STABILITY AND GEOMETRIC CONSERVATION LAWS FOR ALE
FORMULATIONS

DANIELE BOFFI AND LUCIA GASTALDI

ABSTRACT. The aim of this paper is to investigate a model ALE scheme, with respect to
various possible choices of time discretizations. For each time scheme, we investigate the
relationships between stability and the so-called Geometric Conservation Laws (CGL). We
shall see that GCL condition proves neither necessary nor sufficient for stability. In doing
so, we review some known theoretical results and we prove some new stability results for
space-time ALE discretizations. Several numerical experiments will be provided.

1. INTRODUCTION

In this paper we consider the finite element approximation of a parabolic problem in a
moving two-dimensional domain. We assume that the motion of the domain boundary is
given although in most applications arising from fluid-structure interaction problems it rep-
resents a further unknown of the problem. In such applications the fluid domain boundary
may undergo a motion with large amplitude, which have to be taken into account using a dy-
namic mesh in the numerical computation. The Arbitrary Lagrangian Eulerian formulation
has been introduced for this purpose, see [2, 1, 9] and it has been widely used in the numeri-
cal simulation of fluid-structure interaction systems, mainly associated with finite difference
and finite volume schemes (see e.g. [3, 13, 12, 11, 7]). More recently, some contribution to
the analysis of ALE numerical schemes based on finite element approximations has been
given (see [4, 14, 15, 6]).

The literature on ALE formulation often refers to the so-called Geometric Conservation
Laws (GCL) which are considered to be strictly related to the stability and the accuracy
of the method. The GCL condition governs the geometric parameters of a given numerical
scheme. In the case of spatial discretization based on finite volumes, the GCL condition
requires that the numerical procedure reproduces exactly a constant solution. It has been
stated that, in practice, the GCL can be violated if a sufficiently small time-step is selected
for advancing the flow simulation [18]. But for unsteady flow simulation this is, in general,
a major drawback since it dramatically increases the computational cost. Recently, in [7], it
has been proved that satisfying an appropriate discrete GCL is a sufficient condition for a
numerical scheme to be at least first-order time-accurate on moving meshes. In the case of
finite element spatial discretizations, the relationships between (GCL condition and stability
and accuracy properties of the numerical scheme, have not been completely clarified yet.
Some results in this direction can be found in [15]. In this paper we intend to review the
known results on this subject and to state, if possible, some relations between GCL condition
and convergence properties of various numerical schemes.
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For this purpose, we shall analyze the application of some well-know time advancing
schemes, like implicit Euler, Crank—Nicolson, Bacward Differentiation Formulae, to the ALE
formulation. For each scheme we discuss the satisfaction of the GCL and its stability prop-
erties. We shall show that, in general, the GCL condition does not imply the stability of
the method, except if we choose the time-step sufficiently small with respect to the domain
velocity or the meshsize. In particular, in the case of the Crank—Nicolson case, we have
to choose the time-step of the same order as h? (h being the meshsize), in order to ob-
tain stability and convergence of the fully discrete scheme. A modification of the standard
Crank—Nicolson method has been introduced to avoid such constraint, although a limitation
on the time-step with respect to the domain velocity still remains. On the other hand, the
violation of the GCL condition, as for example in the implicit Euler scheme, requires the
use of sufficiently small time-steps with restrictions of the same type as above. We shall
present some numerical experiments which confirm these issues for the various methods we
have analyzed.

The outline of the paper is as follows. The next section is devoted to the presentation of
the problem on moving domain and to its ALE formulation. In Sect. 3 the finite element
semidiscretization is introduced. Sect. 4 is devoted to the space-time discretization. In
particular, several time advancing schemes are proposed and their stability and accuracy
properties are analyzed.

2. STATEMENT OF THE PROBLEM AND ITS ALE FORMULATION

Let T > 0 be a real number and, for each ¢ € [0,T], let £; be a domain in R? with a
sufficiently smooth boundary. We shall use the following notation:

(1) Qr={(x,t) eR’* :xe€Q, t€]0,T[}.

We consider the linear advection-diffusion equation:
?9—7: — pAu +div(Bu) = f for (x,t) € Qr

(2) U = Ug forx € Qp, t=0
u=20 forx € OCy, t €1,

where (B is a convection velocity, p is a constant diffusivity, and A denotes the Laplace
operator. We assume that {2y is a bounded domain with Lipschitz continuous boundary and
that the data satisfy the following regularity requirements:

(3) BeW"®(Qr), feL*Qr), uo€ Hy( ).

Let us introduce the Arbitrary Lagrangian Eulerian frame of reference and briefly recall
the most used notation and assumptions. Let A; be a family of mappings, which, at each
t € 10, T[, maps the points € of a reference domain €y, into the points x of the domain
at time ¢. Then for each ¢t € [0,T]

(4) Ap 0 Qo — §y, x(&,t) = A(&).
We assume that A; is surjective,

(5) Qy = A4(p) is bounded and Lipschitz continuous,
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and satisfies the following regularity assumption

(6) .At € Wl’oo(Qo)Q, .At_l € Wl’oo(Qt)Q.
Moreover, for t; and t5 in I, we use the following notation
(7) Atl,tz : Qtl — Qt? Atht? = Atz o Atjl

to indicate the ALE mapping between two time levels. In the literature several techniques
have been proposed in order to construct such mapping, assuming that the evolution of
the boundary domain is known. For instance, one can use the harmonic extension of the
boundary position, as in [10, 16, 15], or one can consider the reference domain as an elastic
body which is deformed into the current domain, see [3, 6]. In [6] it has been proved that
the second approach guarantees the fulfillment of the conditions (5) and (6).

Let us consider a function ¢ : @7 — R defined on the Eulerian frame, then the time
derivative in the ALE frame is defined as follows:

0 0 a9
®) Sl @R S o) =FHED, €= A (),

Ot le

where g : Qy x ]0,7] — R is the corresponding function of ¢ in the ALE frame, that is

9(&,1) = g(x(&,1),1) = g(A:(£),1).
The domain velocity w is defined by:

ox _
(9 W) = 5| (A7 (0.0,
while the Jacobian matriz of the ALE mapping J; and its determinant .J; are given as:
8:1:i
(10) (Jt)ij = -, Jt = det(Jt).
9E;

In the following, we shall assume that the Jacobian .J;, which is positive, is bounded away
from zero by a constant x independent of ¢, that is

(11) Jy>k>0 foralltel.
Let u : Q7 — R be regular enough, then applying the chain rule to the time derivative gives:
ou Ju ox Ju
12 —‘ - —‘-Vx . V.
(12) dtle = atlx T arle VT Bl TV
Hence we obtain the ALE counterpart of (2), by substituting (12) in (2):
0
8—7: ¢ pAu +div(Bu) — w - Vyu = f for (x,t) € Qr
(13) U = U fOI‘XEQo, t=20
u=0 for x € 9, t €10, T7.

Let us define a functional space compatible with the ALE mapping:
(14) H(U) ={v: QU —=R:v=00A" 0€ Hy(Q)}, for each t €]0,T].

In order to derive a variational formulation for (13), we recall the following identity, known
as transport theorem or Reynolds transport formula (see e.g. [8]).
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Let 1 (x,t) be a function defined on Q; for each ¢. Then for any arbitrary subdomain
Vi € Q, such that V; = A, (Vy) with Vy C Qq it holds:

d (o )
(15) at %@Z)(X,t)dX—/M&(EL—F@/JdIVW) dx—/w<ax

In particular, for any v : Q7 — R such that v = ¢ o A, !, for some o : Q) — R, we obtain
from (15):

+Vx¢~w+@/)divw> dx.

— vdX:/ v divwdx
Q

t 8w .
7 Qtvz/zdx_/gtv<a‘£+z/)dlvw> dx.

Then the ALE weak formulation in conservative form reads (see, e.g. [4]):
find w : Q7 — R such that for each ¢ € |0, 7, u(t) € H(€), and

(17) (), 00+ anu),0) + ba(t) v w() = (F(2), ) Vo € H(),
u(0) = wuyg in Q,

(u,v); = / uvdx,
o
(18) / (uVxuVyv + div(Bu)v) dx

be(u,v;w) = —/ div(wu)v dx.
Q

Taking v = u(t) in (17), the following a priori bound can be derived by means of (16), an
integration by parts, and Gronwall’s lemma:

t t
19 Ju®llwo + 1 [ 1Txulayds < ool +C [ 171 ayds
0 0

(16)

where

3. FINITE ELEMENT SEMIDISCRETIZATION OF THE ALE FORMULATION

In this section we present briefly the finite element semidiscretization of (17). See [4, 15, 6]
for the details. For simplicity, we assume that for each ¢ € [0,7T], Q; is a polygonal convex
domain; we refer to [6] where the general case was considered.

Let us consider a triangulation 7, of €2y made up of triangles with straight sides, such
that Qp = Uger, K. Let us consider the Lagrangian finite element spaces

Ek(Qo) = {’I_A)h S Hl(Qo) : @h|K S Pk(K), for all K € 771,0}
,clg(Q()) = {Uh € ,ck(Q()) LUy = 0 on aQo}

where P;(K) is the set of polynomials on K of degree less than or equal to k.
For each t € ]0,T[, we consider the discretization of A; by means of piecewise linear
Lagrangian finite elements as follows:

(20)

(21) Api € L1(Q)*  for each t € )0, T[ with x,,(&,1) = Ap(€ thz i (€
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where x,;(t) = Ap(€;) denotes the position of the i-th node at time ¢ and ¢; is the i-th
basis function in £'(€).

Let Jy, be the determinant of the Jacobian matrix associated with Ay, ;. We assume that
there exists a suitable positive number § such that, for A small enough, it holds (see [6]):

(22) Jhs > Ok.

For each t € |0, 77, let Tp,; be the image of T, o under the discrete ALE mapping A, ;. Let
us denote by K; the image of a triangle K € T, that is K; = A (K). Thanks to (21) K,
is a triangle with straight sides, too. Moreover, setting 75, = {K; = Ap(K), K € Tro}, we
have Q, = NreT Kt

Let us set
LEQ) ={vp Q% = R:v, =dp0 A,:;, o € LF(Q0)}

23 N S BN
(23) Hp(Q) ={vp: U = R:ovp =10 oAh;, o € LE(Q)}.

Since A is piecewise linear, we can characterize £*(Q;) and H;,(Q;) as follows, see e.g. [4]:

LE(Qy) = {vn € HY () : vpli € Pr(K), for all K € Ty}

(24) Hi(Q) = {vn, € LE(Q) 1 v, = 0 at the nodes along 9 }.

Then the finite element spatial discretization of (17) is:

find uy, such that for each t € )0, T, upn(t) € Hp(Q),

(25) %(uh(t), vp)e 4 ag(up(t), vp) + be(un(t), vp; wr) = (f(2), vn)e Vo, € Hp (),
uh(O) = Up,0 in QO.

A stability inequality similar to (19) can be obtained also for the semidiscrete solution of (25);
in particular, we observe that such inequality is independent of the domain velocity field.

Moreover, if the exact solution u of (17) belongs to L*(]0,T[; H**1($))) for k > 1 with
time derivative %% € L2(]0, T[; H*(€)), then the following error estimate has been proved
in [15]:

1 wo [t
) = un0) ey + 5 [ 19u(u(s) = un ()0
0
(26) < 5lu(0) = unoll72 0
Lol oul?
ror (1ol + [ (|5 4ol
0 at Hk(ﬂs)

where the constant C', which is independent of h, might depend on [|[w||y2.e0(q,)-

4. SPACE-TIME DISCRETIZATION SCHEMES

In order to obatin a full discretization of (17), we consider a uniform subdivision of the
time interval |0, 7] and define t" = nAt for n = 0,..., N, At > 0 being the time step, and
N equal to the integer part of N/At.

Since the semidiscrete problem (25) can be viewed as a system of ordinary differential
equations, let us recall the time advancing schemes we are going to apply in the framework
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of ordinary differential equations. Let us consider the following system of ordinary differential
equations:

d
(27) EY =G(Y,t) te]o,T[; Y (0) =Yy,
where Y :]0,7] — R”, is a differentiable vector valued function and G : R* x ]0,7[ — R"
is continuous and Lipschiptz continuous with respect to Y.

Here is a list of commonly used numerical methods (Y" denotes the approximate solution

at time ¢™):
(28)
Yol — Y = AtG(Y" L it implicit (backward) Euler scheme
Y- Y = AtG(YEYT gntl/2) mid point rule
Y - Y = 2H(G(Y" L ) + G(Y™, ")) Crank-Nicolson scheme
Syt —2Y" 4+ LY = AtG (YT ) two-step BDF.

We observe that the first three methods can be obtained integrating system (27) from ¢
to t"T! and applying an appropriate quadrature rule, while the BDF methods are obtained
through differentiation formulae.

More precisely, let us denote by Q a quadrature formula approximating the time integral
from ¢” to t"T!, that is

tn+1

(29) Q(F) ~ /t F(t)dt.

n

In view of (29) the first three time advancing schemes in (28) can be written as follows:
(30) Y™ - YY" = Q(G).

The two-step BDF scheme, instead, is obtained with the following procedure: one constructs
the interpolant polynomial of second degree using the values of the discrete solution Y*~!,
Y™ and Y™, then computes the derivative at "' and enforces that it is equal to the right
hand side of (27).

We shall treat separately the case of time-advancing schemes based on integration and the
second order BDF scheme.

In order to introduce the time discretization of (25), we first discretize in time the ALE
mapping using a linear interpolation in time. Thus we have that the discrete ALE mapping
denoted by Aj a; has the following representation:

t—t" trt—t
AL Ah,tn+1(€) + —
where Ay, is the time continuous ALE mapping adopted in the semidiscrete problem (25).

As a consequence, the domain velocity is represented with a piecewise constant function
with respect to time and it is obtained by:

@) wpie) = At O 2 Al ¢ gy

n+1 ~ n+1 At —1
Wh,At(Xa t) = Wh,At(s) © Ah,At(X)'

(31) Apa(€,1) =

Ah,t" (5)7
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Let us introduce a notation which will be useful throughout the paper. For ¢ : Qr — R we
set (see (7))

(33) Mtl (QO(tQ)) : Qtl — R Mtl (@(tQ)) = @(tQ) © Ah,tl,tz'

Notice that, by definition of the finite element spaces (23), the test function vy, in (25), is
given by vy, = 0y 0 A,;j, for some 05, definded over €2y. Then we set M,,(vy) = 0y 0 Apy, -

The application of the first three schemes in (28) to system (25) gives the following full
discretization of (17):

forn=1,---, N find u € H,(n) such that
(34) (uh™ s on)nsr — (uy, Ma(n))n + Qala(un, va)) + Qo(be(un, vn; Wi 'xy)
= Qa((f(t)a Uh)t) vvh < Hh(Qthrl),

0 _
Uy, = uh,O:

where Q, and (), are different quadrature rules. We point out that, in the quadrature terms,
the function uy, is evaluated at the nodes of the quadrature formula using the available values
u?? and uj !, These details will be made clear for each case.

In the case of domains which do not depend on time, the analysis of the convergence of
the fully discrete solution is based on a stability property of the fully discrete scheme, see
e.g. [17, 19, 20, 5]. Here we shall try to extend such technique to the case of problems in
moving domains.

Definition 1. We say that the scheme (34) is stable if there exist two real numbers o and
such that the following inequality holds for all v} € Hp,(Q) with n =0,..., N:

1 n n n
Qi) ~ 51V 1720y + Atpl| V(@M (v 1) + BMe (07)) 172 ()
(35) + AtQ, ((div(B(avy ™ + fup)), avp™ + fup)y)
< (o™ aop ™+ BMu 1 (0F))ni1 — (vh, aM (03 ™) + Bup)n

+ Q. (a(vp, ow,’frl + Buy)) + Qp(bi (v, O‘“ZH + Bup; WZE)),

1
a2

where " is a properly chosen point in the interval [t", t"*1].

We observe that the above stability definition yields an a priori estimate similar to (19),
that is

1, . -
§|’uh+1”%2(9n+1) + Atp Z |V (MG (upi1) + 5Mf"(uh,i))”%2(ﬂgi)
1=0

(36) n+1

220 +C D I @) l-10y)-
i=1

< —1 ||
U
9 h,0
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Indeed, if we take v} = u} in (35) and use equation (34), we get, after an integration by
parts:

1
= §||UZ||%2(Qn) + Atp| V(@M (up ™) 4+ BMn (up)l|2 ()

1
I e,

+ AtQ, (/ %div(ﬁ)(au?fr1 + Buj)? dx)
Q

< (up ™ aup ™+ BMu (up))ngr — (ug, M (up ™) + Bup)y
+ Qalay(up, cuy™ + Buy)) + Qu(by(uy, oy ™ + Bu; wi )
= Qu(f(t), cup ™ + Bup)y).

Then by Cauchy-Schwarz inequality and a discrete version of Gronwall’s lemma (see e.g. [17],
pag.14), we get (36).

Inequality (35) is also useful in order to estimate the difference between the solutions to
the fully discrete problem (34) and to the semidiscrete problem (25) and, finally, to obtain
the convergence of the fully discrete solution to the continuous one, thanks to (26).

Let us integrate (25) from " to t"*! and subtract it from (34), then we obtain the following
error equation:

(up ™ —un ("), )1 — (up — un(t™), M (0n))n

+ Qalar(up — un(t), vn)) + Qul(be(up — un(t), vn; Wi ay))

tn+1

_ / ay(un(t), v) dt — Qulay(up(t), vp))
(37) .

tn+1

+/tn b (up(t), vn; wi(t)) dt — Qb(bt(uh(t)avh§WZ,JrAlt))

o[ - .m0

Let o and 8 be given as in the definition 1. Taking v, = au}™ + Bu} in (37), we can
apply (35) and we obtain that, if a scheme (34) is stable in the sense of definition 1, the
difference u} — u,(t") can be bounded if we can estimate the error in the quadrature rules
on the right hand side of (37). Therefore the convergence of the fully discrete solution is
obtained if we can prove that the scheme is stable in the sense of definition 1 and if we can
obtain convenient estimates for the error introduced by the quadrature rules.

One might think that the stability condition (35) can be related with a discrete version of
the GCL condition to be used in the case of finite element spatial discretization. However,
we shall see that such discrete GCL condition is neither sufficient nor necessary in order to
have the stability.

For the finite element ALE formulation, the geometric conservation laws have been intro-
duced in [13, 4] in the following form:

(38) /Qn+1 it ), (E" ) dx — /n @it p;(t") dx = Q, </m ©i(t)p;(t) divwy (1) dx>
Vi,j=1,---, N,
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Recall that in (38) the basis functions ¢; depend on the time through the discrete ALE
mapping only. This condition can be derived taking in the first equation of (16) v = ¢, ;.

We observe that, thanks to (16), the left hand side in (38) is equal to

tn+1

/ ©i(s)p;(s) divwy(s) dx ds.

t?’L

Therefore a necessary and sufficient condition for the fulfillment of (38) is to use a time
integration rule Q, (for the term containing the domain velocity) with degree of precision
2s—1, where s is the order of the polynomial used to represent the time evolution of the nodal
displacement within each time step, see [4]. Since we choose piecewise linear polynomials
for the mapping, the integration rule @, should be at least of degree of precision 1. For
example, we can use the trapezoidal rule or the mid-point rule. Notice that implicit Euler
scheme, which is associated with a quadrature formula @, of degree of precision 0, does not
satisfy this sufficient condition.

In the following subsections we shall examine the possible schemes we can derive for (34)
using different quadrature rules and discuss the fulfillment of GCL (38) and (35) and their
convergence properties.

4.1. Implicit Euler scheme. The use of implicit Euler method in scheme (34) gives rise
to the following procedure:

forn=1,---, N find u} € H,(n) such that
(39) (UZH’ Un)ny1 — (uf, M (vn))n + AtCLnJrl(U?f;hLl, vp) + Atbn+1(u7ff+la Uh; WZE:)
= AL(f(t"), vp)n1 Yo € Hp(Qpntn),

0 _
Uh — /u/h,().

Notice that in this case we set Q,(F) = Qy(F) = AtF(t"!), which is a quadrature formula
which is exact for constant polynomials only. Hence, the GCL condition (38) is not satisfied
in this case. However, we can prove that, if we choose a time step sufficiently small, then
the scheme is stable in the sense of definition 1.

For each n = 0...., N let v} € H,(4n), we have (see the left hand side of (39), with
vy = vy)

(UZH’ UZH)nJrl — (vp, MR(UZH))H + Ataniq (UZH’ UZH) + Atbpia (UZJrl’ UZH; WZ,JrAlt)

= LI e = SR+ M) + o2
1
(40) AV i + A /Q div B(uP1)2 dx
n+1

1 n 1 n At : n n
+ Sl e = S IMa(o IR = = div wi i, (v )? dx.
2 2 2 Ja..,



10 DANIELE BOFFI AND LUCIA GASTALDI

For simplicity we used the notation || - |, = || -||z2(¢,). Moreover, we integrated by parts the
transports terms in the bilinear forms a and b. Thanks to (16) we have:
n At 3 n n
—|| v g = IIM Wil — -5 : divwy 3 (v )* dx
n+1
(41) tn+1

/ / leWh (M (vp )% dx dt — —/ dlvwzzlt(v,f“) dx,
tn Q4 n+1

which can be read as a quadrature formula error.
Let us remind that w} %, is constant in the interval J¢",#"+'] and observe that M, (v;™")

and v"“ attain the same values at the corresponding nodes of the moving mesh; hence we
can write
tn+1 At
/ / div wikl, (Me(op ™))% dx dt — 5 divwp ', (op*)? dx
Qt Qn+1

1 tn+1
= —/ (/ divwp i, (M, (vpth))? dx—/Q divwzzlt(v;f“) dx) dt
n+1

/tn+1

Therefore, it remains to estimate the difference between the two Jacobians. Thanks to (31)
and (32) we have:

(42) |Jt - Jtn+1| S CAt”D&VNVh,At”Loo(QO)||D£Ah,At||Loo(QO),

where C' is independent of h, At, and the mapping, and D¢ denotes the spatial derivative
on the reference domain.

Inserting (42) in the previous inequality and going back to the current domain we have
the following estimate for the quadrature error term, thanks to (22):

/ / div wi il (My(vop™))? dx dt — —/ div wi 'y, (op™)? dx
tn Oy n+1

where C' = C||DeWh,adl| L () | DeAn,atll L (00) -
Hence we have proved that the implicit Euler scheme satisfies the following stability con-
dition:

/ div Wik, (Mo(vp ™))% (Jy = Jpnsr) dx d.
Qo

tn+1

< C_”At2/Q |diva,+A1t (vpth)? dx
n+1

i

Ll R I

1
+ At Vo2 1+—At/ div B2 dx
2 Qpt1

— C_*At2/ﬂ | divwp i |(op )2 dx
n+1

< O e s — (05, M),

+ Atagor (v opT) + Aty (0T ot WZE)
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which differs from (35) because of the last term before the inequality sign.

We observe that we can still derive an a priori estimate like (36) if we choose At sufficiently
small. Moreover, one could exploit the sign of the right hand side of (41) in the case of
dilatation of the domain, but this is beyond the aims of this paper.

Lemma 1. Forn =0,...,N, let up € Hp(24n) be the solution of (39). Then there exists
At small enough, so that the following a priori estimate holds true for all At < At:

n
g e + At > | Vatnig |7
i=0

n+1
<C (”Uh,o |%2(QO) + Z ||f(tz)||%1—1(nti)) :

i=1

(44)

The proof is based on (43) and the discrete Gronwall’s lemma with A¢ such that

= . At . 1
CAL|| divwy Gl e (@) + 7” div B Le(0,,1) < 3

Notice that in the limit as At goes to zero, this constraint is not too restrictive; however,
in practical computation this can increase dramatically the already high computational cost
of an unsteady flow simulation and estimating a priori the maximum time step could be a
cumbersome task.

We end this subsection devoted to the implicit Euler scheme with an error estimate. Since
we already have an estimate of the difference between the continuous solution of (17) and
that of the semidiscrete problem (25), it is enough to bound u} — uy(t"). Using the stability

inequality (43) and the error equation (37) with v, = u}™ — u, (#"*1), we obtain:
1 1
Sl — w21 — Sl — ()2

1 .
+ Atp||Viup Tt — up (Y12, + §At/ div B(uf ™ — up (™))% dx
Qnt1

- C’At2/Q | div wi i [ (up ™ — up (E"F1))? dx
n+1

< (= () = () e — (= (7). M (= (#)),

+ g (uh ™ = un (), up = un () A+ b (up T — (87, w T — un () Wi )
tn+1

- / arn (£), My ™ = () dt = e (un (), 0 = (7))

n

tn+1

+ / by (un (), My(up ™ — wp (8"4)); Wi (£)) db — by (un ("), uptt — un (£"1); will)
t

n

+/t (), Melup™ = un (1) edt = (FE), ™ — un ("))

n

The three terms on the right hand side can be estimated as we have done for (41) with
the appropriate changes (see [6] for the details). Hence after some work using also (26), we
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obtain:

I = ) s + At S [ nges — u( )

1=0

< C’”Uh’o — UOH%Q(QO) + Cth (“U(t)”%[k(gt / (H HE () ||u||ék+l(ﬂs))d8)
8uh Ouy,

+ CAt2 (H H ‘ ‘ . ||quh||%2(m)

where the constants C' might depend on the mapping and the velocity domain. We refer also
to [15] for a different proof.

0
1 )dt+CAt3ZH oun

L2()

4.2. First order method satisfying GCL condition. We have seen in the previous
subsection that the scheme (39) does not satisfy the GCL. In this subsection we present a
modification of the implicit Euler scheme which satisfies the GCL. The idea consists in using
a midpoint rule in (38), so that the integration scheme reads as follows:

forn=1,--- N find u} € Hp(Qn) such that
(up ™ on)ngr — (U, Mo (vp))n 4 Atagmiare (M2 (up ™), Mo e (o))
(45) +Atbt"+1/2 (Mn+1/2(uz+l),Mn+1/2(vh);WZ,+Alt)
= At(f(t"T2), Mugry2(vp)) posase Yoy, € Hp(Qpns1),

0 _
Uh — /u/h,().

This method was proposed in [4], where the stability analysis was performed. More precisely,
it is shown that this method fulfills the stability condition (35) we have introduced here,
without any restriction on the time step. In [6] this fact was the starting point to prove the
error estimate with the same techniques we used in this paper.

4.3. Crank—Nicolson scheme. The application of Crank—Nicolson method in (34) can be
written in a straightforward way as follows:

forn=1,--- N find u} € Hp

—~

Q) such that

(™ o = (t, Ma(0n)) +%<an+l(uh+ vn) + @ (ufl, Mo (vy)))
(46) 5 (bt (up ™ ons WiRy) + b (ull, Mo (v3); wi )
= B, v)nsr + (S, Ma(n))n)  Von € Ha(Qunt),
nguh,m

Since Crank—Nicolson scheme is associated with the trapezoidal rule, we have that the
GCL (38) is obviously satisfied. However, it is not clear whether the present scheme is
stable in the sense of definition 1. Namely, let us take @ = [ = 1 in the right hand side
of (35), then with some computations, using the GCL condition (38), integration by parts,
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and the identity (u,u +v) = Lu|? + L||u + v||* = §|[v|[?, we get:

(P op ™+ Mo (0))ng1 — (v, My (0p ™) + o),

At
Tty (@ (o 0 Mg (v7) + an (v, Mu(0p ) + o)
At n n n n n n
+ = 5 (bn+1(vh+1 +1"’-/\/ln+1(vh) thlt)+bn(vh7M ( +1)+vha hzlt))
At n n
= |lop ™2y — lloplls + Vil (Vs (0™ 4+ Mg (o) la 1 + IV (M (o) + 0p)[]7)

n % (/QW div B(t" 1) (v + Mn+1(vh))2d><+/ div B(t")(Ma(vi™) + 0}) dx)

n

At
BV (/ diVWZJrAlt(UZH) dx +/ diVWZE:(vh) dx
Qnt1 n

_/ dlvwhztvz“./\/lnﬂ(v,?)dx—/ leWh LM (0 de)
Qnt1 n
At

+ = (anpr (0T 0P — @ (M, (0, M, (v )

— A1 (Mg (vg), Muga(vy)) + an(vy, vy))-

Let us consider the terms in the last two lines which contain v}™ (the others can be treated
similarly); we have after integration by parts:

st (U U = an (M (o), Ma (v ) =

M(LWG%WWd - [ TaMa )]

n

—%(LﬂwwW“x”Wﬂ [ B )

n

As done in Subsection 4.1, we can write the integrals on the reference domain and estimate
the difference of the mapping at two successive times. Hence we have:

< CAH| Vo[ < CAth?[lop ™[5,

/Qnﬂ(v o) 2dx / (VMo (011 2dx

n

/Q div B(t" ) (v n+1) dx — / div B(t") (M, (v n+1)) dx

n

< CAtlop s,

where the constants C' depend on || DgWp a¢|| 1o (09) and || DeAp atl| e 0q). We have used also
an inverse inequality which is valid for quasiuniform meshes on the reference domain.
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Dealing with the other terms in a similar way we obtain the following inequality:
(47)

2 o

i s = llon il IV (™ 4 Mgt () 70 + [V (M (0™ + 0)I17)

+ % ( /Q div Bt ) (op ! + Mo (vf)) dx + / div B(t") (M (™) +vh)2d><>

n

— KA(|Joy ™[50 + [[0R1]7)

= (o op ™ 4 M1 (V))nsn — (0, Ma (™) + 07)n
At

+ 5 9 (an+1(vg+1 R Mn-H(Uh)) + an(”Z7M ( n+1) + Uh))
At
Tty 2 (bn+1(v,?+1 n M1 (vy); szlt) + by (v, My (v n“) + vp; szlt))
where
(18) K = C(1+ At Dewn sl | DeAnall (o diowy 811y + Ath2).

The inequality (47) still represents a stability inequality under some restriction on the time
step. Hence we have the following a priori estimate:

Lemma 2. Forn = 0,..., N, let u} € Hu(Qn) be the solution of (46). There exists At
satisfying: o L

Ath™ <1  and KAt <1/2,
K given by (48), such that, for all At < At, the following a priori estimate holds true:

At
i W+ =2 (Ve (03 ™+ M (03) s + I VM (0 + o) [7)

(49) n+1 '
<C (H%,o”%z(no) + Z ||f(tz)||%1—1(ntz—)> :

i=1

We observe that, while Crank-Nicolson method is unconditionally stable for parabolic
problems on fixed domain (see, e.g. [20]), in the case of moving domain we have obtained a
constraint on At which relates At both to the meshsize h and the velocity domain.

Lemma 3. Under the same restriction on At as in Lemma 2, and suitable reqularity assump-
tions on the solution to (17) and (25), we obtain the following second order error estimate:

I = ) o+ 503 [t — u( ) e
1=0

tntl
ou
< Cllung = uoll72(y) + Ch** (“u(t)”zk(”t) i /0 (HE

2
2
)

8’uh aiuh 2 azf
At H - ‘ ‘ ‘ ‘ ‘
+ CAt / Z ( fi L2(0) ot ellnz(ay) ott L2() dt
tn+1 2 2
0 Up,
+ CAt4/ (||quh||%2(szt) + ||f||%2(ﬂt)) ot e
0
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The proof of this error estimate is based on the error equation (37), with v, = (u}™ —

up (")) + My (uf — up (7)), and on (47). As an example, we show the details of the proof
of the last term in (37). One easily verifies that

[ Gt = S 0 + (7). 1)

n
it d?

= /t (" — ) (" — 5)@ . f(t)v, dxdt.

n

Applying (16) twice (recall that vy, is the mapping through A, sn+1 of a certain 75, defined on
), we have

C;‘l—;/gtf(t)vhdx:/ﬂt (?;T{
2
<0 (|52 + 12,

o2
Therefore we have

af | .. . [ Ow ) 9
£+ E‘gdlvw+fdlv <E‘€> + f(divw) )vhdx

1l ) Tl

¢ ‘ L2(9

[ Gt = S v + (7). 1)

tn+1
<oner [ (] + |5
i L2() ot lg

A possible way to circumvent the restriction on At to be of the same order as h? is to use
the following modification of the Crank-Nicolson method as suggested in [15]:

>f
o

s ) denloen

¢ ‘ L2(9

((forn=1,---, N find u} € H;(n) such that
Mn+1/2(uz+1 + uj) v )
s Uh

(u}:“, Vp)na1 — (U, vp)n + Atamiiye 5

M Uttt oy n
+Atbyni1)2 ( n+1/2(2h h),vh;wh’zlt/?>

= At(f(tn+1/2), Uh)tn+1/2 Yoy, € th(Qtnﬂ),

(50) !

0 —
\ U/h — Uh’()

In [15] it has been shown the following inequality:
n+1|2 ﬁ V.M n+1 ny||2
™ W + =l VaeMunryo (uh™ + up) s 2
At .
- divwy 32 Mug o (ui ) = Maajo(up)Pdx

4 Qnt1/2
< luplls + CAt||f(t"+1/2)||?{—1(Qt

(51)

nt1/2)’

which yields an a priori estimate under the constraint that At is sufficiently small with
respect to the domain velocity. Working as above one could prove also an error estimate
similar to that of Lemma 3.
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4.4. Second order BDF scheme. In this subsection we briefly discuss the properties of
the second order BDF scheme. Since the second order BDF method is a two—step method,
we introduce the following discretization of the mapping which uses quadratic interpolation
in time in the interval [t", ¢"T1]:

(t—t")(t — ")

t = n+1
652) Anat(€,1) SINE Ap,in+1(§)
(t _ tn+1)(t _ tn—l) (t _ tn+1)(t _ tn)

- At2 Ah,t" (6) + 2At2 Ah,t"71 (6)7
so that the domain velocity has the following representation:
(53)
- 2t — " — ¢! A A A ot — it —gn

thAlt(S t) T“Lth,t"*‘1 (5) - A2 Ah,t" (S) + TAh’tn_l (S)

WZZIt(Xa t) = V~VZ+A1t(€7 t)o Al:,lAt(€7 t).

Then the two step BDF method applies to (25) as follows:

forn=1,---, N find u} € H,(n) such that

Sun ™ on)ngn — 2(u, M (vn)) + 5 (up =" Moi (08))nt + Atan i (up ™, va)
+Atbn+1(uh+1 U Whiny) = A (), 0 Yoy, € Hp(Qnt1),

uy) = upo, wuy given by Crank-Nicolson method.

(54)

First af all, we observe that for this method we need a different approach than for the previous
ones, because the time advancing scheme is based on differentiation instead of integration.
A first consequence of this fact is that the discrete GCL has to be written in a different way,
that is:

3 1 .
—/Q soi(t"“)soj(t"“)dx—2/ @i(t") o (t")dx + 5/9 @i(t" g (t" )dx
n+1 n n—1

(55)
At [l ey ) divep B dx
Qpt1

Notice that, thanks to (16), the integral on the right hand side is equal to
d
dt

Writing the above integral on the reference domain, we have

/ @i (") (") dx = / @i I dE
Qpt1

Qo

©; (tn+1)(,0j (tn+1)dx.

Q41

and we see that we are led to a polynomial of degree 4 in time. Since the differentiation
formula is exact for polynomials of second degree in time, we conclude that the GCL condi-
tion (55) cannot be satisfied.

In [11, 15], a modified version of (54) has been proposed in order to satisfy a GCL condition,
which comes from the following integral identity (see (27)):

1 tn+1
Syt _gyn 4 Iyn 23 G(Y (1), t)dt — —/ G(Y
2 2 2 )
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One can modify the GCL condition (55) in the following integral form:

3 1 .
3 / () s (7 ) — 2 / i ()5 (£ dx + = / i (V) (1Y dx
2 Qn-}—l n 2 Q

n—1

(56) g ( [ e divw(t)dx> g ( | et divW(t)dx> ,

where Q! denotes the quadrature formula approximating the integral from ¢* to ¢!

Then, following [15], the modified formulation of BDF scheme satisfying the GCL condi-
tion (56) reads:

((forn=1,---,N find u}} € Hp(n) such that
2uptt o)y — 2(uft, My (on))n + 5(up ™" Mu_1(vn))im1 + Atag (up™, op)
+%Atbn+1/2(Mn+1/2(uz+l)a Mn+1/2(vh); WZ,th(t”“/Q))
- %bnflﬂ (Mn—1/2 (UZ“)a M—1/2(vn); WZ,JrAlt (tn_l/Q))
= At(f(tn+1)7 Uh)nJrl Yoy, € %h(Qt”“)a
| uj =uno, wuy given by Crank-Nicolson method.

In [15] an inequality similar to (51) has been proved, from which, if At is chosen sufficiently
small with respect to the domain velocity, an a priori estimate like in Lemma 2 and the error
estimate can be deduced.

We end this section collecting all the properties of the space-time schemes introduced
above, in the following table:

TABLE 1. Properties of the space-time schemes.

" - Rate of
GCL condition Stability property convergence
Implicit Euler At small with respect %k
IE (39) NO to the domain velocity At +h
modified Implici Euler . _
by midpoint rule YES 1ncond10t;(/)£?lly stable At + b
mlE (45)
. At ~ h? and
Crarél&l\&%(;lson YES At small with respect At? 4 p2k
to the domain velocity
. . At ~ h? and
modified Crank-Nicolson YES At small with respect | A + h2*
mCN (50) . :
to the domain velocity
second order BDF
BDF?2 (54) NO no results no results
modified BDF2 At small with respect 9 . 19
mBDF (57) YES to the domain velocity A+ h
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5. NUMERICAL RESULTS

In this section we report some numerical results which confirm the analysis performed
in the previous section. We first test the stability and then the accuracy properties of
the considered schemes. All our numerical experiments are based on piecewise linear finite
elements.

Let us consider the following problem:

u; — .01Au =0 in
(58) u=0 on 0%
up = 1600z(1 — 2)y(1 —y) in Q,

where Qg is the unit square [0,1]? and €2, is a dilation of Q according to the follwing rule:

Ai(€) = x(&,t) = (2 — cos(207t) €.

Notice that, in this case, x is linear with respect to &, so that no space interpolation is
needed. We have interpolated in time the domain motion and velocity according to (31)
and (32).

Thanks to (19), the norm ||u(t)||12(q,) decreases with ¢. Hence, if the time discretization
is stable, we expect the same behavior for the computed solution also.

We have used a triangular mesh generated by dividing each side of {2y into 16 parts and
four different values of dt, ranging from .02 up to .0001. Fig. 1 reports the plot of the norm
|lup|| 220,y for n = 0,...,N. First of all, we notice that as At gets sufficiently small, all
the methods produce a solution with a decreasing norm as espected in the continuous case.
When At is big with respect to the velocity domain only the implicit Euler scheme preserves
the decreasing behavior of the norm of the exact solution, while the Crank-Nicolson method
produces high oscillations and the second order BDF scheme give rise to some wiggles. In
particular, the oscillations of the modified Crank—Nicolson scheme where predicted by the
theoretical result (51).

The next numerical experiments are devoted to check the accuracy of the space-time
schemes. We present three examples of domain motion: the initial domain 2 is always the
unit square which translates with a rigid motion in the first case, dilates into a rectangle in
the second one and , deformation into a trapezoid in the last example. For each test case,
we have the following expression for the mapping (€ = (£, 7)):

Al(¢) =x!(¢,t) = < n _f_i—jllzg?(t) > t€[0,7]  rigid motion

A2(€) = x%(&,t) = (2 — cos(mt))€ ¢ €[0,7] dilation
Al(€) =xP(€,t) = < (1+ t(tn_ e ) t € [0,7] deformation into a trapezoid

We shall denote by Q¢ the domain obtained by means of the mapping A%, for i = 1,2, 3.
As an example, Fig. 2 reports the pictures of the domain €2; at some time ¢, for each choice
of the mapping. For ¢t € ]0, T, we solve on the domain ; the following problem:
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FIGURE 1. L?-norm of the computed solution of (58) as a function of time.
At = .02: blue line. At = .01: red line. At = .001: green line. At = .0001:
magenta line.

u— Au=f in
(59) u=0 on 0
u(0) = ugp in Qq,

with f and ug chosen in such a way that the exact solution has the following expressions

(x = (z,v)):

u'(x,t) = (1+t(1—t)(2—1t))(z —sint)(1 —z +sint)(y — 1 + cost)(2 —y — cost)
(z,y) € Qf, t €[0,7]
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Rigid motion Dilatation Deformation into a trapezoid
1

of
o 02 04 o8 08 1 12 14 16 18 (] 05 1 15 2 28 (] 1 2 3 4 5 6 7

FIGURE 2. Domain deformations.

T . Y Lsintsi 2rx . 21y
sin sin ¢ sin sin
2 —cos(mt) 2 — cos(mt) 2 —cos(mt) 2 — cos(mt)
(z,y) € Qf, t €[0,7]

u?(x,t) = (1 — sint) sin

u?(x,t) = (1 + 2sint)sin m ] sin(my) (z,y) € Q}, t €0, 7]

1+tt—1)y
Fig.s 3, 4 and 5 collect the L>(0,T; L?(Q;))-errors, obtained with the various space-time
schemes which are plotted in a loglog scale versus 1/h. More precisely, the blue lines corre-
spond to the choice At ~ h? for schemes based on implicit Euler method, and At ~ h for
second order methods based on Crank—Nicolson and BDF. We see that the rates of conver-
gence are the expected ones in all our experiments, with the exception of Crank—Nicolson
scheme (46) and second order BDF (54) in Fig. 4. For these two cases we performed the
same experiments with At ~ h? (the results are plotted with the red line) and we see that
in this case we recover the rate of convergence as before. The motivation of this result can
be found in the convergence estimate, which is conditioned to choice At ~ h?, see Lemma 3.
Finally, in Fig.s 6, 7 and 8, we plot the computed solution evaluated at different time.
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FiGUuRE 6. Computed solution corresponding to the exact solution u
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=52"dt

t

1*dt

t

>
7

112%dt

t

Computed solution corresponding to the exact solution u?

FIGURE 7.

156*dt

t:

1*dt

t:

t=80*dt

Computed solution corresponding to the exact solution u?

FIGURE 8



