in the following calculations. Then,
as in [13],

Fir+1-ys) (k)2(5+1

o2 )2
lo =T ul ey < € apr gy 2 lull s 10y

2

T(r+1-—s) 7A\206+D) , .. 2
Y

- r2T(r+14s) \2
By Corollary 4.3 iii) (with s+ 1 in place of s) we find, for any s >0 and r >1,0< 80 < 1:

<C

= 10w C(r+1—s) (7_31
FPNL2(v) =~ 22 D(r + 1 + 5)

2s 2 2
Y P2s+ 1) ol + ol s}

Choosing s = ar with 0 < a < 1 and using Stirling’s formula gives

(1- a)l_a]r
T+ oyl

Lir+1-ys)

— T T(2s+1) < r2*
L(r+1+s) s+ 1) <vr [
and the claim follows. O

Theorem 4.11. Assume that the initial value problem (4.2) is discretized using (4.17) on a geometric
partition My, with 0 < o <1 and the order vector r is linear with slope

f]In(o)|
" In(f, g(a*))]
17
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where c/l\is, as in Propositions 4.1, 4.2, depending only on ug and g. Then there exist b, C' > 0 independent
of M,a, 3 such that for 0 < 8 <1,

2
=05, e = Ul sy < O (14 5) e ol + Il m o} (429)

where b = cf|In(o)|/\/i and N = dim(S*(Ma4,0)) is the number of spatial problems to be solved in the
DG time discretization.

Proof. We consider only T' = 1, the general case is obtained by scaling. Further, by (4.22) it suffices to
bound (4.25). We apply for time step I; Lemma 4.9 and for time interval I,;,, m > 2, Lemma 4.10. This
gives, with ky = t; = o™ (cf. (4.23)),

M
||u —Iu”iQ(J;V) < C{J(M_1)0 + Z U(M_m+1)0f'yd(04m)rm}{HUOH%{G + ||g||ioo(0,T;7-l—1+s)}.

m=2

Now we select a,, = o = (14 72d?)~2. Then fyq(@*) = fumin < 1, and, by (4.27),

min

2-m)0 20 ( fain\™ 0
o_(zfm) f?“m Sco_z (:7110111) §Cc72 qm’ q<1’

hence M
) B ) . . 2
[w = Zul| 2 ) < CoM 1)0{1 +o0? > g }{”UO”% + ||g||Loo(0,T;H,1+e)}
m=2

from where the assertion follows on noticing that N < CuM? as M — oo. O

In the following we discuss the convergence of three modifications of DG time-stepping.

Remark 4.12. Instead of the linear order vector with slope p in Definition 4.8, we can also choose the
same polynomial degree r,, = = [pM | on all intervals I, € My o, m=1,..., M.

In this case (4.28) holds with b > 0 for any p > 0; i.e., (4.27) is not necessary, see [13].

Remark 4.13. We can also achieve convergence of DG time-stepping by mesh refinement while keeping
the polynomial degree r fixed. It was shown in [13] that for the regularity (4.8), (4.10) of the exact
solution for some 0 < § < 1, M must be algebraically graded as follows:

mT

) =0, M with h(t) = tGr+3)/9, (4.29)

tm = h(
We then have the algebraic convergence
= Oy + Nl = Ull oy < C(1+ %) A~ (D) (4.30)

where C' depends on ug € Hy, g and on r. The case r = 0 corresponds to the backward Euler scheme.

Remark 4.14. We can use a single time step, i.e., M = 1, and increase the polynomial degree r. If u is
analytic in [0, 7] with values in V), this results in exponential convergence O(exp(—bN)) where N is the
number of spatial problems to be solved [13].

5 Discretization in space and time

5.1 Fully discrete problem

We discretize the parabolic problem (2.5), (2.6) in time with a hp-discontinuous Galerkin method using
a geometric mesh M s . For simplicity, we choose the DG time-stepping with uniform degree vector r
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as in Remark 4.12. We further choose ;1 = 1 and a geometric time-step sequence My, in (0,T") with
grading factor o € (0,1) and M = r time steps.

The space discretization will be performed in Q = (0,1)? with the sparse grid subspace VL of V of
meshwidth h = 2= L > 0.

We now define the solution UL of the fully discrete problem as follows:
Find U' € §"(M, ,; V*) such that

M
BmeLJW):(umMGU4—§j./(gJVMNdet VIV € S"(M,0; VE). (5.1)
m=1 I,

5.2 Error analysis

Let us estimate the error ~
lu(T) —U*(T)|| T >0. (5.2)

If we denote by u” the semidiscrete solution in (3.36), (3.37), we have
lu(T) = UH(T)|| < flu(T) = @(D)|| + [[a™(T) - U] (5.3)

The first error term was estimated in Theorem 3.10. For the second error term we observe that the
spatially semidiscrete problem (3.36), (3.37) fits into the abstract framework of Section 4: we keep
H = L*(Q) as pivot space and select V = VI c L2(Q), equipped with the H}(Q)-norm. Then the
bilinear form a(-,-) : VX x VX — R induces an operator AL : VL — (VL)' = V* and the semidiscrete
problem (3.36), (3.37) reads

@) (t) + AL @ (t) = Prg in J = (0,T), (5.4)
with initial condition R
al(0) = Ppug :==a}. (5.5)

We then obtain the following error estimate for the fully discrete solution U (T).

Theorem 5.1. Assume that the initial data uo of (1.1), (1.2) belongs to Hy = (L*(2), H(Q))g,2 for
some 0 < 0 < 1. Then, the error (5.2) of the fully discrete Galerkin scheme (5.1) with uniform order
r, geometric time step sequence M., in J = (0,T) and sparse grids in space with meshwidth h = 2~L
satisfies the error estimate

|u(T) = UL(T)|| < Ci (uo, 9)hP° + Ca(ug, g)e™"" . (5.6)

Note that C1(uo,9) = |luoll + Il .2 (jo,7),1+) + Cg Where Cy measures the additional spatial regularity
of g in [T —6,T]. We have Cz(uo,9) = |[voll, + l9ll oo (0,738, ,,) + Cg where Cj depends on Jg.

Corollary 5.2. If we choose r = O(|log h|) then
lu(T) = THID)I| < Cluo, g)h"P* (5.7)

where C(ugp, g) = C1(ug, g) + Ca(ug, g).

5.3 Derivation of the linear system
In each of the M time steps (5.1) amounts to the solution of a linear system of size

(r+1)N, = (r+ )O(h~ " [log h|*") (5.8)
which depends on the time step k£ and h and which we now derive.
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Let Q := P, (I, VE ), equipped with the norm of L?([t;,—1,t,]) ® V. In time step m of the algorithm
we have to determine U#L = UL‘I € Q which by(5.1) satisfies, for all W € Q,

/tm [(((Afﬁl)',W) + a(fJ\,ﬁ,W)] dt + (U (tm—1), W(tm_1)>

tm—1
tm ~
= [ @ Wvenvdt + (TE (o) Witn) - (659)
tm—1

where the expression ﬁ({“ (to) is defined to mean the initial value u5.

Let {p}}, be a basis of the polynomial space Py, (—1,1). Then the time shape functions on time
interval I,,, are given by ¢; o F,,;1 where the mapping F,,,: (—1,1) — I,,, is given by

1 1
t=F,(r)= i(tm,l Film) + ika’ K = tm — tm_1, Te(=11).

If we write UL (x,¢) and W in (5.9) as
0L (o, 1 ZUL,J SO ERN0, W) = S W, @) EAN®,  (5.10)
=0

the variational problem (5.9) has the following form:
Find (U} i)i=o € (VE)+1 such that for every (W;)7_, € (VE)r+!

T

> (c“- (O W) + Gy a0, T, )) => (%’" (W) + f;,xm)) (5.11)

i,j=0 i=0

where (see [18])

i (V) = (/_II(QOFm)%‘dﬂ U)H’ oi(0) = @i(—l)(ﬁrﬁq(tm—l)yv)f{

1
Cyi= [ dhoidr+os-De-D, Gy = [ ppudr (5.12)
—1

Equation (5.11) is a linear system of size (r + 1)N, to be solved in each time step m = 1,..., M. We
will drop the subscript m for sake of readability. Denoting by M and A the mass and stlffness matnx of
VI with respect to (-,-)g and a(-,-), respectively, (5.11) takes the matrix form

Ru=f, (5.13)

R:C®M+§G®A, f:§f1+f2, (5.14)

where u denotes the coefficient vector of l//\’an € Q.

Remark 5.3. If the coefficients are independent of ¢, we obtain with the temporal shape functions
©i(1) = (i4+1/2)Y/2L;(7) and with L; denoting the i-th Legendre polynomial on (—1,1) (normalized such
that L;(1) = 1), that G = I in (5.12) and

(=)™ if >

, 4,3 =0,...,r. 5.15
1 otherwise J ( )

Cij = 0ij(i+ 52+ 5, oy = {

If the coefficients of A depend on ¢, C has to be computed by numerical quadrature.

From now on we will use temporal shape functions ¢;(7) = (i + 1/2)"/?L;(7).
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5.4 Decoupling

As observed in [13] the system (5.13) of size (r + 1)]/\\7 1, can be reduced to solving r + 1 linear systems of
size N 1. we use the Schur decomposition C = QTQ! with a unitary matrix Q and an upper triangular
matrix T which has the eigenvalues Aj,..., A1 of C on the diagonal. Multiplying (5.13) by Qf ®1
from the left gives

k
(T®M+§I®A>w:g

with
=(@Q"®Dhx, g:=(Q"aDf
This system is block-upper-triangular: with w = (wy, ..., w,) we obtain the solution by solving
k
(Aj+1M+§A)wj:sj for j=rr—1,...,0 (5.16)
where

N
Sj =85 — Z Tj+17l+1MWl.
I=j+1

For each DG time step, we have to solve the r + 1 linear systems in (5.16). Each of these linear systems
is of the same type as in the backward Euler method where the matrix is M + kA. Therefore an
implementation of the DG method (5.1) is very similar to an implementation of the backward Euler
method.

If the coeflicients of the operator A are independent of ¢, the Schur decomposition of the (r+1) x (r+1)
matrix C needs to be computed once at the beginning of the time stepping algorithm.

Remark 5.4. Note that the r + 1 linear systems (5.16) have to be solved sequentially. As described
in [13], there is an alternative scheme which uses the matrix Y of eigenvectors instead of Q (assuming that
C is diagonalizable). This leads to a system which is block- -diagonal (instead of block-upper-triangular).
It can be solved by solving r+1 linear systems of size N x Ny in parallel. However, the condition number
of Y increases rapidly with r. If one solves the linear systems exactly this only causes a magnification
of the round-off error and works well in practice for values < 10. If one solves the linear system with
incomplete iterations the error will be multiplied by the condition number of Y, and one has to increase
the number of iterations very rapidly with increasing r to compensate. With the choice r = O(|log h|)
suggested by Corollary 5.2 we would not be able to obtain an overall complexity of O(h™! [logh|).

5.5 Iterative Solution of Linear Equations

By (5.16), a time step of order r amounts to solving r + 1 linear systems with coeflicient matrix

B:= M + gA (5.17)

where A is an eigenvalue of C in (5.15). We solve the equations (5.16) approximately with incomplete
GMRES iteration, causing an additional error in the overall scheme which we analyze here together with
the overall complexity. Throughout, we denote by || - || the 2-norm of a vector or a matrix and we use the
notation ||wl|g := (wBw)!/2.

5.5.1 Eigenvalues of C

For the convergence analysis of the GMRES method we will need the following properties of the eigen-
values of the matrix C from (5.15):

Lemma 5.5. The eigenvalues )\;T) of the matriz C from (5.15) satisfy for r =0,1,2,...

Re A > O \7)re, =10+ (5.18)
M| > Cor® (5.19)
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with a = 2, & = 0 and constants Cy,Cy > 0 independent of r. Furthermore, the matriz T of the Schur
decomposition C = QTQH satisfies
1T, < Cr2. (5.20)

Proof. Let P, denote the space of complex-valued polynomials of degree < r, let ||g||* = fil lg(®)|? dt.
Because of (5.12), an eigenvalue A of the matrix C corresponds to the existence of a nonzero polynomial
p € P, such that

/11 p'gdt + p(—1)q(-1) = /\/11 pgdt  for all ¢ € P,. (5.21)

Using this with ¢ = p and taking the real and imaginary parts gives
L (=D + 5 [p(1)]* = Re(A) [|p||” (5.22)
tn [ ppar = ol (5:23)

where we used Re(p'D) = 3 (pp)’ for the real part. Using (5.21) with q(t) = (14 t)p'(¢t) gives

/1 (1+1t) [p° dt = AS (5.24)

-1

1
where S := / (L+¢)pp' dt. As X\ #0 ((4.17) always has a unique solution) we have that
-1

1
ReS = R|‘;(|§) / (1+1) |p)? dt >0 (5.25)
—1

since (5.22) shows Re A > 0. Integrating by parts we obtain
1

1
0<ReS = [(1 +1) %pﬁ]_l —/ sppdt = |p(1)

—1

f =5 lpll” (5.26)

From (5.23) we get with the inverse inequality (e.g. [15])

1
a0l i < | [ ppae] < Il < V3 i (5.27)
Now (5.26) and (5.22) give

Im(V)] [lpll* < V3r*2[p(1)]” < 4V/3r% Re(A) [l (5.28)

Inequality (5.19) is proved in [13]. We have

1
[ 3 -7 < 052 il
-1
using the inverse inequality and |p(—1)| < C'r||p|| (see [13]). This shows ||C||, < r? and (5.20) follows
since Q is unitary . O

Remark 5.6. The estimates (5.18), (5.19) are not sharp. Results of computations for r = 1,...,50
performed with 50 digits of accuracy are shown in Figure 1. They suggest that (5.18) seems to hold with
a =2, and (5.19) with & = 1.
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Figure 1: Left: max J o
J Re )\jr
dashed line is Cr.

)

for r = 1,...,50, dashed line is Cr?/3. Right: min|/\§r)| forr =1,...,50,
j

5.5.2 Preconditioning

The norm equivalence (3.4) with 6 = 0 implies for every v € VZ of the form (3.3) with coefficient vector

v = (vf)
Ct[lvl* < vMv < Cs o] (5.29)

with constants C, Cy independent of L. Let D 4 denote the diagonal matrix with entries 221 4 ... 4 22l
for an index corresponding to level (I1,...,14). Then (2.3), (2.4) and (3.4) with § = 1 imply that

CiviID v < v AV < CovHDyv (5.30)

with constants C7, Cy independent of L.
Let [lwllp, = (WHDaw)!/2, |lw||p-1 := (WD} 'w)!/2. For v € VL with coefficient vector v and
A

fe (VL )* with coefficient vector f we then have

lolly ~1vllp, s [fllye ~ [[fllp; (5.31)

where the norm equivalences hold with constants independent of L.
We now define for preconditioning the diagonal matrix S and the scaled matrix B as

k 1/2 -~
S = (Re(/\)I+ §DA) ,  B:=s'Bs . (5.32)
Lemma 5.7. For the linear system Bx = b let X; denote the iterates obtained by the restarted
GMRES(mq) method with initial guess Xo. Then
HB — fixjH <O —er™2yd HE - ]A3X0H (5.33)
Let x; = S™'%;, b= Sb. Then
b —Bx;llp-1 < Ch™ (1 + C1Ero=)Y2(1 — er=22)7 ||b — Bxo[|p- (5.34)

with a, & from (5.18), and C, ¢ independent of L, k,r.
Proof. Since Re(xiIm(A\)Mx) = 0 we obtain from (5.29), (5.30) that
Re(xBx) > Cx8%x Vx € cNe
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implying with y = Sx R
Re(y”By) > Cs|ly|* Vy e C*. (5.35)
We have
H H kv maL k 1/2 1/2
x"By| = [xxc"My| + 2 < ATy| < Il Iyl + O [ x| D]

With D := |A\|[ T+ %DA we then get
x"By| < C(x""Dx)'/2 (y" Dy)/2
Now we use (5.18) and obtain
x"By| < Or* (x782x) /2 (y T 8%y) /2

or
[x"By| < Car [ix]l Il (5.30)

Inequalities (5.35) and (5.36) can be stated as
Moin (B +B)/2) > C5, [B] < cure
According to [3] the non-restarted GMRES method for the matrix B yields iterates x,, and residuals ry,

satisfying
C’g m/2
bemll < (1= agz) ™ ol

which shows (5.33) (the proof in [3] is given for real matrices, but all arguments carry over to the complex
case).

Let T; := b-— ﬁxj, rj := b — Bx; = St;. Hence
~ 1, kL
ef'D3'r; = £ (Re()D3' + 1)1

As the elements of the diagonal matrix D4 are between d and dh~2, we have

[l 20" Re(N) + k |[F;| 15512
A <0 21 < Ch™2(14 CikRe(A) ) =L
Irollp-r — 247 Re(VA? + & |15 o I

Now we get with (5.18), (5.19) that Re(A) ™" < Cre |\ ™' < Cro—9, O

5.5.3 Fully discrete scheme with incomplete GMRES

The fully discrete scheme with incomplete GMRES iteration yields approximations U[F,..., UL to
UL,...,UL and proceeds at each time step m = 1,..., M as follows: write UL = UL | (ty_1) + Z
where U°(t) is defined as initial value @ and Z is an approximation of the function Z € Q which
satisfies for all V € Q

/tm [(Z',v) +a(Z, V)] dt + (Z(tm,l),v(tmﬂ))

tm—1

tm tm

= / (9,V)vexvdt — / a(Uk_ (tm=-1),V)dt. (5.37)
tm—1 tm—1

This corresponds to a linear system Rz = f. Using the Schur decomposition we obtain the r + 1 linear

systems (5.16). For each of the linear systems (5.16) with j ==, —1,...,0 we use 0 as initial guess for

wo and apply ng steps of GMRES(my), yielding an approximate solution w;. To analyze the impact of

this approximation on the global accuracy, we use the stability of the Ap-DG timestepping.
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If we let W = UL in (5.9) we obtain with [U%]m—1 1= UL (tm—1) — UE_, (tm-1)

m

L I 2 tm ~r 2 tm ~
e e O IR O Iy A R R O
tm tm 2
< 5/ lgll- dt+§/ O&|| at
tm—1 tm—1 v
yielding the stability estimate
~ 2 ~ 2 tm tm
[Tkt +2 [0 s | +/ mH dt < [T s(tms H / lgll%.. dt. (5.38)
tm— m—1
Adding these estimates for m = 1,..., M gives
~ 9 M-1 9 T, _ 2 o T
HUJf/,(T)H +2% H[UL]mH +/ HULHthg at | +/ lgll%.. dt. (5.39)
m=0 0 0
Lemma 5.8. For u and f in (5.13) holds the stability bound
k k 2
Sl < Tl + 5 18] ans (5.40)

where u_ denotes the coefficient vector of ﬁ,ﬁ(tm_l) eve (here we used only the third term on the left
hand side in (5.38)).

Proof. Let w be the coefficient vector of a function w ok e VL let f be the coefficient vector of a functional
fL (VL)*, then

@y ~ o = wlla s @ = e 7], = I8l

We can also express norms of functions of z and ¢ in terms of the coefficient vector: We have for ﬁrﬁ €9
and the corresponding coefficient vector u

loile= )

0Lt = 2l (5.41)

since ||¢; o Fy;t ||L2 \/g Using this the stability estimate (5.38) implies for (5.13) the bound (5.40)
O

We apply (5.34) to the error equation and obtain that
||()\j+1M + A) Sj ||D—1 < Ch k, rq ”éj”D;l (5‘42)

where .
Sj =8 — Z Tjt1k+1 MWy, Chr = Ch7H L+ K1), g=1—cr—**
k=j+1

Let T, denote the upper triangular part of T, then we have s = g — (T, ® M)W. Adding the squares of
estimates (5.42) together for r = 0,...,j gives with R := (T®@ M + kI ® A)

||R0W - g||I®D;1 S Ch’k’rqnc ||g — (Tu & M)W||I®D;1 . (543)

Since ||Mx||D;1 < C|xllp, and (5.20) we have [|(T, ® M)v~v||I®D;1 < Cr?|Wlligp , - By (5.40) we have

R | o, < 257" [ gp;r and therefore [[Wliigp, <2k [RoWlljgp-1, yielding

Wlliop, < 26" [RoWlgp -1 < 26~ (llgllapt + IRoW — glligp-1)- (5.44)
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Combining these estimates with (5.43) gives
IRoW = gllion 1 < Chkrd™ [(1+ Ck ) lglhgp 1 + Ck'r? RoW — glhop 1]
If ng is so large that Ch ,q"¢ Ck~'7? < § we have with C}, ;. := Cp ik~ 'r? = Ch7 (1 4+ KM/ 2r)k =1 r?

IRoW — glliep-1 < Chird" l8llign
IRZ — fllygp-1 < Chird™ flligp

for the resulting approximation z := (Q¥ ® I)W of z since Q is unitary.
To translate this estimate to DG setting, consider the residual p,, defined by

V)= [ [(@),V) + ol V)] + (Ot 20,V (0 0)

tm—1

tm—1

_ / gVt = (T5 (). V(b))
:/tm [(zv) +a(Z,V)]dt+ (Z tm,l),V(tmfl))

(
(
(UL (tm—1),V)dt.

tm m
—/ (gav)V*det"'/ a
¢ ¢

m—1 m—1

We have with

tm
| @) Vit < [0t Vg < B2 [0t IV
tm—1 Q
that }
lemllo. < Chpra™ (lgllg. + K72 |05 s tnn)| ) (5.45)
5.5.4 Incomplete GMRES iteration
We now estimate the error of the approximations UF, ..., UL compared to UL, ..., UL where all linear

systems (5.13) are solved exactly. The differences Cp, := UL — UL satisfy

/tm [(c,’naV) + a(Cm,V)]dt+ (Cm(tmfl);v(tmfl))

tm—1

= /tm (pm, V)vexvdt + (Cm—l(tm—l)av(tm—1)>

tm—1

where (o(to) := 0. With (5.39) we obtain from (5.45) for I =1,..., M

Ep = |G () Iy + Z Gl dt < Z 1l

1

< Chan*a Y (Il

m=1

Q*

Q*+k|| _1(tm—1 ||V+k7||Cm 1(Em— 1)||V>

We denote the right hand side of (5.39) with R and obtain with the inverse inequality

|01 tm-nlly < Ch2|Tfics (tm) [y < CH*R
st ) < O ||<m71< mfl)nH <Ch B
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yielding
-1

B < (c;b,k,rﬁq%ac(a +RREY h*QEm>
m=1
Therefore we have estimates of the form F; < u + I/Zlﬂ:il E,, for I = 1,2,... from which we get by
induction E; < u(1 +v)'~'. Here we have v = (C} ; .)?¢*"¢h=>T/M. We choose the number n¢ of
GMRES steps so that v = (C}, ; )2¢*"¢h™? <1 and get (1 +v)™ < e’ and

En < (Chp )’ Ch™?e"R. (5.46)

Finally we choose n¢ large enough so that the resulting bound for ||Ca ()| = HUL(T) - ﬁL(T)HH is
less than the bound in Corollary 5.2: We need ng such that

Chprh™2q" < Ch3k1r3qne < Ohfortd (5.47)

Since ¢ = 1 — er~2® we require ng > Cr2*(|logh| + |logk|) = C'|logh|'T** using r = O(|logh|) and
[log k| < Cr. We obtain

Theorem 5.9. Under the assumptions of Theorem 5.1 choose the number and order of time steps such
that M = r = O(|loghl|) and in each time step ng = O([logh|)'*2* GMRES iterations. Then the fully
discrete Galerkin scheme with incomplete GMRES gives a approzimate solution UL satisfying

|u(T) = UH(T)||; < Cluo, g)h%P*H? (5.48)

with C(ug, g) as in Corollary 5.2 and § as in (3.34). For solutions which are smooth in x for t > 0,
6o = 1.

5.6 Implementation of matrix-vector products and complexity

For the iterative solution of the linear systems (5.16) with GMRES we have to compute matrix vector
products with the stiffness matrix A and the mass matrix M. Note that these matrices are densely
populated since most basis functions have large supports. Naive implementation would therefore yield a
complexity which is at least O(N3). In addition, the functions D(x) and c¢(x) used in the definition of
the stiffness matrix require in general numerical integration, and the use of a standard fixed order tensor
product quadrature requires O(h~%) operations.

For our approximate matrix-vector multiplication we assume that the functions ¢(x) and D;;(x) are
analytic in z € Q = [0,1]?. We approximate each of the functions ¢(z) and D;;(x) for i,j = 1,...,d by
polynomials in (z1,...,z4) of degree at most ¢ in each of the variables z1,...,z4. This can be done by
interpolation at Chebyshev nodes in each direction using O(q?) operations.

Let us first consider a mass matrix for a single monomial ¢(z) = co27" - - - x5?. We exploit the tensor

product structure by first computing for ¥ =1, ..., d the band matrices Cl(’];) = fol gof(mk)gof(mk)xg’“dxk

with the scaling functions ¢ which form a basis for V¥. For a function v* € VL with coefficients vflljj:fg

we first let & = 1 and iterate over all values of ({3, ja), ..., ({4, jq). For each of those values we transform
the resulting vector in (¢1, 1) from the wavelet basis to the basis of scaling functions, apply the band
matrix C®)_ and transform the result back to the wavelet basis. We then repeat this procedure with
respect to the dimensions k = 2,...,d. The total number of operations is then bounded by CdNy.

In this way we can implement an approximate matrix-vector product with the mass matrix M in
CqdNy, operations, and the matrix-vector product with the stiffness matrix A in Cq%d® Ny, (since D(x)
is a d x d matrix).

By the analyticity assumption on ¢(z), D;;(x) the L* error of the polynomial interpolations for ¢(x)
and D(x) decreases exponentially with ¢ (see Lemma 3.6 in [11]) and we can preserve the error bound
in (5.48) by choosing ¢ = O(|log h|).

Theorem 5.10. Under the assumptions of Theorem 5.1 and 5.9 and for coefficients c(x) and D;;(x)
which are analytic in Q we can compute an approzimation to UL (T) which also satisfies the bound (5.48)
with at most Cp 4h™ |log h|d71+2+(1+2a>+d operations.
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Proof. We have O(r) time steps. During each time step we solve the r + 1 linear systems (5.16) using
ng = O(|logh|'t**) GMRES iterations in each case. Each GMRES iteration involves a matrix-vector
product with M and with A, costing C’qdd3]v 1, operations. Therefore the total number of operations is
bounded by

Cr? n(;qdd3 N I

where r = O(|log hl), Ny = O(h™ ! |log h|d71) and ¢ = O(|log h|). O

Remark 5.11. We also obtain results for a fixed order r > 0 and M — oo, see Remark 4.13 (the simplest
case r = 0 corresponds to the backward Euler method). Then we obtain with the algebraically graded
time step sequence (4.29) instead of (5.6) the bound

|u(T) — UX(T)|| < Ci(ug, 9)h?P + Cs(ug, g) M "1

To equilibrate spatial and temporal error, we use M = O(h~%) time steps with 3 = 9‘;{’;’5. We obtain
from (5.47) that the number ng of GMRES steps has to satisfy ng > Cr?@|log h|. Hence we can compute
an approximation U (T') satisfying (5.48) using a total of Crh~%r2% [log h| GMRES iterations, and a total
number

Cri+2e =178 |log h|*
of operations. Note that this number grows superlinearly in Np.

Remark 5.12. We may express Theorems 5.9 and 5.10 in terms of the number ]Yf 1, of degrees of freedom:
for solutions u(z,T) in = for T > 0, we obtain for any d > 1 an approximation U (T) with

[(T) =TT () < Cluo, )N P0F

for any € > 0 in O(JV 1,) operations. This follows by absorbing powers of log Ny in the term O(R?) in
(5.48). In dimension d = 1 we have p = 1, § = 1 and our scheme gives for any T > 0 the L%*(Q)
convergence rate O(N, ?) with work which grows log-linearly in Np,.

6 Numerical Results

In order to have exact solutions at our disposal, we consider the problem u; — Au = 0 in Q = (0,1)4. We
use p = 1 and the piecewise linear wavelets described in section 3.2. All computations were performed in
double precision arithmetic on a PC with 2GB RAM in MATLAB 6.1.

For this problem we have, by Remark 3.6, that 6, = 1. We compute U~ (T), the fully discrete solution
with GMRES approximation at ¢ = T'. Theorem 5.9 yields a convergence rate

[(T) = TH(T)|| 2y < Cluo, g)hP07 e = Cht o (6.1)
for r = cllogh| and ng = c’|logh|7/3
Remark 5.6.

We want to illustrate the effect of h = 271~ the number M of time steps and the degree r of the

DG method on the error of u(z,T'). Therefore we chose a large fixed value for the number ng of GMRES
iterations, so that all the errors shown in the tables below were insensitive to the iteration error.

, using ¢, ¢ sufficiently large and the value of a suggested by

In order to compute the error ||u(T) - ﬁL(T)H 2 Ve proceed as follows: We have
|w(T) = ITEu(T) || @) < Ch? where IT* denotes the interpolation operator for the full grid space

VL. Therefore it is sufficient to measure the error E := UL(T) — ITYu(T). Since E € VL the norm
lE| 2 (q) 1s equivalent to the norm [|E]|, in (3.18) which uses the wavelet coefficients. In all tables we

use | E|lo / [[TEw(T)|| to measure the relative L* error.
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r=20 r=1 r=2 r=3 r=4 r=2=5 r==6
2.24679 0.632236 0.137173  0.161018 0.160037 0.16001 0.160017
2.35824 0.485767 0.0214951 0.0478435 0.0468904 0.0469531 0.0469138
2.38988 0.442895 0.0165634 0.0132888 0.0124359 0.0124669 0.0124489

2.39803 0.431726 0.0244065 0.00401679  0.00318958 0.00320808 0.00320337
2.40007 0.428907 0.0265104 0.00164255 0.00080374 0.000818954  0.000817462
2.40058 0.4282 0.0270462 0.00105846  0.000192459  0.000207351  0.000207416
2.40071 0.428024 0.0271778 0.000916968 5.66855-107° 5.59876-10~° 5.36717-107°
2.40074 0.42798  0.0272021 0.000883517 1.50843-10=° 5.56368-1075 5.32777-1077

CO ~1 O U i W N |

Table 1: Smooth solution, M = 1 time step: relative L? error for d =5 at T = 0.05

6.1 Smooth solution

We choose the initial condition ug(z) = sin(wxy) - - - sin(nzq). Note that ug € H for any s > 0, and the
exact solution u(x,t) = e—dr’t sin(maxy) - - -sin(mzq) is analytic with respect to ¢ € [0,7]. Due to Remark
4.14 we can use just one subinterval [to,?1] = [0, 7] for the DG time stepping.

To show the typical convergence behavior with respect to h = 27%~! and r we choose dimension d = 5
and T = 0.05. The results are shown in Table 1.

In this table the limits of the rows for r — oo correspond to the errors of the space-semidiscretization
which were analyzed in section 3. If we consider the column with » = 6 and compute experimen-
tal convergence rates h® we obtain a = 1.77,1.91,1.96,1.98,1.95,6.65. In Theorem 3.10 we obtained
O(h' 1/ (2d=1)y = O(h19/9) which seems to be too pessimistic.

The limits of the columns for L — oo correspond to the errors of the time-semidiscretization which
were analyzed in section 4. The fast decay of the values in the row L = 8 for r = 0, 1,2, 3,4 appears to
be compatible with the exponential convergence in Remark 4.14.

Theorem 5.9 considers the case where we choose r proportional to L. If we choose r = [L/2] + 1 we
obtain the experimental convergence rates h® with a = 1.52,1.85,2.06,1.99,1.95,1.89,6.72. Again, the
result O(h'%/9) of the theorem seems to be too pessimistic.

6.2 Solution with singularity at t =0

r=20 r=1 r=2 r=3 r=4
1.39384 0.414791  0.370531 0.370882 0.370885
2.07804 0.164257 0.114436 0.114707 0.114713
2.33455 0.0914775 0.0300100 0.0302919 0.0302921
2.41969 0.0823793 0.00748878 0.00761493  0.00761010
2.44570 0.0832414 0.00257669 0.00190387  0.00189491
2.45334 0.0843352 0.00216938 0.000492105 0.000474795
2.45554 0.0848729 0.00221850 0.000174178 0.000102090
2.40074 0.0850852 0.00224571 0.000114169 3.9837-107°
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Table 2: Singular solution, geometric time mesh with M = r + 1 intervals: relative L? error for d = 5 at
T =0.05

We now choose the initial condition ug(xz) = 1. Note that uy € Hy only for 8 < %, so we will get a
solution with singular behavior for ¢ — 0. Using the sine series 1 = "3, 7= sin(kmz) we obtain that
the problem for d = 1 has the solution

— 4 —k27%t s
vz, t) = Z P sin(kmz).
k odd
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r=3

0.467259
0.198088
0.089031
0.086463

r=4
0.450336
0.178191
0.0570031
0.0479329

r=2>5 r==6
0.450954  0.450946
0.178786  0.178831
0.0579576  0.0580453

0.0466059 0.0454513

L | r=2
2 | 1.64777
3 | 3.20442
4
5

4.83159
6.34142

Table 3: Singular solution, geometric time mesh with M = r intervals: relative L? error for d = 15 at
T =0.05

| r=2
2.89635
5.80581
8.88418
11.8563

r=3 r=4

0.519846 0.518719
0.255009 0.250773
0.14622  0.105516
0.193875 0.042089

r=25

0.518732
0.250753
0.104774
0.041238

r==~6

0.518739
0.250738
0.106068
0.042886

U W N

Table 4: Singular solution, geometric time mesh with M = r — 1 intervals: relative L? error for d = 20
at T'=0.025

The exact solution for d > 1 is u(x,t) = v(xy,t)---v(xe,t). Due to the boundary incompatibility u
has strong boundary layers for small ¢, causing high spatial approximation errors (even for a full grid
approximation). Because of the singularity at ¢ = 0 a single subinterval [0, T'] for the DG method cannot
give exponential convergence, and we require the geometric time mesh analyzed in section 4. In our
computations we chose the grading factor of the geometric mesh (see Definition 4.7) as ¢ = 1/2, and we
used the same order r for all time steps, cf. Remark 4.12.

Numerical results for d = 5,15, 20 are presented in Tables 2, 3, 4. Note that the convergence behavior
with respect to L and r is the similar as in Table 1: E.g., in Table 2 for d = 5 we obtain in the column for
r = 4 the experimental convergence rates a = 1.69,1.92,1.99,2.01,2.00,2.21,1.36 which is even better
than the rate O(h'%/?) predicted in Theorem 3.10 for the space discretization.

Theorem 5.9 analyzes the algorithm with r = O(L), M = O(L). If we choose r = [L/2] we obtain
for d = 3,5,10 the values shown in Table 5. The experimental convergence rates are even better than
the rate O(h'+/(24=1)) of the theorem.

L|d=3 d=5 d=10 d=15 d=20
a a o a o
11 0.235762 0.414791 1.0157
21 0.0696534 1.76 | 0.164257 1.34 | 1.04877 0.377222 0.518732
3 10.0159470 2.13 | 0.0300100 2.45 | 0.0654917 0.154434 1.28 | 0.250753 1.04
4 | 0.00400648 1.99 | 0.00748878  2.00 | 0.0206558  1.66 | 0.056111 1.46 | 0.104774 1.25
5 | 0.00100063 2.00 | 0.00190387  1.98 | 0.00706261 1.55 | 0.019697 1.51 | 0.041238 1.34
6 | 0.000257924  1.96 | 0.000492105 1.95 | 0.00296293 1.25
7 16.37306- 1075 2.02 | 0.00010209  2.27
8 1 1.3902-107° 2.20 | 3.9837-10~> 1.36
9 |3.91216-107% 1.83

Table 5: Singular solution: relative L? error and experimental convergence rates h®. For d = 3, 5,10 we
user =[L/2], M =r+1,T=0.05. Ford=15,d =20 weuse M =4, r =5 and T = 0.025
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