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Abstract

We establish the existence and stability of multidimensional transonic shocks (hyperbolic-
elliptic shocks) for the Euler equations for steady compressible potential fluids in infi-
nite cylinders. The Euler equations, consisting of the conservation law of mass and the
Bernoulli law for velocity, can be written as a second order nonlinear equation of mixed
elliptic-hyperbolic type for the velocity potential. The transonic shock problem in an
infinite cylinder can be formulated into the following free boundary problem: The free
boundary is the location of the multidimensional transonic shock which divides two
regions of C* flow in the infinite cylinder, and the equation is hyperbolic in the up-
stream region where the C*® perturbed flow is supersonic. We develop a nonlinear
approach to deal with such a free boundary problem in order to solve the transonic
shock problem in unbounded domains. Our results indicate that there exists a solution
of the free boundary problem such that the equation is always elliptic in the unbounded
downstream region, the uniform velocity state at infinity in the downstream direction
is uniquely determined by the given hyperbolic phase, and the free boundary is C**,
provided that the hyperbolic phase is close in C**® to a uniform flow. We further prove
that, if the steady perturbation of the hyperbolic phase is C*%, the free boundary is
C? and stable under the steady perturbation.

1 Introduction

We are concerned with the existence and stability of multidimensional
transonic shocks for the Euler equations for compressible fluids in un-
bounded domains. In this paper, we focus on inviscid steady potential
fluid flows, which are governed by the Euler equations consisting of the
conservation law of mass and the Bernoulli law for velocity. Then the
Euler equations for the velocity potential ¢ : Q@ C R"™ — R can be
formulated into the following second order nonlinear equations of mixed
elliptic-hyperbolic type:

(1.1) div (p(| De|*) D) = 0,
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where the density p(q?) is

1

(12) plq®) = (1-64%)%,

and 0 = f’;—l > 0 with the adiabatic exponent v > 1.

The second order nonlinear equation (1.1) is elliptic at Dy with |Dy| =
q if

(1.3) p(a®) +24°0'(¢%) > 0,

and is hyperbolic if

(1.4) p(a®) +2¢%0'(¢%) < 0.

We establish the existence and stability of multidimensional transonic
shocks (hyperbolic-elliptic shocks) for the equation (1.1) in infinite cylin-
ders under C1%, o € (0, 1), steady perturbations of the velocity potential
of the given upstream supersonic flows for which the equation (1.1) is
hyperbolic. Our results indicate that, for any upstream supersonic flow
which is sufficiently close in C1'® to a uniform flow, there exists a mul-
tidimensional transonic shock solution such that the equation is always
elliptic in the unbounded downstream region, the shock surface dividing
the two regions is C1'® and is close to the non-perturbed shock, and the
velocity state at infinity in the downstream direction is uniquely deter-
mined by the hyperbolic phase and is close to the nonperturbed velocity
state. These results imply that, given any supersonic solution ¢~ (z) in
the upstream region, the necessary and sufficient condition for the ex-
istence of a transonic shock solution in the infinite cylinder is that the
uniform velocity state at infinity in the downstream direction is a certain
specific state, uniquely determined by ¢~ (z). In other words, given a
supersonic solution ¢~ (z) in the upstream region, there is no transonic
shock solution which contains a transonic shock dividing the cylinder into
the subsonic and supersonic regions, provided that one expects a different
uniform velocity state at infinity in the downstream direction. This means
that, for such a shock problem, one can apriori prescribe the uniformity
condition of the flow, but can not apriori prescribe a velocity state, at
infinity in the downstream direction in general. We also prove the regu-
larity and stability of free boundaries, that is, if the steady perturbation
of the hyperbolic phase is C?®, then the free boundary is C>® and stable
under the steady perturbation of the hyperbolic phase.



TRANSONIC SHOCKS AND FREE BOUNDARY PROBLEMS 3

To achieve the existence and stability results, we reduce the transonic
shock problem to a corresponding free boundary problem for nonlinear
elliptic equations in the infinite cylinder. The free boundary is the loca-
tion of the multidimensional transonic shock which divides two regions of
smooth flow in the infinite cylinder, and the free boundary condition is
the Rankine-Hugoniot jump condition on the shock surface. The equa-
tion is hyperbolic in the upstream region where the given C1® smooth
perturbed flow is supersonic. We seek the location of free boundary such
that the free boundary condition on the surface holds, the equation (1.1)
is elliptic in the downstream region, and the uniform velocity state at
infinity in the downstream direction is uniquely determined by the given
hyperbolic phase.

In order to solve this free boundary problem, we first consider a one-
phase free boundary problem in the infinite cylinder for a nonlinear, uni-
formly elliptic equation obtained by a modification of (1.1), which is the
same equation as (1.1) in a uniform elliptic region. We solve first the
one-phase free boundary problem in a sequence of bounded cylinders,
which approximates the infinite cylinder, and obtain uniform estimates of
the corresponding approximate solutions in some weighted Holder norms,
independent of the sequence of bounded cylinders.

For solving the free boundary problem in a fixed bounded cylinder
we employ the iteration scheme developed in Chen-Feldman [5], which is
based on the non-degeneracy of the free boundary condition: the jump
of the normal derivative of a solution across the free boundary has a
strictly positive lower bound. Although the elliptic estimates alone are
not sufficient to get the convergence to a fixed point since the right-hand
side of the free boundary condition depends on the unit normal to the
free boundary (see (2.4) below), the structure of our problem allows to
obtain better estimates for the iteration and to prove the existence of a
fixed point.

To obtain the uniform estimates of the solutions in some appropriate
weighted Holder norms, we first obtain a uniform L? estimate of the gra-
dient of solutions. From that, we obtain uniform L*° estimates first for
the gradient of a solution, and finally for the solution itself. By a scal-
ing argument, we obtain the uniform estimates of the solutions and their
derivatives in the weighted Holder norms. With these uniform bounds,
we then let the bounded cylinders tend to the infinite cylinder and prove
that the corresponding approximate solutions converge to a C1® solution
of the one-phase free boundary problem in the infinite cylinder for the
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modified elliptic equation, which decays faster than any algebraic order
in the downstream direction. Finally, our gradient estimate in L*> en-
sures that the solution is in fact a solution of the original problem. The
uniqueness and stability of the solution are also established.

Some efforts have been made in solving the nonlinear equation (1.1)
of mixed type. Shiffman [29], Bers [2], and Finn-Gilbarg [12] proved the
existence and uniqueness of solutions for the problem of subsonic flows of
(1.1) past an obstacle. Morawetz in [26] showed that the flows of (1.1)
past the obstacle may contain transonic shocks in general. Non-transonic
shock (hyperbolic-hyperbolic shock) were studied in [6, 16, 19, 23, 28, 31]
and the references cited therein.

Transonic shocks were considered in Canic-Keyfitz-Lieberman [4] for
the two-dimensional transonic small-disturbance (TSD) equation. Tech-
nically, the main difference between the TSD model and (1.1) is that the
coefficients of (1.1) depend on the gradient of the unknown function, while
the coefficients of the T'SD equation are independent of the gradient of
the unknown function that generates additional compactness of solutions
on which the approach in [4] relies. For other related results, we refer the
reader to Majda [24] (also see Métivier [25]).

For some fixed boundary value problems for second order elliptic equa-
tions in infinite cylinders or unbounded domains, see Oleinik [27] for the
linear equations or semilinear equations of a certain structure, Berestycki-
Caffarelli-Nirenberg [3] for the qualitative properties for the semilinear
equations of form Au + f(u) = 0, and the references cited therein.

In this paper, we first set up the multidimensional transonic shock
problem (Problem A) and introduce the main theorems (Theorems 2.1
and 2.2) in Section 2. In order to achieve the main theorems, we reformu-
late Problem A into a nonlinear free boundary problem (Problem C) for
the modified nonlinear, uniformly elliptic equation using the techniques
of reflection and truncation in Section 3. In Sections 4-5, we introduce
the iteration procedure to construct the approximate solutions of the re-
formulated free boundary problem (Problem C) in the finite approximate
cylinders QF and make the uniform estimates of the solutions indepen-
dent of R. In Section 6, we prove that the approximate solutions converge
to a solution of the original free boundary problem (Problem A) in the
infinite cylinder. The uniqueness and stability of C1® solutions of the free
boundary problem are established in Section 7. In Section 8, we establish
a regularity theorem which indicates that, if the hyperbolic perturbation
is in C%°, then the free boundary is also in C?*.
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2 Main Theorems and Transonic Shocks

In this section, we first set up the multidimensional transonic shock prob-
lem and present the main theorems of this paper.

A function ¢ € Wh*(Q) is a weak solution of (1.1) in an unbounded
domain € if

i |Dp(z)| <1/V0 ae.
ii. For any ¢ € C§°(Q),

(2.1) | pID¢*)Di - D¢ dr = 0.

We are interested in weak solutions with shocks. Let Q1 and Q~ be
open subsets of € such that

QN =90, QtuN- =0,
and § = 9N NQ. Let ¢ € W1 (Q) be a weak solution of (1.1) and
be in C?2(QF) N C1(QF) so that Dy experiences a jump across S that

is an (n — 1)-dimensional smooth surface. Then ¢ satisfies the following
Rankine-Hugoniot conditions on S:

(2.2) ot =9 on S,
(2:3) (D) D -] =0,

where v is the unit normal to S from Q= to QT, and the bracket denotes
the difference between the values of the function along S on the QF sides,
respectively. We can also write (2.3) as

(2.4) p(ID¢" *)ey = p(IDe~[))Dp™ v on S,

where 7 = D™ - v is the normal derivative on the QT side.
Note that the function

(2.5) ®(p) := (1 — 0p2> *p

is continuous on [O, v1/ 9] and satisfies

<z>|"‘

(2.6) ®(p) >0 forpe (o, 1/9), B(0) = <1>< 1/9) —0,
(1) 0</(p) < 1on (0 punic)s and ¥'(p) < 0 0n (puomics/1/6)

"

(2'8) ® (p) <0 on (0)psom'c]’
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where
(29) Dsonic = 1/(9 + 1)

Suppose that ¢(x) is a solution satisfying

(2.10) |Do(x)| < psonic  in QF, |Do(x)| > psonic 1n Q7
and
(2.11) De*-v>0 on S,

besides (2.2) and (2.3). Then ¢(x) is a transonic shock solution with tran-
sonic shock S dividing 2 into the subsonic region QT and the supersonic
region 0~ and satisfying the physical entropy condition (see Courant-
Friedrichs [7]; also see Lax [18]):

p(IDe™1?) < p(IDp*[?)  along S.

Note that the equation (1.1) is elliptic in the subsonic region and is hy-
perbolic in the supersonic region.

Let (z',z,) be the coordinates in R", where 2’ = (z1,...,2,-1) €
R"! and z,, € R. Let q; € (psomc,l/\/é> and ¢, () := ¢y ©p. Then
¢o () is a supersonic solution in Q. According to (2.6)—(2.7), there exists
a unique gg € (0, psonic) such that

(2.12) p((g9)*)ag = p((25)*)ao -

Thus, the function

) ogzn, eQ)=Qn{z : z, <0},
(2.13) volz) = { wrn, QI =0n{z: z,>0}

is a plane transonic shock solution in Q, Qf and  are its subsonic and
supersonic regions, respectively, and S = {z, = 0} is a transonic shock.
Defining o7 () := g¢ =, in Q, we have

(2.14) po(z) = min(ef (@), ¢ (@) in Q.

In order to deal with multidimensional transonic shocks in the un-
bounded domain €2, we define the following weighted Holder semi-norms
and norms in the domain of the form D = QN {z, > f(2')}, where f(2')
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is a Lipschitz function. Denote d, = |z,| + 1 for z = (2',z,) € D, and
0zy = min(d,,dy) for 2,y € D. For k € R, a € (0,1), and m € N (the
set of nonnegative integers), we define

[W]hp = 3 sup (5744 DPu(z)])

18]=m *€P
DB — DB
215) o= 3 sw (%ml u(z) D) u(y)|) |
o |8|=m TYED2FY ’ |z -yl
k k
lullSoho = > [l
0<j<m
k k k
||u||1(113a;p = ”uH?(n,)O,D + [u]v(n;)a;Dv

where DP = 8511---5‘52, B = (Bi,...,0n) is a multi-index with §; >
076] €N7 and |ﬁ| :Bl"_"_ﬁn

We denote by ||u||m,q,p the (non-weighted) Holder norms in any do-
main D, i.e., the norms defined as above with 6, = d,, = 1.

In this paper, we focus on an infinite cylinder (0,a)" ! x (—o0,00).
Since it is not necessary to require that the supersonic perturbation ¢~ ()
be defined in the whole infinite cylinder, we introduce a finite subcylinder
0y := (0,a)" !t x(—1,1) and focus on the cylinder domain €2 := (0,a)™ ! x
(=1, 00) without loss of generality. Then our multidimensional transonic
shock problem can be formulated into the following form:

Problem A. Given a supersonic weak solution ¢~ (z) of (1.1)
in O, which is a C1® perturbation of ¢, (x) for some a €

(0,1):

(2.16) le™ = ¢o e <0,

with o > 0 small, and satisfies

(2.17) Oy~ =0 on 9(0,a)" ! x [-1,1],

find a transonic shock solution ¢(x) in © such that, denoting
by Ot :={z € Q : |Dp(z)| < psonic} and Q™ := Q\ QT the
subsonic and supersonic regions of ¢(z), we have

Q- CQb 902307 in Qi?
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and

(218) ¢ =97, ¢u, =,  on(0,a)" " x {-1},
(219) 3,9p=0  on 9(0,a)" ! x [-1,00),
(2.20) [l(:, zn) — wopllpoo((0,a)n-1) = 0 as z, — 00,

for some constant w € (0, Psonic)-
Then we have

THEOREM 2.1 Let qf € (0, psonic) and gy € (psom'c, 1/\/5) satisfy (2.12),
and let @o(x) be the transonic shock solution (2.13). Then there exist
oo > 0, C’, and C depending only on n, a, o, 7, and qg' such that, for
every o € (0,09) and any supersonic solution ¢~ (z) of (1.1) satisfying the
conditions stated in Problem A, there exists a solution ¢(x) of Problem
A satisfying

—1 A
(2.21) e = ag #nll{ s () < €O
Moreover, such a solution ¢(x) satisfies the following properties:

i. The constant w in (2.20) must be g™ :

(2.22) w=q"

)

where ¢ is the unique solution in the interval (0, psonic) of the equa-
tion

(2.23) p((@")*)g" =Q"
with

1 _ _
(224)  Qt=— /( D@ D, (@ 1)

Thus, ¢(x) satisfies
(2.25) lo(s2n) = ¢ 2nllpoo(0a)n-1) = 0 as @, — o0,
and qT satisfies

(2.26) 4" — | < Co.
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ii. The subsonic region QT () :={x € Q : |Dp(x)| < Psonic} 15 of the
form:

QO (p) ={zn>f(@)}NQ

(2.27) ) o ne
with f € CH*([0,a]"™"), |Dfla(0,a)n-1 = O,

where f satisfies

(2.28) If

La0,an-1t < Co

11, For every k=1,2,....
k
(2.29) lle — q+£vn||§;(),;g+(¢> < Cyo,

where C}, depends only on k, n, a, 7, and q(',". That is, when
Tn, — 00, @(x) uniformly converges to the linear function q*z, with
respect to ' € (0,a)""! at a rate faster than any algebraic order.

Furthermore, if o~ € C*%(Qy) in addition to the previous assumptions,
then ¢ € C22(Q7 (), f € C2([0,a]*1), and
(230) ”sz”(],a,[ﬂ,a]”*l S C(”v a, o, 7, q(—]’—7 g, ||D307 2,0!,91) < 00,

k _
(231)  [ID%0l$5) i () < Cln,0,0,%, 68,0,k [ D™ |2,0.0,) < 00

fork=1,2,3,....

REMARK 2.1 Theorem 2.1 indicates that, given any supersonic solution
¢~ (x) in the upstream region, the necessary and sufficient condition for
the existence of a transonic shock solution in the infinite cylinder is that
the velocity state wvg, vy = (0,...,0,1), at infinity in the downstream di-
rection must be ¢t vy determined uniquely by o~ (x). In other words, given
a supersonic solution ¢~ (z) in the upstream region, there is no transonic
shock solution that contains a transonic shock dividing the subsonic phase
from the supersonic phase, provided that one expects a different velocity
state at infinity from q vy in the downstream direction. This means that,
for this problem, one can apriori prescribe the uniformity condition of the
flow, but can not prescribe a velocity state, at infinity in the downstream
direction in general; otherwise the problem is overdetermined.

Furthermore, we have the following uniqueness and stability theorem.
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THEOREM 2.2 There exist a constant o9 > 0 and a nonnegative non-
decreasing function ¥ € C([0,00)) with ¥(0) = 0, depending only on
n,a,q,y, and qa“, such that, if o < og, then

1. If the supersonic solution ¢~ , in addition to the conditions of Prob-
lem A, satisfies

(2.32) le™ — o ll2a0 <o,
the solution ¢ of Problem A, satisfying (2.21), is unique.

it. Moreover, if ¢~ (x) satisfies (2.32), and ¢~ () satisfies

(2.33) o~ — ¢~

2,0, <K,

with kK < o, the unique solutions p(x) and ¢(x) of Problem A for
¢ (z) and @ (x), respectively, satisfy

(2.34) I fo = foll2,a 0,01 < ¥(k),
where fo(x') and fs(x') are the free boundary functions of ¢(x) and

@(z) in (2.27), respectively.

3 Reformulation of the Problem

In order to achieve the main theorems, we reformulate Problem A into a
free boundary problem in an extended domain in this section.

3.1 Extension to the Domain Q, = T"! x (-1, 00)

We first extend the domain €} of the transonic shock problem to the
domain 2, to overcome the difficulty when the transonic shock intersects
the fixed boundaries of the cylinder.

Observe first that any function ¢ € C12(Q) (resp. ¢ € C?%(Q)) with
Q= (0,a)"! x (—1,00) and

(3.1) ¢, =0 on 9(0,a)" ! x (=1, 00)

can be extended to R x (—1,00) so that the extension (still denoted)
¢(x) satisfies

¢ € YR x [~1,00)) (resp. ¢ € CP*(R"" x [~1,00))),
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and, forevery j=1,...,n—land k=0,+1,4+2,...,
(3.2)
(b(xl?' .. ,CL‘j,]_,ka—Z,CL'jJr]_,... ’xn) = ¢($1,. .. ,CL‘j,]_,ka-FZ,CL'jJr]_,... 7xn)’

that is, ¢(x) is symmetric with respect to every hyperplane {z; = ka}.
Indeed, for k = (k1,...,kn_1,0) with kq,..., k,_1 integers, we define

(b(l’—i—ak) = ¢(77(x17k1)7 ce 7n(xnflakn71)axn) for z € (O,a)"_lx[—l,oo),

with

t if k£ is even,
n(t, k) = { a—t ifkisodd.

It follows from (3.2) that ¢(z',z,) is 2a-periodic in each variable

LlyeeoyLpn—1:
d(x + 2ae;) = ¢(x) for z € R" ! x[-1,00), j=1,...,n—1,

where e; is the unit vector in the direction of z;.

Thus, with respect to this 2a-periodicity, we can consider ¢(z) as a
function on Q¢ := T" ! x [~1, 00), where T" ! is an (n — 1)-dimensional
flat torus with its coordinates given by the cube (0,2a)"!. Note that (3.2)
represents an extra symmetry condition, in addition to ¢ € CH*(T"! x
[—1,00)), and (3.2) implies (3.1).

Therefore, we can extend ¢~ (z) in this way, that is, ¢~ (z) is defined
in Q=T x(-1,1), o= € CH*(Q,), and satisfies (3.2). Fur-
thermore, we can modify ¢~ (z) on the set T" ! x [3/4,1] so that the
modified function ¢~ (z) satisfies (2.16) with constant 20 and ¢~ = gy =,
on T"1 x [7/8,1], and extend further ¢~ (z) to T" ! x [~1, 00) by defin-
ing = = gy, on T ! x [1,00). The function ¢~ (x) then satisfies
¢~ € CH*(T" ! x [~1,00)) and

(33) 167 — o llLe0. < 20

Also, @7 () can be considered as the functions in Q. satisfying (3.2),
since go§(x) = qgtxn in R ! x [~1,00), which are independent of z'.

Furthermore, given a domain D = QN {z, > f(z')}, where f(2') is a
Lipschitz function, we can extend it (by reflection as above) to a domain
D, C Qe with D, = Q. N {z, > f(2')}, where f(z') is an extended
function, i.e., f : T"~1 — R is Lipschitz and satisfies (3.2).
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3.2 Free Boundary Problems

In order to construct a solution of Problem A, we reformulate it into a free
boundary problem for the subsonic part of the solution. The main point
is to replace the pointwise gradient condition {|D¢(z)| < psonic} defining
Q7 (¢) by a condition stated in terms of ¢(z) so that our problem is
formulated into the framework of free boundary problems, as in [1]. The
following heuristic observation motivates our formulation: By (2.14) and
q > qg, we have QF(¢o) = {z € Q : po(z) < ¢y (z)}. Since ¢~ (z)
is a small Cb® perturbation of ¢y (z) and ¢; > ¢qf, then we expect
that ¢t () is close to ¢ () in C1*(Q+(p)) so that we can expect that
O (p) = {r€Q : p(z) < ¢ ()}

Then it suffices for Problem A to solve the following free boundary
problem in the extended domain 2.:

Problem B. Find ¢ € C(Q) such that
i. p(z) satisfies
(3.4) p <~ in Q,

and the following conditions on the boundary and at in-
finity:

(35) ¢=¢ , ¢z, =,  onT"!x{-1},
(3.6) [lo(:, Tn) — wapl|poo(pn-1) = 0 as z, — o0;

ii. p € C2(Q1)NCH*(QT) is a solution of (1.1) in QF :=
{¢ < ¢~} NQ,, the non-coincidence set, and satisfies the
symmetry condition (3.2);

iii. The free boundary S = 92T NQ is given by the equation
z, = f(z') for ' € T ! so that QF = {z, > f(z')},
where f € CH*(T™ 1) and satisfies the symmetry condi-
tion (3.2);

iv. The free boundary condition (2.3) holds on S.
We further modify the equation and the free boundary condition by a

truncation technique to convert the problem into a free boundary problem
for a nonlinear, uniformly elliptic equation.
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3.3 Truncation of Equation (1.1)

We modify the equation (1.1) to make it uniformly elliptic so that it
coincides with the non-modified equation in the range Dy in QT for ¢
satisfying (2.21) with sufficiently small o in the subsonic region. The
details of the truncation procedure are in [5, Section 4.2].

Let

. _ ot
(3.7) e — W’

There exists 5 € C11(]0,00)) and ¢y, 1, c2 > 0 depending only on ¢j and
~ such that

(3'8) ﬁ(q2) = p(q2) if 0<¢q < psonic — ¢,
(39) ﬁ(q2) =co+ % if g > psonic — ¢,

!
(3.10) 0<co< (pla*)g) <ea for g€ (0,00).

Then the equation
(3.11) Ly := div (p(|D¢|*) Dg) = 0

is uniformly elliptic, whose ellipticity constants depend only on qa“ and v.

We also perform the corresponding truncation of the free boundary
condition (2.4):

(3.12) p(IDe*)pu = p(|ID¢~[*)Dp™ v on 8.

On the right-hand side of (3.12), we use the non-truncated function p
since p # p on the range of |[Dy~|2. Note that (3.12), with the right-hand
side considered as a known function, is the conormal boundary condition
for the uniformly elliptic equation (3.11).

Thus, we first solve the following free boundary problem, which is a
truncated version of Problem B:

Problem C. Find ¢ € C(£2,) such that

i. ¢(x) satisfies (3.4) in Q, (3.5) on 02, and (3.6) at in-
finity;

ii. p € C2(QT)NCH*(QF) is a solution of (3.11) in QF :=
{¢ < ¢~} N, the non-coincidence set, and satisfies the
symmetry condition (3.2);
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iii. The free boundary S = Q1T NQ, is given by the equation
zp, = f(2') for 2’ € T" 1 sothat QF = {z,, > f(2")} NN,
where f € CL%(T"~!) satisfies the symmetry condition
(3.2);

iv. The free boundary condition (3.12) holds on S.

In this paper we combine the iteration techniques of [5] with uniform
estimate techniques in the weighted Holder norms to construct a unique
solution of Problem C. Denote QF := Q. N {z, < R} for large R > 1.
We first construct a solution of the free boundary problem in the domain
QF which satisfies the estimates independent of R, and then let R tend to
infinity. Finally, we use an estimate for [D¢| to conclude that the solution
of the truncated problem (Problem C) is actually a solution of Problem
B, hence, the original problem (Problem A).

4 Tteration Procedure and Uniform Estimates in QF

First we prove the existence of the unique ¢ € (0, psonic)-

LEMMA 4.1 There exist o9 and C depending only on n, a, a, v, and
qqy such that the equation (2.23) with Q* defined by (2.24) has a unique
solution q* € (0, psonic) satisfying (2.26).

PRrROOF: We first estimate Q" defined by (2.24):

Q" — p((gd)*)ag |

1 /

an—1 (0,a)7—1
1 /

an—1 (0,a)7—1

< Co,

p(IDe™ (', ~1) )z, (2!, —1) = pl(afP)ag | da’

p(|De~ (2, —1)|2)80;n (2, -1) - P((QJ)Q)Q(;‘ dz’

where we used (2.16) and (2.12).

Thus, by (2.6) and (2.7), we obtain that, if o is small, depending only
on the data, then there exists a unique solution ¢* € (0, psonic) of the
equation (2.23). It also follows that (2.26) holds. |

We now introduce an iteration procedure to construct approximate
solutions of Problem C in the finite cylinders Qf and make uniform esti-
mates of the solutions independent of R.
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Let M > 1. We set

(4.1) Kum(R):= {¢ e CLe(QF) ‘ Y satisfies (3.2), },

0
1% — g @nllfon < Mo

where ¢ is defined in Lemma 4.1. From the definition, K/ (R) is convex
and compact in CVA(QF) for 0 < 3 < a.

4.1 Construction of the Iteration Scheme

Let v € Kpr(R). Since g5 > g, it follows that, if

—_ 4
(4.2) o< Jo — 9

—C(M+1)
with large C' depending only on n, then (4.1) and (2.16) imply
—_+

(4.3) Or, (9 = ¥)(@) = 0 > 0.

Then the set Q% (%) := {¢ < ¢~} N QF has the form:
44) QW) ={zn> (@)} N,  |fllam-1 < CMo,

with C depending only on g; —qg . The corresponding unit normal vy (z')
is

- !
1/¢(.’L‘l) — ( Df($ )71) c Ca(Tnfl;Snfl)’
V1I+[Df ()

and
(4.5) Ivg — vollgaypn-t < CMa,
where vq is defined by

D +
(4.6) vo = =20 —(0,...,0,1)T.

|Deg |

From the definition of f(z'), vy(:) can be considered as a function on

Sp={zn = f(a')}:

Dy () - Dy(a)

(4.7) vy(x) = Dy (z) — Dip(2)]

for z € Sy.
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By the definition of Kjs(R) and (4.2), the formula (4.7) also defines vy ()
on Q! and

(4.8) [l — 1/0||0,a’9é <CMo with C = C’(qg',qﬂ_).
Motivated by (3.12), we define the function

(49)  Gy(@) = p(IDy~ (2)*)Dy™ (2) - vyle)  om QL

Then we consider the following elliptic problem in the domain Q% ()

(410)  div(d([Dp)Dp) =0  in Q(w),

(411)  AIDeP)e, = Gy(®)  on Spi= faa = fa)},
(412)  @=Rq"  on 0QH(W)\Ss={z. =R},

and show that it has a unique solution, and this solution can be extended
to the domain QF so that ¢ € Ky(R).

4.2 Uniform Estimates of Solutions of the Elliptic Problem
(4.10)—(4.12) in QF

Now our main objective is to obtain uniform apriori estimates independent
of R for a weak solution of the conormal derivative problem (4.10)—(4.12)
in the domain:

QR = {(IL’I,CL‘n) c ']:‘ni1 xR : f(xl) <y < R} with f c Cl,a(Tn—l)’

where R > 3(]|f|z~ + 4).
We denote v(z') = vy(z') the inner unit normal to Sy with respect to
the domain Qf and ro = 2(|| f||z~ + 2).

LEMMA 4.2 Let u € C1H(QR) N C*(QF) be a solution of

N(u) :=div(A(Du)) =0  in QF,
(4.13) A(Du)-v=g on Sy,
u=0 on {z, = R}.

Let A= (Al,... A") € CL*(R™; R") satisfy
(4.14) A(0) =0,
and the ellipticity condition:

(415)  MeP< Y AR (P& <Al forany P €R,

1<i,j<n
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where A > X > 0 are constants, and
(4.16) Alp, (P) = A}, (P),
(4.17) (14 |P)|DpAb (P)] < A

for any PE€R™ and i,j = 1,...,n. Let the function g € C*(Q0) satisfy

(4.18) gdH™ ! =o0.
St
Then
(4.19) [Dull2@ry < Cllgllo,a,0m,

where C' depends only on the data, i.e. X\, A, n, and ||f|ly o 1n-1, but is
independent of R.

PROOF: Since u(z) is a solution of (4.13), then, for any ¢ € C*(QF),

A(Du) - Dpda = / A™(Du(2', R))(z', R)da' — [ A(Du)-védH"

QF Tn-1 Sy

= A"(Du(z',R))¢(z', R) d:z:'—/ godH™ L.
Tr-1 S¢

In particular, choosing ¢ = u and using u(-, R) = 0, we get

A(Du)-Dudz = — | gudH" '=—[ gu—Q)dH" !
QR S¢ S¢

for any @ € R, where we used (4.18) in the last equality. Choosing Q@ =
1
(u)gro := o] / u(x)dz and using the L? estimates of the boundary
Qro

traces of functions in the Sobolev space H(Q7), we get

(4.20) /Q _ A(Du) - Dudz

2
< (/ PAH™ 1) (/ w)gro ) 2dH 1)
Sy Sf

< C'( gPdH™ 1) ( - u— (u)qro )? + |Du|2) d:z:)

1

gc(/ PAH™ 1) ( |Du|2dac> ,

=
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where we used the Poincaré inequality in the domain Q" in the last
estimate, and the constants C in (4.20) depend only on n and || f||; o Tn-1.

Now, using (4.14), we get
1 .
A(P)- P = (A(P) — A(0)) - P = / S AL (tP) PP | dt > AP
0 \i<ij<n

for any P € R™. Combining this with the estimate (4.20), we obtain

1 1
1 2 2
/ | Dul?dz < —/ A(Du)-Dudz < ¢ / g dH ! (/ |Du|2dx> .
QR A Jor A \Js; Qo

Thus, we have
[Dul|g2ory < Cllgliz2s;) < Cligllo,a,aro-
[ |

LEMMA 4.3 Let u(z), A(P), and g(z) be as in Lemma 4.2. Then there
exists C depending only on A\, A, n, and || f|| qmn-1 such that

(4.21) max [u| < Cllgllo,aar0-

PrROOF: 1. Let v := 0, u(x) for k € {1,...,n}. Then v(z) is a weak
solution of the linear equation of divergence form:

div(B(z)Dv) =0 in QFf

where B(z) = (Aipj (Du(x))) is an n x n matrix. Clearly, the equation is
elliptic with constants A and A. Note that

[v][z2(@ry < [|Dullg2ory < Cligllo,ar0,

by Lemma 4.2. Since 79 = 2(||f||z + 2) < R, then, using the DeGiorgi-
Nash-Moser estimate [14, Theorem 8.17] in the ball B;(z,) for z, =
(z',79) with 2’ € T ! yields

lv(z',m0)| < CllvllL2(By (2.))»
where C' depends only on n and A/A, which implies

(4.22) sup |Du(a’,ro)| < Cllvllz2(am) < Cllglloa0ro-
x/eT‘nf
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2. Now we show that there exists #' € T"~! such that u(z',r¢) = 0.
On the contrary, we can assume

(@' rg) > k>0 for any ' € T !,

since the other case can be handled in a similar fashion. Let

K kR
4.23 L = — .
(4.23) w(z) R—rox"+R—ro
Then
div(A(Dw)) =0 in T" ! x (ro, R),
w=k<u on {z, =ro},
w=0=u on {z, = R}.

By the maximum principle, we must have u > 1 in T" ! x (rg, R). Hence

K
R—’f'(]

(4.24) g < Ot = — <0  on {z, =R}

For any a < 0, using (4.14) and the ellipticity of A(P) yields
A(aey) - en, = (A(ae,) — A(0)) - e,
_ afl ( T Aipj(taen)(en)i(en)j) dt < Aa < 0.
0 \i<ij<n
Therefore, by (4.24),
(4.25)  A™(Op,u(z',R)en) = A(Oy,u(z',R)ey) - en

< A0y,u(a,R) < —— T x<o.

On the other hand, since u € C1*(QR) is a weak solution of (4.13),
we use (4.18) to get

0= / AM(Du(s', R))dz' — [ A(Du)-vdH™
Tn-1 Sf

= / A™(8y, u(2', R) ey)dz’,
Tn—1
which leads to a contradiction with (4.25).

Thus, u(z’,79) = 0 for some ' € T" !, Then, by (4.22), we obtain
lul < Cllgllo,a,00 on {zy = ro}. Thus, by the maximum principle,

(4.26) lul < Cliglloa,ere in T"' x [rg, R].
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3. Now it remains to bound u on 2"°. Note that u(x) satisfies

div (A(Du) in Qro,
A(Du)-v=g on Sy,
ul < K := Cliglloa,ao on {zn =ro},

where the inequality in the last line follows from (4.26).

Let w(z) = C||g| o (ro—an)+ K, where C’ will be chosen below. Then,
using that the normal v on Sy satisfies v = (—Dg f,1)/1/1 + |Dy f|? and
thus |v;| < Co for j =1,...,n —1 and v, 2 1 — Co, we compute on Sy:

A(Dw) - v = (A(Dw) — A(0)) - v = / A (tDw)w,, vidt
3,7=1

’

- n 1
— _Cgllz Z/O A} (tDw)vdt
=1
< CligllL= (=M1 = Co) + (n — 1)ACo),

where we have used (4.14) and (4.15). If o is small and C is large de-
pending only on A\, A, and n, we have

CA
A(Dw) v < =gl < g on Sy.

Thus
div (A(Dw)) =0 =div(A(Du)) in Q,
A(Dw) -v < g= A(Du) -v on Sy,
w=K2>u on {x, =7o}.

Then, by Lemma A.2(ii) in Appendix A, u < w in Q™. Similarly, u > —w.
Thus
lu| < [|wl| oo @roy < Cllgllzee in Qro.

This completes the proof. |

In the proofs of Lemmas 4.2 and 4.3, we have employed some ideas in
the proof of Lemma 2.1 in Evans-Gangbo [10].

REMARK 4.1 The property proved in Step 2 in the proof of Lemma 4.3
1s also true for the solutions of equations with variable coefficients. In
particular, later we will need the following. Let u € C*(Qg) N C%(QR)
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satisfy
> Op(aij()0pu) =0 in QF,
1<i,j<n

Z a;jOpuvj =g on Sy,
1<,j<n

u=0 on {z, = R},

where a;; € CL2(QpR) satisfy ai; = aj; and the ellipticity condition:

MeP2 < Z aij(x)&i&; < A|E]? for any z € QF, ¢ € R",

1<i,j<n

with 0 < A < A, and QF and g are as in Lemma 4.2. Then, for any
r € (1, R), there exists x' € T !, depending on r, such that

u(z',r) = 0.

The proof basically repeats the arguments of Step 2 in the proof of Lemma
4.3. The only difference is that, instead of w(z) defined by (4.23), we use
the following function

w(z) = e;f’" (eian — eiMR) ,

1
where M = 3 Z 10z, @inll Lo (@r). Then, using an, > A, we get
1<i<n

Z 02, (00, W) = kMeM@n=r) <Mann - Z anam) >0
)

1<i,j<n

in T 1 x (r, R), i.e., W is a subsolution in T" 1 x (r, R). Then, assuming
that u > Kk > 0 on {x, = r}, we obtain that, for any ' € T"1,

w(z',r) =k (1 — e*M(R*’")) <k <u(,r),

w(z',R) =0 =u(z',R).
Thus, u > @ on T" ! x (r, R), which implies
Op,u(z',R) < 8, w(a',R) = —sMe MET) <0 for any ' € T 1.

Then, following the arguments of Step 2, we arrive at the result.
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In the next lemmas, we will use the norms defined in (2.15).

LEmMMA 4.4  Let u(x), A(P), f(z), and g(z) be as in Lemma 4.2. Then,
for any N > 0, there exists a constant C' depending only on n, N, X, A,
and || f|l1,q,tn-1 (but independent of R) such that, if

(4.27) lgllo.anro < N,
then
(4.28) 1ull') or < Cllgllo.anro.

Furthermore, for m € {2,3,...}, if
(4.29) gecCm @), fe ™ (T, |gllm-1,a00 <N,
then
(4.30) 1ulll)0n < Cllgllm-1,a00,
where C' depends only on m,n, N, X\, A, and || f||, o101

PrOOF: 1. First we estimate the solution near Sy, say, in Q™. If
f € CH (T 1) and g € C*(Q0), then the estimates of [21] imply

lull1,a,0m0 < C,

where C' depends only on n, A, A, || f|l1,6,17-1, 19ll0,a,070, and [[ul| Lo (ro).-
Since Lemma 4.3 provides the estimate of ||ul ,« r), then C depends only
onn, A, A, Hf”l,a,T"—l? and ||g||0,a,QTO~

Now we note that u(z) satisfies
S 0, (ay(2)0,u) =0 in O,

(4.31) 1sijsn
Z a;jOp,uv; = g on Sy,
1<4,j<n

with C?% coefficients
1
a,-j(x):/ A (tDu(@))dt,  i,j=1,2,...,n.
0

Notice that the equation is elliptic with ellipticity constants A and A,
and the coefficients are Holder since the estimate of |[ul/1,q,070 above and
(4.27) imply

“a'ileO,Ol,QTO < C(”? N7 )‘) A? ||f||1,a,T"_1)'
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Let h := g/||gl0,a,070, and let v(z) be a solution of the linear problem:

> Oai(aij(@)dp;v) =0 in Q7

1<i,j<n
> aydeovs = g/lgloaan o Sy,

1<i,j<n

v = u/||gllo,a,0m0 on {z, =71}

Then u = [|gllo,a,0r0v. In particular, by (4.21), [|v][e(qroy < C, where C
depends only on A, A, n, and || f||; o n-1. Thus, by the estimates of [21],
we estimate ||v||1,4,070 in terms of the above constants and N to have

[ull1,a,070 < Cllgllo,a.0m0-

If f € C%*(T" 1) and g € CH*(Qr0), we use the local estimates for
the oblique derivative problems from [22] to get

|ull2,0,0m0 < C,

where C depends only on n, A, A, ||f||2,o,on-1, and |lu|z~, and hence, by
Lemma 4.3, only on n, N, A, A, and || f||3 o Tn-1.
Now the coefficients a;; in (4.31) satisfy

1,0,Q70 < C(n7 N7 )‘7 A7 ||f||2,a,Tn_1)'

laij
Thus, we can rewrite the equation in (4.31) in non-divergence form with

C“ coeflicients and use Lemma 6.29 and Theorem 6.2 of [14] to obtain

[ullz,a,00 < C(llgll1a0m0 + [[ull(@r)) < Cllglhagm,

where we used Lemma 4.3 in the last estimate. The higher regularity
estimates are now obtained from the linear theory [14, Chapter 6].

2. Now we obtain the interior estimates in the weighted norms. Let
z = (2',zn) with z,, € [ro, 2£]. For such z, we have B, (z) C QF with
3
0z > 1. We denote

(=)

dy = —
T 37

and re-scale to the unit ball By = B1(0), i.e., define v € C?(B1(0)) by

(4.32) v(y) = diu(x + dyy).

T
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Then, in B;(0),

(4.33) div(A(Dv(y)) =de Y, Ap,(Du(z+dey))5,,, u(z+dzy) = 0.
1<i,5<n

Using again the local estimates of [22] and Theorem 6.2 of [14], and using
Lemma 4.3, we get, in the ball B1 = B1(0),
2 2

C C
[vll2,0,8, < Cllvllzeemy) < —llullzoe By, @) < Zllgllo,a,00-
5 dy dz

The higher regularity estimates are now obtained from the linear theory
[14, Theorem 6.17]. Re-scaling back and using that, for any y € Ba, (),
2

there holds 1/4 < d,/d, < 1/2, we obtain
(4.34)

> sup  (6D%u(y))

8] <m ¥ B g (¥)

|DPu(y) — DPu(z)|
ly — z[*

+ Z sup <6_Z:‘j a

< Cnillgllo,a,0r0
|B|l=m y,ZEB%(J:),y#z ) " : ’

for any = € QF with z,, € [ro, %] and for any m =1,2,....
3. In order to obtain the estimates of u in QF N {z, > 2B} we
estimate u(y) in every half-ball By (z) := Br(z) N {(v',yn) : yn < R},
3 3
with # = (2/,R), 2’ € T""1. We have By, (z) C QF. We re-scale to
3
the unit half-ball B{ = By (0) = B1(0) N {(¥',yn) : yn < 0}, i.e. define
v € C%(By (0)) by (4.32) with d, := 2. Then (4.33) holds in B, and
v = 0 on {y, = 0}. Now we use the local estimates for the Dirichlet
problem in [14] to show that, for m =1,2,...,

C C
”v”m,a,B% < C'||U||Lo<>(19;) = EHUHLOO(QR) < §||9||0,a,ﬂ'“0-

Re-scaling back and taking into account that, for any y € Ba, (x), there
2
holds 1/2 < R/é, < 3/2, we obtain the estimate similar to (4.34) in the
half-ball By (z) for any z = (', R), 2’ € T L.
3

4. The estimates in Steps 1-3 imply (4.28) and (4.30). Indeed, for
m =1,2,..., it only remains to estimate
5m+a |D/6u(x) — D'@u(y)l

o |z —y|*

for 8] = m,
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in the case 6, > 79, 6, > 6y, [z —y| > %’”. We have proved that |DPu(z)| <
C|lgllo,a,0r0 /6™ for every z € QF. Thus,

1 1

DBu(z) — DBu(y) m toam
IDPu(z) - Duty) el
T

|z — y|*

Gy < Cllgllo.a.0rody

0,a,Q270 -

LEMMA 4.5 Let u(z), A(P), f(z), and g(x) be as in Lemma 4.2. Fix
N > 0 and assume that (4.27) holds. Then, for every k = 1,2,..., there
exists C > 0 such that

k
(4.35) IIUIILCLQR < Cligllo,a,0r0,

where C' depends only onn, N, X\, A, ||f|l1 o,xn-1, and k. If, in addition,
(4.29) holds, then, for every k =1,2,...,

(4.36) [ull®) n < Collgllm-t.a.00,

m;a;QE
where Cy, depends only on m,n, N, A\, A, and k.

ProOF: It suffices to improve the estimates away from Sy in (4.28)
and (4.30), i.e. the estimates obtained in Steps 2 and 3 in the proof of
Lemma 4.4. We prove (4.35) by induction. The case k& = 0 has been
proved in Lemma, 4.4.

Assume that (4.35) has been proved for k = ko € {0,1,...}. Then, in
particular, for any = € QF,

(4.37) IDue)| < Zijerrrl

0,a,Q270
where C' depends only on the data and ky.
Similar to the proof of Lemma 4.3, we show that, for every x,, € (19, R),
there exists 2’ € T"~! such that
u(z',z,) = 0.

Then (4.37) implies that

(4.38) |u(z', z,)

< ortlgloaan for any (yan) € (2,R) x T
xr
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Now, similar to Step 2 in the proof of Lemma 4.4, we estimate u in
every ball B := B, (z) C QF, for z € QF with z, € (ro,2R/3). Re-
scaling as in the piq’"oof of Lemma 4.4, we obtain the estimate for the
function v(y) defined by (4.32) with d, = d,/3:

C C
||U||m,a,B% < Clvl[pee(sy) < a”UHLm(B) < WHQ 0,0,0705

for any m = 1,2,..., where we used (4.38). Re-scaling back and using
that, for any y € By, (), there holds 1/4 < d,/d, < 1/2, we obtain
2

sup (5§o+1+IBI|D/Bu(y)|>
18|<m ¥€Bsg (@)

+ Z sup <6k0+1+m+a |Dﬂu(y) — Dﬁu(z)|> < lelg 0.0.270

Y,z _ (e}
|B|=m ¥:*€B sy ()57 ly — 2|

for any = € QF with z,, € [ro, %] and for any m =1,2,....
A similar estimate is obtained in each half-ball By (z) with z = (2, R),
6

2’ € T" ! by combining (4.38) with the argument of Step 3 in the proof
of Lemma, 4.4.

Repeating the argument of Step 4 in the proof of Lemma 4.4, we obtain
(4.35) and (4.36) for k = ko + 1. ]

Now we show Lemmas 4.5—4.7 about the behavior of the solutions
in Q := Q% in the limit R — oo, which will be used for proving the
uniqueness and stability of solutions of Problem A.

LEMMA 4.6 Let A(P) and f(z') be as in Lemma 4.2. Then, for any
g € C*(Qro) satisfying (4.27) and (4.18), there exists a solution u €
CH(Q) N C%2%(Q) of

div(A(Du)) =0  in Q,
(4.39) A(Du)-v=g on Sf,

satisfying

(4.40) u(yzp) — 0 uniformly on T"! when x, — oco.

This solution is unique in the class of weak solutions in C1*(Q). More-
over, we have



TRANSONIC SHOCKS AND FREE BOUNDARY PROBLEMS 27

i. For any R > 2, there exists a unique solution ug(xz) € CH*(Qg) N
C?%(QR) of the problem (4.13);

#. u = lim ug, where the convergence is in CYP on compact subsets
R—o0

of Q for any 0 < B < «;
ii5. For every Ry > 1, there exists ' € T™ ! such that u(z', Ry) = 0;

w. For every k =0,1,2,..., there exists C}, such that

k
(4.41) . < Crllglloaro -

PROOF: The proof of the existence of a solution ug € CH*(QF) N
C?(Qf) of the problem described in Lemma 4.2 for any R > 2 can be
obtained as following: if g € C1*(Q70) and f € C**(T""!), then the
existence and uniqueness of ug € C>*(QR) follows from [14, Theorem
17.30]; and if g € C*(Q™0) and f € CH*(T™ 1), then we approximate g
and f by sequences of smooth functions gy — ¢ in C*(Q") and f, — f in
C1(T"™1), respectively, solve the problem in the smooth domain QF( f,)
with the right-hand side g, to obtain solutions u}, € C?%(QE(f,)), and
take the limit in a subsequence of u% as { — oo, with the aid of the
estimate (4.28). More precisely, we can map QF = QE(f) to QR(f,) by a
mapping P, such that &, — Id in Cl’a(ﬁ; R"). Then, by (4.28) applied
to u%, the functions v¢ := u% o <I>Zl are uniformly bounded in C1*(QR)
and satisfy

div (Be(z,Dv*)) =0  in QF,
By(z,Dv) v =g, on Sy,
vt =0 on {z, = R},

where By and g, are obtained by the procedure similar to the one in Step
3 in the proof of Lemma 4.3, and thus B, — A in CY(QF x R") (where
we used (4.17)) and g, — ¢ in C%(QR). Thus, a subsequence v% (z)
converges in C1(QF) and its limit ug € CV*(QF) is a weak solution of
(4.13) in QF. The standard interior regularity estimates imply uR; €

CL(QR) N C2*(QR).

Now, let R; — oo. Using the estimates of Lemmas 4.4 and 4.5, we
can extract from {ug;} a subsequence converging in CY% on compact
subsets of Q to a function v € CH*(Q) N C?*(N) that satisfies (4.41) and
especially (4.40). Indeed, this can be achieved by extracting a subsequence
converging in C*(Q1), a further subsequence converging in C1(Q2),
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etc., and using the diagonal procedure. Obviously, u(z) is a weak solution
of (4.39). The standard interior regularity estimates imply u € C*(Q) N
C?(Q).

Moreover, this solution u(z) satisfies the property (iii): Indeed, for
fixed Ry > 1, R; > Ry for sufficiently large j. For such j, by Step 2 in
the proof of Lemma 4.3, there exists x; € T ! such that UR; (ac;, Ry) =
0. Then there exists a subsequence of {q:;} converging to some point
«' € T"'. Since ug, (-, Ry) — u(-,Rp) uniformly on T"!, we have
u(z', Rg) = 0. Thus, the solution u(z) satisfies all the properties asserted.

In order to complete the proof, it remains to show the uniqueness of
solution u(x) of (4.39)—(4.40) and of solution ug(z) of (4.13) for all R > 2.
Both follow from the comparison principle of Lemma A.2 below. |

LEMMA 4.7 Let Q = Q%, and let A(P) and f(z') be as in Lemma 4.2.
Let u € CY%(Q) be bounded and satisfy

div (A(Du)) =0
i the weak sense in . Then,
i. for Ry =||fllz= +1,
(4.42) lull 5o et ooy < Clltllzoo ey
. for Sy =00 ={(z', f(z')) : o' € T" '} and the inner unit normal
v(z) on 09, g := A(Du) -v € C*(Sf) must satisfy (4.18).

PROOF: By the interior estimates, we get u € CL*(Q)NC?(Q). Sim-
ilar to the proof of Lemma 4.4, we use the re-scaling (4.32) to show (4.42).
From (4.42), we see that Du(-,z,) — 0 uniformly on T""! as z, — oo.
Now, for any R > R/,

0= / div (A(Du))dzx = / AY(Du)da' — [ gdH™ L
Qn{z,<R'} Tr—1x{R} S

Letting R — oo, we get (4.18). [ |

4.3 Existence of the Iteration Map

Now we show the existence of the iteration map.
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PROPOSITION 4.8  There exist Cy, depending only on n,’y,qar,a, a, and
k=1,2,..., such that, for any M > 1, there exists og > 0 depending only
on the data (i.e. on n,v,q3,, and a) and M so that, for any o < oy,
R > 1, any ¥ € Ky (R), and any ¢~ (z) satisfying (2.16), the problem
(4.10)-(4.12) has a unique solution ¢ € C1*(QL(y)) N C>*(QL(Y)) that
satisfies (3.2) and

+.. (k)
fork=0,1,....

Proor: 1. By (4.4), we can choose o so small that, for ¢ € K/ (R),
the corresponding boundary f(z') satisfies || f||; o 1n-1 < 1/4. Then Qz(v)
is a bounded domain with Lipschitz boundary.

For Q*, defined by (2.24), we have

1
o] / qu dH™ L.
a S¢

(4.44) Qt =

Indeed, since, ¢~ € C1¥(Q~) is a weak solution of (1.1), we have

/_ p(|De~|*)Dy™ - Dy dar:/ _ p(IDe"P) Dy v pdH
Qg () 99 (¥)

for any 1 € C*°(R"). Choosing ¥ = 1 and using the boundary condition
(2.17), we get

1
Do~ Yo da!
ot fo o PP,

1 _ _ _
= =1 [ D¢ Py van
P

Q" =

and (4.44) is proved.

2. Now we can follow the proof of [5, Proposition 4.1]. We first rewrite
the problem (4.10)—(4.12) in terms of the function v := ¢ — ¢"x,. The
problem then takes the form:

(4.45) div A(Dv) =0 in QL¥),

(4.46) A(Dv) - v = gy(x) on Sy,
(4.47) v=0 on 90L(¥)\ Sy =T" ! x {R},
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where
A(P) = p(IP + ¢*vol*)(P + ¢t 10) — A((¢¥)*)g vy for P €R",
95(@) = Gy(@) — pl(d"))a v - vo.
Thus, v(x) satisfies a uniformly elliptic equation with the same ellipticity
constants as in (3.11). Moreover, by (3.8) and (3.9), A(P) defined above

satisfies (4.17). Also, from the definition, A(P) satisfies (4.14) and (4.16),
and the function gy () satisfies

(4.48) 19 ll0,00. < Co,

where C' depends only on the data. To see this, we first note that
(4.49) p(ID¢g [1)Deg = p(|Dgy 1) Dy in e,
since both sides of (4.49) are equal to p((qq )?)gg vo. Using this and (4.9)
yields

lgyllo.a,e. = ((|De™[)De™ = p((a*)*)a*10) - Vllo,a,0.
< (p(|1D¢~ 1)) D™ = p((45)*)ao v0) - Vllo,e.0.

+lp((a9)*)as = p((6)*)a 0,00,

< Co(1+ Mo),

— p(
— p(

by (2.16), (4.8), and (2.26). Choosing o < 1/M, we get (4.48).
Moreover, using (4.44) and the definition of g, (z) and ¢™, and noticing

So={an = 1@) : @' € (0,0 "} and wov =1 /\1+ DI on 5y,
we have

/ g'z/)dHnil — / Gwdz}_lnfl _ p((q+)2)q+/ vy danl

Sy Sy Sy

= | GydH" ' —d"p((¢")*)d" = 0.
Sy
3. Now, by Lemma 4.6(i), we obtain the existence of a solution v €
CL(QE(¥)) N C?2*(Q5 () of the problem (4.45)-(4.47). Lemmas 4.4
and 4.5 imply that, for £ =0,1,...,

k
10[185) o < Cllg

if o is small, depending only on the data and M, where the constant Cj,
depends only on the data and k. Thus, the function p(z) := v(z) + ¢t z,
is a solution of (4.10)—(4.12) and satisfies (4.43).

1,a,Q70 < Ck g,
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The uniqueness of solutions of (4.10)—(4.12) follows from Lemma A.2
in Appendix A. The property (3.2) of ¢(x) follows from the uniqueness
as in the proof of [5, Proposition 4.1]. |

5 Existence of Solutions of the Free Boundary Problem in
QR

Now we define an extension operator P, similar to [5, Proposition 4.5],
to obtain

PROPOSITION 5.1 Let 0 > 0 and ¢ (z) be as in Proposition 4.8. Let
¥ € Ky(R), and let p(z) be a solution of the problem (4.10)—(4.12) in
the domain Q5 (). Then ¢(z) can be extended to the domain QF, and
this extension Py satisfies the following two properties:

1. There exists C’, depending only onn, -, q{f, a, and a, but independent
of M, R, 0, and 1, such that

(5.1) 1Py — g anllinqn < Co

ii. Let B € (0,a). If a sequence 1; € Ky (R) converges in C18(QF)
to v € Ku(R), and p; € CH¥(QL(¥))) and ¢ € CHY(QL(W))
are the weak solutions of the problems (4.10)~(4.12) for ¢; and v,
respectively, then Py, p;j — Pyp in CLP(QR).

PrROOF: The operator Py is a C1@ - version of the operator defined
in [5, Proposition 4.5]. We define it as following. Let

Qo :=T" ! x (-1,1).

We first employ the extension map in [14, pp. 136-137] to define our
extension operator & : CHA(Qf) — C1B(Qq) for any B € (0,1). Let
v € CYA(QY). Define £1v = v in Qf . For z, € [~1,0), define

x
Ev(e' xy) = Z coo(x', —=1),

1<i<2 L
where ¢; = —3 and ¢y = 4, which are determined by

3 e (—%)m =1, m=0,1.

1<i<2
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Starting from this definition, we follow the proof of [5, Proposition
4.5] to define first the extension operator & : C1A(Qf(v)) — CHP(Q,)
for ¢ € Kp(R). Since Q¢ \ Q% (1) € TP x (—1,1) for any R > 2 and
¥ € Ky(R), it suffices to prove the non-weighted Holder estimates for
the extended function v restricted to T" ! x (—1,1). We obtain

(5.2) ||5¢”||%,96 < CHUHE%,QEW)

and other properties of &, as in the proof of [5, Proposition 4.5]. We
define Py : CHP(QL (1)) — CHA(Qe) for ¢ € Ky (R) and B € (0,a] by
Pyv = Ey(v —qTap) + ¢y, and then (5.1) follows from (5.2) and (4.43)
with k£ = 0.

In order to prove the assertion (ii) of the proposition, we also follow the
proof of [5, Proposition 4.5], noting that the uniqueness of solutions of the
problem (4.10)—(4.12) follows from Lemma A.2(ii) in Appendix A. [ |

PROPOSITION 5.2  There exists M > 0 depending only on n,~, q{,", a, and
a such that the following holds. Let o > 0 and ¢~ () be as in Proposition
4.8. Let R > 4. Then there exists a solution ¢ = pr of Problem C in the
domain QF satisfying

(5.3) ¢ =¢rp=min(p , ),

where ¢ = pr € Kp(R). Furthermore, for any k =0,1,...,
5 _ ot ||(F)

where Cy, depends only on n, a, a, 7, q{,", and k, but is independent of R.

PROOF: Choose M to be the constant C in (5.1), and fix this choice
of M from now on.

Let ¢ € Ky (R). Let p(x) be the corresponding solution defined in
Proposition 4.8, and then consider its extension Py¢(x), which we also
denote ¢(x). From Proposition 5.1, it follows that ¢ € Kp(R) when
o > 0 is sufficiently small, depending only on the data (since M is now
fixed).

Now we can define a map Jg : Kpr(R) — Ky (R) by

where ¢(z) and ¢(z) are as above. From Proposition 5.1(ii), the map Jg
is continuous on Kj;(R) in the C1# norm for any positive 8 < a.
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In order to find a suitable solution of Problem C in O, we seek a fixed
point of the map Jgr. If p(z) is such a fixed point, then (5.3) defines a
solution of Problem C in Q. We use the Schauder Fixed Point Theorem
[14, Theorem 11.1] in the following setting:

Let o > 0 satisfy the conditions of Proposition 5.1. Let 8 € (0, «).
Since Q_f is a compact manifold with boundary, the set K/ (R) is a com-
pact convex subset of C1#(Q,). We have shown that Jr(Ky(R)) C
Ka(R), and Jg is continuous in the C#(Q,) norm. Then, by the
Schauder Fixed Point Theorem, Jg has a fixed point ¢ € Kpr(R).

Now, (5.4) follows from Proposition 4.8 since Jry = . ]

6 Existence of Solutions of Problem A in the Infinite
Cylinder (),

Let 0 > 0 and ¢~ (z) be as in Proposition 4.8. Fix M as in Proposition
5.2. Then, by Proposition 5.2, for each R > 4, there exists a solution
@r(z) of Problem C in QF such that

@R = min(9077 SOR))

where pr € Ky (R), and (5.4) holds. Clearly, if 4 < Ry < R, then the
restrictions of functions from Kjps(Rz2) to QF belong to Ky(Ry). Let
B = 2. Since Kp(10) is a compact subset of C1A(Q10), there exists a
sequence R; — oo such that goéj(:n) converges in C#(QL0). A further

subsequence can be extracted to converge in C1#(Q20), etc. By a diagonal
procedure, we obtain a sequence R; — oo such that ¢g, () converges in
C'P to ¢(x) on any compact subset of Q. Then ¢ € CH*(QX), and
o(x) satisfies (5.1) in Q°. Now, from (4.3) and (4.4), it follows that
the free boundary sequence S¢Rj of ¢g, () converges in CYP to the free
boundary S, of ¢(z), i.e., the corresponding function sequence stRj (')

converges in CLP(T"1) to f,(2'). Then it follows that o(z) satisfies
the weak form of the equation (1.1) in Q* = QF and the free boundary
condition (2.3) on S,. Thus,

¢(x) = min(p™ (2), p(z))
is a solution of Problem C, and S, is its free boundary.
It follows that ¢(x) is a solution of Problem B, provided that o is

small enough so that (2.29) with & = 1 implies that |Dy(z)| < psonic — €,
where ¢ is defined by (3.7). Indeed, then (3.8) implies that ¢(z) lies in
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the non-truncated region for the equation (3.11) and the free boundary
condition (3.12).

For such o, the function @(x) is a solution of Problem A. Indeed,
|ID@(z)| < psonic — € on Q1 (p) :={@ < ¢~ } since ¢ = ¢ on QT ().

Note that ¢ satisfies (2.29), since each ¢ satisfies (5.4) in Qf with
constants Cy, independent of R and waj — f, as j — oo in CHA(T™L).
Finally, (2.29) and (2.26) imply (2.21).

The existence part of Theorem 2.1 and the estimates (2.21) and (2.29)
are now proved.

7 Uniqueness and Stability

We first assume that ¢~ satisfies (2.16), and prove the assertion (i) of
Theorem 2.1. Then we assume that ¢~ satisfies a stronger condition
(2.32), and prove the uniqueness of solutions of Problem A, satisfying
(2.21).

LEMMA 7.1 Let ¢~ satisfy (2.16). Let ¢ € WH®(Q) be a solution of
Problem A with w € (0, psonic). Assume that p(x) satisfies (2.21), where
C is the constant obtained in Section 6. Then there ezists oo > 0 and
C depending only on n, a, a, v, and qf such that, if o € (0,00), p(z)
satisfies (2.27), (2.28), and

k
(7.1) e = wrnll ) g oy < Crlo + w = af ),

where Cy, depend only on n, a, a, 7, qg', and k, respectively, for k =
1,2,....

ProoOF: Extend ¢(z) to the domain €2, as in §3.1. Then the extension
is a solution of Problem B in Q. and satisfies (2.20) in the extended
domains (i.e. [0,a]" ! replaced by T !). From now on, we consider the
extensions of ¢(x) and ¢~ ().

From (2.21) and (2.16), Q™ (¢) C Q1 := QN{x, < 1} if o is small. Let
@t (z) denote p(z) restricted to Qf (¢) := QT (¢)N{x, < 1}. Then, using
(2.21), we extend ¢ from Qj (), which we consider now as a subset of
R"™, into R™ so that the extension £y satisfies

HgSOJr - Soa_lll;a;R” < CO',

where C depends only on n (see e.g. [30, Chap. 6, Theorem 4]). Now, if
o is sufficiently small, it follows from (2.16) that QT () NQ; = {EpT <
¢~} Ny, and the Implicit Function Theorem implies (2.27) and (2.28).
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Define
(7.2)  g:=p(IDe"P)Dy~ v —p(w*)wry-v  on S, := 0" (p),
where v is the unit normal to S, in the direction of Q*(p). Then we
obtain from (2.16), (2.28), and (2.12) that
(7.3) lgllo,a,s, < C(o+|w—qg]).

If o is sufficiently small, then, by (2.21), the equation (1.1) is uniformly

elliptic in 2% (¢). Then the function v := ¢ — wz, € CH*(Q*(p)) is a
weak solution of the conormal derivative problem in Q1 (¢) for a uniformly
elliptic equation:

div(A(Dv)) =0 in Q7 (p),

A(Dv)-v=yg on Sy,

v(,xn) =0 uniformly on T" ! when z, — oo,
with

A(P) := p(|P + wn|*)(P + wrp) — p(w?)wry, P €R™,

and with g is defined by (7.2). By (2.20), v(z) is bounded in Q% (¢).

Thus, by Lemma 4.7, g satisfies (4.18). Hence, by (2.20) and (7.3), we
can apply Lemma 4.6 to v(z) in Q7 (¢) to obtain (7.1). [ |

Now we show that w obtained in Section 6 is uniquely determined by
¢ (z).
PROPOSITION 7.2  There exist o9 depending only on the data as in Lemma
7.1 such that, if ¢~ satisfies (2.16), and ¢ € WH>(Q) is a solution of
Problem A with w € (0, psonic), then w = q* in (2.20), where g is defined
by (2.23). In particular, ¢(x) satisfies (2.29).

PROOF: We have ((0,a)" ' x{—1})NQ*(p) = 0 by (2.27) and (2.28)
for small 0. Note that ¢ = ¢~ in Q, = € CH*(Q) is a weak solution
of (1.1), and Q™ is a bounded domain. Thus,

| Do BDg™ Dy de = [ (1D D vipan!
Q- oN—

for any 1 € C*°(R"). Choosing ¥ = 1 and using the boundary condition
(2.17), we get

0= [ pIDy"P)De™ vanr!
o0~

= [ sDe D vanrt — | p(1D™[2)8, ™ da,
Sy (0,a) =t x{-1}
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where S, = 0Q" \ 99 is the shock surface. The Rankine-Hugoniot con-
dition (2.3) on S, implies

[ oD Dt wanrt = — [ (1D F)Dg v !
Sy S,
--/ p(1D )y, ™ da.
(0,a)n—1 x{—1}

Since (0,a)""! x [1,R] C Q" if o is small and R > 1, and since
e € CH(Q1) is a weak solution of (1.1) in QF = {z,, > f(2')}NQ, then
using (2.19) and performing the calculation as above yield

/ p(1De)0s, pds’ =~ [ plIDg?)Dpw ™™ for B>
(0,0)"~tx{R} Se
Thus, for any R > 1,
(7.4)
/ oD, 0o’ = | p(1D™ )05, 0 da.
(0,0)" =t x{R} (0,@)~ 1 x{-1}

By (7.1), Dy(-, R) — wip uniformly on (0,a)"! as R — co. Now we
can pass to the limit as R — oo in (7.4) and get w = q* where ¢ satisfies
(2.23) and (2.24).

Now, (2.29) follows from (7.1) and (2.26). |

Now we prove the uniqueness of solutions of Problem A if (2.32) holds.

ProPOSITION 7.3 Let qg' and q, be as in Theorem 2.1. Then there exists
oo > 0 such that the solution @(x) of Problem A, satisfying (2.21), is
unique for any o € (0,00) and any supersonic solution ¢ (x) of (1.1)
satisfying (2.32) and the boundary conditions stated in Problem A.

PrOOF: 1. Let ¢ € W1>(Q) be a solution of Problem A satisfy-
ing (2.21) and (2.25). By Lemma 7.1 and Proposition 7.2, if ¢ > 0 is
sufficiently small, then ¢(x) satisfies (2.25)—(2.29).

Now we follow the scheme of the proof of [5, Theorem 5.1]; However, we
need some new estimates because the domain is now an infinite cylinder.

2. Let ¢ # ¢ be two solutions of Problem A satisfying (2.27)—(2.29).
Extend them to the domain €2 as in §3.1. Then, by Step 1, the extensions
satisfy (2.29) and are solutions of Problem C in Q.

By (2.28), Q. N {z, > 1/2} C Q1 () and Qe N {z, > 1/2} C QT(p).
In particular, by (2.16) and (2.29), for sufficiently small o, we have ¢, $ <

1.
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g Tn on T"1 x [3/4,1]. Then, as in §3.1, we can modify ¢~ on the set
T" 1 x[3/4,1] and extend to T" ! x [~1,00) to obtain g~ € CL*(T" 1 x
[~1,00)) satisfying = = ¢~ on TP ! x [~1, 3/4],

(7.5) 167 =g ll1a0. <20,
and
(7.6) @ =gy xn on T"!x[7/8 00).
Then
p,p< ¢ on Q,
p=¢ on Q (p), <@ on Q (p),
p=¢ on Q°(3), ¢<@t on Q(P).
We write ¢~ (x) for both the original function and the modified and ex-

tended function @~ ().
Define u := ¢~ —p and @ := ¢~ — ¢ in Q.. Then

u >0, >0 in Q,
and

Q) :={u>0}N =0 (¢), Q7 (a):={a>0}NQ =07 (p),
S(u) :==0{u >0} N Qe = S(p), S(a) :=0{u >0} N Qe = S(¢).

The definitions of u(z) and u(x) with (2.29), (2.16), and (7.6) imply

— 1
lu— (a5 = a")zal 0t ) < Co,

7.7
1) |4 — (g0 — ¢

Danll D qe @ < Co

3. By (2.29) and (3.8), if o is sufficiently small, then the function

© € CHe(Q) N C?(Q) satisfies

div (5 Dyl)Dg) =0 in ¥(y),

ﬁ(|D90|2)90V = Ggo on S(p = {mn = f(l‘,)},
where G, is defined by (4.9) for ¢ = ¢. Rewrite this problem in terms of
u = ¢~ — . Then, if o is sufficiently small, u(x) in Q" (u) is the solution
of the following problem:
(7.8) div (A(z, Du)) =0 in QF(u),
(7.9) u, = Hy(a') on S(u).
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Here S(u) = {(2/, f(2')) : 2’ € T 1} by (2.27),
(7.10) A(y,P) = p(|ID¢™(y)—P) (D¢~ (y)—P) for y € Qe, P €R",

and Hy(z') := Dy~ () - vi(z) — G(| D¢~ (z)|?, Do~ (z) - v4(x)), for 2’ €
T 12 = (2, f(z')) € S(u), and the inward unit normal v¢(z) to S(u)
at z, where G : R? — R is a smooth function, constructed in [5, Theorem
5.1, Step 2|, which depends only on p, ¢*, and ¢~

Note that (7.8) is uniformly elliptic with the same ellipticity constants
as those for (3.11).

The function @(z) is a solution of the similar problem in Q7 (4), i.e.,
i(x) satisfies the equation (7.8) in Q7 (4), and

Uy = HJ;(:U') on S(a),

where Hf(ac’) =Dy (z) -v(z) — G(| Dy~ (z)]?, Dy~ () - vi(z)), for z' €
T 1 & = (2, f(z')) € S(4), and the inward unit normal vi(z) to S(a)
at x.

4. We may assume f # f; otherwise ¢ = ¢ by the uniqueness of
solutions of the problem (7.8) and (7.9) satisfying (7.7) in the domain
Ot (p) = QT (u), which follows from Lemma A.2, applied to u — (g5 —
q")zn and 4—(gg —q ™)z, that are also solutions of the conormal problems
for an elliptic equation with similar form to (7.8) and (7.9). Thus, we may
assume that

(7.11) § = ||f = fllpoomn-1) > 0,
and, moreover,
0= f(w;) — f(zh) for some z! € T 1,

since the opposite case can be handled similarly. Applying (2.28) to both
f(z') and f(2'), we have § < Co. We assume that o is small so that
Co<1.

We shift the domain Q7 (@) in the direction —1q by the distance 4.
Then the resulting domain B contains Q" (u) and BNS(u) # (. Precisely,
define v : Q. — R by

vz, xz,) = a2, 2, + ).
Denote h(z') := f(z') — 4. Clearly,
QT (v) :={(2', ) : v(@,2) >0} ={(z',2n) : Tp > h(2")} N Qe.
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It follows that Q1 (u) C Q7 (v). By construction, f(z') > h(z'), and there
exists ., € T"! such that f(z') = h(z.). Denote z, := (z’, f(z.)) €
T" ! x R. Then the smooth surface S(u) touches the smooth surface
S(v) at x4. Denote the common unit normal to S(u) and S(v) at x, in
the direction of Q1 (v) by v(z). Since S(4) = S(v) + dvy, it follows that
the inward unit normal v z(z, + dvg) to S(@) at z. + dvp = (', f(z'") +9)
is equal to v(z). Then, from the definition of H¢(z') and H]g(x’),

|Hy(el) — Hy(2l)| < CIDy (&, f(2L)) — Dy (a, £(xl) +6)| < Céo,

where we used (2.32) in the last inequality.
Also, since () satisfies the free boundary condition 4, (z') = H f(x’ )
and v(z) = 4(z + dvp) for any x, we have

vy(x4) := Dv(xy) - v(zs) = Dz, + 1) - Vf(x* + ) = Hf(xfk)
Since u(xz) satisfies u, (z4) := Du(xy) - v(z,) = Hy(z)), we have
(7.12) |ov (@) — un(@)| = [Hy(2)) — Hy(2})] < Cdo.

We will come to a contradiction for small o by showing that

vy(zy) — uy(z4) > €0, with ¢ > 0.

5. Note that z, € S(u) and v(z,) is the inward normal to S(u) at z,.
Also

(7.13) V]s() > Uls)-

Indeed, v > 0 = u on S(u) from the definition of Q" (u) and v(x).
Since @(z) satisfies (7.8) in Q7 (4), then v(x) satisfies

div (A(z + 6v9,Dv)) =0  in QT (u).
We write this equation in the form:
(7.14) div (A(z, Dv)) = divyp(z) in Q" (u),

where A(y, P) is the function (7.10) and

P(z) =—0 /01 Dy A(x + dtvg, Dv(x)) - v dt.
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Note that (7.6) implies
(7.15) P(x' z,) =0, if x, > 2,

since 6 < Co < 1.
By (7.10) and (2.32), for any Ly > 0,

sup (| DyA(, Plloas. + [D2pA(, Plloog. ) < C(Lo)o.
|P|<Lo

From this, we use |Dv(z)| < ¢~ — ¢" + CMo with Mo < 1 to conclude
|Y| < Cdo in Q,
and

9 (@) — »(2)]
1
<9 ‘/0 (DyA(z + 0svg, Dv(x)) — DyA(Z 4 dsvg, Du(z))) - vo ds

1
+ / (DyA(é + b5, Do(z)) — DyA(# + Ssvp, Du(2))) - vo ds
0
< Céolz — z|* + C|Dv(x) — Do()|

< CMéo|x — z|°,

where we used (7.7) and the fact that v(z) = d(x + drp) in the last
inequality. Thus, we have

(7.16) 1¢]l0,0,0. < Céo.
Denoting w := v — u, we obtain

(7.17) Z Or(aij(2)0p;w) = divep(z) in QF(u),

1<i,j<n

where a;;(z) = fol Aﬁ;j(:z:,st(x) + (1 — s)Du(x))ds. Thus, the equation
(7.17) is uniformly elliptic with the C*(2" (u)) norms of a;;(z) depending
only on n, g5, 7, and €, where we used (7.7) to estimate the C®(Q+(u))
norms of a;;.

By (7.7) and the definition of v(x)

(7.18) lw— (@ — gl sy < Co
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6. By (7.18), there exists L > 0 such that w(z', z,,) > (qg —q1)d/2 >0
for any ' € T" ! and 2, > L.

Denote Qr := Q" (u) N {z, < L}. Then w = w; + ws in Qr, where
wy, wy € CH*(Qr) are respectively unique weak solutions of the following
problems:

(7.19) > 0y(aij(2)0y,w1) = 0 in Qp,
1<4,5<n
wy = w on 0Qp;
and
(7.20) > 0, (aij(2)05,w2) = divep(a) in Qy,
1<i,j<n
wy = 0 on 0Qy,.

The existence of w(z) and wo(z) in the periodic setting Qr, € T""! xR
is proved as in [5, Proof of Theorem 5.1, Step 5].
By (7.15) and Appendix B, we can estimate wy(z) as

[wzll1,0.0, <

where C' depends only on the dimension, ellipticity constants, and || f|| o rr-1,
and is independent of L. Furthermore, using || f|| 4 tn-1 < Co and choos-
ing o small yield that C depends only on n, qa“ ,qg » and og. Thus, we use
(7.16) to obtain

(721) ||w2||1,a,ﬂ+(u) < Cod.

7. Now we estimate (w;),(x«) from below. By (7.13), w; > 0 on
o0t (u). On {x, = L},

—q*
w; =W — wy > 6—Cod >0,

if o is small. Thus, w; > 0 on Q. Since wi(z) is a solution of (7.19) in
Qr, then wy(z) > 0 in Q by the maximum principle.
By (7.15), the functions u(z) and v(z) satisfy

div (A(z, Du)) = div (A(z, Dv)) =0 in T ! x (2,00).

By (7.6) and the definition (7.10) of A(z, P), it follows that A(z, P) is
independent of z on {x, > 2}, and thus we define A(P) := A(3ey, P).
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Denoting @ := u — (g — ¢ )y and 0 := v — (g — ¢ )&y, we find that
@(x) and 9(z) satisfy the elliptic equation:

div (A(D#)) = div(A(D%)) =0 in T™ ! x (2, 00),
where A(P) = A(P + (g5 — q")en) — A((gg — ¢ )en) satisfies A(0) = 0
and

a(axn) — 0 and 5(7xn) - (qa - q+)5

uniformly on T" ! as x,, — co. Denote g; = A"(Da) and g = A™(D%).
By Lemma 4.7(ii),

(7.22) / _g(@,2)da’ =0, k=1,2,
Tr—

Denote by ug(z) (resp. vg(x)) the unique solution of the problem
(4.13) in the domain T"~! x (2,R), with the equation and conormal

boundary condition defined by A(P), and g = g1 (resp. g = g2). By
(7.22) and Lemma 4.6(ii), we conclude that

up =@ and vgp— 90— (gq —q")8

in C%% on compact subsets of T"1 x [2, 00) as R — co. Thus, denoting
WR = VR — UR, we have

(7.23) wr —w— (g — q+)5

in C%% on compact subsets of T"! x [2,00) as R — co. Denoting

R e . .
aij(:ﬂ) = /0 AP]_ (sDo(z) + (1 — s)Da(x))ds,
we get

> O, (afi(2)0,,w") = div A(D?) — divA(D@) =0 in T x (2, R),
1<i,j<n
Z affj(x)(')zij = A”(Dz?) - A”(Dﬂ) =go—g1 on T" 1 x {2}
1<i<n
wf =0 on T"!x{R}.
Clearly, a,f;(m*) are uniformly elliptic coefficients, and af}(w) = aﬁ(q:).
Also, af} € CL(T" 1 x[2, R]) since u,v € C**(T" 1 x[2, R]). By (7.22),
we can apply Remark 4.1 and conclude that there exists ' € Tn1
such that wg(zz,3) = 0. Then, for some sequence R; — oo, we have
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x’Rj — #' € T" ! and, by (7.23), we conclude that w(#',3) = (¢; —q™)é.
Thus,

+

(7:24) wi(#,3) = w(@',3) — wa(#,3) = (g — "3~ Cob > L2,

if o < (gg —q")/(2C). Note that wi(z) is a nonnegative solution of
(7.19). Without loss of generality, we assume L > 5. Then, by the
Harnack inequality and (7.24), we have

wy > b in T ! x[2,4].

Since the geometry is fixed by the inclusion T"~! x [1,00) C Q% (u), the
constant ¢ > 0 depends only on n, gy, g, , and 0g. Now Lemma A.1(i) in
Appendix A implies

(7.25) (w1)y(zy) > €6,

where ¢ > 0 depends only on n, qg' ,qo » and og.
Combining (7.25) with (7.21), we obtain

(v = w(2) = (w1 + wa)y(ws) > (¢~ Co)s > 6,
if o is small. If § > 0 and o is small, this contradicts with (7.12). Thus
6 = 0. This completes the proof. ]

As a consequence of the uniqueness, non-degeneracy, and regularity of
solutions of the free boundary problem, we can conclude Theorem 2.2. Its
proof repeats the one of [5, Theorem 6.1] by using in particular that the
perturbed supersonic solutions ¢~ (z) and ¢ (x) are considered on the
compact set 1 := T" ! x [~1,1] in the present case and define unique
solutions of Problem A, or B, by Theorem 2.1, respectively, and also using
the fact that, under the conditions of Theorem 2.2, the higher regularity
estimates (2.30)—(2.31), proved in Section 8 below, hold.

8 Higher Regularity

In this section, we prove the higher regularity assertion of Theorem 2.1
and the estimates (2.30) and (2.31).

We continue to consider the function ¢~ = ¢~, which is extended
to the domain T" ! x (—1,00) and satisfies (7.5) and (7.6). The as-
sumption ¢~ € C>%(Q;) implies that the extended function satisfies
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@~ € C%*(T™ ! x (~1,00)). The function u := ¢~ — ¢ > 0 is a so-
lution of the following problem in the domain QF (u) = {u > 0}:

div (A(z, Du)) =0 in QF(u),
B(xz,Du) =0 on S(u),

where S(u) = {(z', f(2')) : @' € T""1}, A(x, P) is defined by (7.10), and

p

B(a,P) = (A(,P) = p(ID¢™ (2)) Dy~ (@) - 1

for P € R™\ {0}. Note that |B—z| = vy is the unit inner normal to S(u).

Since ¢~ € C?*(T" ! x (—1,00)), then A € CH*(QF(u) x R") and

B € Cb(Q*(u) x (R \ {0})).
Since u(z) satisfies (7.7), then, for sufficiently small o,

(8.1) 0<d "9 9, u<2q —g¢t) in OF(w)

In particular, we can modify B(z, P) near P = 0 so that the modification
does not affect the values of B(z, Du(z)) for z € Qt(u), and the modified
B(z, P) is in C1*(QF(u) x R™).

By (8.1), we can perform the transformation ® : Q*(u) — T" ! x
(0, 00) introduced in Kinderlehrer-Nirenberg [17, Section 3] in the whole

domain Q7 (u):
(', 20) = (¥, yn), with ' = 2", yn = u(a’,zn).

By (8.1), ®(Q"(u)) = T"! x (0,00) and &, &~ € 1.
Then, as in [17, Section 3|, we can express z, = w(y) and the deriva-

tives of u(z) through the derivatives of w(z) and in particular obtain, by
(8.1) and (7.7), that

1 2
g —a) - S

(1)
< Co.
1;0; T~ 1 x[0,00)

in T ! x [0,00),

|0 = wntas —a")|
Then we rewrite the problem (7.8) in terms of w(x):
(8.3)
Zlgi,jgn a’ij(y’? w, Dw)agiy]w + b(y,7 w, Dw) =0 in Tn_l X (07 00)7

G(y',w,Dw) =0 in T ! x {y, =0},
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where, by (8.2) and [17, Section 3], the coefficients a;;(y’, z, P) are elliptic
for (y', 2, P) € {(v',w(y), Dw(y)) : y € T" 1 x(0,00)} if o is sufficiently
small, and the ellipticity constants depend only on those of the equation
(7.8) and the bounds in (8.2). The boundary function is

P 1 (—P',1)

.27 = (44,5 E L) ipp Pyp ). CED.

(y ) Y PP p(|[ Dy~ |") Dy (P
with notation P = (P', P,) € R™.

We now check the strict obliqueness condition on T"! x {y, = 0}.
Then, denoting n = (—P’,1) and using the ellipticity of —A(zx, P), we
obtain

1 ~ A(—=P' 1))
- Ao ninj > ———=.
TPV LR
By (8.2), for P in the range of Dw(y), we have
Gp-v=Gp, > fs()\,qgc) > 0.

We may modify G away from this range of P so that the above inequality
holds for all (y',z,P) € T ! x R x R", and w(z) still satisfies the
boundary condition in (8.3).

Also, a;j,G € CH*(T" ! xR xR") and b € C*(T" ! x R x R") with
the norms depending only on the norms of A(z, P) in C**(Q(u) x R")
and Dy~ (z) in CY*(Q(u)), respectively, as well as the bounds in (8.2).

Since w(y’,0) = f(y'), the estimates (2.28) and (8.2) imply that

lw(y',yn)| < Co +2yn/(qy —q") for y,, > 0.

Now it follows from the local boundary estimates of [20, Theorem 2] that

GP-I/:GPn:

||w”2,a,T”—1><[0,1] < C(”? «, qa’ Y, 0, ”DSD_ ”1,06791)’
Again, since w(y’,0) = f(y'), then the estimate (2.30) is proved.

Now, (2.31) follows from (4.36) applied to the problem (7.8) rewritten
in the terms of the function v := ¢ — g7z, i.e.,

div(A(Dv)) =0 in QT(¢) =Q"(u),
A(Dv) -v = g(z) on S(u),
where
A(P) = p(|P + gt o) (P + ¢ ) — ﬁ((q+)2)q$1/0 for P € R",
9(z) = Gy(x) = p((¢*)*)g" v - o,

and G, is defined by (4.9) for ) = . Note that g(z) satisfies (4.18) by
the definition of ¢™.
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Appendix A: Hopf-type Lemma for the Equations of
Divergence Form in Domains with C1* Boundaries

The following lemma is a refined version of [11, Lemma 7] with more
precise estimates of the normal derivative of solutions at boundary points
for our applications above.

LEMMA A.1 Let Q C R"™ be an open set, and let Q N Br(0) = {z, >
f(2")} N Bg(0) with f € CL*(R"1), £(0) =0, and Df(0) = 0.

i. Let u € CL%(Q) be a weak solution of

(A.1) Z Oz, (aij(%)0z;u) =0 in €,

1<i,j<n

where A = (a;;) € C*(Q) satisfies the ellipticity condition:
(A.2)

MNEP < >0 aii(@)&g; < AP for any z€Q, £ €R",
1<4,j<n

with A > X >0 and a;; = aj;,4,j = 1,...,n. Assume that u > 0 in
QN Br(0) and u(0) =0. Then

0z, u(0) > cu(?en),

where ¢ > 0 depends only onn, X\, A, R, o, ||aij||0,a,0nBr, and || f|l; 5 gn-1-
HOp

. If u € CH%(Q) is a weak supersolution of

Z Oz, (aij(2)0p;u) <0 din €,

1<i,j<n

where A(x) = (ai;(x)) is as above, and if u > 0 in QN Br(0) with
u(0) =0, then
0z, u(0) > 0.

PROOF: We prove (i). In the following proof, all constants C, ¢, ¢y, ete.
are positive and depend only on n, \, A, R, o, ||aij|/0,a,0nBR, and ||f||1’a’B;71 ,
unless other dependence is specified.

The change of variables y = ®(2',z,) = (2',z, — f(2)), defined on
By,(0), satisfies ||® — Id||1,a,ng(0) < 1/10 and

B(Q) N B,(0) C {zn > 0} N B,(0),
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where p > 0 is small, depending only on n, R, and ||f[|; , gn-1. Then the
D p

equation for v(y) := uo®~! in {y, > 0}NB,(0) remains the same form as

the original equation for u(x), with new ellipticity constants and norms of

coefficients in C* depending only on n, R, ||f|; , gn-1, and the original
HOp

A A, and ||agjll0,a,0nBR- By the Harnack inequality in BR,{%(O) C Bg(0),

R
u(—en) <C inf u,

and thus v(Ze,) = u(4e,) > Lu(£e,). Now, noting that e, is the normal
vector to both Q and ®(Q) at 0, and 9y, v(0) = Jy,u(0), it suffices to
prove the lemma for v(y) in {y, > 0} N B,(0), i.e., to show that

(A.3) 8,,0(0) = ev(5en).

Furthermore, by performing a linear transform 7' : R™ — R" of the
form Ty = OA™ 2y where O is an appropriate orthogonal transform, we
can achieve that {y, > 0} N B, (0) C T({yn > 0} N B,(0)) with p; =
p/C(n,A\,A). Then Te, = Ke, where Kj(n,\,A) > K > Ks(n,\,A) >
0, and thus [T~ (p1e,) — pen| < p — & with ¢ = e(n, A\, A) > 0. Defining
w = v o T, we have that the equation for w(z) is of form (A.1) with
a;j(0) = d;;. Applying the Harnack inequality for v(y) in B,_.(pe,), we
see that w(pren) = v(T Y (pren)) > cv(pe,), where ¢ = ¢(n,\,A) > 0.
Also, 9y, w(0) = Dw(0) - e, = Dv(0) - (Te,) = K0y,v(0). Thus, it suffices
to prove (A.3) for w(y) and p;.

Thus, in the original notations, we reduced the proof to the case

(A.4) Qn BR(O) = {:L’n > 0} N BR(O), aij(O) = 523

Let » > 0 be chosen small below, depending only on the data. Let
Dy (ren) = Br(ren) \ Br(ren). Let w(y) satisfy

Z ayj (aij(y)0y,w) =0 in Dy(rey,),

1<i,j<n
w=1 on dB:(re,),
w=0 on 0B.(re,).

r r

Re-scale to Dy = Bl(O)\B%(O): w(y) = w(="2) and a;;(y) = ai;(LX=—=2).
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Then we have

Z ayj (a’i](y)aylw) == O il’l DI’

1<i,j<n
w=1 on 0B1(0),
2

w=0 on 831(0),

and

(A.5) laijllcopy)y = llaijllcom, (ren))s  [@izlo,a,pr < ll@ijllo,a,, (ren)™
(A.6) &z—j(—en) = aij(O) = 523

We assume r < 1.
Let G(z) satisfy

AG=0 in Dl,
G=1 on 8B4(0),
G=0 on 331(0)

Then ||G||1,0,p, < C(n), and 9y, G(—e,) = ¢(n) > 0.
By (A.6), the function W = @ — G satisfies

Z (9 a” ByZW Z azg aw(_en))ayzG) in
1<i,j<n 1<i,j<n
W=0 on aB%(O) U 0B1(0).

Using (A.5), we get ||ai;(-) — aij(—en)
1(@s5(-) — @ij(—€n))0y; Gll1,a,0, < CT.
Now, by [14, Theorem 8.33], ||W||1,o,p, < Cr®. Thus,

< Cr?, and thus

>c(n) —Cr®* > c(n)

3ynu~)(_€n) > ayné(_en) = 9

if r > 0 is sufficiently small, depending only on the data.
Rescaling back to D,(rey,), we get

e(n) _ c(n)
Oz, w(0) > — o > —= 5

Applying the Harnack inequality to u in B (£e,,), we have

vl

r
4

min u > cu(—e
BBr(ren) (2 n)

D17
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Thus, by the maximum principle, u > cu(£e,)w in Dy (rey,). Since u(0) =
w(0) =0 and u,w > 0 in D, (re,), we get

Oz, u(0) > cu(gen)@cnw(O) > clu(gen).
This proves (i).

To prove (ii), we repeat the transformations that lead to (A.4) and
check that, after the transformations, u(z) is still a positive weak su-
persolution of an elliptic equation of the form (A.1) in Q@ N Bg(0) and
u(0) = 0. Thus, we assume (A.4) without loss of generality. Denote
€= minaB%(ren) u > 0. Then, using w(z) defined above yields u > ew in

D, (rep) and u(0) = w(0) = 0. Thus, 9, u(0) > £9,, w(0) > 0. [ |

Now we show the comparison principle in unbounded domains, which
has used in Sections 4, 5, and 7.

LEMMA A.2 i. Let Q C R™ be an unbounded domain with 0 € C1,
and let v(z) be the interior unit normal to 0. Let A(x, P) satisfy
(4.14)~(4.17) as in Lemma 4.2. Let u,v € CH*(Q)NC**(Q) satisfy

div (A(z, Du)) > div (A(z, Dv)) in Q,
A(z,Du) -v > A(z,Dv) -v on 01,
lim sup (u—v)<0.

R—o0 Q\Bg(0)

Then u < wv in €.

i. Let QF be a domain as in Lemma 4.2. Let A(z, P) satisfy (4.14)-
(4.17). Let u,v € CH*(QE) N C>*(QF) satisfy

div (A(z, Du)) > div (A(z, Dv)) in Q,
A(z,Du) -v > A(xz,Dv) -v on Sy,
u<w on {z, = R}.

Then u < v in Q.
Proor: We prove (i). If supg(u — v) is attained at zp € 2, then

u — v = const. in ) by the strong maximum principle, which implies
u < v by the condition at infinity. If supg(u — v) is attained at zy €
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0f), then the tangential derivatives D (u — v)(z9) = 0 to 02 implies
D(u —v)(zg) = (u — v)y(z)v(zg). Then it follows that

0 < (A(zo, Du(zg)) — A(zo, Dv(xp))) - v(x0)

1 :
= (v— u)l,(xo)/ Z A} (zo,tDu(zo) + (1 — t) Do (xo))vi(zo)vj(wo) | dt.
0 \i<ij<n

Now the ellipticity of A(zg, P) implies that (u — v),(z¢) > 0. This con-
tradicts Lemma A.1(ii), since w(z) = u(x) — v(x) is a subsolution of the
linear elliptic equation:

Y Oui(aij(2)dyw) >0 in Q,
1<i,j<n

with coefficients a;;(z) = [y A (z,tDu(z) + (1 — t)Dv(z))dt € C*(Q).
The remaining possibility is that there exist z; — oo such that (u —
v)(z;) — supg(u — v). From our conditions at infinity, it follows that

lim;_,o0(u — v)(z;) <0 and hence supg(u —v) < 0. Thus, v < v in Q.
The proof of (ii) is similar. |

Appendix B: Bounds of Weak Solutions in Cylindrical
Domains

LEMMA B.1 Let Qr := T" ! x (—oo,R) N {z, > f(z')}, where f €
CHT™ 1) with | fllpeo(rn-1y < 7/2 and R > r > 0. Let u(z) be a weak
subsolution of

(B.1) N 0,(aij(2)0s,u) = ¢(x) + divip(z) in Qg,

1<i,j<n
u=20 on 0QRg,

where A(x) = (aij(x)) satisfies the uniform ellipticity condition (A.2).
Assume ¢ € L%(QR;R), Y= (Y1,...,%,) € LI(Qg; R™) with ¢ > n, and

$»=0,9;=0, ae on Tt x (rR), j=1,...,n.

Then

supu < Ck,
Qg

where Kk = H(b”qu(Q ) + 19l La,), & = Qr N {zn < 1}, and C depends
only on n, A\, A, q,7,||fllc1, and is independent of R.
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ProOOF: The proof follows the Moser iteration technique [14, Theo-
rems 8.15 and 8.16], with some adjustments, to show the independence
of R in the estimate. We will only sketch the proof, pointing out the
features which are special in the present case.

We first show that

(B.2) supu < C([[u'|z2(o,) + ),
R
where C = C(n,q,r,|fllc1) and u™ = max(u,0).

For # > 1and N > k > 0, we define H € C!([s,0)) by H(w) =
w® — kP for w € [k, N] and taking H to be linear for z > N. Setting
w=u"+xand b= A2k 2¢)|2 + A"k 1|¢|, and arguing as in the proof
of [14, Theorem 8.15], we obtain the estimate

/ \DH (w)|? dz < 6/ bIH (w)w]? de.
QR QR
Since b = 0 a.e. on T"1 x (r, R), we get
/ |DH (w)|? dz < 6/ b|H' (w)w|? do = 6/ bl H' (w)w)? dz.
Q Qr Q.

Note that H(w) € W2(,) and H(w) = 0 on S5 = {(2', f(2')) | 2’ €
T '} C 8Q, with H"~!(Sf) > 0. Then, applying the Sobolev-Poincare
inequality in €2, we obtain

1H (w)l|zs(0,) < CIDH(w)l|z2(g,),

where s = 2n/(n — 2) for n > 2 and any s > 2 for n = 2, and C =
C(s,n,9Q,5f). In fact, the dependence C on Sy is actually the de-
pendence on 7 and ||f||c1, which can be verified by mapping Q, onto
T" 1% (0,1) by a map ® such that ®(Sf) = T" ! x {0} and the C'! norms
of ® and ®~! depend only on 7 and ||f||c1. Thus, C = C(s,n,7, || f]lc1)-

For n = 2, we choose ¢ so that 2 < § < ¢q. Now, denoting 7 = n for
n > 2 and n = § for n = 2, we get

1
. 7 ! 2 ?
1, gy o <O B (w)wa)
£ 1/2
< Clb s o I1H ()0l 2asa-21 )
where C = C(n,r,||f||c1). Starting from this estimate, we follow the
proof of [14, Theorem 8.15] to perform the Moser iteration in the domain
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), to obtain
supu < C([lu™[|p2(q,) + K),

with C = C(n,q,r,||f|lc1). Since, on T"! x [r R], the equation is
homogeneous and v = 0 on {z, = R}, we obtain the same bound on
T" ! x [r, R] from the maximum principle. Then, (B.2) is proved.

It remains to drop the term |[u™||12(q,) in (B.2). Denoting

M = supu = sup u,
Qr Q.

and proceeding as in the proof of [14, Theorem 8.16], we obtain
A | Dut|?
— ———dz
2Jop (M +Kk—ut)?

+ 2
S L
M+kJog \M+k—ut  2X(M 4k —ut)?

On the right-hand side, the integrand vanishes on {x, > 7}, and hence
we can change the domain of integration to €2,. And, since the integrand
on the left-hand side is nonnegative, we can integrate it over {2, so that
the inequality is still kept. Then, by the definition of k, we get

|Du+|2
———dx < C(|Q]).
/QT(M‘FKG—’LLJF)Qx_ (192-])
M+ kK

Deﬁning w = log (ﬁ
K—U

) , we have

/ IDw?|dz < C(I]).

Q.

Also, w = 0 on Sy. Thus, by the Poincare inequality in €2,

(B3) [ w?lde < €, 20, 8p) = o, 1 Fllcr):
Qp

Now we follow the argument of [14, Page 193] and show that w(z) in Qg
is a subsolution of an equation of the form (B.1) with the right-hand side
¢+ div e, where ¢ = |¢|/k + |1|?/2Ak2 and ) = ¢/(M + k — u™). Thus,
¢ and ¢ vanish on {2, > r}, and w(z) satisfies (B.2). Since, from the
definition, [|$]| L/2(q,) < 2X and [[]|zaq,) < A, We obtain
supw < C(n, ¢, 7, [ fller)(X + [[wl[r2(e,)) < O,
R

where we used (B.3) to get the second inequality. Thus, (M +k)/k < C.
This completes the proof. |
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