EXISTENCE AND ASYMPTOTIC BEHAVIOR OF
MULTI-DIMENSIONAL QUANTUM HYDRODYNAMIC
MODEL FOR SEMICONDUCTORS

Hailiang Li* Pierangelo Marcati'
* Institute of Mathematics, University of Vienna, Austria,

tDipartimento di Matematica Pura e Applicata, Universita degli Studi dell’Aquila,
67100 L’Aquila, Italy; e-mail: marcatiQunivagq.it

Abstract

This paper is devoted to stady the existence and the time-asymptotic of multi-
dimensional quantum hydrodynamic equations for the electron particle density,
the current density and the electrostatic potential in spatial periodic domain. The
equations are formally analogous of the classical hydrodynamics but differ in the
momentum equation, which is forced by an additional nonlinear dispersion term,
(due to the quantum Bohm potential,) and are used in the modelling of quantum
effects on semiconductors devices.

We prove the local-in-time existence of the solutions, in the case of general,
nonconvex pressure-density relation and large and regular initial data. Further-
more we propose a “subsonic” type stability condition related to that one of the
classical hydrodynamical equations. When this condition is satisfied, the local-in-
time solutions exist globally in-time and converge time exponentially toward the
corresponding steady-state. Since for this problem many classical methods, like
for instance the Friedrichs theory for symmetric hyperbolic systems, cannot be
used then we investigate, via an iterative procedure, a suitable extended system
which incorporates the quantum hydrodynamics as a special case. In particular,
by using this new approach, the nonlinear dispersive terms are tranformed into a
fourth-order wave type operator, with linear principal part.
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1 Introduction and main results

Quantum hydrodynamic models become important and necessary to model and simulate
electron transport, affected by extremely high electric fields, in ultra-small sub-micron
semiconductor devices, such as resonant tunnelling diodes, where quantum effects (like
particle tunnelling through potential barriers and built-up in quantum wells [10, 21])
take place and dominate the process. Such kinds of quantum mechanical phenomena
cannot be simulated by classical hydrodynamical models. The advantage of the macro-
scopic quantum hydrodynamical models relies in the facts that they are not only able to
describe directly the dynamics of physical observable and simulate the main characters
of quantum effects but also numerically less expensive than those microscopic models like
Schrodinger and Wigner-Boltzmann equations. Moreover, even in the process of semi-
classical (or zero dispersion) limit, the macroscopic quantum quantities like density, mo-
mentum, and temperature converge in some sense to these of Newtonian fluid-dynamical
quantities [13]. Similar macroscopic quantum models are also used in other physical area
such as superfluid [26] and superconductivity [5]

The idea to derive quantum fluid-type equations goes back to Madelung’s in 1927 [27,
24], where the relation between (linear) Schrodinger equation and quantum fluid equation
was described in view of nonlinear geometric optic (WKB)-ansatz of the wave function
for irrotational flow away from vacuum. This in fact gives a way to derive quantum
fluid type equations, i.e., to make use of WKB-expansion and derive the equations for
(macroscopic) density and momentum from the single-state Schrodinger equation, or
these with temperature involved from the mixed-state Schrodinger equation [14, 18, 13].
Another practicable way to derive quantum hydrodynamic equations is to take advantage
of the kinetic structure behind the Schrodinger Hamiltonian through Wigner transforma-
tion [36]. In fact, the action of Wigner transformation on the wave function describes the
equivalence between (linear) Schrodinger equation and Wigner-Boltzmann equation [31],
the quantum kinetic transport equation. The application of the moment method to the
Wigner-Boltzmann (or Wigner-Poisson) equation, yields to the macroscopic quantities
density, momentum and temperature, whose time-evolutions obey to the quantum hy-
drodynamic equations [10, 11]. This is done in analogy with derivation the first three
moments equations, in the moment expansion for the Wigner (distribution) function of
Wigner-Boltzmann equation, under appropriate closure conditions [15] near “quantum
Maxwellian”. For further references on the quantum modelling of semiconductor devices,
we refer to [32, 10, 14, 18, 11] and the references quoted therein.
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We are interested in the mathematical analysis of quantum hydrodynamic model for
semiconductors. In the present paper we consider the initial value problem (IVP) of the
quantum hydrodynamic model for semiconductors where an additional relaxation term
is involved in the linear momentum equation to model the interaction between electron
and crystal lattice. The re-scaled multi-dimensional quantum hydrodynamic models for

semiconductors (QHD) then is given by

dp+ V- (pu) = 0, (1.1)

di(pu) + V-(pu @ u)+ VP = pVV + %QV' (p97I0zp) ~ 2, (1.2)
_NAV = p— C(a), (13)

o(,0) = pr(z) u(a,0) = (), (1.4

where p > 0, u, J = pu denote the density, velocity and momentum respectively. € > 0
the scaled Planck constant, 7 > 0 is the (scaled) momentum relaxation time, A > 0 the
(re-scaled) Debye length, and C(z) the doping profile simulating the semiconductor device
under consideration [18, 32]. The pressure P = P(p), like in classical fluid dynamics,

often satisfies the v-law expression
T
Plp)=—p", p20, v2>1

with the temperature 7' > 0 [10, 17]. Notice that the particle temperature is T'(p) =

Tp~'. Moreover, the nonlinear dispersive term

1, 2 L, AvVp
- . 1 - _ "
1€ \Y (pV ogp) 5€ pV( 7

is produced by the gradient of quantum Bohm potential

Q) = 4=,

which requires the strict positivity of density for classical solution.

Recently, many efforts have been made on the existence of (steady-state or time-
dependent) solutions of QHD (1.1)—(1.3). The existence and uniqueness of (classical)
steady-state solutions to the QHD (1.1)—(1.3) for current density J = 0 (thermal equi-
librium) has been studied in one dimensional and multi-dimensional bounded domain
for density and electrostatic potential boundary conditions [1, 12]. The stationary
QHD (1.1)—(1.3) for .J > 0 (non-thermal equilibrium) has been considered in [9, 17, 37]
for general monotone pressure functions, but, with different boundary conditions, i.e.,
Dirichlet data for the velocity potential S [17] or by using nonlinear boundary conditions
[9, 37]. The existence of the one-dimensional steady-state solutions to (1.1)—(1.3) subject
to boundary conditions on the density and the electrostatic potential has been proved in



4 Quantum hydrodynamics

[16], for the case of a linear pressure function P(p) = p, and in [19] for general pressure
functions P(p). The local in-time existence of classical solution was obtained in one-
dimensional bounded domain [20] (subject to boundary conditions on the density and
the electrostatic potential ). In this case additional boundedness restriction on initial
velocity were required to keep the strict positivity of density. The case of large initial
data and strictly convex pressure function in R™ has been investigated by [25] . In both
of these cases, the classical solutions exist globally in time for initial data which are small
perturbation of stationary states (which are time exponentially stable). up [20, 25].

In the present paper we consider the initial value problem (1.1)—(1.4) for general,
nonconvex pressure function in multi-dimension, and we focus on the local existence
of the classical solutions (p,u, V) of IVP (1.1)—(1.4) for regular large initial data, and
their time-asymptotic convergence to asymptotic state under small perturbation. We
give a general framework to show the local in-time existence of classical solutions for
general (nonconvex) pressure density function and for regular large initial data. Then,
we propose a (generic) “subsonic” condition to prove the global existence of the classical
solutions in “subsonic” region and investigate their large time behavior.

It is convenient to make use of the variable transformation p = ¢? in (1.1)-(1.4).

Then, we derive the corresponding IVP for (¢, u, V):

20 Op + V- (%) = 0, (1.5)
ou 4+ (uV)u + Vh(?) + ; =VV + Zjv(%), (1.6)
AV =4* - C, (1.7)

P(x,0) = i(x) :=/p1(z), u(z,0) =uy(z), (1.8)
with ph'(p) = P'(p). Note here the two problems (1.1)—(1.4) and (1.5)—(1.8) are equiv-
alent for classical solutions. For simplicity in this paper we consider the initial value
problem (1.5)—(1.8) on the multi-dimensional torus T”, with T = [0, L] and L > 0 repre-
senting the period length. Because of the periodicity in the space variables, the solution
of Poisson equation is not unique since each combination of one solution and a constant
is another solution. It is natural to consider the Poisson equation (1.7) in homogeneous
Sobolev space. Note, however, the physical meaning of electrostatic potential V', we can
consider the Poisson equation (1.7) for V satisfying

/ (V+ Ve —h(C))(x,t)dx =0, >0,

where V., is the given external potential used to model the (exterior) quantum well in
semiconductor devices. After an appropriate choice, we can let V,,; = h(C), then from
the mathematical point of view, we reduce to consider only potentials satisfying the
condition

/ V(z,t)de =0, ¢>0.
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In analogy, the right hand side term of the Eq. (1.7) is required to belong to the homo-

geneous Sobolev space, i.e.,
/ (¥* = C)(x,t)dz =0, t>0.

This can be guaranteed due to the conservation (neutrality) of density (1.5) and neu-

trality assumption on the initial datum

AAW—CWWMZ& (1.9)

In the present paper we consider the problem (1.5)—(1.8) for ir-rotational (quantum)
flow. We describe some ideas to prove both the local and the global existence and
we investigate the large time behavior in the “subsonic” regime. The general situation
for rotational flow is quite more complicated and it is expected to be investigated in a
forthcoming paper.

The first result is the following local existence theorem:

Theorem 1.1 Suppose P(p) € C?(0,400). Assume (¢1,u;) € H(T") x H*(T") (n =
2,3) satisfying (1.9), Vxu; = 0, and mingep 11¢1(x) > 0. Then, there exists Ty, > 0,
such that there exists a unique solution (¢¥,u,V) to the IVP (1.5)~(1.8), with ¢» > 0,
which salisfies

Y € CY([0, Tw]; HOH(T™) () C3([0, Tud; L*(T™)), i =0,1,2%
u e C([0,T.]; H72(T™), i =0,2; Ve CY[0,T..]; HY(T")).

Remark 1.2 The irrotationality assumption on the velocity vector fields u is consistent
with the equation (1.6), namely it keeps this property as long as it is true initially. This
can be justified via standard arguments as used in the case of ideal fluids in classical
hydrodynamics based on the Kelvin’s theorem and the Stokes’s theorem, see for instance

[23] for details.

The proof of above local-in-time existence is based on the construction of approximate
solutions and the application of compactness arguments. The main difficulties are given
by the following facts. The former arises since the general pressure P(p) can be non-
convex (even zero), then the left part of (1.5)—(1.7) (or (1.1)—(1.3) resp.) may not be
hyperbolic anymore and we cannot apply the theory of quasilinear symmetric hyperbolic
systems like [25] to obtain the local existence. The latter is given by the nonlinear
dispersion term in (1.6), which requires the density ¢ (or p resp.) to be strictly positive,
for regular solutions. Hence we have to establish the local-in-time existence of solutions

in a less traditional way.
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Indeed we are going to construct approximate solutions and to prove the local in-time
existence of classical solutions (v, ¢, 1, u, V) for an extended system, which incorporates
our problem, constructed in a suitable way based on (1.5)—(1.8). Note that in this new
system, there are two additional equations for the variable v, the artificial “velocity”
(a sort of Lagrangian type velocity), and the artificial “density” ¢ > 0. The key point
is that the local in-time existence of classical solutions for this extended system for the
unknown (v, ¢, ¥, u, V) will be equivalent to the original one given by (1.5)—(1.8), when
v =u and ¢ = ¢ (see section 3 for proof in details).

In order to extend the local-in-time solution globally in time, we will need uniform
a-priori estimates, that can be proved by assuming the initial data close to the time-
asymptotic (stationary) state (v»,0, V). Actually it will be possible to extend globally,
the local-in-time solutions, in the “subsonic” region (in the sense defined by (1.10) or
(1.12) below); namely we will prove the global existence of the local-in-time solution
when it starts near a stationary state (1,1, V) located in the so called “subsonic” region
(being this notion to be provided later in a more precise fashion).

The well-posedness of stationary state (¢, 1, V) of the boundary value problem (1.5)~
(1.7) subject to density and electrostatic potential boundary conditions was established
in one dimension [19] for general (nonconvex) pressure function P(p), and was obtained
for multi-dimensional irrotational flow [17] for monotone enthalpy function where addi-
tional boundary condition was imposed for the Fermi potential. The argument [17, 19]
could be applied also here to obtain the existence of stationary solution with periodic
boundary conditions. However, since here we are focusing our attention only on the
global existence, for simplicity we will bound ourselves to consider only the particular
stationary state (¢,u,V) = (C,0,h(C)). By noting that here we can replace h(C) by
0 just by changing the value of the external potential, we will consider here only the

situation where the initial data are assumed in a small neighborhood of the stationary

solution (C,0,0) to (1.5)—(1.7).

Theorem 1.3 Let P(p) € C°(0,+00) satisfying

2
T

Ag =: ﬁgQ + P'(C) > 0, (1.10)

where L > 0 is the space period length. Let us assume (¥ —/C,uy) € HS(T™)x H?(T")

(n =2, 3), the condition (1.9) and moreover V x u; = 0. There exists n > 0 such that,

if |1 — \/EHH6(TH) + ||wi|[ms () <, the solution (1, u, V) of the IVP (1.5)~(1.8) exisls

globally in time and moreover one has
108 = VO (Dll7re vy + 10 () sy + IV (D) [Fgsrmy < Coe™,
for allt >0, where C' >0, Ag > 0 are suitable constants, and

do = [|¢h1 — \/El‘iﬁi(ﬂl‘") + HUIH%ﬁ(T“)' (1.11)
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Remark 1.4 (1) Although in the Theorem 1.3 we choose the special stationary state
(\/E,0,0), we claim that the method used here can be applied to prove the time-
asymptotic convergence toward any stationary state of (1.5)(1.7), say (3,1, V), with
Vxu = 0. The well-posedness of them can be obtained by applying the arguments of
[17], with suitable modifications. In this case, the corresponding “subsonic” condition
have to be changed in the following way

T, ) .y

T2¢ + P'(¢%) > |u|”. (1.12)

(2) It is known that classical solutions of hydrodynamical model for semiconductors
(without dispersion term) for large initial data may blow up in finite time to form
singularities [3]. Analogous results on the existence of L* solution and one or two
dimensional transonic solutions for the hydrodynamical model for semiconductors was
proven [6, 7]. However when dispersive regularity is involved in (1.10) or (1.12), it may
prevent the formation of singularities and classical solutions exist globally in time even
in the transonic or supersonic region, in the classical sense [2, 4].

(3) Note here that the conditions (1.10) and (1.12) are exactly the subsonic conditions
in the classical sense [2], when the re-scaled Planck constant e goes to zero. If e > 0 and
P'(p) > 0, the “sound” speed ¢&(p) = /m2e2/L% 4+ P'(p) is bigger than the sound speed
c(p) = v/ P'(p) for the classical hydrodynamic equations. 0

The theorems 1.1-1.3 can be extended to the multi-dimensional torus T", n > 2, for

the IVP (1.5)-(1.8) with smooth initial data. Indeed, we have

Theorem 1.5 Let P € C"(0,00), with m > s —1 and s > [%] + 5. Lel us assume
that (yy,uy) € H*(T") x H*"Y(T"), Vx u; = 0, and minge¢1(z) > 0, then, there
exists T' > 0 such that a solution (Y,u,V)(t) € H*(T") x H*"(T") x H*"*(T") of the
ITVP (1.5)«(1.8), with ¢ > 0, exists on [0,T"].

Moreover, assume that (1,0, V), with Vxu = 0 and 1 > 0, is a classical stationary
state of (1.5)—(1.7) with small oscillation and satisfies (1.12). Then, if ||y — @Z’\Hs(Tn) +
luy — ullgs—1(rmy is sufficiently small,then the solution (,u,V)(t) of IVP (1.5)+(1.8)

exists globally in time and satisfies
1% = ) O [Frsm + (0 = @) O [Fgmrimy + NV = VYOl Femz(rny < Core™,
with Ay > 0 and
81 = ||(1 = D)oy + l(ur — ﬁ)”qu—l(TH)-

Remark 1.6 Once we prove the local existence (resp. global existence) of solutions
(¢,u, V) of IVP (1.5)—(1.8), we can obtain the local existence (resp. global existence) of
solutions (p,u, V) of IVP (1.1)—(1.4) by setting p = ¢?. .
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This paper is organized in the following way. In the section 2, we present preliminary
results on divergence equation, Poisson equation, and a fourth order semilinear wave type
equation on T™, then we list some known calculus inequalities. We prove the Theorem 1.1
in the section 3. After the construction of our extended system in the section 3.1, we
show the construction of the approximate solutions,we derive the uniform estimates,
and we prove the Theorem 1.1 in the section 3.2. The section 4 is concerned with the
proof of Theorem 1.3. After the reformulation of original problem in the section 4.1, we
establish the a-priori estimates on the local solutions in the section 4.2, and prove the

global existence and the large time behavior in the remaining part.

Notation. C always denotes generic positive constant. L*(T™) is the space of square
integral functions on T" with the norm || - ||. H*(T™) with integer & > 1 denotes the
usual Sobolev space of function f, satisfying 9.f € L* (0 <i < k), with norm

Ifle= | Y D2,
o<l <m

here and after D* = 97" 05* - -- O~ for [o| = oy +ag+-- -y and 0; = 0, § = 1,2,...,n,

for abbreviation. In particular, || - |lo = || - |- Hk(']I'”) denotes the subspace of function

in H*(Q) satisfying
/ u(z)dx = 0.
Q

Let 7 > 0 and let B be a Banach space. C*(0,7;B) (C*([0,T]; B) resp.) denotes the
space of B-valued k-times continuously differentiable functions on (0, 7) (or [0, T] resp.),
L*([0,T]; B) the space of B-valued L2-functions on [0, 7], and H*([0,T]; B) the spaces
of functions f, such that 9;f € L*([0,T];B),1 <i<k, 1 <p< cc.

2 Preliminaries

In this section, we prove the existence and uniqueness of solutions of the divergence
equation on T™ and we recall a known result on multi-dimensional Poisson equation
with periodic boundary conditions. Then, we turn to prove the well-posedness for an
abstract second order semi-linear evolution equation. Finally, some calculus inequalities
are listed without proofs.

First, we have the following theorem on the divergence operator and Laplace operator

on T™

Theorem 2.1 Let [ € HS('JT”), s> 0. There exisls a unique solution w € (H**'(T"))"
satisfying

Veu=f, Vxu=0, /(u—ﬂ)d;r::(), (2.1)
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and

lw = @)l ety < eall Mooy (2.2)

where ¢; > 0 is a suittable constant and u a vector in R™.

Theorem 2.2 [et [ € HS(']I'”), s > 0. There exisls a unique solution u € HS"'Q(']I'”) lo

the Poisson equation
Au=f
satisfying
[eell rosarmy < €2ll Fll o grmy (2.3)
with ¢g > 0.

The proofs of Theorems 2.1-2.2 can be completed with the help of Fourier series

expansion of the functions u, v and f. Here we omit the details . .

Based on Theorem 2.2, we obtain the initial potential Vi through (1.7) in view of

initial density:
AV =? —C, / Vi(z)dx = 0. (2.4)

By (1.9) and ¢, —/C € H?, we obtain that Vj € H and satisfies
IVillsgeny < ealld = Clliga(emy < callr = VCll e ny, (2.5)
with ¢3, ¢4 > 0 constants.

Finally, let us consider the abstract initial value problem in the periodic Hilbert space
LA(T™):
u” + %u’ + Au+ Lu' = F(1), (2.6)
u(0) = ug, u'(0) = uy. (2.7)
Hereafter u’ denotes ‘fl—tf. The operator A is defines by
Au = voA*u 4 1u (2.8)

where A is the Laplacian operator on R”, and vg,v; > 0 are given constants. The
domain of the linear operator A is D(A) = H*(T"). Related to the operator A, we

define a continuous and symmetric bilinear form a(u,v) on H*(T")

a(u,v) = / (oAuAv + viuv)de, Y u,v € H*(T"), (2.9)
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which is coercive, i.e.,
v >0, a(u,u) > v||ullgeany, Yuc H*(T™). (2.10)

This means that there are a complete orthogonal family {r;},en of L*(T") and a family

{1 }ien consisting of the eigenvectors and eigenvalues of operator A

AT[ZILLZT'Z, l:1,2,---, (211)
0<py <pgy oy p—o0asl— .

The family {r; }en is also orthogonal for a(u,v) on H*(T"), i.e.,
a(ry,ry) =< Aryry >= w(r,rj) = by, V1 j,

where d;; denotes the Kronecker symbol.

Related to Lu and F(t), we have
< Lu,v >:/ (b(z,t) Vu)vdz, wu, ve H*(T"), (2.12)

< F(t),v>= flz,t)vdz, v e H*(T"), (2.13)
T’ﬂ

where b: T x [0,7] = R"and f: T x [0,7] — R are measurable functions.

By applying the Faedo-Galerkin method [35, 38], we can obtain the existence of
solutions to (2.6)-(2.7) in a standard way.

Theorem 2.3 Let T > 0, n = 2,3, and assume thal
F e H'([0,T]; L*(T™), be L*([0,T); H¥(T™) () H'([0,T]; H*(T™)). (2.14)
Then, if ug € H*(T") and uy € H*(T™), the solution to (2.6)—(2.7) exists and satisfies
w € C([0, T} H*(T™), j=0,1, o€ L=([0,T]; L*(T™). (2.15)
Moreover, assume that
F', F e L*([0,T]; H*(T™), (2.16)
then, if up € HS(T™) and uy € H*(T"), it follows
u e C'([0,T]; H*(T™), j =0,1,2, «” € L=([0,T]; L*(T™)). (2.17)

Proof: The statement (2.17) follows from (2.15), if we consider the same type of
problem for new unknown v = D?u. The statement (2.15) can be proved by applying
the Faedo-Galerkin method. We omit the details here since everything is quite standard.
For general stability theory of abstract second order equations, the reader can refer to

(29, 30]. O
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Remark 2.4 Note that if (2.14) is replaced by
F e CY([0,T]; LXT™), beC'0,T]; H*(T™), i = 0,1, (2.18)
then in (2.15) it follows
u" € C([0,T]; LA(T™)).
Furthermore, when (2.16) is replaced by
F e CY([0,T]; H*(T™)), (2.19)
it also holds in (2.17) that
u" € C([0,T]; LA(T™).

Finally, we list below the Moser-type calculus inequalities [22, 28, 34]:

Lemma 2.5 Let f,g € L*(T")(\H*(T"). Then, it follows

I1D*(fa)ll < Cllgllz= 1D fIl + Cl[ fllz= D% gl (2.20)
1D (fg) = Dgll < Cligllee 1 D* 1l + Cllf Nl | D* g, (2.21)

for1 < |a| <s.

3 Local existence

This section is concerned in the proof of Theorem 1.1. We construct the new extended
system based on (1.5)—(1.8) in the section 3.1, then we build up the approximate solu-
tions, derive the uniform estimates, and prove the Theorem 1.1 in the section 3.2. For

simplicity, we set 7 = 1.

3.1 Construction of the extended system

We construct the extended system in this subsection. For ir-rotational flow, the velocity

field can be represented as the gradient field of a phase function S:
u=V5s. (3.1)

In analogy, the continuous equation (1.6) for the ir-rotational velocity vector field u is

changed into

dpu + %V(|u|2) + VAW +u=VV+ ;jv(%) (3.2)
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which, together with the initial data u(z,0) = uy(z), provides the time-decay of mean

/ u(a, t)ds

For ¢» > 0 the equation (1.5) becomes

velocity on T™:

u(t) =: e_t/nul(:z:)d:r;, t > 0. (3.3)

20,0 + 2uVeh + V- u = 0. (3.4)

We want to explain the main steps that we will use in the next subsection to imple-
ment an iterative procedure. Once we know u and ¢ based on the Eq. (3.4) and the
previous observation, we introduce two new equations for the artificial “velocity” v and

artificial “density” ¢ > 0

V-v= _20+ u-VLb)’ Vxv =0, / v(z,t)dz = u(t). (3.5)
7 n
Do + %w- VUV =0, o(z,0) = i(z) > 0. (3.6)

Clearly to re-initialize the procedure, we have to determine ¢» and u as long as we know
¢ and v (we will propose the corresponding equations, used in the next subsection, for
b and u below). By a simple combination of the equations (3.5)—(3.6), we obtain

af[%‘o_d)](xat):ov \V/:EETn,
which implies
[ —¥](x,t) =0 for (x,t) € T" x (0,00), if [¢ —](x,0) = 0. (3.7)

By applying to (3.6) a standard argument in the theory of O.D.E. namely by multiplying
Eq. (3.6) by the function exp{3 fot V-v(z,s)ds} and by integrating the resulting equation
with respect to time, we can represent ¢ for (z,t) € T™ x [0, 4+0c) by the identity

i
Pl@,1) =t (a)emz o TVl / uVi(z, s)e s fo VD%, (3.8)
0

This means that for short time (smooth) solutions (if they exist) satisfy
o(z,t) >0, if ¢(x)>0, ze€T™

Based on the Eq. (3.4) and Eq. (3.2), we show how to reconstruct the density .

Here we use the following second order evolutional problem

1,AY2 1 1
_1alAvF SAPY?) + GPAV + Vi TV

L,
ZeIN2
Ve + Yy + 45 Y 1 - 22
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+ (u+4v) Vi — %\7770 -V(|v]?) - %L/JVV:VV + vV (u-Vy)

—éwﬁﬂmwxvvw—%ﬂm+uvwzo, (3.9)

with initial data
1
(@,0) = 1, Pu(2,0) = thy =: —§¢1V' u; — u-Vy, (3.10)
where v = (v!,v?,...,v") and
Vv:Vv = Z 100"
%
Indeed, let us multiply (3.2) by 1?2, take divergence of the resulting equation, then use

(3.4), the irrotationality assumption of velocity vector fields plus the relation

e ) ol

replace the nonlinear term ﬁv- (¥*V(|ul?)) by

1
W
and finally replace i in the resulting equation by é, we get the equation (3.9).

SV V(Y LTI - vV — (v V)T 4 (4 V) (v )

Similarly we can construct from (3.2) the equation for reconstructing the velocity u

O+ ut SV(Iv[?) + VA(9?) = VV 4 5(??‘” - Ag‘”) u(z,0) = u (z).

2
(3.11)

Here we have used the identity

AP\ (VAY APV
V<¢>‘< RS )’ (3.12)

and we replaced i and |u|?® by i and |v|* respectively in (3.2).

Finally, from (1.7) the reconstruction of V' is done directly by using the Poisson

equation on T” and involves only :

AV =2 —Cc— L

In Tn(@/}? —C)(z,t)dz, /n V(z,t)dz = 0. (3.13)

So far, we have construct an extended coupled and closed system for the new unknown
U= (v,p,,u, V), which consists of two O.D.E.s (3.6) for ¢ and (3.11) for u, a second
order evolutional equation (3.9) for ¢, a divergence equation (3.5) for v, and an elliptic
equation (3.13) for V. The most important fact (which we will be able to show later on)
is to note that this extended system for U = (v, ¢, ¥, u, V) is equivalent to the original
equations (1.5)—(1.7) of (¢,u, V), as far as we look for classical solutions, when u = v
and ¢ = ¢ > 0.
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3.2 Iteration scheme and local existence

Now, we consider the corresponding problem for an approximate solution {U/*}%2, with
UP = (Vp, ¢p, ¥p, 0y, V) based on the extended system constructed in the subsection (3.1).
The iteration scheme for the approximate solution UP*' = (v, 11, ©pi1, Ypt1, Upst, Vior1),
p > 1, is defined by solving the following problems on T™:

Vevpr =rp(t), Vv =0, / Vg2, t) de = u(t), (3.14)
Q‘op-l-l + (V Vp)sop-l-l + u, qubp - 0 > 07 (315)
Ppt1( 0) = 1(2),
p+1 + 77Z)p+1 + VAQ%)H + V¢p+1 + kp(t) ) v??/}]I)+1 = hp(t)a >0, ( )
1 3.16
Vpi1(2,0) = i(x), ¥y 4(2,0) = o =: —§¢1V' u; — u-Vy,
u . +u, =g,(1), >0
p+1 p+1 P\" /s 3 3.17
{llp+1(0):ll1, \7><u1:0, ( )
M =ap(t), [ Ven(atdr =0, (3.18)
where v = iEQ, and
2(! AV 1 2(! AV
rp(t) = rp(z,t) = — (Vp + up Vi) + —/ (% + 1, V) (z,t)dz, (3.19)
Pp L™ Jrn Pp
k(1) = ky(z,t) =u,(z,t) + vy(z, 1), (3.20)
|y |2 ¥y 2|A, 2 1
hy(t) = hy(z, 1) =—2— u, Vi —|—— P AV, — V4, - VV,
p(t) p(,1) o @p T, o ¥ Ve P P
LAPWY) | i
+ 3 5 ¢p + v¢p (|Vp|2) + 577% Z |8J'Up|2
S‘Qp 7,
1
—Vp '\_/(up 'v¢p)+ 99—(1/); +u, 'va)vp Vb, (3'21)
P
1 1 VAY A, V)
9,(t) = g,(z,1) =VV, — §V(|vp|2)— Vh(2) + 58( p_ | p)Q p), (3.22)
S‘QP S‘Qp
1
QP(t> = QP(wvt) :¢2 C — ﬁ (771}; - C)(:L’,t)dl’, (323>
where u, = (u),u,--- ,u?) and v, = (v}, v2,--- ,v]).

Let us emphasize that here the functions r,(0), k,(0), 2,(0), g,(0), ¢,(0) depend only
upon the initial data (¢1,u;) and moreover they are periodic in the space variables.

The main result in this section is the following concerning “a-priori estimates”.
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Lemma 3.1 Lel us assume that P € C*(0,00) and (¢1,u;) € H® x H?, Vxu; = 0,
such that

Y = max(z), . =: miny(x) > 0. (3.24)

reTn zeTn

Then, there exist a positive time T, and a sequence {UP}>2, of approzimate solutions,

which solve the system (3.14)—(3.18) for t € [0,T.] and satisfy

vy € C/([0, T H*=/(T) N C*([0, T.); HY(T™)),  j = 0,1,

pp € CH[0,T]; HP(T™)) (Y C*([0, Tn]; H*(T™) (Y C*([0, 5 L*(T™)),

W, € CY[0,T.); HS2(T™) N C([0, T0]; LA(T™), [ =0,1,2, (3.25)
u, € CH([0, T.]; HP(T™))  C*([0, T.]; HY(T™)),

[0, 7.]; H(T") N ([0, T.J; H*(T™)),

Vi e O
Moreover, there is a posilive constant M, so that for all t € [0,T.], we have

{WWNpMHb+H(W v DT+ Ve E+ v O3 + 1V, V) (1 < M., (3.26)

n

”(¢p7 p’v}g’/)( )”H6><H4><H2><L2 + ”(§0p7g‘op73‘9p73‘9p)( )HHSXHSXH2XL2 S M*7

uniformly with respect to p > 1.

Proof: Step 1: estimates for p = 1. Obviously, U' = (uy(z), ¢ (), ¥1(z), ui(z),
Vi(z)) satisfies (3.25)—(3.26) for the time interval [0, 1] with M, replaced by some constant
By > 0 and V] is determined by (2.4).

We start the iterative process with U' = (uy,%y,¢1,us, Vi), then by solving the
problems (3.14)—(3.18) for p = 1, we can prove the (local in time) existence of a solution
U? = (va,12, 2,0z, V3) which also satisfies (3.25)—(3.26) for a time interval (which
without loss of generality is chosen to be [0, 1] since we focus on local in-time existence
of solutions) and with M, replaced by another constant By > 0. In fact, for U' =
(uq, 1,91, ur, V1) the functions r1, k1, h1, g1, ¢1 depend only on the initial data (1, u1),
ie.,

and
174113+ o3 + 1Pall3 + 15213 + 16113 < NaglgeN il (3.27)

JFrom now on, N > 0 denotes a generic constant independent of U?,p > 1,

(1+¢9)"

o for a integer m > 10, (3.28)

ag =
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and
Io = [[(¥1 = VO)I> + IV |12 + [ ]|2. (3.29)

The system (3.14)—(3.18) with p = 1 is linear on the unknown U? = (vg, ¥q, ¢2, ua, V),
therefore it can be solved based on the estimates (3.27) for the corresponding right hand
side terms as follows. Namely, by the Theorem 2.1, we obtain the existence of solution

v, to the divergence equation (3.14), with ri(z,t) replaced by 7(z), satisfying
vz € CY([0,1]; H*I(T™) () C*([0, 1]; HY(T™), 5 =0,1.

Then by making use of the theory of linear O.D.E. system, we prove the existence of
solution uy of (3.17) for gi(x,t) = g1(x) and then ¢y of (3.15):

uy € C'([0,1]; H¥(T™) () C*([0,1]; H'(T™),
2 € CM([0,1]; HA(T™) () C*([0, 1]; HA(T™) () C*([0, 1]; L*(T™)).

By applying the Theorem 2.3 to (3.16), with b(z,t) = 2u;(z) in (2.12) and f(z,t) = izl(x)

in (2.13), we obtain the existence of a solution )y satisfying
Wy € CI([0, 1] HH(T™) () C2([0,1); LA(T™)), j = 0,1,2.
Finally, the existence of a solution V5 satisfying
Vy € C'([0,1]; H*(T™))

follows from the application of the Theorem 2.2 to Eq. (3.18) on T”, with ¢;(z, ) replaced
by (?1(1’)-

Moreover, based on the estimates (3.27), we conclude there is a constant By > 0,
such that U? satisfies

{H(Uz,U’g)(t)H?, + 11w, VO OIT + Iva (DI + VROl + 1 (Va, V) (@IIE < B,
" "t

"(9‘92799/2799/2/7992 )(t)l‘%lexH3><H2><L2 + |‘(¢27¢§7 ga 2 )(t)"%lﬁxH4xH2><L2 S B27

for all ¢ € [0, 1].

Step 2: estimates for p > 2. Now, assume that {U*}!_, (p > 2) exist in the
time interval [0, 1], solve the system (3.14)—(3.18), and satisfy (3.25)-(3.26), with M.
replaced by the max B, (> max;<;j<p,—1{B;}). For given U?, the system (3.17)—(3.18) is
linear in UPT! = (V,41, @pt1, ¥pt1, Upst, Vpy1). As before, we apply the Theorem 2.1 to
the Eq. (3.14) for v,41, the theory of linear O.D.E. systems to the Eq. (3.15) for ¢,41
and the Eq. (3.17) for u,41, the Theorem 2.3 to wave type equation (3.16) for ¢,+1 with
f(z,t) = hy(t) and b(x,t) = k,(t), and the Theorem 2.2 to the Poisson equation (3.18)
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for Vp11. Therefore we obtain the existence of UP*' = (v,41,%pt1, ©p+1, Ups1, Vpr1) ON

the time interval [0, 1] and moreover it follows

Vo1 € CU([0,1]; H*=/(T™) (N C*([0,1]; HY(T™)), j = 0,1,
Pp+1 € Cl([oal] HS(Tn))ﬂCZ([O 1]aH2(Tn))mCS([071];L2(Tn))7
Ypr € C7([0,1]; HOZ(T™)) N C*([0,1]; L*(T7)), j =0,1,2,
up+1 € CH([0,1]; H(T™)) O C*([0, 1]; HY(T™)),
Vo € C([0,1]; HY(T™) N C([0,1]; H*(T™)).

Now our goal is to deduce uniform bounds for J*!, 1 < j < p, for some time interval.
Let us first estimate the L? norms of the initial value of ¢, 1, V115 ¥yy1, Where the initial
value Wy of 7, is obtained through (3.16); at ¢ = 0, where t,;, and v, | are replaced
by the initial data 1, tq:

o = —thg — vANpg — vihy — 2uy Veho + h(0), (3.30)

and fNL(O) = h,(0) depending only on (t¢1,u;). Hence these initial values will depend
only on (¢1,u;) and are periodic functions of the space variables. Obviously, there is a
constant My > 0, such that the initial values of v,41,%),,,%7,, for p > 1 are bounded
by

MyIy > max { |[¢1]13, [[¢oll3, [|oll3, |3} - (3.31)

Here, we recall that /y is defined by means of (3.29).

Denote by
My =40Msy Iy - max{1,v "'}, (3.32)
M, =3Nai(lh+ 1+ MO)7 -max{1,v7?}, (3.33)
and choose
T*:min{l, 4‘5:20, %;2 ]\lfnj\Z’ 2]34]\2’4[50, 2]\%\24[60}, (3.34)
where
M; = 5a(2)([0 + 14+ My + M1)6, My = 2&8([0 + 14+ My + Ml)g, (3.35)

Ms = 41(2)(]0 + 14+ Mo+ M1)7, Mg = Gg(fo + 14+ My + M1)14-

As before N > M, denotes a generic constant independent of U?,p > 1, and ag is defined
by (3.28).
Step 2.1: we claim that
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If the solution {U7}Y_,, (p > 2), to the problems (3.14)-(3.18) satisfies

=U

Il (D113 + 11 (5, e ON1F + 187 (D3 < Mo,
{ij(t)H4 + HDA%(t)HZ < agMy, (3.36)

forall1 < j <pandt€l0,T.], then this is also true for UPT' namely

{Hup+1(t)H§ + 1 @p1, 0 ) (DE + 1853 (D5 < Mo, (3.37)
Vo1 (DN + DAY (D)1 < a0y,

Jor all t € [0,T.]. Here My and M, are given by (3.32) and (3.33).

We prove (3.37) in following steps 2.2-2.4, namely, we first obtain the uniform bounds
for Viz1 (1 <5 < p) based on (3.36), then we estimate uniform bounds of ¢;41, V41,
u;+1(1 < j < p) and their time derivatives in Sobolev space and prove that v,qq1,u,41
satisfy (3.37), and finally we estimate 1,41 (1 < 7 < p). Meanwhile, related we can get

. . : o "
uniform estimates on the time derivatives of u,41, v,y and on ¢ ;.

Step 2.2: estimate on Vj;,. Based on (3.36) we derive the estimates on V)4,
(1 < j < p) by solving the Poisson equation (3.18) on T" for Vj;1, 1 < 7 < p. Since it
always holds

/ qj(z,t)de =0, 1<j5<p, tel0,Tl],

by using the Theorem 2.2 there exists a unique solution Vj4; of Eq. (3.18) satisfying

Vier N5 <Nllg;(Dllz < Nl (1)l < N Mg, tel0, 1], 1<j<p,  (338)
Vi N5 <Nlgi0llz < NI (g5, ) @)l < NMg, te[0,1], 1<j<p. (339

Thus, we conclude that V4, € C'([0, T.]; H4(']I'”)) is uniformly bounded so long as (3.36)

is true.

Step 2.3: estimates on ¢;,v;,u;. We estimate ¢;,v;,u;, 1 <j < pfor (z,t) €
x [0, T,] based on (3.36). For (z,t) € T™x [0, T,] by using the same ideas as in deriving
(3.8) it follows for ¢;4y from (3.15) that
@j+1($,t> (77[)1( ) f €2 fo Vv Iﬁ)diu V¢ (.TL‘ s)ds)e 3 fo Vv L‘s)d.s’
i1 € CH([0, 1] B(T) () O30, 1; H2(T™) (Y C([0, 1]; TA(T),

(3.40)

which satisfies for all (z,¢) € T x [0, T.]

Yo < St VM S (2, ) < (97 4 )N <ot p). (3.41)

e
DO | —
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Moreover the L? norm of (41, with 1 < j < p, and its derivatives are bounded for all
t € [0, 7], through those one of v;,u; and through the initial data by

g (D5 < NeMEHMIT (|l |15+ Tu(lfu (113 - [9:(DID) < No, (3.42)

and

15 O] <N (To + 11w l3 + Il (D13 + 15 (0)]13)?

§Na0(]0 + 1 + M() + M1)2, (343)
I (D5 SNMo(1Ia (0115 + (0115 + Mo) + Nllpiaa (D3 - V(0113
SNag(lo+ 1+ Mo+ Mi)* + N(Io + Mo)|| (], vi)(1)][5, (3.44)

e (]]” <N (o + Mo)(lsa (DI + 1w a)()I[* + W41} + Mo)
+ N (51 @)lz + vi)3)
<N(IIvi(0)ll5 + (fo+Mo) 1w}, vE)()]13)
+ N(To + Mo)(Jluf(0)]1* + [V} ()]I3)
+ Nag(lo 4+ 1+ Mo + M) (3.45)

Let us consider the divergence equation (3.14) for v;;, with 1 < j < p. Since one
has

/rj(w,t)da;:(), 1<j<p, tel0,1.],

the application of the Theorem 2.1 yields to the existence of a unique solution v;;; of
Eq. (3.14) for t € [0, 7], which, in view of (3.40)—(3.44) and (3.36), satisfies the following

bounds

IVirr(DIF < Nl ()lls <Naolle; (115 (150115 + 150115 + Ta; (1)]]3)

SNCZ()([O + 1 + Z\40)3 (346)
1

Vi (N3 NP0 < Naolloi 151147 (DN13 + Moll (w5, w))(1)]3)
+ Naolo|| ¢ (1)[15(Mollu; 13 + [[#5(£)]2)
SNG(Q)([O + 14+ Mo+ M1)5
+ Nao(lo + Mo)*|[uj()]l2, te[0,7.,1<j <p, (3.48)

and

Vi (DIF <NIrf ()]I°
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<Nao (|| (11> + Mol|(uf, wl)()]1* + Mo|[9%(1)]1%)

+ Naolle§ (DI (150115 + Mollus(1)]13)

+ Naoll 5O O + 1505 + i (N7 + Il (g, 0l (0)]17)
<Nao (|5 (W)I5 + Molluf()||*) + Nag(lo + 1 + Mo + My )°

+ Nao(To + 1+ Mo+ M) ()15 + IV(1)]13)
<Nao(|[5" ()15 + Molluf()]*) + Naj(lo + 1+ Mo + M;)®

+ Nag(lo + 1+ Mo + My)*|[u)i(1)][3

+ Nag(To+ 1+ Mo)||lu)_, (1)]3, tel0,T.], 2<j<p,  (3.49)

where we have already used (3.48) for v/.

For the functions U* (1 < j < p) satisfying (3.36), it is easy to verify that g;, g’
(1 <7 < p) belong to H*(T") and H*(T"). By (3.36), (3.38)—(3.43) and (3.47)—(3.48),
we can obtain the L? norm of g;, u’, v, (1 <j < p)and those one of their derivatives

as follows. We observe that

lg; (13 <Nao([l5(1)lls + s (DN15)” + NV V(0115 + vi(0)]3)
<Naj(Io + 14 My + M;)°, te[0,T.], 1 <j<np. (3.50)

Then from (3.17) and (3.36) one has

[ @115 <N (llajll3 + [lgi-1 (0)]13)
<Naj(lo+ 14 My + M;)®, €0,T.], 1<5<p (3.51)

And we can estimate v}, in view of (3.48) as follows

IVip (DNF SNag(lo + 1+ Mo + M1)° + Nao(lo + Mo)*|[uj(1)][3
<Nag(lo+ 14+ My + M;)?, te[0,T.], 1 <5 <np. (3.52)

By differentiating (3.22) with respect to ¢, and using (3.36), (3.39), (3.42)—(3.43), (3.47)
and (3.52), we obtain

lg; (DI} <Nao([I(45, ) ()3 + s (0)]I5)
+N%mwﬁm0waﬁ+uw<m%4
+ N([VVIOLI + vl - [Ivi@)113)
<Nag(lop+ 1+ My + M)", t €[0,T.], 1<j<p. (3.53)

Hence, we obtain, after differentiating (3.17) with respect to time, that

[ (DI <N (gl + lgi— (D1)
<Nap(lo+ 14+ Mo+ M), 1€]0,T], 2<j5<p, (3.54)
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and from (3.49) that

V2 (0)1F <Nao([[94"(1)]13 + Mollwf(1)[[2)+ Naj(fo + 1 + Mo + My)*
+ Nag(Io+ 1+ Mo+ My)?|[ul(1)]13
+ Nag(lo + 1+ Mo)*[[u)_, (1)
§Na0([0 + 1+ My + ]\41)12
+ Naol| ()12, te 0,7, 1 <j<p. (3.55)

By the previous estimates, it is easy to obtain the estimates for u,;;. In fact, by
taking the inner product between D*(3.17); (0 < |a| < 3) and 2D%u,4y over T, we
obtain

d (o3 o o
TN W P+ D% upa ||* < [[D" g, (1)) (3.56)

Hence by summing (3.56) with respect to |a| = 0,1,2,3, and integrating it over [0,1],
and by the Gronwall lemma, we have

t
Hup+1(t)H§§Hu1H§+/ gy (s)ll5e™"" ) ds
0

(G2 3 ]

with T, defined by (3.34). With the help of (3.50), (3.53) and (3.57), the corresponding
H? and H' norms of u/, and u}/,, are bounded, similarly to (3.51) and (3.54), by

[ (DI1F <N (lap (D15 + go(D13) < Nag(lo + 1+ Mo + M)", (3.58)
[uy s (DIF SNl (I + [lg,(DI7) < Nag(lo + 1+ Mo + My)*, (3.59)

for t € [0, T.].
In addition, with the help of previous estimates on v,u (i.e., (3.51), (3.52), (3.54),
and (3.55)), we obtain from (3.44)—(3.45) that

2
|5 (D], SNaj(lo+1 + Mo+ My)* + N(Lo + Mo)|[(uf, v5)(2)]13
SN&S([@ + 1 + MO + Ml)g, (360)

and

s I <NV + (To + Mo)ll (), vH)()]I3)
+ N (o + Mo) (J[uf(6)]* + [[v/ (2 m
+ Naj(lo+ 1+ Mo+ My)*
<Nag(lo+ 1+ Mo+ My)"® + Nao(Io + Mo)|[4(1)]]3- (3.61)
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So far, we have proved that v,;; and u,;; satisfy (3.37) (i.e., (3.47) and (3.57)) as
long as (3.36) holds, and the time derivatives of them (i.e., (3.52), (3.58), and (3.59)) are

also bounded uniformly in Sobolev space, with the exception (3.55) for v¥,, relative to

"1 (1 <5 < p). Furthermore, from (3.42)—(3.43) and (3.60)—(3.61) we conclude that

¢p+1 and its time derivatives are uniformly bounded in Sobolev space, with the exception
of 7y, i.e., (3.61), relative to [ (1<j<p).

Step 2.4: estimates on 11, v, |, ¥7\;. We estimate 1;;; and then v’ , and

@y, 1 < g <p,for (z,t) € T" x [0,T,]. By (3.36), (3.46), (3.51), and (3.52), it is easy
to verify the upper bounds of k;, k. in H*(T™), for all ¢ € [0, 7,], namely

VERA
1E; (D15 < N(ui (N3 + 11vi(0)1I5) < Nao(lo + 14+ Mo)?, 1 <5 <np, (3.62)
and
I (015 < NG5+ IVE)1I3) < Nag(lo+1+ Mo+ My)®, 1< j<p.  (3.63)

With the help of (3.36), (3.38)—(3.39), (3.42), (3.43), (3.46), (3.51) and (3.52), we obtain,
from (3.21), the following bounds on A, (1), h;(t)

1R (0115 <Nao(lles (DI + 15 (O11F + 11250115 + la; (4)]3)*
+ Nao||[vi ()11 (OI1F + 11 (5 25) (115 + Ilus(9)113)°
+ NIV + lIvi(0)ll3)
<Nad(Io+ 14 My)T, 1<j3<p, tel0,T)], (3.64)

and

+ Naollw()[3(1 + Vi) Ulei (12 + 115 v (O13)*
+ Naol[v;(O)F(1(5 ) ONF + 17, 5 0 (O3 + llu (D)]15)*
+ Nao|| Vi3 (1105 (O11F + (5 23) (115 + lw(0)]1)°
+ NNV O+ IV - [vi113)
+ N OIENVON3 + villz)
<Naj(ly + 1 + My + My)™, 2< 5 <p, tel0,T.]. (3.65)

1515 <Nao(ll(¢5, ) (D115 + H(%%)(t)l\i + 97Ol + i (0)]l3)°
)l
)l
|

To obtain the bounds on the L? norm of ¢,4; and its derivatives, we first take the
inner product between the Eq. (3.16); and 2¢;,, and then we integrate by parts. By

using Lemma 2.5, we have

d
S O + vlldpn (D17 + v ALy (D1)

<IVe k(D)o I + 1o (1)
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SN+ [N O + (A1) (3.66)
Take the inner product between Eq. D*(3.16); and 2D%¢;,, with 1 < [a] < 2 and
integrate it by parts over T™. It follows
d (o4 (o4 (o4
Z D (D + VD bpa (DI + VIIAD Gpa ()]
<IV k()] pe [ D™ pa (DI + 1D By (4] + N/T | Ho (¢ 41: Kp)|*da
SN+ B DI DY a (DI + 1D hy(1)]1* + N ] | Ho(Vpyrs k) |*dz,  (3.67)
where
Ho (k) = D (k) — k(D7)
By the Lemma 2.5, (3.62), we get

N+ RO DI, o] =1,

N1+ [HOIDEN + 1D7]P). o] = (3.68)

unwwWMg{
TTL

By substituting (3.68) into (3.67) and taking summation of these differential inequalities

with respect to || = 0,1,2, we have

d 2 2 2
(15 DI + Vllpa (N2 + VI A4 (1)]12)

SN+ (03 (1541 (DNZ + vl dpn (DI + VI ALy (D)]])
+ |y (1)115- (3.69)

By applying the Gronwall inequality and by using (3.62), (3.64), we obtain

[¥p41 (D15 + [pe1 (D13 + 1A% (2)]13
<max{l, v} - (|[voll} + [[¢1][3 + TN My )eTNeol+ Mo+ M)
<2(2My 1y + T Ms) - max{l, v}

1
§8M2]0 = 5]\407 t € [O,T*], P 2 1, (370)

where we recall that Mg, T and Mj are defined by (3.32), (3.34), and (3.35) respectively.

Let us take the inner product between the Eq. D*9;(3.16); and 2D+, ,, with 0 <
la] < 2, and integrate by parts over T”, then by summing the resulting differential
inequality with respect to a, by (3.68) and by following estimates

. N[k O3 (10 O + A% L (D]?), =0,

@ ! !

/H|D (B Vi) [P < 4 Nl (OIB(IDY 4 1T+ 1A% L (D), fal =1,
N OIEIDY 4 12+ 1A% 117), ol =2,
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we obtain, in analogy to (3.66), (3.69), that

G (O + A O + 11 A%, O1F)
N+ OIS0 + D (O + AL (01
FIBOE+N Y [ 1D (KT + Ha(f ) ) da

0<|al<L2
SN B (|[$p4all5 + vllp s (O3 + vl A, (O115) + 145 ()15, (3.71)
where

Bl = Clg([() + 1 + M() + Ml)s.

By applying the Gronwall inequality to (3.71), it follows

[p s (D12 + 191 (D5 + [ A% (D)3
<max{L, v} (|| Wo|13 + [|vool} + TN Mg)eNtolTot 1+ MotAN )"
<2(2Myly + T N Mg) - max{1,v~'}

1
§8M2]0 = 5]\407 t e [O,T*], P Z 1, (372)

where we recall that My, T, and Mg are defined by (3.32), (3.34), and (3.35) respectively.

To estimate the L? bounds of D,y and D°¢,,y, it is sufficient to estimate these
one of A?Dt),,y and A2D*ip, .. By differentiating the Eq. (3.16); twice with respect to
z and by taking the inner product with A?Dt, 41 and A?D?*i,,1 over T", and using the
estimates (3.62), (3.64), (3.70), and (3.72), one has

IA* Dy (1)]|* < (H%H( T+ 15 DI+ (e (D)
HD(k Vi) (07 + V—NQth(t)H%
_—a0(10+1+M0) %Ml, Le[0,T.), p> 1, (3.73)
1A D1 (D)1 <= (1851 (D3 + 1951 (D3 + [ (D)]]3)
—HDQ(k V)OI + EQth(t)Hg

N
§§a0([0 +1+ Mo) <

2

=%

<

[ =

My, te[0,T.], p>1, (3.74)

~— 2

where we recall M; and T are defined by (3.33

"

and (3 34) respectively.
i1 i for 1 <y < p. By taking the

inner product between 9,(3.16); and ¢, and using above estimates, we obtain

15 (D1 <N (5 (DI + 1 (0115] + 125 (0]1)

We have now to show the L2 norm of and v”
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+ Ny O+ & (1)]]3)
<NaS(Iop+ 1+ Mg+ M), t€[0,T.], 1<j<p, (3.75)

which gives from (3.55) that

VI (OIF SNag(To + 14 Mo + Mi)™ + Naol[' ()13
<Nab(lo+ 14 Mo+ M)™, te[0,T], 1<j<p, (3.76)

and from (3.61) that

}Mz;l(t)”? <Na§(Iy + 1+ Mo+ Mp)' + Nag(Io + Mo)||4 ()]|2
<Naj(Iop+ 14+ Mo+ M), t€[0,T.), 1 <5 <np. (3.77)

Step 3: end of proof. By the previous estimates (3.38)—(3.39) on V44, (3.47),
(3.52), and (3.76) on v,41, (3.42)-(3.43), (3.60), and (3.77) on ¢,41, (3.57)—(3.59) on
u,4+1, and (3.70) and (3.72)—(3.75) on ¢,41, we conclude that the approximate solution
UPtY = (Vpi1, ©ps1s Upt1, Upst, Vpg1) is uniformly bounded in the time interval [0, 7]
and it satisfies (3.37) for each p > 1 as long as U? satisfies (3.36) with My, M;, and
T. defined by (3.32), (3.33), and (3.34) respectively, which are independent of UP*!,
p > 1. By repeating the procedure used above, we can construct the approximate
solution {U'}%2,, which solves (3.25)-(3.26) on [0, 7.], with T defined by (3.34) and the
constant M, > 0 chosen by

M* :maX{MO, Ml, NCLS([0+1—|—MO—|—M1)16} (378)

Let us recall here that My, M; and ag are defined by (3.32), (3.33) and (3.28) respectively
and N > 0 is a generic constant independent of UP*', p > 1. Therefore, the proof of
Lemma 3.1 is completed. =

Proof of Theorem 1.1. By means of the Lemma 3.1, we obtain an approximate
solution sequence {U"}% satisfying (3.25)—(3.26). Therefore, the proof of Theorem 1.1 is
completed if we show that the whole sequence converges. Indeed, based on Lemma 3.1, we
can obtain the estimates of the difference Y7+ =: P*! — [J?, p > 1, of the approximate
solution sequence {U7}°2,. Let us denote Y?*' = (v, BGpi1s Vps1, Ups1, Voy1) by

Vol = Vpt1 = Vp,  Ppil = Ppr1 — Pp,

Upir = Ypy1 = py Upp1 = Wppy =0y, Vi = Vou = V3,

We can obtain for p > 4

Vo (I 4 11 (Vo Vi) @15 < N (Ul (s 23) (O3 4+ (2 1) ()]13)
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2
(V1 Wprs P JONE SN Y (&g ) (O

i=0

+ N. Z(H%_j(t)l\i + (@i 1) (D]3),

2
S D s (O SNE O+ NSt is P (O
5<lal<6 i=0
1

+ No > (5 (D113 + 1 (@p-7, 05— (D13).-

1=0

Here N, denotes a constant dependent of M,. By using the previous estimates, the
Lemma 3.1, and an arguments similar to the one used to get (3.42), (3.57), (3.70), and
(3.72), we show, after a tedious computation, that there exists 0 < 7T, < T, such that
the difference Y7+ = UP*1 — [J? p > 1, of the approximate solution sequence satisfies

the following estimates

o0

Z(H(ﬁpﬂa@p+1)|\201([o,T**];H3) + H%HHél([O,T**];m)) < (i, (3.79)
p=1
Z(Wpﬂ’ &i(o.1ugimre—2) 1Vt G o gy + HV;HHQC([O,T**];HS)) < O, (3.80)
p=1

where 1 = 0,1,2, and C, = C.(N, M,) denotes a positive constant depending on N and
M.,. Then by applying the Ascoli-Arzela Theorem (to the time variable) and the Rellich-
Kondrachev theorem (to the spatial variables) [33], we prove, in a standard way (see for
instance [28]), that there exists a (unique) U = (v, ¢,t¥,u, V), such that as p — oo it
holds

v, — v strongly in C([0,T.]; H*'=7(T"™)),
¢p — ¢ strongly in C([0,T.u]; H*=7(T™) () C*([0, Tud)s H*=7(T™)),
by 5 b stronglyin C(0.T..): HO-2-n(T) ( CX(0. T..); B (T"),
u, — u strongly in C¥([0, T\.]; H*=°(T")),
V, — V  strongly in C'([0,T..]; H4_"(T”)),
(3.81)
with ¢ = 0,1, and o > 0. Moreover, by (3.41) one has
1
oz, t) > ZL/J* >0, (z,1) € T" x [0, Tul. (3.82)

If we take o < 1 in (3.81) and we pass into the limit as p — oo in (3.14)—(3.18), we
obtain the (short time) existence and uniqueness of classical solution of the system (3.5),

(3.6), (3.9), (3.11), and (3.13) constructed in the section 3.1.
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Next, we claim the local in-time classical solution (v, p,,u, V), with initial data

(Vv #, ¢7 u, V)(ZL’, 0) = (ula 77Z)17 77/}17 uy, ‘/1)(1) also satisfies

p=¢, u=v, (3.83)

and then solves the IVP (1.5)—(1.8). Indeed by passing into the limit in (3.18);, we have

v +uVip + %QOV' v =0, (3.84)

which yields
2( 1 J:Q“'WJ) _ Vv, (3.85)
/ M(wa —— [ vvG@pis=o. (3.86)

Let us note here that ¢ > 0. Then by taking the limiting equation of v (passing into
the limit in (3.14) and (3.19))

V‘V:_2<¢t+uw>+i/ 2(sfs + u V)

7 (z,t)dx (3.87)
¥ " ¥

and using (3.85), (3.86), one has

W_%/niw;@b)t(x,t)dxzo, VaeT, >0, (3.88)

Since by a straightforward computation we obtain (¢ — ¢),(z,0) = 0 from (3.85) and
(3.87) with t = 0, then, from (3.88), we conclude that

(90 - ¢)t($7t) = 99($7t)f(t)7 >0,

for any f € C*(]0,Tw]), with f(0) = 0. In particular we can choose

hence by (3.82) and the fact
o(2,0) = ¥(2,0) =i (2) = (p—1)(x,0) =0,
we obtain
v(z,t) = @z, t) > i;b* > 0, te0,T.], zeT", (3.89)

1
betuVy 4 ogpVov=0, 10, T] 2 €T (3.90)
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By passing into the limit p — oo in (3.17) we recover the equation for u, i.e., (3.11).
By using (3.89) and (3.12), from (3.11), one has

dpu + %V(|v|2) + VA(Y?) +u=VV+ Zjv(%) (3.91)

This equation, together with the fact Vxu;(z) = 0, implies
Vxu=0, VYazeT" t>0. (3.92)

Similarly, by passing into limit in (3.16) we recover the equation (3.9) for i, hence
recombining the various terms, with the help of (3.89) and (3.90), we get

Yy + ¥y +uVapy + %@bt(v‘ V) — ﬁv' >V ([v]?) — ﬁAP(@bQ)

1 2 L 2 [ .2 % _
+ﬂv-(¢ VV) + eV (;z) V< 7 )) 0. (3.93)

;From (3.90) we have 1)y = —u-V¢ — 24)V- v, then by substituting it into (3.93) and by
representing u; by (3.91), it follows

V-u-v);+V-(u—v)=0.

By integrating previous above equation with respect to time on [0, 7..], since V- (u —

v)(z,0) = 0 and
/nu(x,t)dx - /nv(;z;,t)dx = (1),

we get the conclusion, by applying the Theorem 2.1 where we choose f = 0, namely we
have & = 0, that

u(z,t) =v(z,t), tel0,T.], v T (3.94)

for irrotational flow. Thus, by (3.91) and (3.94), we recover the equation for u which is
exactly Eq. (3.2) (and then Eq. (1.6) for ir-rotational flow). Multiplying (3.90) by ¢ and
by using (3.94) we recover the equation for ¢ (which is exactly the Eq. (1.5))

D(¥?) + V- (p*u) = 0. (3.95)

iFrom (3.95) it follows the conservation (neutrality) of the density

/n(¢2 —C)(z,t)dx = /Tn(@bf —C)(z)dx =0, t>0. (3.96)

Therefore passing into limit as p — oo, by (3.18) and by the Theorem 2.2 one has that
Ve CY[0, T H4) is the unique solution of the periodic boundary problem of Poisson

equation:

AV =2 — ¢, / Vde = 0.
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Therefore (¢,u, V) with ¢» > 1, > 0 is the unique local (in time) solution of
IVP (1.5)—(1.8). By a straightforward computation once more, we get

Y € CH([0, Tu]; HOZ2H(T™) () C3((0, Tud; L*(T™)), i=10,1,2;
u e CU[0,T..]; H~%(T™), i =0,1,2; Ve CY[0,T..]; HY(T")).

The proof of Theorem 1.1 is completed. 0

4 Global existence and large time behavior

We prove here uniform a-priori estimates for the local classical solutions (¢, u, V) of

IVP (1.5)=(1.8) for any fixed T' > 0, when (¢, u, V) is close to the steady state (\/(7, 0,0).

4.1 Reformulation of original problem

In this subsection, we reformulate the original problem (1.5)—(1.8) into an equivalent one

for classical solutions. For simplicity, we still set 7 = 1.

Set
w =1 —C.
By using (1.5), (1.7) and (3.9), we have the following systems for (w,u, V')
u; + (u-Vju+u= fi(z,1), (4.1)
Wit + Wy + %Ww + Cw = fo(x,t) + fs(z, 1), (4.2)
AV = (2VC + w)w. (4.3)

and the corresponding initial values are

w(z,0) = wi(z), wi(z,0) = wy(x), u(z,0) = uy(x), (4.4)

with
wi(z) =t by — VC, walz) = u; V(VC + wy) — %(ﬁ+ wi)V-uy. (4.5)

Here
fi(z, 1) =VV = V(h((VC + w)?) — h(C)) + %év (w i%) (4.6)

fa(z,t) = —2u - Vuw, + P'(C)Aw, (4.7)
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w1 w) — Vo - e _Awf
fs(z 1) = 3 (3VC +w) -V vv+4(ﬁ+w)
: 2y prieny, (P'(VC+ w)*)(VC + w))'
+ (P(VC +w)?) = P'(C))Aw + Toro
1

+ MVQ([\/E + UJ]QU & u) +2u - V. (48)

The derivatives of w and u satisfies:

[Vw|®

2w, +2uV(VC + w) + (VC + w)V-u = 0. (4.9)

4.2 The a-priori estimates

For all T' > 0, define a suitable function space for the unknown (w, u, V') of the IVP (4.2)-
(4.4) in the following way

X(T) = {(w,u,V) € H}(T") x H*(T") x H¥T™), 0<t<T}
with norm

M(0,T) = max {[[w(t)|[mecrm + [[a(Olaserny + 1Vl acen }

0<t<T

and assume that

61 = max (Jw(O)llean + [a(Ollszn) < 1 (4.10)

Under the assumption (4.10), it follows immediately
1 1
—5\@ <w< 5\@. (4.11)

Lemma 4.1 Let (w,u,V) € X(T), let the multi-index o satisfies 0 < |a| < 4, then
following inequalily holds

VP IVIE< Clul [P+ VVP +IViIE < QD wd (412)
|D*u]l? < CID w|Pe™ + O DX(TV, e, w0, Vo, Aw)?, (4.13)
1D* f5]|2 < C||Duy |2~ + Co7)| D*(VV, wy, w, Vo, Aw)| %, (4.14)

provided that o7 < 1.

Proof: The estimates (4.12) follows from the Theorem 2.3, since the integral of
right hand side term of (4.3) equals to zero due to the conservation of density and (1.9).
By (4.12) and by (4.10), we have

IVVI+ Vil + VW] + [[(VV, VV)[| < Cdr. (4.15)
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In order to estimate (4.13) we take the inner product between (4.1) and u on T”,
then

1d 1

—_— 2 2:__ . 2 .
sl = =5 [ Vupye s [ s

< G + 05T> [ull* + ClIV-ull + Cl(w, VV, Aw)]*. (4.16)

By replacing V- u in (4.16) by (4.9) and by (4.12), one has
%Hul\2 +2(1 = Cér)|lull* < Cl(Vw, wy, Aw)||*da. (4.17)
By applying the Gronwall Lemma, by taking &7 small enough such that 1 — C'é7 < 1/2,

we get (4.13) for o = 0.

In order to get higher order estimates, we set & = D¥u. It satisfies the equation¥

i+ (u-V)u+a=fs + Vs, (4.18)
where
fs(z, 1) =V(D?V) — Dth(\/E—I— w) — [D*((u-V)u) = (uV)Du, (4.19)
1, Aw
folw,t) =5e°D <\@+w>- (4.20)

Let us take the inner product between (4.18) and @ and integrate by parts over T™.

Then, it follows
3 1
2 —_ — — .
+ ( 1 2V u)

1
§—C|\f5H2—I—§€2/ |D*V - u ‘Da((\/é—l—w)_lAw) dx
TTL

U a||?

Ld
2 dt

<C||D*(VV,w, Vw, Aw)||* + Cér

U

1
2y ZHV (D>u)]|?. (4.21)
By Lemma 2.5 and by (4.9), one has

IV (D*w)||* <CID*((VC +w) ™ w)||* + CID*((VC + w) ™ (w-V)w)|*
<C|| D (wy, w, Vw)||* + C7)| D). (4.22)

By substituting (4.22) into (4.21) and by using the Gronwall inequality, one obtains
(4.13) for 1 < || < 4, provided that é7 is small enough.

TFor the proof of the case |a| = 4, we can assume that the solutions (w,u,V) have high order
regularity to have enough smooth derivatives, since the a-priori estimates (4.24) and (4.31) below are
still valid for these solutions when smoothed by the Friedrich’s mollifier under assumptions similar to

(4.10). We omit all the detail here.
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Finally, we estimate (4.14), with the help of Lemma 2.5, (4.10)—(4.13), (4.9), as

| D f5]|* <Cé7||D*(VV,w,ws, Vw, Aw,u, D*V?w)||*> + Cér Z | D> Oyu ;||
Ly
<Cor||D*(VV,w,ws, Vw, Aw,u, V- u)||®
<O D™y ||Pe”" + Cé7|| D (VV, w, ws, Vo, Aw)||>. (4.23)

Thus, the proof of Lemma 4.1 is complete. 0

We have the following basic estimates:

Lemma 4.2 Let (w,u,V) € X(T), then there exists 1 > 0, such that

(w0, Voo, Aw, we) ()] + ()T + V(O3 < C Ul + [ [[F)e™, (4.24)

provided that d1 is small enough.

Proof: Take the inner product between (4.2) and w + 2w, and integrate by parts

over T". Therefore one has

% Tn(%wQ + ww; + wi + Cw® + 252|Aw|2> dx
+ 38wl + ] +

= /n(f2 + f3)(w + 2wy )dx

<Cr w10, Vw, A+ C e

1 1
+ ZCHUJHQ + ZHthQ + / folw + 2wy)dx. (4.25)
T’l’l

By integration by parts and (4.9), the last term on the right hand side of (4.25) can be
estimated by

folw + 2wy)de = / (2ww;V-u + 2wuVw + w!V- u)dr

n

TTL

I d I
- P (C)%HVUJH2 — P'(O)||[Vw|f?
I d I
<Cér||(w, wy, Vw)||* = P (C)EH'VUJH2 - P'O)|[Vw]?. (4.26)
Since

L2
IVel? < llaw]?, (4.27)
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it follows

d 1 1
— —w? 4+ ww; + w? + Cw? + —52|Aw|2 + P’(C)|Vw|2 dz

1 3 3
+ (30— o Y1l + (G Cor)ulf + (5 - €0 )
<Clu e,

where A is defined by the “subsonic” condition (1.10)

2

m
AO = ﬁ(‘:Q —|—P/(C) > 0

Note that there are positive constants k1, (o such that
||(w, we, Vo, Aw)]|*
<K1 /n <%w2 + wwy + w; + Cw’® + i£2|Aw|2 + P'(C)|Vw|2> dz
<r1 By ' [[(wr, w, Aw)||*.
Hence, by applying the Gronwall lemma to (4.28) and using (4.29), we get
1w, we, Vo, Aw)|[* < C([Jwn] 5 + [Jwi][})e™™*
with 0 < #1 < min{l, ky05p}, provided that dr is sufficiently small to have

§—C5T} =: k9 > 0.

. [1 3
mm{ZAO — Cor, ZC — Cor, 1

The combination of (4.30) and (4.12)—(4.13) with o = 0 yields to (4.24).

33

(4.28)

(4.29)

(4.30)

|

In order to obtain higher order estimates, we differentiate (4.1)—(4.2) with respect to

x, therefore by repeating the previous steps and by using the Lemmas 4.1-4.2, we have

Lemma 4.3 Let(w,u,V) € X(T), then there exists B4 > 0, such that the following

inequality holds

(w0, Aww, we) ()1 + ()1 410 + IV OE < CUlwr | og + ][ e

for 1 < |a| <4, provided that 67 < 1.

Proof: Let w = D*w, with 1 < |a| < 4. Then @ satisfies the equation

1
’UN}tt + UN)t + ZEQAQUN} + Cw = Dafg(ll?,t) + Dafg(ll?,t)

(4.31)

(4.32)
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Let us take inner product between (4.32) by @ + 2, and integrate it by parts over T".
By using (4.10), (4.11), and (4.14), we obtain

d 1 1

a Tn<§ N72 —|— UN]UN]t —|— UNJ? —|— CUNJQ —|— Z€2|ALE|2) dl’
1 . . .

+ 78 IAGI" +Clla])” + [l

1 1
<Corl(n, o, Vi, 86, VY|P + <l + <l

+ C’HDau1H2 exp{—t} + / D fo( + 2d)dz. (4.33)
Tn

By integrating by parts and by using (4.9), (4.13), the last term on the right hand side
of (4.33) can be estimated as follows

/ Daf2(zb—|—2wt)dx:—2/ (D% (uNw,) — u Vi) (@ + 20,)dz
+ / (20w, V- u + 2i,uVib + w; V- u)dr
— Q) SVl — P()| Vi
<CS(D, Ve @, V) + <l + <l

d . .
— PC)IVal* = P'(C)|[Vi]|*
<C87||(wy, w, Aw, D*VV)||? + C|| D%y ||?e™"
1. 1, .
+Lelal + Sl
d
- Pe)ZIVal® = POVl (4.34)
where we used the Nirenberg type inequality
V]| < C(lla]|* + || Ad]|*). (4.35)

By substituting (4.34) into (4.33), by using the Gronwall inequality, (4.24), (4.35),

and an argument similar to the one for (4.29), we have, for 1 < |a| <4, that
(@, @1, @, A@)|[* < C(flwr|15410) + lwllFspa)e™™" (4.36)

where (3, is a suitable positive constant.

Finally we have

| D*a||? <C||V- (D*u)||* < C||D* (ws, w, Vw, u)||?
§CHDa(wt,w,Vw,Aw)H2 + C’HDau1H26_t
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<Ol + el o)™ (4.37)

with B3 = min{f3,, 1}.
The estimates (4.31) follows from (4.36)—(4.37) and the Lemma 4.1. .

Hence by the Lemmas 4.1-4.3, (4.35) and by the Sobolev embedding theorem, we get

the following result.
Theorem 4.4 Let (w,u,V) € X(T), then the following inequality holds
() Frerny + Ia s rny + 1V Ol pn < Cloe™, (4.38)

provided that 7 < 1. Here 85 = min{f4, f1} and &g is given by (1.11).

Proof of the Theorem 1.3. Based on Theorem 4.4, we can prove that (4.10) is

true for the classical solution existing locally in time, as long as 6o = |[1p1 — VC||2+ ||uy] |2

is small enough (e.g. Cdy < 1). Then via the classical continuity argument and the
uniform a-priori bounds (4.38) we have the global existence, and the time-asymptotic

behavior of our solutions. 0

Acknowledgments: The authors thank the referee for his useful comments concerning

the results and the presentation of this paper.

The authors thank Professor C. Dafermos for his interest and discussion. H.L. is sup-
ported by JSPS post-doctor fellowship and by the Wittgenstein Award 2000 of Prof.
Peter A. Markowich, funded by the Austrian FWF. Part of the research was made when
H.L. visited the Dipartmento di Matematica Pura e Applicata, University of L.’Aquila,
he is grateful to the hospitality of the department. P.M. is partially supported by
European Union - RTN Grant HPRN-CT-2002-00282 (HYKE European Network) and
MIUR-COFIN-2002, Progetto Nazionale “Equazioni Iperboliche e Paraboliche Nonlin-

eari”.

References

[1] F. Brezzi, I Gasser, P. Markowich, and C. Schmeiser, Thermal equilibrium state of the
quantum hydrodynamic model for semiconductor in one dimension, Appl. Math. Lett., 8
(1995), 47-52.

[2] R. Courant and K. O. Friedrichs, Supersonic flow and shock waves, AMS, Vol. 21 Springer-
Verlag, New York-Heidelberg, 1976.

[3] G. Chen and D. Wang, Formation of singularities in compressible Euler-Poisson fluids
with heat diffusion and damping relaxation, .J. Differential Fquations, 144 (1998), 44-65.



36

[4]

[16]
17)
18]
[19]
[20]
21]

[22]

Quantum hydrodynamics

C. Dafermos, Hyperbolic conservation law in continous mechanics, Grundlehren der math-
ematischen Wissenschaften Vol. 325, Springer, Berlin, 2000.

R. Feynman, Statistical mechanics, a set of lectures, New York: W.A. Benjamin, 1972.

I. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for
semiconductor, Comm. PDFs., 17 (1992), 553-577.

[. Gamba and C. S. Morawetz, A viscous approximation for a 2-D steady semiconductor
or transonic gas dynamic flow: existence theorem for potential flow, Comm. Pure Appl.
Math.,49 (1996), 999-1049.

I. Gamba and A. Jiingel, Asymptotic limits in quantum trajectory models, To appear in
Commun. PDFs., 2001.

I. Gamba and A. Jiingel, Positive solutions to singular second and third order differential
equations for quantum fluids, Arch. Rat. Mech. Anal., 156 (2001), 183-203.

C. Gardner, The quantum hydrodynamic model for semiconductors devices, STAM .J.
Appl. Math., 54 (1994), 409-427.

C. Gardner and C. Ringhofer, Dispersive/hyperbolic models for transport in semicon-
ducotr devices, accepted for publication in IMA Volumes in Mathematics and its Appli-
cations.

I. Gasser and A. Jiingel, The quantum hydrodynamic model for semiconductors in thermal
equilibrium, 7. Angew. Math. Phys., 48 (1997), 45-59.

I. Gasser, C.-K. Lin and P. Markowich, A review of dispersive limits of the (non)linear
Schrodinger-type equation, Taiwanese J. of Math., 4 (2000), 501-529.

I. Gasser and P. Markowich, Quantum hydrodynamics, Wigner transforms and the clas-
sical limit, Asymptotic Anal., 14 (1997), 97-116.

I. Gasser, P. A. Markowich, and C. Ringhofer, Closure conditions for classical and quantum
moment hierarchies in the small temperature limit, Transp. Theory Stat. Phys., 25 (1996),
409-423.

M. T. Gyi and A. Jiingel, A quantum regularization of the one-dimensional hydrodynamic
model for semiconductors, Adv. Diff. Eqs., 5 (2000), 773-800.

A. Jiingel, A steady-state potential flow Euler-Poisson system for charged quantum fluids,
Comm. Math. Phys., 194 (1998), 463-479.

A. Jingel, Quasi-hydrodynamic semiconductor equations, Progress in Nonlinear Differen-
tial Equations, Birkhduser, Basel (2001).

A. Jiingel and H.-L. Li, Quantum KEuler-Poisson system: existence of stationary states,
preprint 2001.

A. Jiingel and H.-L. Li, Quantum Euler-Poisson system: global existence and exponential
decay, preprint 2002.

N. Klusdahl, A. Kriman, D. Ferry, and C. Ringhofer, Self-consistent study of the resonant-
tunneling diode, Phys. Rev. B, 39 (1989), 7720-7735.

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equa-
tions, Lecture Notes in Math., 448 (1975), 25-70, Springer, Berlin.



H.-L. Li and P. Marcati 37

[23]
[24]

[25]

[26]

L.D. Landau and E.M. Lifshitz, “Fluid dynamics”, Pergamon Press, Oxford 1959.

L.D. Landau and E.M. Lifshitz, “Quantum mechanics: non-relativistic theory”, Pergamon
Press, New York 1965.

H.-L. Li and C.-K. Lin, Semiclassical limit and well-posedness of nonlinear Schrédinger-
Poisson, preprint 2001.

M. Loffredo and L. Morato, On the creation of quantum vortex lines in rotating Hell. II
nouvo cimento, 108B (1993), 205-215.

E. Madelung, Quantentheorie in hydrodynamischer Form, Z. Physik, 40 (1927), 322.

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space
Variables, Springer-Verlag 1984.

P. Marcati, Stability for second order abstract evolution equations, Nonl. Anal. TMA, 8
(1984), 237-252.

P. Marcati, Decay and stability for nonlinear hyperbolic equations, Journal Differential
Fquations, 55 (1984), 30-58.

P. Markowich, On the equivalentce of the Schrodinger and the quantum Liouville equa-
tions, Math. Meth. Appl. Sci., 11 (1989), 459-469.

P. A. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer,
Wien 1990.

J. Simon, Compact sets in the space LP(0,7T; B), Ann. Math. Pura. Appl., 146 (1987),
65-96.

M. E. Taylor, Pseudodifferential operators and nonlinear PDFE, Progress in mathematics
Vol. 100, Birkhauser Boston 1991.

R. Temam, “Infinite-dimensional dynamical systems in mechanics and physics”, Appl.
Math. Sci. 68 Springer-Verlag, 1988.

E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40
(1932), 749-7509.

B. Zhang and W. Jerome, On a steady-state quantum hydrodynamic model for semicon-
ductors, Nonlinear Anal., TMA, 26 (1996), 845-856.

E. Zeidler, “Nonlinear functional analysis and its applications”, II: Nonlinear monotone
operators, Springer-Verlag 1990.



