Singularities of eddy current problems

Martin Costabel, Monique Dauge, Serge Nicaise

May 13, 2003

Abstract

We consider the time-harmonic eddy current problem in its electric formulation where
the conductor is a polyhedral domain. By proving the convergence in energy, we justify in
what sense this problem is the limit of a family of Maxwell transmission problems: Rather
than a low frequency limit, this limit has to be understood in the senseoafSBvIT [11].

We describe the singularities of the solutions. They are related to edge and corner singu-
larities of certain problems for the scalar Laplace operator, namely the interior Neumann
problem, the exterior Dirichlet problem, and possibly, an interface problem. These singu-
larities are the limit of the singularities of the related family of Maxwell problems.

Key Words Eddy current problem, corner singularity, edge singularity.
AMS (MOS) subject classification 35B65, 35R05, 35Q60.

1 Maxwell equationsand the eddy current limit

Let us consider the model case of an homogeneous conductinghoashich we assume to
be a three-dimensional bounded polyhedral domain with a Lipschitz bouidariie conduc-
tivity o = o¢ is constant and positive insid&-, while o vanishes outsid@c, i.e.,c = 0 in
the “air” (or “empty”) regionQ = R3\ Q¢. For the sake of simplicity we further assume that
the boundaryB of Q¢ is connecte). The electric permittivitye is equal to a positive con-
stante¢ insideQ)¢ and has another valug; in the exterior medium. Similarly, the magnetic
permeabilityy is equal touc > 0in Q¢ and topr > 0in Qp. The treatment of piecewise
constant¢, ¢, uc andu iz can be made in a similar manner.

1.1 Maxwell and eddy current problems

Letw > 0 be a fixed frequency. The time harmonic Maxwell equations are

1) curlE = —iwpH in R3,

(2) curl H = (iwe+0)E+jo in R3

E (resp.H) is the electric (resp. magnetic) field ajidis the source current density which is

supposed to be A%(R?) field with support inf2c and to be divergence free, i.éiv jo = 0 in
R3. Let us recall

®)The issue of a multiple connectdslis independent of the question of singularities. We will just mention the
modifications necessary whéhis multiply connected, see Remark 3 at the enfof



Lemmall Letu € L?*(R3)3 be such that u|g, = 0 and divu = 0 in R3. Then the normal
trace u|q,, -n on B iszero (here n denotes the unit outward normal vector on B, pointing from
Qcto QE)

Thus the assumption on div jg is equivalent to
divjo=0inQc and jo-n=00n5B.

Note that, taking the divergence of equation (2), we obtain the following equation on the
divergence of E:
(3) div(iwe +0)E=0 in R3.

Equations (1) —(2) have to be completed by conditions at infinity (Silver-MUller radiation

conditions)
4 lim (Hxz—|z|E) =0.

|z|—o00
The time-harmonic eddy current problem [10, 11, 3, 22] reads
(5) curl E = —iwpH in R3,
(6) curlH = oE+jo in R3
Let us denote E|, and E|q,, by Ec and Eg, respectively. Now, taking the divergence of

equation (6) we only obtain, thanksto Lemma 1.1, divEs = 0in Q¢ and Ec - n = 0 on B.
These conditions have to be completed by the gauge conditions:

B

The condition at infinity takes the form
8 E(x) = O(lz[™), H(z) =0(jz|™!) & |z — <.

Remark 1 The equations (5)-(6) are clearly obtained from (1)-(2) by setting ¢ to zero. The
gauge conditions (7) can also be obtained from (3): Sinceiwe + o isequal to the two non-zero
constantsiwec + o in Qe andiwe g in Qp, (3) impliesthat divEs = 0inQ¢, divEg = 0in
Qp and (by aresult similar to Lemma1.1)

9 (iweg + 0c)Ec-n = iwegEg-n on B.

The condition div E¢c = 0 implies by integration by partsthat [, Ec - n = 0. Then, by (9), we
obtain that

(10) /EE-ndS:O.
B
Settingec = ep = 0, weobtain (7) and thetwo conditionsissued from the equation div(cE) =

0, that is
(1) divE=0in QcUQrp and Ec-n=0 on B.



Thus we see that the gauge conditions (7) are natural. But we obtain them by first deducing
conditions on the divergence of the Maxwell solution E and then passing to the limit. The
converse order does not provide (7). [

Remark 2 The conditions at infinity (4) imply the uniqueness of solutions for equations (1)-
(2) (Rellich lemma). Moreover, with the (exterior) wave number k := w,/egpg, we have the
following asymptotics at infinity (here z := = /|z|):

etk
||

The function E* isthe electric far field pattern, see[12].
Concerning equations (5)-(7), the conditions at infinity (8) also imply the uniqueness, and the
following asymptotics at infinity holds [3, Prop.3.1]

E(z) = (Em(ﬁs)+0(|xr1)) as |z] — oo.

E(z) = 02| ™), H(z) = O(a|2) & o] - .

This means that the far field pattern goes to zero in the eddy current limit. [

1.2 Eddy current limit

We want to give a sense to the notion of eddy current limit: This means that the quantities
wee/oc and weg /o are smal. For aconducting material, the permittivity e is of the same
order of magnitude than ¢ (also denoted &), but e /o¢ isvery small. For moderate frequen-
ciesw the quantitieswec /oc and weg /oc are still small. Let us fix two numbers é- and ég
which are of the same order than o and such that there exists 6 > 0 (thus § issmall)

(12) EC = (5{-30 and EE = (55]5.
Thus

. | iwdéc +oc in Q¢
(13) wet o= { iwbép in Q.

We fix o¢, w, éc and ég. The eddy current limit isthe limit asd — 0. This notion of limit
coincides with that presented in [11, Ch.4].

Thus, we may say that thislimit isa*“low frequency limit” only in the special sense that it
is not a high frequency limit. Thislimitisnot alimit asw — 0. Thisfact isimportant, since
thereis anotion of high frequency asymptotics inside the eddy current model, which givesrise
to boundary layersinside the conductor (skin effect).

1.3 Outlineof the paper

In this paper, our main goal is the description of the singularities near the edges and corners
of B of the eddy current problem (5)-(8). Moreover, considering a one parameter family of
Maxwell problems along the lines of (12)-(13), we want to follow the singularities as § —
0. The “standard” regularity and singularity results for the Maxwell interface problem from
[9, 15, 17] can be adapted for § > 0, but not for the limit § = 0.
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We show here that the regularity and the singularities of the solution of the eddy current
problem are related to the regularity and the singularities of the interior Neumann Laplace
operator, the exterior Dirichlet Laplace operator and the interface Laplace operator (for the
parameter ). To our knowledge this coupling phenomenon seems to be new. Asin [15, 17]
our technique relies on a regularized formulation of the problem and on the use of Méellin
transformation.

Such results are useful for the numerical analysis of the eddy current problem as considered
in [1, 22], where certain refinement rules or weighted regularization are susceptible to give a
better order of convergence [30, 16].

M oreover, we show how the singularities of the eddy current problem arethelimitasd — 0
of the singularities of the Maxwell problem.

It turns out that from the point of view of singularities, the eddy current limit § — 0 behaves
like aregular perturbation problem. This means that one can choose the singular functions in
such away that they depend analytically on ¢ for § in aneighborhood of 0, see §7. It does not
mean, however, that the regularity of the solution as measured by Sobolev regularity in Q¢ (or
in Q) isacontinuous function of ¢: Indeed, if the conductor is convex, the electric field E¢ in
the eddy current model will be a bounded function inside the conductor, whereas the exterior
electric field Ex will be unbounded, in genera. In the full Maxwell interface problem, i. e.
for any § > 0, both parts E~ and Eg of the field will be unbounded, in general. In terms of
Sobolev indices, the regularity of Ec may jump from H* with % < s < 1tomorethan H'
regularity as§ — 0.

Hereisthe outline of our paper: Since we are mainly interested in the singularities near B,
and sincetheir structure is of local nature, we will define our one-parameter family of problems
in abounded domain 2 and work in that framework in the remainder of the paper. In section
2 we first replace the problems in R3 with problems in 2, we propose equivalent regularized
variational formulations and we prove the convergence of solutions in the energy space in the
eddy current limit, i.e.asd — 0.

Section 3 is devoted to a splitting of the variational space into aregular vector field which
is piecewise H' and a singular part which is the gradient of a singular solution of a Laplace
interface problem; this kind of decomposition isin the spirit of [7, 8, 5, 9].

After ashort description of the corner and edge singularities for the Laplace interface prob-
lem in section 4, we start the analysis of their dependence on the parameter 6 and prove that
their exponents (degrees) depend continuously on ¢ up to the limit § = 0.

We describe in section 5 the corner and edge singularities for our eddy current problem
(casewhen 6 = 0, thecase § > 0 being already investigated in [17]). Section 6 is devoted to
the regularity of the solution of the eddy current problem in terms of standard Sobolev spaces,
we further give two different decompositionsinto aregular part and a singular one.

Finally section 7 analyzes the continuous dependence of the singular functions on the pa-
rameter § using Mellin symbols and the Cauchy residue formula.

For D asubdomain of R? we denote by H*(D) the standard Sobolev space of order s, with
norm denoted by || - ||s,p-



2 Variational formulations

Let us take the polyhedron €2~ with connected boundary B as in the previous section and let
Q2 be a smooth domain with trivial topology (for example a ball) which contains Q. Now the
exterior domain Q2 isdefined as Qp = Q \ Qc.

For afunction u defined in €2 we set u¢ (resp. ug) itsrestriction to Q¢ (resp. Q2g). For a
function « defined near B and such that the traces of uc and of ug on B have a meaning, we
set [u] = uc — ug itsjump through B.

The partial differential operator 0,, defined on B isthe unit normal derivative pointing from
QctoQg.

2.1 Strongform of equations

Instead of conditions at infinity (4) or (8), we will simply impose the perfect conductor bound-
ary conditions on the exterior boundary 0f2.

According to (13), weset £ = é¢ in Qg and &€ = ég in Q. Our Maxwell problem with
parameter § is

curl E® = —jwpuH? in Q,
(14) { curl H® = (iwdé 4 0)E% +jo in Q,
Exn=0 and H>-n=0 on 989,
whereas the eddy current problem is
curl E© = —jwpH® in Q,
curl H® = ¢E° +jj in Q,
(15) divE® = 0 in Qg,

J4E% ndS =0
E%n=0 and H' n=0 on 0N.

The resolution of the last problem is usually made by eliminating either the electric field (H-
formulation or magnetic approach [10, 11, 2]) or the magnetic field (E-formulation or electric
approach [10, 11, 1, 3, 22]). Here we focus on the el ectric approach, for both (14) and (15). We
find the following systems of equations for any ¢. Thisincludes for § > 0 both the Maxwell
and the eddy current problems.

(i) curl ug' curl ES +iwocEL — 6w?écEL = —iwjo  in Qc,

(ii) divES = 0 in Qc,

(iii) curl ,uEl curl E% — 5wQéEE5E =0 in Qp,

(16) (iv) divEy = 0 in Qp,
(v) [3E% ndS =0

(vi) [E® xn] = 0 on B,

(vii) i6w[éE® - n] 4+ 0cEL -n = 0 on B,

[ (viii) ESxn =0 on 09Q.

The magnetic field is then given by H® = WLM curl E? in Q.
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2.2 Variational space and forms

We now propose a variational space suitable for a regularized formulation, and independent
of ¢, i.e. suitable both for the Maxwell and eddy current problems. Let Hy(curl,2) be the
standard space

Ho(curl,Q) = {uc L*(Q)® :curl u € L*(2)3, uxn=0 on 90Q}.

Our variational spaceisY (£2) defined as
Y(Q) = {u € Hy(curl,Q) : divuc € L*(Qc), divug € L*(Qp), / ug-n=0}
B

equipped with the norm
lul3 ) = lullfq + [feurl ul§ o + | divuc|§ o, + | divug|jq,-

The gradient fields belonging to Y (€2) are associated with potentials ¢ in the space

(17) {90 € LQ(Q) ope e HI(QC)v PE € HI(QE)7
[¢] =c1 on B, =0 on 99, ¢ €C,

AQOC S Lz(Qc), A(pE S LQ(QE), / an(pE ds = O}.
B

For such potentials, the associated field in Y () is the “broken” gradient field Vo € L2(2)3
defined as

(%@)‘Qc = Vyo ad (%‘p)‘QE = Vyg.
The following result on potentials in the exterior part 2z will be used several times. Note
that B and 0f2 are the two components of the boundary 02 g of Q.

Lemma2.1 For any f € L?(Qg), v € HY/?(B) and b € C, there exists a unique solution
¢ € H'(Qg) of the following boundary value problem

(18) v =0 on 09, p=v+c on B forsomeceC
J5 OnpdS = b.

Thereis an estimate

(19) lelliap < CUFllogy + Iollgrzes e + b)-

Proof: Let ¢ be the solution of the Dirichlet problem Aypg = f in Qg, oo = 0 on 90 and
wo =vonBhb.

Let ¢ be the solution of the problem Ag = 0in Qg, ¢ = 0 on 052, ¢ = constant on B and
[ Ong = 1 (compare with [4, Prop.3.18]).



With ¢ = [ dn¢o, thefunction ¢ := g + (b — ¢)q isthe solution of (18).
For the estimate (19), one notes that

lvollap + 1€ < CLll fllop + 10l1/2,8)

and hence

le lpollyap + (€1 + 16Dl ap

<
< Collfllogy + vl 2,5 +101)-

with €z = max{C1, C1llqll1 o 9l 0, )
We can replace [[v[| 12y bY [|v]l 1/2(5),c here becauise ¢ depends only on v modulo the
constants. ]

Let us further define the following bilinear formon Y (€2): For u, v € Y(2):

1,08

a®(u,v) :/ (,u_l curl u - curl ¥ — dw?éu - v)dz + z'w/ ocu-vdx
Q Q

C

and its regularized version

a%(u,v) = a®(u,v) -l-/

divug divvede —I—/ divug divvgdz.
Qc

Qg

Lemma 2.2 Let the positive constants uc, g, €0, €E, oc and w be fixed. Then there exists
o > 0 such that for all § € [0, 3], a% is strongly coercive on Y(Q): 3o € C, 3¢ > 0,
Vé €10, d0], Va € Y(Q)

(20) Re (aaf(u,u)) > collully q)-

Proof: Since |aj,(u,u) — a%(u,u)| < Cd|ullf, < Cdlull3 g, itisclearly enough to prove
the coerciveness property for § = 0: We check that if the coerciveness estimate (16) holds for
0 = 0 with the constant ¢y, then it holds for any 6 € [0, do] with 69 = ¢o/2C and with ¢ /2
instead of cg.

Let ustake v = e~"™/4, Then
Re (aaf(u,u)) 2 | curl uH(Q)’Q + ||u|\(2)’QC + || div qu,Qc + || div qu’QE.

It remains to prove that the right hand side above is an upper bound for HUH%,QE-

Let w € H'(Q)? be such that curl w = curl uin Q and w x n = 0 on 99. This exists
according to [4, Lemma 3.5] and can be chosen such that divw = 0 in §2, with the estimate

[wll1,o < Il curl uflgq.
Since 2 is simply connected, thereis ¢ € H}(€2) such that

u=w+Vy in Q.



On Qp, ¢ satisfies
Ay = divu in Qp,
=20 on 05,
JgOnpdS = [pw-ndS.

According to Lemma 2.1, we have an estimate

Il e < C(I1divalloq, + 1915l /2, + | /B w-nds]).

Because of

lulloo, < IWlloos +1IVeloo, S lleurlulloa, +ll¢liap

it remains to bound (|| 5| 12y c @A | [ w - ndS].
The latter clearly satisfies| [, w - ndS| < [|[w|1,0 < || curl ulfoq.
Finaly

lelsll 12 (m) e Imx Vel _ypp < Inxul_y,p+nxwl_ g

[allbeurt 00) + W10

<
S
S hulloq, + [leurlully o, + [ curl ufjg o.

2.3 Variational problems
For al ¢ € [0, dp], we consider the variational problem:

(21) Find E<€ Y(Q) st. a%(E,v) = —iw(jo,V)a., Yv € Y(Q),
where (-, ) p isthe L?(D)? hermitian inner product.

Theorem 2.3 Let jy satisfy

(22) jo e L3(Q), jo=0inQg, divjo=0inQ¢, jo-n=0o0onB.

Let the positive constants ¢, pg, éc, g, oc and w be fixed. With &y given in Lemma 2.2, for
al o €0, d]:

(i) There exists a unique solution E? to problem (21).

(i) The solution E? satisfies all equationsin (16).

(iii) The norms of the E? in Y (£2) are uniformly bounded:

3C >0, V5€[0,80], [E[lyq) <C.
(iv) As§ — 0, E° — E° and we have the convergence estimate

3C >0, V5e 0,80, [E® —E |y < C6.



Proof: (i) isamere consequence of Lemma2.2.
(i) Wefirst take astest functions v = Vi, with oo € H} (Qc, A) () extended by zero outside
Qc¢. Thisyields

/ ((iwo — Sw?é)E - Vi + divE div V) dz = —iw/ jo-Vepda.
Qo Qo

By Green's formula and the properties of j,, we obtain
/ div E((—iwo + Sw?é)p + Ap)dz =0, Ve HY(Qc, A).
Q¢

This yields (16) (ii) since (—iwo + dw?é)p + Ay runs through the whole L2(Q¢) for ¢ €
H(Qc, A).

A similar argument in Qg yields (16) (iv) since, as a consequence of Lemma 2.1, for § small
enough, the operator ¢ — dw?éy + Ay is surjective from

{gp € Hl(QE) tolg=c¢ @lapg =0, /BancpdS =0, Ap € LQ(QE)}

onto L?(Qg).

Next for any x € H'/2(B), wetake v = Vi with ¢ in the space (17) such that ¢ is solution
of the Dirichlet problem App = 0in Qg and o = x + ¢ on B (we use once more Lemma
2.1). Using thistest function in (21), we get

/ (’i(SWéE+UE)'VQDd.I+/
Qc

WWwEE - Vodr = / jo-Vpda.
Qp

Q¢
Hence

/ (10w[€E] + 0E) -n x dS — c/ i0wépER -n dS = 0.
B B

Since [ Eg - n = 0, we conclude that we have (16) (vii).
The other equations of (16) are then obtained in a standard way.

(iii) is a consequence of the uniform coerciveness proved in Lemma 2.2.
(iv) We havefor al v € Y(Q):

a%(E° —E% v) = a%(E°,v) — a(E%,v) = 5/9&@55 -vdz.
Taking v = E° — EY and using the uniform coerciveness estimate, we obtain
IE® — B3 gy < CONE? |2y IE® — BVl 20y

With the help of the continuous imbeddings Y (2)  L2(Q)? C Y'(£2) we conclude, thanks to
(iii). ]

MHere H} (Qc, A) isthe subspace of the € H (Qc) suchthat Apc € L2 (Qc).

9



Remark 3 All results above extend to the case when B is not simply connected. Let B; for
1 =1,..., 1 bethe connected components of B. Let us prove that

(23) (E,H) solution of (1)-(2) — / Eg-ndS=0, i:=1,...,1.
B;

The equation div Ec = 0 is not sufficient now to deduce (23). By [4, Lemma 3.5] we know
that there exists a vector potential Jo € H'(curl, Q¢) for jo: jo = curl Jg in Q¢. Therefore
eguation (2) yields that

E=curl ¢y with = (iwec +oc) 1 (H—Jp).

The proof goes asin [4, Lemma3.5]: Let u; € C5°(R3) such that 11; = 1 in aneighborhood of
B; and u; = 0 inaneighborhood of the other connected components of B. Then

/ Ec'ndS = div{curl ()} dz = 0.
B; Q¢

Then we deduce that [ B, EB'n dS = 0 as before. The gauge conditions for the eddy current
problem are now divEg = 0in Qg and

(24) /EE-ndS:O, i=1,...,1.
B.

K3

In the definition of the space Y (€2) the gauge conditions (24) are now present.

The modification of Lemma 2.1 isobvious: The boundary conditionson B; are p = v+ ¢; and
I B, Ontp dS = b; with b; given constants. The estimate (19) contains the term >, |bi] instead
of |b|. The proof relies on the full [4, Prop.3.18]. Lemma 2.2 and Theorem 2.3 are still valid
under these assumptions. The extension of the proofsis straightforward. [

3 Singularities of the variational spaces

In this section, we investigate the splitting of the variational solutions of (21) into the sum of a
regular fieldw € H'(Q)? and of asingular gradient V&, where ® isnot, in general, in H?(12).

3.1 General situation

The space Y (£2) contains some of the essential boundary conditions appearing in (16), namely,
(16) (vi) and (viii). But the essential condition (16) (vii) depends on 4. On the other hand we
do not impose the gauge condition [, Ex-n dS = 0 for thisanalysis. Let us then set

X() = {u € Hy(curl, Q) : divuc € L*(Qc), divug € L*(2g)}
and for § > 0:

X°(Q) = {ue X(Q): idw[fu-n]+ocuc-n=0 on B}.

10



In fact, the solution of (21) belongs to X°(€2). Note that the variational formulation could
equivalently be set in X N Y(£2), but, in order to prove the convergence result as § — 0 we
preferred to use a space independent of 6.

Let usrecal more classical notations [15]: For adomain D

Xn (D) = {u € Hy(curl, D) : divu € L*(D)},

and
X7 (D) = {u € H(curl, D) : divu € L*(D), u-n=0 on dD}.

By a straightforward adaptation of the result [17, Th.3.5] to the situation of complex coef-
ficients, we obtain the splitting result for the spaces X°(€2) when § > 0. In order to state it, we
need the introduction of the interface Laplacian As over H} (€):

@ (Bsei)y- |

(oc +idwéc)Voo - Vb + / (i0wép)Ver - Vg,
Q¢

Qp

for any o, ¢ € HZ (). Thenfor § > 0, under atechnical condition ), any field v € X°(Q)
admits a decomposition

(26) v=w+ Vo,

where w € X°(Q) issuchthat we € H'(Q¢)?, wrp € HY(Qg)? and ® € H}(Q) satisfies
AQCI) S L2(Q).

3.2 Theeddy current case

The goal of this subsection is to describe the decomposition of vector fields from the eddy
current variational space X°(9) into regular fields and singular ones in the spirit of [7, 8, 5, 9,
15, 17] (and even using some results from these papers).

Theorem 3.1 Any field v € X%() admits a decomposition
27 v=w+ Vo,

with w € X°(Q) such that we € H'(Q¢)?, wg € H'(Qg)? and the potential & € H' (1)
satisfies

(28) A®c € L*(Q0),
(29) On®c =0 on B,
(30) A®g € L*(Qp),
(31) dp =0 on 9.

M Theinterface Laplacian A has no edge exponent equal to 1 and no corner exponent equal to % This condition
is probably not necessary.
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Proof: We remark that the restriction v of v to ¢ belongs to X7 (€2¢). Therefore by Theo-
rem 1.1 of [15] (see also[7, 8] or Theorem 3.5 of [17]), v admits a decomposition

(32 ve =wgo + VoeinQge,

whereweo € HY(Q0)? N X7 (Qc) and &¢ € H () satisfies (28)-(29).
Now consider y € H'(Qg) the unique weak solution of

Ax = 0 in Qg,
x = ®c on B.

Denote by @ the function defined by

(i> B o in Qc,
= X in Qg.

By construction @ belongs to H(€2). Denote furthermore by w an extension of we to €
which belongsto H'(2)? and is zero on 9. Let us now set

(33) Vo = we + V.
Then by construction thisis equal to v in Q¢ and it satisfies
[Ve xn]=0 on B.
These propertiesimply that ug defined in Qg by
(34) up =vg —velg,
satisfies
ug xn=0 onBAB,

curl ug = curl vg — curl WC\QE € L*(Qp)?,

divug = divvg — divwelg, — div(Vy) € L*(Qg).

This means that ug belongs to X (2x). Again by Theorem 1.1 of [15] (see dso [7, 8] or
Theorem 3.5 of [17]) ug admits a decomposition

(35) urg = wgre + Veg in Qg,

where wrr € HY(Qg)? N Xy (Qg) and pr belongsto H'(Qx) and satisfies (30) and the
Dirichlet boundary condition
wrp =0 on BUON.

This decomposition (35) into the splitting (34) gives with the help of (33)

VE:WRE+V@E+W0|QE+VX in Qp,
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or equivalently

(36) vg=wg+V®r in Qp,
onceweset wg = wrg + Welq, and @ = g + x. The conclusion follows from (32), (36)
and the above properties of wrg, weo, ¢ and . [

The relation between the general decomposition (26) and Theorem 3.1 in the limit when
& — 0 isnot straightforward and will be clarified later.

4 Laplacesingularitiesfor the potentials

The singularities of the Maxwell and eddy current problems are produced by the corners a and
the edges e of 2, — Note that the corners and edges are al part of theinterface B. Concerning
the Maxwell interface problems (corresponding to § > 0), these singularities are known [17]
to derive from those of scalar problemsfor potentials, namely A; and A, where A; is defined
in (25) and the | atter operator is defined as:

(Aupt)g= [ weVec-Vic+ | ueVos-Vop,
Qc Qg
for any o, v € HY(Q).

We will now recall the singularities of these two interface Laplacians A; (electric) and
A, (magnetic). For the sake of brevity we restrict ourselves to a minimal description and
refer to [24, 27, 28, 29, 15, 17] for more details. Moreover, we describe the singularities of the
coupled Neumann-Dirichlet problem (28)-(31) of the eddy current problem. We show that their
exponents (i.e. degrees of homogeneity) are the limit of the interface singularity exponents of
As asd — 0. We give complements on the behavior of al singularities (scalar and Maxwell)
in the eddy current limit asd — 0 in Section 7.

4.1 General definitionsfor Laplace singularitiesin cones and sectors

As we know from [23], the singularities (singular parts of solutions) of elliptic problems at a
corner 0 are obtained as non-zero quasi-homogeneous solutions of the same problem with zero
right hand side in the infinite cone (or sector) which coincides with the finite domain at this
corner 0.

Let I be an infinite conein R? for d = 3 or 2 (I isthen a sector), centered in 0. Let (p, 9)
be the polar coordinates centered at 0. Let G be the intersection of T" with the unit sphere. The
singularitiesin I" are quasi-homogeneous functions. Let usset for A € C:

Q
SMNT) = {W(@) = p* D (log p) "0y (0) : vy € HY(G) .
q=0

The singularities of an elliptic problem are the non-zero solutions in some S*(T") of the same
problem with zero right hand side. The corresponding A are the exponents of singularities.

The set of exponents can be found by searching solutions in the subspace of homogeneous
functions, SMN(T') := {\I’(x) = pMp(9) : Y € Hl(G)}.
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(i) DIRICHLET PROBLEM. We denote the set of exponents of the Dirichlet problem for A on
I" by AP*(T"), i.e. the \ for which there exists anon-zero U € S*(T"), solution of the problem

(37 AV =0inT and ¥ =0 on orI.

For X inthisset, let Z). (") be the corresponding space of singularities.
Let L be the positive Laplace-Beltrami operator on the unit sphere (L = —93 if d = 2).
For ¥(z) = p)(¥9), we have —AV = p*~2(Ly) — v)) where

(38) v=Xifd=2 and v=A\+1) ifd=3.

Thusit is standard to prove that AP (I") isthe set A such that v in (38) is an eigenvalue of the
Dirichlet problem for L on G. Moreover ZJ), (I') isthe space of p*v(¥)) with ¢ an eigenvector
associated with the eigenvalue v in (38).

(i) NEUMANN PROBLEM. The set AN"(T") of Neumann exponents is similarly defined as
the \ for which there exists anon-zero ¥ € S*(I"), solution of

(39 AV =0inT and 0,¥=0 on OI.

The space 73, (T) is defined analogously and the Neumann eigenpairs of L on G yield the
singularities as above.

(ili) INTERFACE PROBLEMS. The interface problems that we consider in most of this paper
are of simple type. They correspond to the separation of the whole space I' = R? or R? into
two conicd regionsT'c andT'g,i.e. ' =T¢cUT'g andI'c NT'g = (). We note that

SMT) ={¥: Vo e SMNT¢), Ve SMTg), ¥o=Tgonl:=9dlc=0lg}.

Let o be a piecewise constant function, equa to ac € CinI'c andtoag € CinT'g. The set
of exponents of the interface problem associated with the operator
(40) (®, V) —s acVoe -V + / apVog -V,

Pe I'g

isthe set A, (T") of the X for which there exists anon-zero ¥ € S*(I"), solution of

(l) A\I/C =0 in Fc,
(41) { (ii) AVp =0 in Tg,
(i)  acO Yo+ apd,, Vg =0 on I.

For \inthisset, let Z*(I'; o) be the corresponding space of singularities. Thenthe A € A, (T)
are such that v in (38) are the eigenvalues of the problem

(42) Y e HY(SYY), VYo e HY(ST ), /

gd—1

avw.w:y/

Sd

_la Y.

When a > 0, the space Z*(I'; o) contains only homogeneous functions of the form p*« (1)
with ¢ solution of (42).
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4.2 Theeddy current limit for potentials

For 6 > 0, the singularities of the electric transmission Laplacian As are the non-zero ¥ ¢
SA(T) solution of the problem (41) with a = o where

(43) a‘sc =oc +idwéc and a5E = 0wéE.

Going back to problem (28)-(31) for the eddy current potentials, we see that its singularities
are the solutions ¥ € S*(T") of the problem (41) with a = o, where o, = ¢ and % = 0.
Inserting ¥ (z) = p*)(¥9) in (41) with a = o we obtain the eigenval ue problem:

() Lyc = vy in Gg,
(44) { (if) Lyg = vyp  in Gg,

(i) Ontbc = 0 on J:=0Gc =9GE.

We are going to exhibit a common variational formulation for problems (42) and (44), and
deduce that the spectrum of (42) for o = o tends to the spectrum of (44) asé — 0.

Let us divide equation (42) for o = o’ by o¢ + idwéc and let us set
_ idwép
(4) T~ o0 +idwic
Then the eigenval ue problem (42) with o = o’ becomes
Findy € HY(SY1), ¢ # 0,V € H (S 1):

(46) Vo - Voo +1n VwE'VSOE:V{ Yo po +1n ¢E<PE}-
Geo GE Ge GEg

Let us denote by Pg the harmonic extension from G into Gg: For ¢¢ in H' (G¢), Ppic
isthe solutionof Ly = 0inGg and ¢ = 1¥¢o on 0G g = 0G . Consequently there holds

(47) Vo € Hy(GE), V(Pgic) - Vo = 0.
Gg

For any ¢ € H'(S%"!), we have
Yp = Peio + 1o, Where ¢y € Hy(Gp).

We write similarly pr = Proc + ¢o, With o9 € HL(GEg). Inserting thisin (46) and using
(47), we obtain Voo € HY(G¢) and Vi € HY (GE):

Vi - Voo +1 / (VPstc - VPpoc + Vibo - Vigo) =
Gc GE

v { Yo pe + 77/ (Peve Peec + Petbo o+ to Peec + o ¢o) } :
Ge G
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(48) Voo € HY(Ge), : Vo Voo +n | VPgipc-VPgpo =
c Gg

v { Yo po + 77/ (Pevc Peyc + o Pege) }
Ge Gr

and
(49) Vo € HY(Ge). [ Voo = v /G (Petbe w0 + o o).
E E
For n = 0, equation (48) becomes
(50) Yoo € H' (Ge), Vo - Voo = V/ Ve pc.
Geo Ge

The solutions of the system (49)-(50) are the solutions of system (44). Thus we have written
the eigenproblems (42) for o« = o and (44) using the unified variational formulation (48)-(49),
which has the form

Find (1,/}0, wo) S H! (Gc) X H&(GE), V(tpc, gOo) (S Hl(Gc) X H& (GE)

a'r](wC’wO; ()007@0) - Vbn(¢07¢0; SDC7900>

where a,, and b,, depend continuously on 7 € [0, 1.
As a consequence of the analysis above, we have proved the following:

Proposition 4.1
(i) For n = 0, the set of eigenvalues v of the system (49)-(50) is the union of the set of Neumann
eigenvaluesin G and the set of Dirichlet eigenvaluesin G .

(ii) When n — 0, the eigenval ues of the system (48)-(49) tend to the eigenval ues of the system
(49)-(50).

4.3 Corner singularities

Now, we go back to the specific description of the singularities of the interface Laplacians
A (and problem (28)-(31) for 6 = 0) and A, at the corners of (). Note that the external
Dirichlet or Neumann boundary conditions hold on the external smooth boundary 02 and do
not influence the interface singularities.

Fix acorner a € B. There exist infinite polyhedral conesI'c , and I'g o with vertex a and
such that for py > 0 small enough

QcﬂB(a,po):FC’aﬂB(a,po) and QEQB(a,po):FE@ﬂB(a,po).

Note that Tcn U T'g 4 isthe full space I' = R3. We refer to this conica partition of R?
associated with a by the notation I',.

Then we denote by A;(I's) the set of the exponents determined by problem (41) with
a = a’, see (43), for § > 0, and with ' = I'caandI'r = I'g, a. We denote similarly the
spaces of singularitiesby Z*(T',, §). As aconsequence of Proposition 4.1, we obtain
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Lemma4.2 For § = 0, the set of singular exponents satisfies
Ao(Ta) = AN 2) UAPT(T g 5).
When § — 0, theset A;(I'a) tendsto Ag(Ta)

The exponents and singular spaces associated with A, aredenoted by A, (T'y) and Z* (Ta, 1),
according to subsection 4.2 (iii).

4.4 Edgesingularities

Let e C B bean edge of 0€2¢. There exist two plane sectorsI'c  and I'g_ such that for any
point = € e there exists aneighborhood B of x and a Cartesian system of coordinates such that

QcﬁBI(FQeXR)ﬂB and QEQBZ(FE’QXR)HB.

Let we e and wg, e bethe opening of I'c e and I' g, respectively. Of course we have we e +
wp,e = 2m. We refer to this partition of R? into two sectors associated with e by the notation
Te.

Likefor corners, we denote by A;(I'e) the set of the exponents determined by problem (41)
with o = o, see (43), for 6 > 0, andwithI'c = I'c e and I'g = I' . We denote similarly
the spaces of singularitiesby Z* (T, &). As aconsequence of Proposition 4.1, we obtain

Lemma4.3 For § = 0, the set of singular exponents satisfies

Ag(re):{ b keZ}u{w]m : keZ\{O}}.

wC’,e ,e

For 6 > 0, A;(Te) isthe set of A = /v with v solution in C of the equation
(14+n)sinvr = +(1 —n)sinv(r —wee), Withn givenin (45).
When § — 0, theset A;(T'e) tendsto Ag(Te).

The exponents and singular spaces associated with A, aredenoted by A, (T'e) and Z* (T, 1),
according to subsection 4.2 (iii).
5 Corner and edge singularities of the eddy current problem

The singularities of the solution E? of problem (16) for § > 0 are those of a Maxwell trans-
mission problem, very similar to that investigated in [17]. Here, we concentrate on the solution
of the eddy current problem E = E, which is also the solution of the regularized variational
formulation (21) for 6 = 0, i.e.

(51) Find E€Y(Q) st a%(E,v) = —iw(jo, V)ag, Vv € Y(Q).

In this section we describe the corner and edge singularities of problem (51). These singu-
larities are obtained asin [15, 17] with the necessary adaptations.
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5.1 Corner singularities

Fix a corner a of )¢ and denote by (pa, ¥a) the spherical coordinates centered at a. Denote
furthermore by I'c 5 (resp. I' g, a) the infinite polyhedral cone which coincides with Q¢ (resp.
Qr) near a. Likein Section §4.3, we denote by T',, the space R? when we refer to its partition
into I'c, a and I'g 5. For shortness we now drop the index a. As usua we are looking for
solutions of the homogeneous eddy current problem in the space

SMNI) = {u € Xioe(T) : divue € HL (T¢), divug € HL (Tg),

Q
u(@) = p* " (log p)7U, (9) }.
q=0
the index loc meaning that the properties hold in all bounded domains far from a. This means
that we look for a non-polynomial solution u € SA(F) of (the last two boundary conditions
may be justified by taking arbitrary right-hand sides f € L?(2) in (51), using arguments asin
Theorem 1.1 of [17])

curl (MEl curl u) — Vdivu=0 inlc,

curl (43" curl u) — Vdivu =0 inlg,

uc-n=20 onl:=9Jl'c =0l'g,
(52 [uxn]=0 onl,

[plcurluxn] =0, [curlu-n]=0 onl,

Op(divue) =0 onlI,

divug =0 onl.

If anontrivia solution exists then we say that A is an eddy current corner exponent.
For the sake of simplicity we assume that I' and I'r are simply connected, the general
case can be treated asin [15] and simply yields additional “topological” singular exponents.
Asin[15, 17], this problem is split up into three subproblems by introducing the auxiliary
unknowns
¥ =p tcurl u
and
. divvg in e,
1= { divvg in T'g.

With these notations, problem (52) is equivalent to looking for ¢, 1, u, successive solutions of

Ag=0 inCe,
Ag=0 inFE,

(53) Ongc =0 onl,
qr =0 on/,
curl ¢ = Vq, div(uctyp) =0 inTg¢,
(54) curl ¢ = Vg, div(ugy) =0 inTg,
[ xn] =0, [igp-n]=0  onl,
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curl u = pcp, divu=gq inTq,
curl u = pugvy, divu=q Iinlg,
uc-n=_20 onl,
[uxn]=0 on/.

(55

This means that we have three types of singularities:
Typel: ¢ = 0,1 = 0 and u isagenera solution of (55).
Type2: ¢ = 0, ¢ isageneral solution of (54) and u a particular solution of (55).
Type 3. g isagenera solution of (53), v» aparticular solution of (54) and u aparticular solution
of (55).

These three types of singularities may be described with the help of the corner singularities
of the Neurmann probleminI'¢, of the Dirichlet problemin I"  and of the transmission operator
A,

Since for our problem (51), div E¢ and div Eg are regular, we do not describe the singu-
larities of type 3 since they cannot occur for any solution of (51).
Let us start with the singularity of type 1.

Lemma5.1 Assumethat A # —1. Thenu € S*(I') isa singularity of type 1 if and only if (i)
or (ii) below holds.

(i) A+ 1 belongsto ANY(I'¢), u = V&, with &¢ € Z3 1 (I'¢) and @ € SM(T') solution
of

(56) { AdPp =0 inl'g,

bp=d-, onl.
(i) A + 1 belongsto AP™(T'g), u = V&, with & = 0 and & € Z)H (Tg).
Proof: As

curl uc =0 inlg,
curlug =0 IinTg,

there exists ®¢ € SM1(I'¢) and @ € SM1(I'g) such that

uc = Vo¢ in I'c,
ugp = Vog in I'g.

From (55) we deduce that
AP =0 in I'c,
AdPp =0 in I'g,
On®c=0 onl,
bo=dp onl.

Then either & is not zero and we are in the case (i) or - = 0 and we are in the case

(ii). »
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Lemma5.2 Assumethat A > 0. Thenu € S*(I) is a singularity of type 2 if and only if A
belongsto A, ("), ¢ = V¥, with ¥ € Z(T', 1) and u given by
1

7 _ 1
(57) YT

(VT x x) + V7).

whererg € SM(I¢), rg € SM(I'g) are solutions of

Arc =0 in Te,

Arg =0 inl'g,
(58) Onro = —Mc(v\lfc X X) -n onl,

rc =TE onlI.
Proof: As

curl o =0 inT¢,
curl ;=0 inlg,

thereexists U € S*T'¢) and ¥ € S*(I'g) such that

Yo =V inTe,
T/JE:V\IIE inlg.

From (54) we deduce that
div(pcVV¥e) =0 inlc,
div(ugV¥g) =0 inTg,
V] =0, [p0,¥]=0 onl.

Thismeansthat & € Z (T, ).
Now we readily check that u in the form (57) is solution of (55) if and only if r is solution
of (58), whose solution exists by Theorem 4.14 of [27]. [

Lemmab5.3 (i) A = —1isnot a corner singularity of type 1.
(ii) A = 0 isnot a corner singularity of type 2.

Proof:

(i) If uisasingularity of type 1 for A = —1, then ue isasingularity of type 1 for A = —1 for
the Maxwell system in ' with the boundary condition uc - n = 0 on I. Therefore by Lemma
7.8 of [15] uc = 0. With thisinformation, ug is now a singularity of type 1 for A = —1 for
the Maxwell system in I"z with the boundary condition ug x n = 0 on I. Again by Lemma
7.8 of [15] we get ug = 0.

(i) If u isasingularity of type 2 for A = 0, then ¢ = p~! curl uc isasingularity of type 1
for A\ = —1 for the Maxwell interface system in IR3 with the parameter .. Therefore by Lemma
5.4 of [17] we get ¢» = 0. |
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Since the singularities of our problem (51) have to be localy in X(I") with a piecewise
smooth divergence, among the singular exponents described above, we select the subset A, of
A > —% such that there exists u € S*(T") solution of (52) such that

xu € X(I'),

where y is a cut-off function equal to 1 near a. This last condition implies the following
constraints for our two types of singularities (see [17]):
Typel: A+1 € ANY(T¢) or \+1 € AP™(I'g) and since AP (I'g) N[—1, 0] and AN"(T') N
[—1, 0] are empty, by Lemma5.3weget A > —1.
Type2: A € A,(T') and by the condition curl (xu) € [L*(R?)]?, weget A > —1. By Lemma
5.3 and thefact that A, (") N [—1, 0] isempty, we get A > 0.

In conclusion we have

Aa={A>—-1:A+1c AN T)} U {A>-1:2+1€APT(Ig)}
U {A>0:xe A, (D).

5.2 Edgesingularities

Fix an edge e of 2 and denote by I' x R (resp. I' x R) the infinite polyhedral cone which
coincides with Q¢ (resp. 2g) near e (I'c and I'r; are then two-dimensional sectors). Denote
by (r, 0, z) the cylindrical coordinates along e. As before we are looking for solutions of the
homogeneous eddy current problem (52) inI'c x R and 'y x R. Now T refers to R? with
its partition into the two sectorsI'c and I', cf Section 4.4. Writing u = (v, w), where v are
the first two components of u in the Cartesian coordinates (x1, x2, x3) (according to the above
notation, the x3-axis contains the edge e), the system (52) is split up into the following two
independent problemsin R2:

curl (u;! curlv) — Vdivv =0 inT¢,
curl (u!' curlv) — Vdivv =0 inTg,
ve-n=20 onI::OF(;zal“E,
(59) [vxn]=0 onl,
[pteurlv xn] =0 onlI,
Op(divve) =0 onl/,
| divvg =0 on/.
div(pstVwe) = 0 inTc,
(60) { div(ug' Vwg) =0 inTg,
[w] =0, [p~10,w] =0 onl.

Problem (60) is a standard transmission problem whose set of singularities A ,-1(T") =
A, (T") (seeLemma6.2 of [17]) were described in section 4. Problem (59) isatwo-dimensional
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eddy current problem whose singularities may be described asin 3D, by introducing the auxil-
iary unknowns ¢ = p~! curl v and

N divv inFC,
1= divv inTg.

As before, singularities of type 1, 2 and 3 then appear. We can show that singularities of type 2
do not exist (compare with [15, 17]), singularities of type 3 are not studied for the same reason
as before, while singularities of type 1 are analyzed exactly asin Lemmab5.1.

In conclusion we can state the following resuilt.

Lemma 5.4 The set A, of edge exponents associated with e is given by
Ae={A>-1:24+1€ AN Te)} U {A>—-1:1+1€eAPTTg))
U {A>0:xeA, )}
If X\ & N'\ {0}, then the associated singular function u = (v, w) isasfollows:
o If A+ 1€ ANY(T(), thenw = 0,

ve =V (THIWC) ;
with o (8) = cos((A + 1)8) (the half-lines# = 0 and § = w¢ are assumed to be the
interfaces between I' and I' g, the interior opening of I'c (resp. T'g) isthen we (resp.
wp = 21 — we)), and if % isnot a rational number, then

vg =V (7“)\+1<PE) ;

with g (6) = c1 cos((A + 1)8) + casin((A + 1)6), for some (explicit) constants ¢; and
co. If g—g isarational number, then alogarithmic term possibly appearsin the expression
of vg.

e If A+ 1€ APY(I'g), thenw = 0, v = 0 and
vg =V (TAHVJE) )
With o15(6) = sin((A + 1)(8 — we).
e If A € AyT), thenv = 0and w = 1y, with ¢ an eigenvector of problem (42) for
a = yu, associated with the eigenvalue v = \2.
6 Regularity and singularity resultsfor the eddy current problem

We describe the regularity aswell as singular decompositions of any solution E of the regular-
ized problem (51) with a source current density jo such that

(61) divjo=0, suppjo C Qc, jo€ [H'(Q0)) for s> 1.

These results are based on the knowledge of corner and edge singularities described in the
previous section and rely on the application of Méllin techniques asin [15, 17].
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6.1 Regularity
For any corner a in the interface B introduce

)\Neu = min{A>0:)\¢€ ANeu(FC,a)}7
)\D” = min{A>0:)\¢ ADir(FE,a)}7
Apa = min{A>0: A e A,(Tq)},

where A, (T, ) is defined in section 4.3 for the subdivision of R3 into FcaandI'g 5. Similarly
for any edgee C B define

Ape =min{A >0: X e A,(Te)}.

Now we can set

+ mln )\Neu)

. . 1 3
7@ .= min mem/\u,e, §+m;n)\u,a>,

when wc, ¢ isthe opening of ¢ donge and wg o = 27 — we, ¢ iISthe opening of 2 along e.
Then we have

Theorem 6.1 Let E € Y (2) be a solution of problem (51) with j, satisfying (61) for s > 1.
Then we have

Ec € H¢(Q¢), V7o <min (Tél),T(Q) +1,s+ 1) ,
Erp € H'5(QE), V7 <min (7(1),7'(2) +1,s+ 1) .

6.2 Singularities
We start with ageneral result and then restrict ourselvesto a particular case where there remain
only singularities of type 1.

The general result is proved exactly asin [15, 17] and can be stated as follows:

Theorem 6.2 Assumethat s > 1 such that for all cornersa, s — % does not belong to A, and
for all edgese, s does not belong to Ae. Assume furthermore that the edge exponentsin [—1, s]
are contained in an interval of length < 1. Let E € Y(£2) be a solution of problem (51) with jg
satisfying (61) for this regularity exponent s. Then E admits the decomposition

(62) E—ER 1 EO),
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where the regular part satisfies
ER e Ht1(Qc) and EW) € B (Qp).

On the other hand the singular part E(°) has the standard structure

(63) E(S) — Z Z Z ’Yé\’an(Pa)u;\{p(Pa, 79a)
a AeAan[-3s-1] P
©4) - Z Z Z ’C[’Vép] Xe (Pe)ué’p(pe, Qe),

e AcAen[-1,s] P

where ua”? (resp. ué’p) arethe corner (resp. edge) singularities of type 1 or 2 described in the
previous section, xa (resp. xe) isa smooth cut-off function equal to 1 near p = 0, pe = 7odg "
when d, is a smooth function which is equivalent to the distance of the endpoints of e, K isa
convolution operator (cf. [18, 15, 17]) and fyé’p (resp. yé”’) arereal constant (resp. functions
defined in the edge e and belonging to some weighted Sobolev spaces).

Exactly asin [15, 17], if one wants to eliminate the singularities of type 2, we introduce a
parameter 7 < s satisfying
(65) 7 < min{r(), 73},

Using Lemmas 4.11 and 4.13 of [15], we obtain

Theorem 6.3 Let E € Y(Q2) be a solution of problem (51) with jo as in the introduction
and the regularity jo € [H*"1(Q¢)]® with s > 1. Let 7 < s satisfy (65) and such that
the edge exponentsin [—1, 7] are contained in an interval of length < 1. Then E admits the
decomposition

E=e® + Vo,

where the regular part satisfies
ER e B (Q¢) and EW e H(Qp),
while ® € H'(Q) satisfies

Ads € HT(QC)
On®c =0 on B,

and

Adg EHT(QE),
dp =P on B.

If 7 = 0 the above theorem reduces to Theorem 3.1. For 7 not necessarily equal to zero,
asin that Theorem, ®+ has the singularities of the interior Neumann problem, while &z has
induced exterior singularities as well as exterior Dirichlet ones.
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7 Continuity of the singular functionsin the eddy current limit

If we put together

1. The result of Section 4.2 which yields the continuity of the singular exponents with
respect to ¢ for the associated scalar problem,

2. The common structure of Maxwell and eddy current singularities of Type 1 (as gradients
of scalar singularities),

3. The similar structure of Maxwell and eddy current singularities of Type 2 (compare our
Lemma5.2 with [17, Lemma5.2]),

we may wonder whether it is possible to define a basis of singular fields ua”[6] and u™[é] for
the eddy current problem (51), § = 0, and the Maxwell problem (21), 4 > 0, which should be
regular with respect to 0 € [0, dp] and so that a decomposition like that of Theorem 6.2 holds
with coefficients depending smoathly on §.

In this paper, we will not address this question in its full complexity, but show that it is
possible to choose bases of singular functions in a regular way with respect to ¢, up to the
limit § = 0. This means that we have mainly to investigate the behavior of all singularities
(i.e. in SA(T)) of the scalar problems (40) when a = o given by (43), as§ — 0. Similar
questions are addressed in [13, 14, 28]. Since the direct application of these references is not
straightforward, we are going to state the main steps of arelevant construction.

In the general case, we cannot exclude any of the phenomena such as “crossing” and
“branching” that appear for singularity problems depending on a parameter. Since, in our sit-
uation, the coefficients are non-real, we may expect singularity exponents that have algebraic
branch points for certain values of 4, even for § = 0, i.e. in the eddy current limit. We also
can have changes of multiplicities, even for 6 = 0, for example in the case where a singular
exponent for the Neumann problem in I' > coincides with a singular exponent for the Dirichlet
probleminI'g.

In both these situations, any individual singular function of the transmission problem A;
of the form p*34)5(19) will converge to a singular function p*ov(¥9) of the limit problem, but
the coefficients of a such singular function may be non-regular with respect to § or even blow
up for § — 0. Clustering several singular functions together and choosing a basis depending
analytically on § as explained below in Section 7.2 will avoid such pathologies.

7.1 Méllin symbols

It is known from [23] that the corner singularities solution of (41) are produced by the poles of
the associated Mellin symbol: Let us recall that the Mellin symbol of an operator A homoge-
neous of degree m with constant coefficientsis A — 2((\) where

A(0z) = p~™A(V; Dy, D) and  A(N) := A(Y; X, By).
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Let us consider the situation of threedimensional cones (d = 3). The symbol associated with
the operator (40) —see also (41), is
Lipc = AA+1Lye  in Ge,
(66) Y r— Lipg = AA+ 1)y iIn Gg,
ac8nc¢c + aEanEwE on J:=0Gc=0GEg.
Let us denote by 21, () the operator (66) acting between function spaces:
M, (\) : Z(Ge,Gp) — L*(Ge) x LA(Gp) x HV2(),
where the source space Z(G¢, Gg) is defined as
Z(Ge,Gp) = {p € H'(S?) : Apc € L*(Ge), Apg € L*(Gg)}.
When o = of isgiven by (43), we denote M, (\) by Ms(N).
We are going to provethat for all § € [0, do] thereexists A such that Mts(\) isinvertible. Let
(fc, fe,g) belongto L?(G¢) x L*(Gg) x H=/2(.J) and let usfix A suchthat —A(A+1) > 0.
e If § =0, wefirst solve the Neumann problem
(L-AA+D)e = fo in Ge,
Ozcancwc = g on J
and then the Dirichlet problem
(L=AA+D)vp = fr in Gg,
v = v¢|, on J

e If § > 0, weuseavariational formulation asin (42): Vo € H'(S4 1),

/Sdlav¢.V90—>\(>\+l) /Sd1a¢¢=/Gcfc@c+/GEfE¢E+/]g¢_

Sincetheright hand sideis clearly in H~!(S%~1), the coerciveness yields a unique solu-
tion.

The analytic Fredholm theorem yields that for al § € [0, dg], A — Ds(A)~! is meromor-
phic. As the dependency of the symbol on § isanalytic, such isaso the case for itsinverse.

7.2 Stablebasesfor singularities
Let 6 € [0,0p] be fixed. We recall that we have denoted by As(I") the set of the singular
exponents of the operator A; (transmission or coupling).

The singular exponents in As(T") coincide with the poles A of 9ts(\)~!. Moreover the
corresponding space of singularities Z*0(T'; §) (the space of solutions in S*0(T") of (41) for
a = o) isalso given by a Cauchy residue formula:

ZM(T;0) = {\11 :IF € O(D(\g)), V= L P Ms(N)TLF(N) d)\}
2 dD(M\o)

where
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e D()\p) isadiscinthe complex plane centered in Ay and not containing any other pole of
Ms(A)

e Thenotation F' € O(D()\g)) meansthat A — F()) is holomorphic in a neighborhood
of D(\g) with valuesin the target space L?(G¢) x L*(Gg) x H=Y/2(J).

Note that if D contains several elementsof As(I'), but 0D N As(T") is empty, then
{qf IF € O(D), T = 2L PMs(N)LE(N) d)\} - D 2m.
‘T Jop AEA;(D)ND

The smooth dependency on ¢ of 95(\) ! implies the principle of smooth dependency of
the singular spaces Z*(T'; §) on ¢ in the following sense: Since we are interested in the eddy
current limit let us consider a pole \g of My(\)~! and adisc D = D()g) such that \g is the
only pole of My(A)~Lin D. There exists §()\g) such that for al § € [0,5(\o)] the symbols
Ms(\)~! areinvertible on 9D. Then the spaces

(67) {\11 AP e OD), V=— [ o0 F) d)\},
2im Jop

depend smoothly on § up to thelimit § = 0. In other words

b 2Ty — z20mo.
AEAS(T)ND —0

Indeed, this statement shows the necessity of keeping together some clusters of poles.
We obtain easily a basis depending smoothly on 6: Choose F!, ..., F™ in O(D) such that

1
U5 (p, ) = 5~ - PMN)TTFP N AN, n=1,...,m

isabasisof Z*(I";0). Then, for § small enough the functions

W (pd) = —— [ pPM(N)FTA) A, n=1,...,m
2T Jop -

are a basis of @, rynp Z*(I38). The mappings § — W} are analytic with respect to

XS [0,50]. -

7.3 Simplesingularities

If the dimension of Z*(T";0) is 1, or more generaly if § = 0 is not a point of crossing

or branching for the singularities, then the behavior of individual singular functions is very
simple indeed. Let us consider the two typical situations where this happens:
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1. If \g € APT(I'g) isasimple eigenvalue and such that Ao ¢ AN®"(I'¢), then we can find
aunique \; € A;(I') such that § — A5 is analytic for § in a neighborhood of 0. If we
fix a p*04y in the singular space Z? (T'x), then we find a generator p*s4p5 of ZM(T'; )
suchthat § — s isanalytic for 6 small enough. Then s — 0 on G in H(G¢) and
¢57E — wO,E on GE in Hl(GE)

2. 1f \g € ANY(T'o) \ AP"(T'g), we have a singular function p*s¢5 with § +— \s and
§ +— 1bs analytic. Here p*o1)g ¢ isasingular function of the Neumann problem in T'c
and vy, ¢ is the harmonic extension of v ¢ to S2.

Situation 1., resp. 2., occurs for the first corner singularity of the eddy current problem
where Q2 has a corner like a cube, resp. like the exterior of a cube.
Situation 1. or 2. always occurs for the first edge singularity where the exponent is

A:mm{i,i}_l,
wo Wg

because 7 /we and /wp = w/(27 — we) never coincide. Although unpredictable in general,
the simplicity of limiting exponents of singularity is generic.
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