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Abstract

The paper reviews research activity in connection with the use of high-resolution

methods in turbulent flow computations. High-resolution methods have proven to

successfully compute a number of turbulent flows without need to resort to an explicit

turbulence model. Here, we review the basic properties of these methods, present

evidence from the successful implementation of these methods in turbulent flows, and

discuss theoretical arguments and recent research aiming at justifying their use as an

implicit turbulence model. Further, we discuss numerical issues that still need to be

addressed. These include the relation of the dissipation and dispersion properties with

turbulence properties such as turbulence anisotropy, as well as further validation of the

methods in under-resolved simulations of near-wall turbulent attached and separated

flows.

1The paper will also appear as an invited review article in the journal Progress in Aerospace

Sciences, 2003.
2This review was written during the author’s participation in the programme “Nonlinear Hy-

perbolic Waves in Phase Dynamics and Astrophysics” sponsored by the Isaac Newton Institute for

Mathematical Sciences, University of Cambridge.
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1 Introduction

In nearly every area of fluid mechanics, our understanding is inhibited by the presence

of turbulence. Although many experimental and theoretical studies in the past have

significantly helped to increase our physical understanding, a predictive closed theory

of turbulent flows has not yet been established and is unlikely to emerge in the future.

Our continuing inability to make accurate, reliable predictions seriously limits the

technological advancement of aircraft and car design, turbomachinery and combustors

as well as the prediction of environmental and biological flows. Hope for a universal

turbulence model has been slowly replaced by the realization that the formulation of

an adequate theory will continue to require a greatly improved understanding of the

physics of turbulent motion. In the context of computational fluid dynamics (CFD),

there are three approaches which are used to compute turbulent flows. These are

the Reynolds-Averaged Navier-Stokes equations (RANS), the Large Eddy Simulation

(LES) and the Direct Numerical Simulation (DNS).

The DNS approach has provided valuable information in relation to the turbulent

flow structure at relatively low Reynolds numbers and for simple geometries. The

use of DNS for studying unsteady flows at high Reynolds numbers (105 − 107) is well

beyond foreseeable computing power. For example, to compute the flow around an

aircraft for one second of flight time, using a supercomputer of 1012 Flops, it is required

several thousand years and 1016 grid points [1]. In addition to the computing power

constraints, it is not certain that DNS does indeed provide fully resolved results. To

verify this, careful grid convergence studies would be required. This is not usually

done in practice and one could argue that this is not feasible to be done due to

inadequate computing power. Thus, RANS and LES are employed as an alternative

to DNS.

In the RANS approach the equations are averaged over a time interval or across an

ensemble of equivalent flows. RANS computations are extensively used in practical

computations, for predicting steady-state solutions, in particular [2, 3]. Unsteadi-

ness introduces a fundamental and profound uncertainty into the RANS approach:
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Reynolds-averaging, whether ensemble or time-based, assumes that the flow is sta-

tistically steady. At the very least, the time-scale associated with the organised

unsteady motion must be substantially larger than the time scale of turbulent motion

(see [4, 5] for recent studies of turbulence models in unsteady aerodynamic flows). In

other words, the two scales must be well separated. This condition may be satisfied

in low-frequency unsteady flows but the majority of turbulent flows does not fall into

this category. Closure of the phase-averaged correlations is (necessarily) identical

or very similar to that adopted for the conventional averaged correlations, and this

inevitably leads to models which are formally identical to their steady counterparts.

The task of RANS turbulence modelling is to provide closure relations for the

Reynolds stresses by relating them to known or determinable quantities such as ge-

ometric parameters, flow scales and strains. Insight from experiments and direct

simulations regarding the interactions between stresses and strains is used in RANS

modelling but this approach is considered to be less universal than LES and DNS

because it involves the determination of a number of unknown coefficients. Cali-

bration of the models and estimation of the unknown coefficients are made against

data from experiments and direct numerical simulations. Navier-Stokes methods have

been developed aggressively in recent years for more challenging applications, and are

now being used for component design and even full configurations, but mostly with

“simple” eddy-viscosity models, often algebraic and at most two-equation forms. Al-

though it is recognised that complex flows, especially those involving separation and

strong vortical features, cannot be predicted adequately with such models, the em-

phasis on simplicity, computational speed and robustness in an industrial context

militates against the adoption of more advanced models. An equally important fac-

tor has been, however, a great deal of uncertainty (indeed, confusion) on the prospect

of advanced turbulence models providing adequate return for the added complexity.

It is certainly true to say that the current body of knowledge arising from numer-

ous validation studies does not provide unambiguous recommendations. In recent

reviews of turbulence modelling [2, 3] the performance of a number of turbulence

models, spanning from one- and two-equation linear eddy-viscosity models to more
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advanced nonlinear eddy-viscosity and Reynolds-stress models, was discussed pro-

viding evidence of research into RANS turbulence modelling. Numerical accuracy is

also a concern within the RANS framework. Previous research aiming to examine

the effects of numerical discretisation on high-Reynolds number shock-boundary layer

computations showed that the numerical accuracy depends not only on the turbu-

lence model employed but also on the discretisation of the advective terms [6]. A

recent review on the accuracy of DNS, LES and RANS computations of some shock

boundary-layer interaction problems can be found in [7].

In LES the Navier-Stokes equations are filtered by convolving all dependent vari-

ables with a predefined filter in order to extract the large scale components. Then, all

flow scales larger than the filter scale are computed via a modified (filtered) set of the

Navier-Stokes equations while all scales smaller than the filter scale (approximately

the grid size) are modelled using a subgrid scale model (SGS model). Filtering of the

equations results in a system of equations, called LES equations, for the large scales.

The equations also encompass unresolved correlations which are referred to as the

subgrid-scale stresses (SGS stresses).

The LES equations are derived on the basis of the assumption that filtering and

differentiation commute [8, 9], i.e., ∂f/∂x = ∂f̄/∂x, where the “overline” denotes the

filtering operation. It can be shown [10] that the above is satisfied if the filter width

is constant but not otherwise. By keeping constant the filter width, additional terms

at the boundaries appear during the filtering procedure. The velocity terms vanish

at solid boundaries due to the implementation of the no-slip boundary condition.

However, the same does not occur for the pressure and viscous terms. To circumvent

this difficulty one can use a variable filter width which separates the turbulent eddies

into large-scale and small-scale eddies. The former are problem dependent whereas

the latter may be modelled by a universal subgrid scale model that represents the

Kolmogorov cascade at small scales, which is independent of the large scale field.

Such a separation of scales may be possible away from the solid boundaries but

cannot be applied close to the boundaries where turbulence manifests in the form

of coherent structures which cannot be described by eddy-viscosity modelling. As a
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result, the eddies close to the boundary would still need to be resolved. Application of

the variable filter width will eliminate the boundary terms appearing in the filtering

operation of the derivatives but the LES equations are no longer valid [10]. The

commutation errors can be removed if correction terms that account for these errors

are introduced in the LES equations. This will, however, raise the order of the highest

derivatives in the equations and at present there are no available methods to deal with

this complexity. Relevant work to the above is the derivation of special filters that can

eliminate the correction terms [11, 12]. However, these filters do not satisfy positivity

for the turbulent kinetic energy [10].

Other sources of error in LES arise from the discrete representation of the vari-

ables, numerical discretisation, aliasing and SGS modelling. The discrete represen-

tation has to do with the fact that in computations the variables are not continuous

but are approximated on a finite basis. The errors associated with the numerical

discretisation [13] arise when the differentiation operators are replaced by numeri-

cal approximations. Truncation error analysis shows that numerical discretisation

leads to dissipation and dispersion terms. The dissipation terms are responsible for

the numerical diffusion, especially near discontinuities, whereas the dispersion terms

produce oscillations near discontinuities. In some methods, e.g., spectral schemes,

spurious terms arise from the discretisation, which are responsible for the so-called

“aliasing errors”. These errors are manifested as numerical instabilities [14]. Fur-

ther difficulties with conventional LES arise from the modelling of the SGS term;

the (possible) masking of the SGS terms by the truncation error (this can possibly

mitigated by using a much larger filter width than the grid size); the design of SGS

models for high Reynolds number wall-bounded flows; and the quantification of the

error associated with the SGS term. Concerning the last point, if DNS data are used

to estimate the SGS stress, i.e., by filtering the data at a cut-off filter width and

then compute the subgrid scale stresses, one finds that there are large discrepancies

between these stresses and the ones computed by the model directly. Recent efforts

to predict accuracy limitations in LES can be found in [15].

Over the past decade, computations using high resolution methods for turbulent
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(or turbulent-like) flows have suggested that high-resolution numerical methods ap-

pear to achieve many of the properties of subgrid models, e.g., [16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26] used in LES [28, 29]. The idea to use these methods as an

implicit way to numerically model turbulent flows is referred to as monotonically in-

tegrated LES (MILES) [16, 17, 19], implicit turbulence modelling [22] or embedded

turbulence modelling [24, 25]. Examination of the modified equations associated with

high-resolution methods as applied to the gas dynamic equations has yielded the en-

ticing hint that characteristics implicit in these methods may mimic certain aspects

of turbulence flow modelling [22].

Perhaps more importantly, these methods are often necessary to ensure a stable

computation under difficult physical circumstances. Physical phenomena, associated

models and their numerical solution are intertwined and should therefore be devel-

oped and solved together. In other words, the modelling and their solution cannot be

separated. This approach is not generally adopted by the turbulence modelling com-

munity. Instead models are developed independently from their numerical solution,

under the assumption that it is error-free. However, we may have the case where the

errors are of the same differential order as the turbulence model. Further, we shall

bear in mind that the accuracy in turbulent flow computations depends strongly on

the numerical scheme employed to discretise the governing equations ([24, 25, 30]).

Hence, even within the framework of the conventional LES where a SGS model is

used, we must understand how numerical methods contribute implicitly to turbu-

lence modelling, otherwise we may double-count the effects of turbulence through the

explicit turbulence model as well as through the properties of the numerical method.

Investigation of the embedded turbulence modelling aspects of high-resolution

methods may provide a fruitful avenue for understanding a number of open issues re-

garding computational methods and their application in multi-dimensional problems.

In the following sections we will briefly review the basic properties of high resolution

methods; discuss success from the implementation of the methods in turbulent flows

or turbulent-like problems (e.g. Burgers’ turbulence); present theoretical arguments

about the relation of the methods with turbulent theories; discuss the insight one
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gains from truncation error analysis and its possible connection to turbulent flow

properties [22], and finally attempt to stimulate further research that will address in

a more systematic framework the relation of computational methods and physics of

turbulent flow.

2 Fluid flow equations

The physics of (Newtonian) fluid flow is governed by the Navier-Stokes equations.

These equations can be solved by considering the coupled generalised conservation

laws namely the continuity, momentum and energy equations [27]:

∂ρ

∂t
+ ∇ · (ρu) = 0 , (1)

∂ρu

∂t
+ ∇ · (ρuu) = −∇ · P , (2)

∂e

∂t
+ ∇ · (eu) = −∇ · (u · P) −∇ · q . (3)

where u, ρ, e, and q stand for the velocity components, density, total energy per unit

volume, and heat flux, respectively. The volume forces may account for inertial forces,

gravitational forces or electromagnetic forces. The tensor P for a Newtonian fluid is

defined by

P = p(ρ, T )I +
2

3
µ(∇ · u)I − µ[(∇u) + (∇v)T] (4)

where p(ρ, T ) is the scalar pressure, I is a unit diagonal tensor, T is the temperature,

and µ is the dynamic viscosity coefficient. The above system is completed by an

equation of state. For a perfect gas the equation of state is given by: p = ρRT , where

R is the gas constant.

Irrespective of the approach employed to compute turbulent flows, the equations

can be cast in the conservation laws form (for a Cartesian co-ordinates system) as

follows
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∂Ū

∂t
+

∂Ē(Ū)

∂x
+

∂F̄(Ū)

∂y
+

∂Ḡ(Ū)

∂z
= S(Ū) , (5)

where Ū is the array of flow variables; Ē(Ū), F̄(Ū) and Ḡ(Ū) are the fluxes in x, y

and z directions, respectively. The “bar” denotes filtering and averaging for the LES

and RANS approach, respectively; in the case of DNS there will be no “bar” over the

fluxes. The term S(Ū) on the right-hand-side of (5) contains the viscous terms, as

well as the SGS and Reynolds stresses for the case of LES or RANS, respectively. For

S(Ū) = 0 we obtain a system of hyperbolic conservation laws. The nonlinear terms

are contained in the fluxes on the left-hand-side of (5). During the last four decades,

there have been intensive research efforts to develop accurate methods for solving

hyperbolic conservation laws. The development of high-resolution methods for solving

the inviscid equations of gas dynamics has received most of the attention. The use of

these methods for computing turbulent flows has also attracted research interest over

the past decade. In the next section we review the basic properties of these methods

before we discuss their implementation in turbulent flows. For an introductory review

of high-resolution methods for the solution of compressible Euler equations we refer

the reader to [31]. A review on the development and implementation of the methods

in incompressible flows can be found in [32].

3 High-resolution methods

We classify as high-resolution methods those with the following properties [33]:

• Provide at least second order of accuracy in smooth areas of the flow.

• Produce numerical solutions (relatively) free from spurious oscillations.

• In the case of discontinuities, the number of grid points in the transition zone

containing the shock wave is smaller in comparison with that of first-order

monotone methods.
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The motivation for the development of high-resolution methods emerges from our

effort to circumvent Godunov’s theorem [35] that states: There are no monotone, lin-

ear schemes for the linear advection equation of second or higher order of accuracy.

In other words, second-order accuracy and monotonicity are contradictory require-

ments. The key to circumvent Godunov’s theorem lies on the assumption made in the

theorem that the schemes are linear. Therefore, if we want to design methods which

provide at least second order of accuracy and at the same time avoid spurious oscil-

lations in the vicinity of large gradients, then we need to develop nonlinear methods.

The development of high-resolution methods is done in the one-dimensional context

due to the lack of adequate theory in multi-dimensions. Even though a numerical

scheme can be designed to be second-order accurate for one-dimensional problems

its accuracy in multiple dimensions is not guaranteed to be second-order. This has

been proven [36] by various numerical experiments using well known second-order

methods.

3.1 Properties of high-resolution methods

To discuss properties of numerical methods it is convenient to consider the one-

dimensional counterpart of (5) without source terms

∂U

∂t
+

∂E(U)

∂x
= 0 . (6)

One can discuss numerical approximations to weak solutions wi which can be

obtained, for example, by (2k + 1)-point explicit schemes in conservation form3

wn+1
i = wn

i − ∆t

∆x
(Ẽn

i+1/2 − Ẽn
i−1/2) , (7)

where for the numerical flux Ẽ yields Ẽn
i+1/2 = Ẽ(wn

i−k+1, ..., w
n
i+k), and n denotes

the time level. The numerical flux should also be consistent with the flux E, i.e.,

Ẽ(U, ...,U) = E(U).

3Throughout the paper i denotes cell centered value and i + 1/2 denotes intercell value.
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Weak solutions of (6) should satisfy the inequality Ũt+Fx ≤ 0 (entropy condition),

where Ũ is a convex function of U, i.e. ŨUU > 0, and Ũ satisfies ŨUEU = FU, where

F is the entropy flux [33]. The solution (7) converges to a weak solution of (6) when

the following conditions are satisfied:

1. The total variation of the solution (defined below) with respect to x is uniformly

bounded with respect to t, ∆t and ∆x.

2. The scheme (7) satisfies the entropy condition.

3. The entropy condition implies unique solution of the initial value problem.

Conditions 1 and 2 can be satisfied by the addition of artificial viscosity to the

numerical scheme. This will possibly provide non-oscillatory solutions at the expense

of loss of physical information thus deteriorating the overall computational accuracy.

Below we review some of the basic properties that are considered in the design of

high-resolution schemes. The total variation of a function u(x) is defined as

TV(u) = lim
ε→0

sup
1

ε

+∞∫
−∞

|u(x + ε) − u(x)| dx . (8)

If u(x) is smooth then (8) can be written

TV(u) =

+∞∫
−∞

|u′(x)| dx . (9)

If u is a function of space and time, u(x, t), then we define the total variation of u

at fixed time, t. In a discretised domain, u is a function of the mesh and its total

variation at a time instant indicated by the index n is defined as

TV(un) ≡ TV(u(t)) =
+∞∑

i=−∞
|un

i+1 − un
i | . (10)

The function u is assumed to be either 0 or constant as the index i approaches infinity,

in order to obtain finite total variation.
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The monotonicity property is defined for a scalar conservation law

∂u

∂t
+

∂f(u)

∂x
=

∂u

∂t
+ α(u)

∂u

∂x
= 0 , (11)

where α(u) = df/du, u(x, 0) = φ(x) ,−∞ < x < ∞ , and φ(x) is assumed to be of

bounded total variation.

An important property of the weak solution of the scalar initial value problem is

the monotonicity property according to which:

• No new local extrema in x may be created.

• The value of a local minimum increases, i.e., it is a nondecreasing function [33],

and the value of a local maximum decreases, i.e., it is a nonincreasing function

[33].

Thus the total variation, TV(u(t)), is a decreasing function of time

TV(u(t2)) ≤ TV(u(t1)) ∀ t2 ≥ t1 . (12)

The explicit scheme of (7) can also be written in a shorter form as

wn+1
i = H(wn

i−k, w
n
i−k+1, ..., w

n
i+k) = L · wn

i , (13)

where L is an operator. We say that the scheme (13) is total variation nonincreasing

(TVNI) if for all w

TV(L · w) ≤ TV(w) . (14)

The scheme (13) is monotonicity preserving if the finite difference operator L

is monotonicity preserving, that is, if w is a monotone mesh function, so is L · w.

Moreover, the scheme (13) is a monotone scheme if H is a monotone increasing

function of each of its 2k + 1 arguments. The hierarchy of these properties can

be stated as follows: the set of monotone schemes is contained in the set of TVD

schemes and this is in turn contained in the set of monotonicity preserving schemes.
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Monotone schemes can be constructed as upwind or centered. TVD and Essentially

Non-Oscillatory (ENO) [34] schemes can also be designed to be monotone in the one-

dimensional context. However, the set of monotone schemes is the smallest set of

schemes and is a subset of the set of TVD schemes.

For a constant coefficient α(u) = α, we obtain the linear advection equation.

Well known schemes such as the Godunov first-order upwind scheme [35] and the

Lax-Wendroff scheme [37], among others, can cast in the general form

wn+1
i =

l=kR∑
l=−kL

blw
n
i+l , (15)

where kL and kR are two non-negative integers and bl are constant coefficients. Harten

[33] has shown that the linear finite difference approximation (15) is monotonicity

preserving if the coefficients bl are non-negative, i.e., bl ≥ 0 , −kL ≤ l ≤ kR.

Thus any linear monotonicity preserving scheme is a monotone, first-order, accurate

scheme.

3.2 Limiters

Limiters are the general nonlinear mechanism that distinguishes modern methods

from classical linear schemes. These are sometimes referred to as flux limiters or

slope limiters, but their role is similar: to act as a nonlinear switch between more

than one underlying linear methods thus adapting the choice of numerical method

based upon the behavior of the local solution. The general practice is to base the

analysis of the nonlinear method on the linear analysis of the available methods to

be chosen by the limiter. The limiter can also be included in the analysis providing

a nonlinear truncation error analysis even when the equation being solved is linear.

Limiters result in nonlinear methods even for linear equations in order to achieve

second-order accuracy simultaneously with monotonicity.

Second-order accurate three- and five-point (nonlinear) schemes of the form (13)

can be rewritten in the form [33]
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wn
i+1 = wn

i − Ci−1/2∆wi−1/2 + Di+1/2∆wi+1/2 , (16)

where ∆wi+1/2 = wn
i+1 − wn

i and

Ci−1/2 ≡ C(wi−2, wi−1, wi, wi+1)

Di+1/2 ≡ D(wi−1, wi, wi+1, wi+2)


 . (17)

Harten [33] has proved that any scheme (17) satisfying the inequalities

Ci+1/2 ≥ 0 , Di+1/2 ≥ 0

0 ≤ Ci+1/2 + Di+1/2 ≤ 1


 , (18)

is a TVNI scheme. This is also referred to as Harten’s theorem. Harten’s theorem

can be used to construct flux limiters.

An alternative criterion to Harten’s theorem is the data compatibility condition as

proposed by Roe [38, 39] (see [31] for details). Roe’s idea was to circumvent Godunov’s

theorem by constructing adaptive algorithms that would adjust themselves to the local

nature of the solution. This leads to the design of schemes with variable coefficients

(which are functions of the data), i.e., in nonlinear schemes even for linear PDEs

such as the linear advection equation. A scheme is compatible if the solution wn
i+1

at each point i is bounded by the pair (wn
i−s, w

n
i ), where s ≡ sign(α) [31]. The data

compatibility condition is satisfied by the inequality

0 ≤ wn+1
i − wn

i

wn+1
i−s − wn

i

≤ 1 . (19)

By applying the data compatibility condition for specific sets of data, we can

construct combination of schemes which satisfy the whole set of data. This would

eventually result in adaptive, nonlinear schemes that are monotone and second order

accurate. Further contributions to design flux limiters for high-resolution methods

can be found in [40, 41, 42]. The MUSCL approach [43, 44, 45, 46, 47, 48] also allows

the construction of high-resolution methods. Nonlinear versions of these schemes that
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“avoid” spurious oscillations can be constructed by limiting the slopes in the original

MUSCL scheme according to some TVD constraints (for a review see [31, 49]).

Other definitions that are sometimes used to design advective schemes is that for

positive schemes [51] and the “universal” limiter [52]. The approach based on positive

schemes allows different time stepping schemes to be used by treating the space and

time discretisation separately [51]. Thuburn [50] has shown that different approaches

for constructing limiters can lead to equivalent schemes at least in the context of

the one-dimensional linear advection equation. However, the differences between the

aforementioned approaches still remain important since each of these approaches can

be extended and utilised in different ways, for example, the TVD approach can be

extended to conservation laws other than the advection equation.

Numerical flux limiters can act like a dynamic, self-adjusting models, modifying

the numerical viscosity to produce a nonlinear eddy viscosity. The limiters can be

cast in a differential form resulting from their modified equations [53]. In the case of

a sign-preserving limiter, the form is 1 − c∆x |wx/w| and for a monotone (minmod)

limiter it 1−c∆x |wxx/wx| (c is a constant) [25]. The sign-preserving limiter produces

a form for the viscosity that is similar to Smagorinsky’s nonlinear viscosity [54]. With

a small amount of reinterpretation, a broad class of modern numerical methods can

be viewed as dynamic mixed LES models.

Limiters are used in the data reconstruction step, where data cell average values

are replaced by piece-wise linear functions in each cell [xi−1/2, xi+1/2], e.g.

wi(x) = wn
i +

x− xi

∆x
∆i , (20)

where ∆i is a chosen slope defined by differences of u values. Examples of some

limiters are given below. Van Leer [43, 44, 45, 46] proposed the MUSCL approach

to replace the piece-wise constant data in the first-order Godunov method, as a first

step to achieve high-order of accuracy. In the MUSCL approach, the slopes ∆i are

defined by

14



∆i =
1

2
(1 + k)∆wi−1/2 +

1

2
(1 − k)∆wi+1/2 (21)

where

∆wi−1/2 = wn
i − wn

i−1 ,∆wi+1/2 = wn
i+1 − wn

i , (22)

and k is a parameter that can take values in the interval [−1, 1]. The MUSCL

approach allows the construction of high-order methods but spurious oscillations will

still be present in the vicinity of large gradients thus violating the requirement for

a TVD scheme. To circumvent this difficulty nonlinear versions of the MUSCL (or

MUSCL-type) schemes can be constructed by replacing the slopes ∆i by limited slopes

∆i according to some TVD constraints. For example, limited slopes can be obtained

[55] by

∆i =




max[0,min(ω∆i−1/2,∆i+1/2),min(∆i−1/2, ω∆i+1/2)] for ∆i+1/2 > 0

min[0,max(ω∆i−1/2,∆i+1/2),max(∆i−1/2, ω∆i+1/2)] for ∆i+1/2 < 0

(23)

where ω = 1 and 2 give the MINMOD and SUPERBEE flux limiters, respectively.

The construction of limiters does make sense not only for compressible flows that

encompass discontinuities, but also for incompressible flows where large gradients,

e.g. due to the appearance of vortices and turbulence, occur [24]. Limiters play an

essential role in the effective dissipation of a scheme as well as acting as a trigger for

a dynamic dissipative scheme.

In dynamic LES models [56, 57] the viscosity is adjusted locally based on whether

the flow exhibits a similar structure at adjacent length scales. There is an implicit

correspondence between some limiter forms to the dynamic SGS models in LES.

Further, the limiters provide additional utility by comparing several local estimates

of a derivative. If these estimates are close enough in magnitude, the flow is treated

as being resolved, allowing the method to detect smooth (laminar) flow.
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One can also produce a limiter of lower differential order that preserves the sign

of the data rather than monotonicity [25]. Such limiter forms can be derived for the

multidimensional positive definite advection transport algorithms (e.g. [58]) using

the modified equations analysis [22, 58], as well as for TVD Godunov-type schemes

applicable to incompressible flows [24] .

3.3 Nature of algorithmic components

To fully assess the similarities of high-resolution methods with turbulence models for

LES, we will focus on the numerical intercell flux, Ẽi+1/2, of a Godunov-type method

Ẽi+1/2 =
1

2
(EL + ER) − 1

2
|A| (UR − UL) , (24)

where L and R denote the left and right states in the Riemann solution, and A is

the flux Jacobian. The absolute value of A can be found via an eigen-decomposition,

A = R|Λ|L, where R, Λ and L are the right eigenvectors, eigenvalues and left

eigenvectors of A, respectively. This is a fairly generic and standard manner to

introduce upwinding into a numerical method [31]. The left and right states can be

accessed via interpolation from cell centres to the edges. This is the reconstruction

step of a high resolution method. The interpolation is usually limited by using limiters

that have the numerical properties discussed in the preceding section.

In the case of TVD methods the intercell flux is given by

Ẽi+1/2 =
1

2
(EL + ER) − 1

2
|A|(1 − ψ)(UR − UL) , (25)

where ψ is a limiter. An alternative formulation is to write the flux as a combination

of low and high order fluxes

Ẽi+1/2 = Ẽlow
i+1/2 + φ(Ẽhigh

i+1/2 − Ẽlow
i+1/2) (26)

where φ is a limiter, Ẽlow is a first-order flux, e.g., the first-order Godunov [35] or

Lax-Friedrichs flux [59] among others, and Ẽhigh is a high-order, at least second-order,
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flux, e.g., the Lax-Wendroff flux [37].4

According to (24), the flux can be generally decomposed into terms that are hy-

perbolic and dissipative in nature. We can use this effective decomposition to identify

what the physical effect of various algorithmic components are. The portion that is

the sum of the local contributions (the mean flux) is hyperbolic, while those propor-

tional to the difference in the variables is dissipative with a magnitude proportional

to the coefficient of numerical viscosity. The TVD flux (25) can also be viewed in

a similar way: the flux is a second-order centered flux with a dissipative term that

yields first-order upwinding that is triggered by a limiter. Thus, in the case of TVD

methods the action of the high resolution scheme is entirely dependent upon the

limiter acting on the numerical viscosity.

Insight into the nature of algorithmic components and its relation to the flow

physics can also be obtained by nonlinear truncation error analysis. Let us consider,

for example, the nonlinear truncation error arising from the discretization of the

following equation [25]

∂U

∂t
+

∂E(U)

∂x
= 0 → ∂U

∂t
+

∂E(U)

∂U

∂U

∂x
= 0 . (27)

Using a first-order upwind scheme including the leading order (spatial) truncation

error, we obtain the modified equation

∆Ũ

∆t
+ A(Ũ)

∆Ũ

∆x
= (28)

∆x

2




∣∣∣∣∣∣
∂Ê

(
Û

)
∂Û

∣∣∣∣∣∣
∂2Û

∂x2
+ sign


∂Ê

(
Û

)
∂Û


 ∂2Ê

(
Û

)
∂Û2

(
∂Û

∂x

)2

 ,

where the left-hand-side of the above equation contains the terms arising from the

discretisation of the differential equation. The term Ê is the flux calculated by using

the solution Û of the modified equation. The first term on the right-hand-side is

the second-order dissipation most commonly associated with this method whereas

4A review of TVD formulations for compressible and incompressible flow equations can be found

in [31, 49] and [32], respectively.
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the second term is primarily dispersive in character and produces oscillations near

discontinuities.

In the case of Lax-Wendroff [37] scheme

∆Ũ

∆t
+ A(Ũ)

∆Ũ

∆x
= (29)

∆x2


−1

6

∂Ê
(
Û

)
∂Û

∂3Û

∂x3
− 1

2

∂2Ê
(
Û

)
∂Û2

∂Û

∂x

∂2Û

∂x2
− 1

6

∂3Ê
(
Û

)
∂Û3

(
∂Û

∂x

)3



The terms on the right-hand-side have mixed effect although it is dominated by

dispersive effects. By using a limiter to hybridize the upwind and Lax-Wendroff

method we can accentuate the dissipative effects seen in the leading order spatial

truncation error. Limiters will be seen to introduce standard sorts of nonlinear eddy

viscosities through the numerical flux. If the limiters are not active, the dissipative

term will vanish and in the case of second-order methods a fourth-order dissipation

will result.

Margolin and Rider [22] have used truncation error analysis (modified equation),

accompanied by numerical experiments for the Burgers’ equation, to show that the

truncation error terms of high-resolution schemes (their analysis was applied to MP-

DATA scheme [58]) have physical significance and are the corrections necessary to

represent the evolution of a finite volume of fluid. They expanded the velocity in

a Taylor series and averaged the equations over those length and time scales thus

leading to several new terms that scaled with the square of the space or of the time

intervals. For “non-smooth” flows5 in (e.g. turbulence) for which the fluid velocity is

not smooth over particular length and time scales, they assumed that the averaged

velocity is smooth at least over these scales. With this assumption, they were able

to show that the same averaged equations that govern the evolution of laminar flows

also govern turbulent flows.

In the past, Hirt [60], among others, has investigated the nature of errors in finite

5By “non-smooth” we do not mean that the flow variables are discontinuous variables in a strict

mathematical sense, e.g., like shock waves, but their variation encompass (very) steep gradients.
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difference algorithms. Hirt’s work is one of the early attempts to give a physical mean-

ing to numerical errors, e.g., the notion that even and odd order errors are associated

with diffusion and dispersion processes, respectively. This notion led later to the proof

of entropy satisfying solutions in connection with upstream differencing [61]. Recent

work on the analysis of nonlinear methods and equations using modified equations

can be found in [26, 62]. The ultimate judgement on the ability of high-resolution

methods to compute turbulent flows will be made on the basis of the results obtained

for different flow problems. Computational evidence from the implementation of the

methods in a variety of flow problems is discussed in the next section.

4 Computational evidence

The success of high-resolution methods in computing turbulent flows without using

SGS models has also been demonstrated by a number of simulations presented in the

literature: forced and decaying homogeneous isotropic turbulence, [18, 19, 63, 64];

subsonic and supersonic jet flows [65, 66, 67]; fully turbulent channel flows and flows

over backward facing steps [68]; transitional jet flows [19]; homogeneous compressible

turbulence [69, 70, 71]; pulsatile flows in three-dimensional stenotic pipes pertinent

to biological flows [72, 73]; chemically reactive flows [16, 74]; mixing layers [77]; and

a variety of low and high speed flows [75].

In this section we present numerical evidence from the implementation of high-

resolution methods to resolve turbulent flows without need to resort to a SGS model.

For comparison purposes, we also include examples using an explicit turbulence

model.

4.1 Burgers’ turbulence

As a first example we examine the behavior of high resolution methods with and

without SGS models for simulations of Burgers’ turbulence [76]. The Burgers’ equa-

tion can be considered as the one-dimensional analog of the Navier-Stokes equations.
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Figure 1: Velocity profile considered as initial condition in the simulations of Burgers’

turbulence. Results from [24]: “Embedded turbulence model in numerical methods for

hyperbolic conservation laws”, by D. Drikakis, Copyright 2002. c©John Wiley & Sons

Limited. Reproduced with permission.

The problem of Burgers’ turbulence is described by ∂u/∂t + u ∂u/∂x = ν ∂2u/∂x2 ,

subject to periodic boundary conditions u(x, t) = u(x+ l, t), 0 ≤ x ≤ l, and a random

initial condition for the velocity u (Fig. 1).

The random initial condition of Fig. 1 exhibits maximum value of the wave spec-

trum at log(k) = 1.283 [24]. The velocity has become dimensionless by defining a

characteristic length scale Lo = 1/log−1(1.283)L = 0.052L (where L is an arbitrary

unit of length; here L = 1), and a characteristic velocity uo as the root mean square of

the initial condition. The viscosity ν can then be defined by ν = (Louo)/Re, where Re

is the Reynolds number. We have conducted simulations for Re = 6, 000 in a domain

of length l = 12L = 12, using a very fine grid (9,000 grid points) and a very small

time step (∆t = 0.0001) [24]. The obtained solution (henceforth labeled DNS) is grid

and time-step independent and can thereby be considered as the “exact” solution.

In [24] coarsely-resolved simulations have been carried out on a 700 × 100 space-

time grid using different numerical schemes with and without different SGS models
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Figure 2: Kurtosis distribution for simulation of Burgers’ turbulence using

characteristic-based (CB) and TVD schemes (TVD-CB) with and without SGS scale

models. Results from [24]: “Embedded turbulence model in numerical methods for

hyperbolic conservation laws”, by D. Drikakis, Copyright 2002. c©John Wiley & Sons

Limited. Reproduced with permission.

[24]. The following numerical variants have been employed: i) the characteristic-based

(Godunov-CB) scheme of [77] without a SGS model; ii) the TVD-CB scheme of [24]

without a SGS model; iii) the CB scheme in conjunction with the modified version of

the dynamic SGS model [56] – the solution is labeled as “D-Model”; iv) the CB scheme

in conjunction with the structure-function SGS model [78] – the solution is labeled as

“SF-Model”. The results for the kurtosis distribution Fig. 2 reveal that: i) modelling

the unresolved scales through a SGS model does not always improve the results; for

example, compare the Godunov-CB solutions with and without the dynamic model;

ii) high resolution schemes designed to satisfy the total variation diminishing (TVD)
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Figure 3: Results from [79] for the decaying turbulence of a homogeneous incom-

pressible fluid in a triply-periodic cube. Solid lines are simulation results using the

high-resolution scheme MPDATA [58] without an explicit SGS model; dashed lines

are for semi-Lagrangian simulations; circles are the results of Herring and Kerr [81]

and dotted lines are a theoretical estimate of inviscid flow (see text for details). Re-

produced with kind permission of Kluwer Academic Publishers, book “Turbulent Flow

Computation”, 2002, Chapter 8 (pp. 279-312), “Forward-in-time differencing for flu-

ids: Simulation of geophysical turbulence”, by P.K. Smolarkiewicz and J.M. Prusa,

Fig. 8.3 (page 290), D. Drikakis & B.J. Geurts (eds.), c©2002, Kluwer Academic

Publishers (printed in the Netherlands) [79].

condition can significantly improve the predictions without even using a SGS. Com-

parison of the average kurtosis value for the various computations including the case

where the TVD-CB scheme is used in conjunction with the structure-function SGS

model have shown that the computation based upon the TVD-CB scheme without a

SGS model gives the closest agreement with the DNS solution [24].
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4.2 Decaying turbulence of a homogeneous incompressible

fluid

The second example is from simulations of Smolarkiewicz and Prusa [79] (see also [80]

for further discussion) for the decaying turbulence of a homogeneous incompressible

fluid in a triply-periodic cube; a canonical problem in turbulence studies. Due to the

assumed homogeneity of the thermodynamics, and the lack of near-wall effects, the

focus of the problem is on the nonlinearity of the convective derivatives u∇u in the

momentum equation. In [79] the simulations were carried out using the nonoscillatory

forward in time (NFT) advection scheme MPDATA [58].

Figure 3 displays the numerical results for the evolution of enstrophy for three

values of viscosity, ν = 0.0500, ν = 0.0125, and ν = 0 m2s−1 (as indicated in Fig.

3). Simulations with MPDATA (and the nonoscillatory semi-Lagrangian option of

this model) follow precisely the 2563 pseudo-spectral simulations of Herring and Kerr

[81]. Solid lines are for MPDATA experiments and dashed lines for semi-Lagrangian

experiments, whereas Herring-Kerr results are marked with circles. In the same figure

a theoretical estimate for inviscid flow (dotted lines)—based upon the elementary

enstrophy relationship for 3D isotropic turbulence and a phenomenological model for

skewness (with free parameters evaluated by matching the numerical results at small

time when viscous effects are negligible); see also Chapter VI.7 in [82].

There is an excellent agreement of the MPDATA and pseudo-spectral calculations

for DNS (ν > 0). Firstly, the results show that the MPDATA model (a finite vol-

ume high-resolution method) is at least as accurate as the pseudo-spectral method.

Secondly, the results also reveal that without viscous dissipation (ν = 0), unlimited

enstrophy growth is predicted. Herring and Kerr [81] note that with rapid enstro-

phy growth, the spectral calculations become computationally unstable and must be

terminated after ∼ 0.35s. Up to this time, the MPDATA, spectral, and theoretical

results agree closely. After the collapse of the spectral model, the MPDATA com-

putations continue to provide a stable solution but there are discrepancies with the

theoretical estimate. As the authors explain, this divergence is due to the flow topol-
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ogy condition being enforced by the MPDATA scheme (e.g., an embedded SGS model

develops). Essentially, enstrophy has increased to the point where velocity gradients

are so large that the local derivatives should be limited to obtain stability of the com-

putations. The results of Fig. 3 suggest that the net effect of this limiting is that the

MPDATA scheme results in an effective viscosity (of ∼ 0.004 m2s−1for the Eulerian

computation and approximately double that for the MPDATA semi-Lagrangian com-

putation [79]). In a sense, high-resolution schemes may be considered as producing

the most stable LES result for an inviscid flow at a given computational resolution.

4.3 Convective planetary boundary layer

In previous studies, Smolarkiewicz and Prusa [79], as well as Margolin et al. [23],

demonstrated that an atmospheric code based on MPDATA [58] can accurately re-

produce (i.e., in close agreement with field/laboratory data and the existing bench-

mark computations) the structure of the convective planetary boundary layer. They

carried out simulations with and without an explicit SGS turbulence model (see [79]

for details of the SGS model). Their results showed that when an explicit turbulence

model was implemented, MPDATA did not add any unnecessary diffusion. When

no explicit turbulence scheme was employed, the high-resolution method itself ap-

peared to include an effective SGS model. They also reported that using the explicit

turbulence model with the eddy viscosity reduced by some factor, MPDATA added

just enough dissipation. These numerical experiments demonstrate the self-adaptive

character of the high-resolution method and suggest the physically realistic character

of its truncation error (i.e. numerical dissipation).

Figure 4 shows results for the resolved heat flux 〈T ′w′〉 (normalized appropriately),

where T and w are the temperature and vertical velocity, respectively, and primes

denote deviation from the horizontal average < ·· > [79, 23]. The three curves shown

in the figure represent mean profiles from three different simulations: the short-dashed

curve is from LES benchmark simulations of Schmidt and Schumann [83] using a

centred numerical scheme both in space and in time; the long-dashed curve is from
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Figure 4: Simulation results for the convective atmospheric boundary layer using an

explicit SGS model (Run I) and without an explicit SGS model (Run E). The short

dashed curve (S-S) are the results from [83]. Reproduced with kind permission of

Kluwer Academic Publishers, book “Turbulent Flow Computation”, 2002, Chapter 8

(pp. 279-312), “Forward-in-time differencing for fluids: Simulation of geophysical tur-

bulence”, by P.K. Smolarkiewicz and J.M. Prusa, Fig. 8.6 (page 294), D. Drikakis &

B.J. Geurts (eds.), c©2002, Kluwer Academic Publishers (printed in the Netherlands)

[79].

LES simulations with MPDATA, and the solid curve is for MPDATA with no explicit

subgrid-scale model; circles represent field and laboratory data. The comparability

of all the results with the data is excellent (for other characteristics of the flow, see

[79]).

The most important result in Figure 4 is the the accuracy of the high-resolution

method in LES without need to resort to a SGS model. In contrast to linear meth-

ods, the success of high-resolution methods in turbulent flows is due to the self-

adaptiveness of these schemes during the simulation. When the explicit SGS model

is included the resolved flow is sufficiently smooth, and the part of the numerical
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algorithm that assures high-resolution properties is essentially switched off. When

no explicit SGS model is used the high-resolution scheme adapts the numerics as-

suring solutions that are apparently as smooth as those generated with explicit SGS

models. One should bear in mind that the dissipation of high-resolution methods

cannot be universally quantified since the advective scheme can be effectively either

non-dissipative or dissipative, depending upon the presence or absence, respectively,

of an explicit SGS model [79].

However, the limits of the embedded turbulence modelling approach in the context

of under-resolved simulations, for wall-bounded flows in particular, need to be further

investigated. Brown et al. [84], have performed detailed simulations of convective and

shear boundary layers. In general their results are similar to those of [79]. However,

they note that in coarsely resolved simulations, the presence of unresolved boundary

layers in the flow may require explicit models to account for wall forcing; cf. [79] for

further discussion.

4.4 Compressible open cavity flow

The results of the preceding section suggest that there is nothing in principle that

prevents the implementation of high-resolution methods in flows with wall boundaries

(probably apart from the need for finer grid resolution in the vicinity of these bound-

aries). The resolution is always problem dependent but the use of high resolution

methods can offer better stability and accuracy in coarsely resolved turbulent flows

even when no turbulence model is employed. Further investigation of high-resolution

methods in turbulent wall-bounded compressible flows has been conducted in [85, 86].

Two-dimensional LES computations have been carried out for compressible, turbu-

lent flow over an open cavity using hybrid scheme [87]. The hybrid scheme combines

a Riemann solver [88, 89] and the flux vector splitting scheme of [90]. The hybrid

scheme essentially follows a flux formulation similar to (26). The numerical dissipa-

tion is adjusted through flux limiters. According to the flux formulation, the most

dissipative scheme (flux vector splitting) carries more weight in very high speed flows
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Figure 5: Instantaneous snapshot from two-dimensional embedded LES computations

[85, 86] of compressible and turbulent open cavity flow.

(hypersonic flows) in the vicinity of discontinuities where more dissipation is required

to ensure stable converged solutions. Investigation of other hybrid formulations for

turbulent flows, e.g., using the HLLC scheme of Toro et al. [91] is underway.

In the context of computational aerodynamics pertaining to unsteady flows, the

challenge is the achievement of high numerical accuracy in under-resolved - grid-size

bias - simulations. At present, in an industrial environment under-resolved simula-

tions are the only alternative for obtaining results in short turnaround times. In order

to successfully compute the compressible, turbulent flow in such a geometry, one needs

to accurately capture various phenomena including large and small vortical structures;

free shear layers; transitional flow, flow separation and flow re-laminarisation; shock

and rarefaction waves. Some of these phenomena are shown in Figure 5.

The induced oscillatory pressure field emanating from the cavity geometry are

dependent upon the features of the problem. For example, the geometry dimensions,
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Figure 6: Instantaneous streamlines from the turbulent and compressible cavity

L/D = 2 flow computations [85, 86].

inflow boundary layer, freestream velocity, etc. Previous numerical investigations of

the open rectangular cavity geometry can be divided into either RANS- [92, 93, 94, 95]

or DNS-based computations [96, 97]. The RANS investigation of [94], highlighted the

fact that accurate predictions of mean pressure, shear layer impingement (onto the

rear face of the cavity) and the oscillating pressure field proved arduous without

the turbulent shear layer being accurately represented. Nichols et al. [95] employed

a RANS approach coupled with k − ε turbulence modelling for open cavity flow

fields, expressing, however, concerns regarding the validity of using RANS for such a

problem. Traditional Reynolds-stress modelling (time-averaged), when applied to un-

steady flows need turbulent timescales, which are diminutive compared to convective

timescales.

Cavity flow fields are characterised by such phenomena as unsteady boundary

layer separation, instabilities within the shear layer and dominant acoustic flow oscil-

lations. Increasing the length of the cavity, relative to the boundary layer thickness,

precipitates the transition of the flow between the shear layer mode and the wake
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[97] and Rossiter’s formula [99].

mode (see [98] for more details). An increase in the freestream Mach number also

induces the “switching” of modes. In their experimental study, Gharib and Roshko

[98] highlighted the fundamental differences between the shear layer mode and the

wake mode. Regarding the difference in the acoustic field of the two modes, they

observed that the shear-layer mode occurrs at the downstream cavity edge, and is

subjugated by a single frequency (Rossiter Mode II) [99]. Conversely, the field per-

taining to the wake mode consists of a number of frequencies and proved to be quite

multifaceted. The experiments of [98], determined that the switching between shear

and wake modes was a function of the Mach number, and, indeed, this is reinforced

in the DNS study of [97].

In [96, 97] DNS was carried out to investigate the resonant instabilities in the flow

past an open rectangular cavity at relatively low Reynolds numbers, e.g., Re = 2, 500

based on the cavity depth. The simulations were performed on a two dimensional
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rectangular cavity using approximately 500, 000 grid points. We have carried out 2D

LES computations [85, 86] using a grid that is comprised of 283 × 83 (upper block)

and 123× 75 (lower block) grid points; the total number of grid points is 32, 714 grid

points, i.e., about 15 times less than the number of grid points used in the DNS of

[97]. Grid clustering was used around the cavity wall. The distance between the first

grid point and the wall was of the order 10−4. The clustering of the grid, especially

at the upstream and downstream cavity leading and trailing edges are significant

as it is at these points where such phenomena as shear layer formation, shear layer

separation and vortex ejection (to name but a few) occur. In the results shown below

[86], the length/depth ratio, L/D of the cavity geometry is 2. Simulations for cavity

ratios of L/D = 4 were also conducted in [85]. The computational domain extends to

approximately 5D and 7D upstream and downstream of the cavity leading and trailing

edges, respectively. The domain also extends to approximately 9D in the direction

normal to the flow. The domain is similar to that of [97]. The flow conditions

were Mach number, M∞ = 0.8, and Reynolds number, Re = 2, 500 (based upon

cavity depth, D). For these computations, the instantaneous streamlines at different

time instants are shown in Figure 6. Most importantly, Figure 7 shows a very good

agreement, for the prediction of the Strouhal number at different Mach numbers,

between the 2D embedded LES, the 2D DNS of [97] and Rossiter’s semi-empirical

formula6 [99]. Simulations using a SGS (Smagorinsky-type) model have shown no

further improvement of the results. This confirms the conclusion of [23] that when no

explicit SGS is added a high-resolution method will not add any unnecessary diffusion.

6The semi-empirical formula devised by Rossiter [99] defines the resonant frequency by f =

U(m − γ)/[L(M∞ + 1/K)], where U is the flow velocity; L is the length of the cavity; K is the

ratio of the convective velocity of the shedded vortices to the free stream velocity. The resonant

frequency, f , is that of induced unsteady pressure fluctuations. The relationship of (m− γ) predicts

the sequence of the peaks of highest frequency, which is used to identify the Rossiter’s modes [99].
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4.5 Shock-bubble interaction

We demonstrate below the dependence of simulations on the high-resolution method

using as an example the interaction of a planar shock wave with a cylindrical bubble.

Experiments for this problem have been presented in [100] while there have also

been various computational studies on the basis of these experiments [30, 101, 102].

Figure 8 shows (instantaneous) isodensity contours as obtained by different Riemann

solvers while Fig. 9 presents comparisons between simulations and experiment [25,

103].

CBM-FVS

SW-FVS

VL-FVS

HLL

HLLC

Roe

Rusanov

Figure 8: Isodensity contours for the interaction of a shock wave with a dense bubble

(R22) as obtained by different high resolution methods. Reproduced with kind per-

mission of Kluwer Academic Publishers, book “Turbulent Flow Computation”, 2002,

Chapter 2 (pp. 43-74), “High-resolution methods for computing turbulent flows”, by

W.J. Rider and D. Drikakis, Fig. 2.6 (page 51), D. Drikakis & B.J. Geurts (eds.),

c©2002, Kluwer Academic Publishers (printed in the Netherlands) [25].

The results reported below should be considered by bearing in mind the uncer-
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tainties associated with the numerical modelling. In the case of the present inviscid

solution, the shrinking/disappearance of the bubble material is due entirely to numer-

ical diffusion. Therefore, a direct comparison between such simulations and real-world

effects of molecular diffusion and turbulent mixing should be considered with extreme

prudence. Although one can argue that uncertainties arising from numerical diffu-

sion make difficult a direct comparison between such simulations and experiment, the

results of Figs. 8 and 9 suggest the following: i) the details of the simulated flow de-

pend on the numerical scheme employed; ii) there are strong similarities between the

predictions of certain methods, e.g. the solutions obtained by the hybrid CBM-FVS

[87], HLLC [91] and Roe [105] schemes show stronger similarities than the solutions

obtained by the (modified) SW-FVS [87], VL-FVS [48], HLL [106] and Rusanov [107]

schemes; iii) even though the solutions obtained by the former group of methods are

clearly less diffusive than those obtained by the second group, all schemes provide

very similar results for the position of the upstream and downstream bubble inter-

face and also in close agreement with the experiment Fig. 9, at least at the given

grid resolution: for a grid containing 500 × 100 cells, the results obtained by dif-

ferent high resolution schemes differ in absolute value about 0.7% and are therefore

indistinguishable on the plot of Fig. 9.

5 Relation of numerics with the physics of turbu-

lent flow and its models

In [22] (see [25] for further discussion) some observations regarding similarities of

physical theories, turbulence models (in the context of LES) and numerics were made.

This stimulates further investigation of the relation of numerical methods for hyper-

bolic conservation laws and the physics of turbulent flows (see also [26]). We discuss

below various facets of the problem.

The Kolmogorov spectrum [108, 109, 110] describes how the energy density of

turbulent structures decreases rapidly with increasing the wave number, where the
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Figure 9: x − t diagram for the interaction of a shock wave Ms = 1.22 with a dense

bubble; comparison with the experimental results of [100] and adaptive-grid high

fidelity simulations of [102]. Reproduced with kind permission of Kluwer Academic

Publishers, book “Turbulent Flow Computation”, 2002, Chapter 2 (pp. 43-74), “High-

resolution methods for computing turbulent flows”, by W.J. Rider and D. Drikakis,

Fig. 2.7 (page 52), D. Drikakis & B.J. Geurts (eds.), c©2002, Kluwer Academic

Publishers (printed in the Netherlands), [25].

Kolmogorov scale is the scale at which the viscous dissipation dominates the inertial

flow of the fluid. The downward transfer of energy from large to small scales is called

the turbulent cascade process. The latter stops at the Kolmogorov scale, where an

eddy is so small that it diffuses rapidly.

Kolmogorov [108, 109] defined a dissipation of kinetic energy that was independent

of the coefficient of viscosity in the limit of infinite Reynolds number; this theory was

refined in [110]. In this form, the average time-rate-of-change of dissipation of kinetic

energy, K, is given as

〈Kt〉l =
5

4
〈(∆u)3〉 . (30)

In homogeneous, isotropic turbulence, this term is proportional to the average velocity

difference at a length scale,l, cubed. Note that this theory is analytic and independent

of viscosity. Moreover, this theory provides a basis for the functional form of nonlinear
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eddy viscosity, i.e., [54].

Previous computations, experiments and theoretical analysis (see e.g. [63]) has

shown that the physics of the turbulent cascade is controlled by the macroscopic

scales of the flow and the process of dissipation of this energy due to molecular

viscosity takes place primarily at scales considerably larger than the Kolmogorov

scale. Another important issue is that the energy transfer is dominated by local

interactions. In other words, the energy does not skip from the large to the small

scales, but the energy extraction from a given scale occurs as a result of interactions

with eddies no more than an order of magnitude smaller.

Bethe [111] derived the dissipation rate due to the passage of a shock wave (for

further discussion see [112]). This rate depends on the curvature of the isentrope, G,

and on the cube of the jump of dependent variables across the shock:

T∆S =
Gρ3c2

6
(∆V )3 , (31)

where ρ is the density and c is the sound speed. Bethe defined this jump in terms

of specific volume, V , but this can be restated in terms of velocity by applying the

Rankine-Hugoniot conditions, c∆V = −∆u, where s is the shock speed. Both (30)

and (31) are analytic results.

For Burgers’ equation a similar result may be obtained [113, 114],

〈Kt〉L =
1

12
〈(∆u)3〉 . (32)

Again, this is an analytic result through the application of integration by parts,

and the shock jump conditions. In a sense (32) is an entropy condition for Burg-

ers’ turbulence describing the minimum integral amount of inviscid dissipation for a

physically meaningful solution. This dissipation is produced at the shocks and is a

consequence of and proportional to the jump in dependent variables.

Eyink [115] also studied a conjecture by Kraichnan that the dissipation of kinetic

energy as defined by the Kolmogorov similarity is both local as well as integral in

nature (by definition, the shock dissipation is local). This regularization is the essence

of the physical conditions that numerical methods must reproduce correctly. It is this
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idea, viz., the existence of a finite rate of dissipation independent of viscosity with an

inherently local nature, that numerical methods can reproduce.

High-resolution methods for hyperbolic conservation laws have been developed

to capture with high accuracy the variation of flow and thermodynamic variables

occurring across shock waves and other discontinuities. In a sense, these methods

aim to correctly reproduce (31). On the basis of the similarity of (30) and (31)

one can argue that high-resolution methods can also capture accurately the turbulent

cascade as described by (30). We note that the importance of designing methods with

exact local conservation with proper entropy production is founded upon the Lax-

Wendroff theorem ([37]). This theorem states that if one has a method in discrete

conservation form and it converges, it converges to a weak solution. The entropy

condition is necessary to choose the physically meaningful weak solution among the

infinite set of possible weak solutions.

Further to the above arguments, there is a close connection of the differential forms

used in the von Neumann-Richtmyer artificial viscosity [116] and the Smagorinsky

eddy viscosity [54, 117] often used in LES. It is often noted that Smagorinsky viscosity

simplifies to von Neumann-Richtmyer in one dimension. The gradient of the von

Neumann-Richtmyer artificial viscosity that is added to the momentum equation has

the one-dimensional form

∂σ

∂x
=

∂

∂x

[
−c(∆x)2∂u

∂x

∣∣∣∣∣∂u∂x
∣∣∣∣∣
]
, (33)

where c is a constant and ∆x is the grid spacing. The Smagorinsky model for the

SGS “stress” in one dimension leads to a very similar relation

∂σ

∂x
=

∂

∂x

[
−cs

∂u

∂x

∣∣∣∣∣∂u∂x
∣∣∣∣∣
]
. (34)

where cs is the Smagorinsky constant. Indeed, this connection is more explicit than

is commonly appreciated, as the original motivation for Smagorinsky’s viscosity was

to use a nonlinear von Neumann-Richtmyer viscosity to stabilize calculations [117].

These two forms of dissipation differ mainly in the detailed form of their nonlinear
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terms in multiple dimensions. Since its conception the von Neumann-Richtmyer vis-

cosity has become significantly more sophisticated, e.g. [118]. Other developments

are detailed in [119] including limiters that turn a viscosity off should the flowfield be

considered resolved by the numerical derivatives.

The multidimensional extension of von Neumann viscosity was done isotropically

by Smagorinsky. In general, the nonlinear viscosity resulting from artificial viscos-

ity or high resolution methods is anisotropic. Isotropic models for artificial viscosity

do however exist [119]. Typically, this anisotropic viscosity is proportional to the

gradient of the normal velocity in the direction chosen. The general nature of this

formalism itself distinguishes this nonlinear viscosity from the typically applied mod-

elling approach. Other types of viscosity are patterned after physical Navier-Stokes

viscosity having an isotropic multidimensional form or are rotated into the frame of

a shock much like rotated Riemann solvers.

Further similarities exist with the form of the third-order terms found in the

Camassa-Holm equations [120]. Because the Camassa-Holm equations imply a dis-

sipation that results from time-averaging determined by dynamical theory, there is

a strong connection between the entropy production and the proper nonlinear dis-

sipative form. Such observations suggest that these numerical methods as well as

turbulence models all share common dynamical mechanisms for producing entropy.

Modern high-resolution methods have an effective subgrid model that is inherently

local. In addition, the algebraic form of the high resolution methods has a great deal

in common with scale-similarity forms of LES subgrid models coupled with a nonlinear

eddy viscosity. This creates a coherent link between the modern high resolution shock

capturing methods and LES subgrid models.

The theory for numerical methods for hyperbolic conservation laws, albeit in one

dimension, is quite well developed. In [112] the connection between a thermodynam-

ically consistent equation of state and hyperbolic wave structure is elucidated. This

follows the mathematical description due to Lax [121, 122] leading to the current

numerical theory and analysis [49]. This combination has culminated with the avail-

ability of powerful numerical methods for several decades pervading many application
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areas in physics and engineering. Open questions still exist in two or three dimen-

sions, for example: are some multidimensional well-posed, i.e., stable [123]. It has

been shown [124, 125] that the case where the solution involves a vortex sheet, the

solution to the two-dimensional Riemann problem shows a progression of greater and

greater complexity as the mesh is refined.

6 Concluding Remarks

The use of high-resolution methods as an implicit way to model and compute tur-

bulent flows is indeed an evolving area of research. The success of these methods

to compute turbulent flows without need to resort to an explicit turbulence model

has been proven by a number of studies in the literature and, additionally, there are

recent efforts aiming at a rigorous theoretical justification [22, 26].

The desire for understanding better the physics encompassed by numerical meth-

ods, high-resolution methods in particular, is motivated by the fact that almost all

practical computations in engineering are under-resolved. Numerical aspects play an

important role in turbulent-flow computations in terms of both accuracy and effi-

ciency. Numerical methods encompass numerical dissipation which acts to regularize

the flow, thereby allowing shock propagation to be captured physically realistically

even if it is not fully resolved on the computational mesh. One develops numerical

schemes with two competing criteria in mind: a desire for high accuracy coupled with

protections against catastrophic failure due to nonlinear wave steepening or unre-

solved features. Nonlinear mechanisms (limiters) in high-resolution methods guard

the methods from such catastrophic failures by triggering entropy producing mech-

anisms that safeguard the calculation when the need arises. The two key questions

are: (i) what criteria should be used to design the nonlinear mechanism that triggers

the entropy production, and (ii) to what extent numerical dissipation accounts for

turbulent flow effects. Ideally, we would like to quantify the numerical dissipation

that is added to computations.

The theory of numerical methods for hyperbolic conservation laws has made sig-
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nificant progress in one-space dimension. However, we need to further understand

the nonlinear behaviour of numerical methods in multi-dimensional problems. This

nonlinear behaviour is also closely related to the numerical mechanisms underlying

the formation of spurious solutions in under-resolved flows [124]. Previous studies

[124, 125, 126] seem to indicate that the generation of spurious vortices in under-

resolved simulations depends solely on the advective scheme. In particular, it depends

strongly on how the numerical dissipation is partitioned between different terms of

the advective scheme. Although one can succeed to regain control over deficient

(spurious-wise) schemes [124, 125] by modifying the dissipative terms of the schemes

the exact numerical mechanism is not yet understood. In particular, the question

“why certain schemes evince spurious solutions while others do not” still eludes a

scholastic answer. In [124] it was shown that for an idealized finite-difference scheme

the definition of the advective velocities in the primitive variable formulation of the

equations can induce a truncation error vorticity source. However, a rigorous vortic-

ity analysis of nonlinear approximations such as high-order Godunov-type schemes

appears very difficult.

The success of high-resolution methods to compute turbulent flows as well as

the issue of spurious solutions in under-resolved flows seem to depend on a delicate

balance of truncation errors due to wave-speed-dependent terms (chiefly responsible

for numerical dissipation) in the case of Godunov-type fluxes and hyperbolic part of

the flux. It is the essence of this balance that needs to be understood.

Results from the implementation of high-resolution methods in near wall-bounded

flows show that in principle there is nothing that prevents the use of the methods in

near wall flows even without using an explicit turbulence model. However, further

validation in near wall turbulent flows is required. We note that LES based on an

explicit turbulence model also poses substantial challenges in high-Reynolds near-

wall flows, especially in the presence of separation from gently curved surfaces, where

resolution and thus computing-cost issues are critical.
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