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Abstract. A mathematical model for compressible two—phase flow governed by a non-linear system
that is hyperbolic and conservative is presented. Extended thermodynamics principles are applied in the
derivation of the three—dimensional governing equations and of their corresponding closure relations.
The derivation of the equation of state for the mixture from the known individual phase equations
of state is proposed. The hyperbolicity analysis is carried out for the one-dimensional two—phase
flow case. This analysis shows that the system has real eigenvalues and a set of linearly independent
eigenvectors for physically acceptable states. The sound wave propagation in static two—fluid media is
also derived and its dependence on the volume concentration relaxation is discussed.
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1. Introduction

Two—phase flow modeling has undergone intensive development in recent years. However, there are still
no clear theoretical bases for deriving the final mathematical expressions when modeling two—phase
flow. There are several approaches to model two-pase flow processes. In one of these approaches (struc-
tural continuum fluid model) the governing equations are directly formulated according to conservation
principles and by treating a two—phase mixture as a set of interacting subregions of individual phases.
But as a rule the mixture consists of a great number of subregions with complex changing shape and it
is difficult to realize this approach in practice. In another approach (averaged continuum fluid model),
the equations are derived from structural continuum fluid models and the mathematical model is ex-
pressed in terms of partial differential balance equations by treating a two—phase mixture as one or two
averaged continua [7]. The governing equations represent the physical balance of mass, momentum and
energy taking into account interphase exchange at phase interfaces. Widely used two—fluid models are
typical examples of this latter approach. This modelling approach assumes each phase as a separate
continuum which is interacting with the other by interfacial transfer. Note that in this approach there
are no physical postulates fully determining the form of governing equations and only empirical reasons
can be used in their derivation. The variational viewpoint [3,5] offers a more rigorous approach, from
the mathematical and physical points of view, to the derivation of multi-phase flow models. Here the
governing equations are derived by the minimization of an appropriate Lagrangian. This approach also
leads to the systems of balance laws for each phase, but their interaction is governed by the terms
prescribed by the Lagrangian substance.

Early two-phase models did not result in a system of hyperbolic equations (the eigenvalues can
be complex-valued) [16]. Such models, although used in practice with a degree of success, lead to ill-
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posed initial-value problem and hence are physically unacceptable. Different hyperbolic models have
been proposed in the past [1-3,11,15,16,19]. These models are not in conservative form, which means
that the definition of discontinuous solutions (contacts and shocks) is not a straigtforward procedure.
Nevertheless certain approach in defining a weak (discontinuous) solution for two—phase model in
variational formulation has been developed in [5,14].

There are two main issues that any of the approaches followed for the construction of mathe-
matical models must address, namely the equations must be hyperbolic and must be expressed in
conservation-law form. These and related difficulties can be addressed successfully by formulating
two—phase problem in terms of extended thermodynamics. The model proposed in this paper is devel-
oped by using such principles [4,10,13], which provide reliable results for modeling complicated media
with rapidly varying and strongly inhomogeneous processes. The field equations based on the laws of
extended thermodynamics form a symmetric hyperbolic system of balance equations in conservative
form. It guarantees the well-posedeness of the initial-value problem (and solvability, at least locally
in time). The present model is a new model, at least in understanding the mathematical character of
the governing equations as well as in studying the physical character of two—phase flow models. From
the numerical point of view, the hyperbolic character of the equations and their conservation-law form
constitute two major advantages. Firstly, one can develop, at least in principle, upwind-based numer-
ical methods that have proved so successful in the area of single-phase compressible fluid dynamics
[17]. Secondly, one can use the finite volume conservative variety of these upwind methods. In the
past there have been some reasonably successful attempts at using Godunov-type methods, even for
mixed-elliptic hyperbolic and non-conservative systems [18]. This has been possible by (i) assuming
smooth solutions and transfering non-conservative terms to the right-hand side and treating these as
source terms, and (ii) by splitting the phases at each time step, which has allowed the construction of
the Riemann problem solution for each phase separately. The model presented in this paper opens the
way to the development of proper upwind schemes for multiphase flows in the near future.

In this paper, we initially focus (section 2) on the assumptions made which lead to a conservative
two—phase flow model and we discuss the choice of the equation of state and dissipative interfacial
interaction. In section 3 we carry out the hyperbolicity analysis of the one-dimensional equations.
Finally, in section 4, the acoustic velocity is derived and used to study the wave propagation for a
static water—air mixture.

2. General conservative equations for two—phase flow

In describing two—phase compressible flows, we treat the two—fluid media as a mixture of constituents
in which the stress tensor reduces to the pressure. The system of governing equations generalises the
model developed by Romensky [13]. In this paper the conservative system of balance laws has been
proposed consisting of the well-known conservation laws of density, momentum and energy for the two-
phase mixture and completed by the equation for the relative velosity in a conservative form. All the
equations can be derived from the general system of thermodynamically compatible system of balance
laws, which is formulated by the principles of extended thermodynamics. Such general system includes
as an examples various equations from different fields of continuum mechanics, such as gas dynamics,
magnetohydrodynamics, hydrodynamics of superfluid helium, nonlinear elasticity, electrodynamics of
moving media, etc. This system is formulated in terms of generalized thermodynamic potential de-
pending on generalized parameters of state, which are connected with physical variables. Each partial
system describing one or another physical model is determined by the definition of generalized potential
and physical meaning of generalized variables. Note that the general thermodinamically compatible
system is overdetermined, that is the number of conservation laws is greater then the number of vari-
ables. The remarkable property of thermodynamically compatible system is a possibility to reduce it to
the complete symmetric hyperbolic system (hyperbolicity is provided by the convexity of generalized
thermodynamic potential). A complete description of the thermodynamically compatible conservation
laws in continuum mechanics can be found in [4,12,13].

The closed system of balance equations for two—phase media with different phase velocities com-
prises the following conservation laws of density, momentum and energy for the mixture and additional
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closure governing equations:

0
7P T 5—(pur) =0, (2.1)
ot oxy,
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a(pu;) B2, — (pwug, + Py + pwiy,) = (2.2)
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ot oxy,
Here equations (2.1)-(2.3) correspond to the mass, momentum and energy conservation laws for the
mixture (although they could also be applied to each one of the two phases). Equation (2.4) is the
balance law for the volume concentration of the second phase, equation (2.5) is the conservation law
for the mass concentration of the second phase and the last equation (2.6) is the balance law for the
relative velocity. Subscripts k,l and j denote one of the three—dimensional components of the physical
variables. Other subscripts denote differentiation with respect to these subscripts.
In system (2.1)-(2.6), t is the time, xj, are the Cartesian coordinates, & = a3 is volume concen-
trations for the second phase which is related to the first phase volume concentrations a; by the
relation

agt+ay=(1-a)+a=1.
The mixture density p is given by
p = aipr + azpz, (2.7)
where p1, p2 are the mass densities of phases.

The mass concentrations for the phases are
apo

The mixture momentum is given by
pup = (o prugg + Qo patizg),

where u1; and uo; are the velocities of the phases.
The relative velocity w; is such that

wp = U2 — Uy

We also define the mixture internal energy as

E(p,a,c,w, 8) =e(p,a,c,8) +c(1— c)%, (2.10)

where 8§ is the entropy of the mixture and e(p, a, ¢, 8) is the specific potential energy of the mixture.
The pressure of the mixture is defined by

P= p28p = erp.
and wj is the vorticity vector. The term II} in equation (2.3) is given by
Iy, = Puy, + purwi €y, + pEelauy, -

The source term in the volume concentration equation (2.4) describes the relaxation of volume con-
centration to equilibrium state with relaxation time 7 which can be a function of parameters of state,
that is,

¢ = Bga-
T
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The source term in the relative velocity equation (2.6) dominate the interfacial friction
T = K€y, = ke(l — Qwy,

(k can depend on the parameters of state) and the relative velocity vorticity vector w; (ejg is the unit
pseudoscalar).
The system (2.1)—(2.6) is compatible with two additional conservation laws [13]

(9wk 8’11)1

owy _ow _ 2.11
di  Owy | HHD =

Owr | O(wwk — ugw; + ex;m;)
Qi _o. 2.12
ot Oxy o

Equation (2.11) is the definition of the relative velocity vorticity vector, while equation (2.12) is the
compatibility condition between vorticity and interfacial friction. Here, the vorticity w;, which is not
a parameter of state, allows us to write the conservative form for the relative velocity equation. More
precisely, from equation (2.11), equation (2.6) can be written as
3wk 6wk 680 8ul
—_— tuy=—+ Wy — = —Tg. 2.13
ot " "ow T omp  om  F (213)
The equations (2.1)—(2.5) and (2.13) form the closed system for p,u;, S, a, ¢, wy, and after solving these
equations, the vorticity w; can be found using (2.11).
An additional entropy balance law is valid for the solution to the system (2.1)-(2.6)

0pS  OpurS _ p
ot T oz, T g Ca® T Ewh).

The right hand side in the above equation is the entropy production and it is a non—negative quantity
due to appropriate definitions of ¢ and 7.

The important fact is the possibility to reduce the system (2.1)—(2.6) to symmetric hyperbolic
form with the use of stationary law for the vorticity (2.11). The proof can be done by introducing a
special generating potential and the hyperbolicity is provided by the convexity of this potential [4,13].
The symmetric hyperbolicity was proved for a simpler system in which a balance law for the volume
concentration was not included in the complete system of balance laws.

To close the system of governing equations it is necessary to define the equation of state (2.10),
namely the specific potential energy e. Assuming that the equations of state for each constituent are
given functions of their own parameters of state we develop the derivation of a common equation of
state for the mixture. From the definition of the mixture parameters of state follows that the mass
densities of each phase are

(I—c)p

pr= (1-a)’

and

cp
p2=—.
(6%

Let us suppose that e1(p1,81) and ex(p2,S2) are the equations of state for the two phases and define
the specific potential energy for the mixture as

e(p,a,c,81,82) = crer(p1,81) + caea(p2, S2) + eo(c), (2.14)

where ¢g(c) is the excess energy providing in particular the thermodynamic equilibrium condition
¢. = 0if ¢ = 0 or ¢ = 1 at normal conditions (by convention "normal conditions” can be regarded
as the state under atmospheric pressure and temperature 293K and its parameters can be defined as
p1 = pY, p2 = pY, 8 = 0). Further we choose

1 1 1 , 1.
eo(c) = 5Blc% + 53203 = 5Bl(l -’ + 532(;2.
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The definition (2.14) of the equation of state of the mixture allows us to derive the governing equations
in terms of the individual parameters of state of the phases. Moreover, using the relations (2.7),(2.8),(2.9)
we derive a thermodynamic identity as

dé(p, a,¢,81,82) = ¢,dp + Ecde + Enda + 5,dS + E5,dSs
1 1
= p_g(alﬂ)l + a23’2)dp + ;(?1 — ﬂ)g)da

Py P
+ (22—81+—2——1+80c)dc
P2 P1
+ 1 T1d81 + CQ‘.TQdSQ, (215)
where the pressures P; (j = 1,2) and temperatures T; (j = 1,2) of the two phases are
ij = p?(ei)mv
T = (¢)s;-

Now we pass to the new thermodynamic variables connected with the phase entropies and tempera-
tures. We can define

S =8— A,
8y =8+ A4,

where 8 is the mean entropy of the mixture and A is the parameter characterizing thermal nonequi-
librity. Using the above definition, equality (2.15) can be rewritten in the form

de(p,a, ¢, 81,82) = dé(p,a, ¢, 8, A) = ¢,dp + é.dc + enda + e5dS + eadA
1 1
= p_g(alﬂ)l + axPy)dp + ;(?1 — Py)da
Py P

+ (62 —e1 + — — — + ¢, )dc
P2 P1

+ (Cl‘:rl + CQTQ)dS + (CQTQ — Cl‘Tl)dA

The final step in the definition of the equation of state for our model is the assumption that the
potential energy for the mixture does not depend on A, that is

e(p7 Q, ¢, S) = é(pa «, C, 87 A)lA:O'

This assumption is correct for the processes in which the variation of entropy is not too large. A more
complicated case could be considered in a more sophisticated two—temperature model of two—phase
flow with thermal nonequilibrity.

Thus we have the thermodynamic identity defining the equation of state for the system (2.1)—(2.6)

de(p,a,¢,8) = e dp + ecde + eqda + esdS
1 1
= ?(Oé1991 + asPy)dp + ;(?1 - sz)da

P P
Fea—e + 22— Lt eg)de
P2 P1

+ (ClTl + CQTQ)dS, (216)
from which we conclude that

P= p2€p = al’Pl + QQTQ,

1
€a = _(ﬂ)l - :])2)7
“p
P P
252(62—21+—2——1+€0c),
P2 P1

T =esg =cre1, + Caeag.



6 E. Romenski, D. Zeidan, A. Slaouti, E.F. Toro

Here ¢, is the difference of the enthalpies [10] for the two phases supplemented by the normalizing
term ep, arising from excess energy and T is the temperature of the mixture.

Using the above relationships between the parameters of state for the mixture and individual
phases the closed system of balance laws selected from the above equations can be written in terms of
parameters pq, po, i, Uy, 2, S as follows:

0 0
—(a1p1 + a2p2) + — (1 pruak + azapausy) =0,

ot Oxy,
0 0
(g pruy + aspouy) + m— (a1 pruury + aepaususg + Poyy) =0,
ot 8a:k
Q((a +a )a)—l—i((a Urg + Qopousg)a) = —¢@
o1 101 202 ozn 1P1ULE 202Uk = ,
0 0
a(azpz) + @(azﬂzuzk) =0,
0 0 jugiug Uy P P
= (uzg — = S e —a+ 22— L te) = T,
at(qu ulk) + 6.17k( 9 9 +ex —¢1 + P o + ¢ ) k
%((alpl + azp2)8) + a%((mpluw + aapaugg)8) = A,
8’U)k 811,]' _
Bz, om O
where the source terms are
1
6= -),

Iy = epjww; + w1, mp = ke(l — c)wy,
1
A= —(Py —P2)? + kc(l — c)wgwy, > 0,
pT
0= —CkljWj.

We can see that the two—phase flow conservation laws are supplemented here by the balance law for
the relative velocity. This law postulates that the relative velocity arises if there exists a gradient of
the difference of enthalpies and (or) kinetic energies of phases.

It is significant to note that if the relaxation process leading to the equilibrium of volume con-
centration is sufficiently fast (7 — 0), then the above system gives the single—pressure approximation
within the framework of formulated model, because in this case the approximation

1
804 - ;(ipl —ipg) - O,

can be used instead of the equation for a.

3. Hyperbolicity analysis of the one—dimensional equations

The analysis is presented in a one—dimensional setting. At the outset, the equations for conservative,
one—dimensional two—phase flow can be written in the form of conservation laws:

8U + 8,F(U) =S(U), —co<z <00, t>0, (3.1)

where U, F(U), S(U) are the set of conservative variables, flux vector, and source term vector respec-
tively. Here U(z, t) is a vector—valued function. R x [0,00) — (2, {2 is the set of (physically acceptable)
states and we assume that each component of U is a piecewise C' function in the sense that there is
only a finite set in R which is not in C' and where the shock conditions hold. The components of U
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are the conserved quantities

the flux function is
U
24 éuf pwé
pu w
]F(U) = puc+p8w 9
uw + &,
pu(€ + “72) + Pu + puwéy, + p€.Ey

and the source term vector is

The system is closed by equations of state for the mixture
2
E(p,a,c,w,8) =e(p,a,c,8) +c(l — C)%,
where ¢(p, a, ¢, 8) is defined by (2.16). The pressure and derivatives of € with respect to w, ¢ are

2
P=pE,=p%,, Ey=cl-cw, E =e +(1- 20)%.

The mathematical structure of the system is more clearly revealed and the characteristic analysis
given below is simplified in terms of primitive variables [20]. For the conservative two—fluid model case
one possibility is to choose a vector W of primitive variables defined as

W= (p,a,u,c,w,S)T.

Thus, in quasilinear form we have

AW + A(W)o, W = QU), (3.2)
where the Jacobian matrix A(W) is
U 0 p 0 0 0
0 u 0 0 0 0
2P+ el = w?) % u 2 (Pe+p(1 = 20)w?) 2¢(1-c)w TTS
c(l-c) 00 wu+(1l-20w c(l—c) 0o |’
ecp Coc W Cee — W2 u+ (1 —2c)w ecs
0 00 0 0 u

and Q(U) = (Uw)~" S(U).

Let us introduce the set {2 of physically admissible states, {2 = {U €R%;p,8>0,a,c€]0,1[,u,w €
R} Further we will see that there exists a positive number w* such that for any U that lies in the set
2% defined by 2* = {U € £2;|w| < w*} the eigenvalues \;, 1 < j < 6 are real for w small enough.
Thus the eigenvalues of the matrix A(W) are the solutions of the characteristic polynomial

det [A(W) - /\I] =0,
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which becomes

VY + 6P + Y +aY+) =0, (3.3)

where

and
63 = 2(1 — 2c)w,
s2 = —(P, + c(1 — ¢)ece) + bow?, (3.4)
G = 2(2pc(1 = c)ecp — (1 —2¢)P,)w + biw? + bow® + baw?,
o =c(1—¢)(Prece — Peecy) + baw? + bsw?,

and b, by, ba, b, by, bs are coefficients depending on the state parameters [20]. Solving equation (3.3)
for the non-trivial roots is diffcult. Note that the coefficients (3.4) of equation (3.3) have the form

o= +ctw+0O0w?), 1=0,1,2,3. (3.5)

Assuming that the relative velocity w is sufficiently small we can use a perturbation method around
w = 0 and write the solution in the following form

Y = Yo +Yw + 0(w?),
At zero order in w we derive from (3.3)
Yo + 295+ =0, (3.6)

and the roots of this equation are

Yo==

—¢3 £+ /(s9)? — 4 :
S2 (gz) §0] . (37)

2

We mentioned that the system under consideration can be transformed to a symmetric hyperbolic
system and its hyperbolicity is guaranteed by the convexity of the equation of state. Now we prove
that the convexity of the specific potential energy e guarantees that all roots Yo of the equation (3.6)
are real. To do this it is convenient to use the variables V = (1, ¢, 8) where V is the specific volume.

In terms of these variables we have P = —ey and the following formulae:
:Pp = Vzevv,
P = —€ve,
Coc = _VQQVC;

c(l—c¢)
V2

2 0
Pp+c(l—c)ece = [evv + ecc] V2.

It follows from (3.4), (3.5) that

1 . c(l—c 2 4e(l-c .
W((€3)2 —4q)) = [evv + (VQ )ecc] - (VQ )(evvecc )
1- 2 4e(l—-c) -
= [evv _d V2 9 ecc] + C(V2 J e}, >0,

which means that the values

L1
95 = 5(=s2 £ /() —4<f),

defined by (3.7) are real. Furthermore the positiveness of Y2 (and hence the reality of Yo) is guaranteed
by the inequality

ey eee — e%/c > 0. (3.8)
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The above inequality (3.8) is one of the convexity conditions which are the positive definiteness con-
ditions of the matrix

eyV €ve €VS
€V €ce €c8
ey €8¢ €88

From (3.3) the first-order terms in w lead to
2(s9 +2Y) Y + 3 Y5 +1 =0,
and the solution is
o+ Y2
2(s2 +295)
Thus, the system (3.1) admits the following six eigenvalues up to first order in w
A =u—a; + Y1 (a)w + O(w?),
A2 = u — az + Y1 (a2)w + O(w?),
A3 = Ay = u,
As = u+as + Yi(ax)w + O(w?),
Xe = u+ ay + Y1 (ar)w + O(w?),

Yo = -

where
1 1/2
ay = E[_gg—v(gg)‘z—zxgg] )
_ 1 0 /(-0\2 0 e
GQ—E[_gg‘I‘ (gg) _4§0 ,
and
1 1.2
S1 +<3a;
yl(aj):_gL

2(9 +2a3)’
The eigenvalues A3 4 are clearly the mixture velocity u, whereas the other eigenvalues correspond to
the acoustic wave propagation for the mixture. The associated linearly independent set of eigenvectors

Ki = (k1, ko, ks, ka, ks, ke)], i=1,..,6
can be found from the equation
(A(W) - )J)ﬂ( =0,
and determined as

Ks = (0,0,1,0,0,0)7, %4 =(0,0,0,1,0,0)%,
:Ki = (kvkQ(ai7k)70707k5(aiak)7 kﬁ(ai, k))T, 1= 1,2,

:K4+i = (k7 k?(_ai7 k)v 07 07 k5(_ai7 k)v kﬁ(_aiv k))T7 i = 17 27
where k is an arbitrary parameter, ks (a;, k) = —%k, and ks(a;, k), ke(a;, k) are the solutions to the

linear system of algebraic equations:

(a; + (1 = c)w)ks + c(1 — c)ky = %c(l — cwk

1
eccks + (a; +c(1 —c)w)ky = (ecp — ;aiw)k
Further, the characteristic fields corresponding to the acoustic waves were shown to be genuinely non—

linear while the last two are linearly degenerate [20]. Thus the considered one-dimensional conservative
two—fluid model is hyperbolic.
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4. Study of the sound wave propagation

The analysis of the eigenstructure given in the previous section has shown that there are four eigen-
values corresponding to two sound velocities. Now we clarify the values of the velocity of sound in
static two—fluid media and its dependence on the volume concentration relaxation illustrated by the
example of a water—air mixture. Consider the partial case of the system (3.2) ignoring a source term
in the equation for the relative velocity w and leaving fixed the source term in the equation for the
volume concentration as given in equation (2.4)

W + A(W)9, W = Q(W), (4.1)

where

1 E2NT
Q(W) = (07 __8017 07 07 07 _a) -
T 7Eg
We study small-amplitude wave propagation in the static two—fluid media which is also in the ther-

modynamic equilibrium (in particular €, = 0). A solution of (4.1) can be represented in the form
W=w + W
="+ pha’ + ot ut, P+t wt, 8Y),
where W' is the vector of small perturbation of the primitive variables. The smallness of W' allows
us to derive a linear system of partial differential equations

W' 4+ A(W%)9, W' = Quw (WO )W, (4.2)
where
0 0 p° 0 0 0
0 00O 0 0
To Pa (g e 0 Ps
A(WO) — p0 0 0 00 ,
0 00 0cE1-0
ecp ac 0 €cc 0 ecs
0 00 0 0
and the the Jacobian matrix Qy is
0 0O 0 0 0 O
_%eap _%eaa 0 _%eac 0 _%eaS
0 0O 0 0 0 O
W)= 6 0 0 0 0 o0
0 0o 0 0 0 0
0 0 0 0 0 O
Here all derivatives of thermodynamic parameters are computed at the values p = p°,a = o, ¢ =

c®,8 = 0. Note that the right hand side in the equation for entropy vanishes due to quadratic degree
of smallness.
The sound waves are harmonic solutions of the form

W' = W3 exp(i(vt — kx)).
If we substitute this expression into (4.2) we observe that only the solution with a! = 0, 8! = 0 exists.
The equation connecting the frequency v and wavelength k£ can then be derived:

vt — oo (iv)V?k* + oo (iv)k* = 0. (4.3)
Here
pes, + e

VT +ena

0 0 pzeip e
) = (1 — LT __ fac
oo(iv) = ¢( ) P T + eaa <2cc wT + eaa>

2
P eapt Capt
_00(1_00) fpc_w ecp_& .
WT + €qq WT + €qq

o2(iv) = P, + (1 — )ece —
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It is obvious that if the wavelength is prescribed then the sound wave behaviour depends on the value
of relaxation time 7 (note that 7 can depend on the thermodynamic parameters of state). In particular,
we may consider two interesting limiting cases, 7 = oo and 7 = 0, which correspond to the cases when
the characteristic time of a process is respectively less or greater than the relaxation time.

For both cases we have the following formula for sound wave velocities obtained by solving equa-
tion (4.3) (we choose only positive roots):

v 1 [
ai2 = E = \/5(02 + 0'5 — 400). (44)

Let us consider now an example of a water-air mixture and find out the dependence of the velocity
of sound on the volume concentration of the gas (void fraction) for the two cases described above
supposing that the mixture is at normal conditions. An equation of state for such a mixture is given
by (2.16) and determined by equations of state for water and air. Equation of state for air is the perfect

gas EOS [6,8] given by
3 A (m)w_lexp(S )
? v2 =1\ P )

The equation of state for water is defined as

A y1—1 8 0
e = — (p—(l,) exp (T) + 402L,
7 =1\ p} Cy 1

which is the stiffened gas equation of state written in terms of density and entropy [6,9]. All the
constants are defined in table 4.1.

Table 4.1. Constants for the study of the sound wave propagation.

[ Constants in the equations of state for liquid and gas |

y1 = 2.8 v2 = 1.4

o9 =103 kg/m? pg =1 kg/m?
ch = 1495 J/kgK c2 =720 J/kgK
Ag = 8.4999 10° m?/s? Ao = 10° m?/s?
A =85105 m?2/s?

Direct calculation of the speeds of sound at normal conditions (p; = p?, p2 = p3,8 = 0) gives the
following results for the case 7 = oc:

a1 =/ MAL, ay = Vv Yo As.

We can see that both speeds of sound do not depend on the void fraction and coincide with the speeds
of sound in the pure water and air respectively.

The dependence of the speeds of sound on the void fraction in the case when 7 = 0 (equal pressure
approximation) was calculated using the formula (4.4). It is found that one of the speeds is equal to
0. The nonzero speed of sound is presented in figure 4.1.

5. Conclusions

Based on an extended thermodynamics approach, a new model for two—phase flow has been developed.
We have examined the mathematical character of a two—phase mixture description used to model fully—
compressible non—equilibrium two-phase flows. Additionally, the model is conservative and hyperbolic.
Due to the nice mathematical properties the model in the case of dissipation—free flow can be used
to formulation of the simple wave solutions (shock, centred wave, contact) and further to solve the
Riemann problem. It is also expected that the conservative form could be useful to develop an accurate
numerical methods for the proposed model. It is hoped that this paper will motivate other researchers
to use, and further develop, extended thermodynamics methodology for the analysis of two—phase flow
in systems and processes of practical concern.
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Fig. 4.1. The acoustic velocity for a water/air mixture for the case of single pressure approximation as a function of
void fraction a. The water and air are at rest under atmospheric conditions.
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