ON EXPLICIT TIME-STEPPING FOR STIFF ODES

KENNETH ERIKSSON, CLAES JOHNSON, AND ANDERS LOGG

ABSTRACT. We present a new strategy for solving stiff ODEs with explicit
methods. By adaptively taking a small number of stabilizing small explicit
time steps when necessary, a stiff ODE system can be stabilized enough to
allow for time steps much larger than what is indicated by classical stability
analysis. For many stiff problems the cost of the stabilizing small time steps
is small and so the improvement is large. We illustrate the technique on a
number of well-known stiff test problems.

1. INTRODUCTION

The classical wisdom developed in the 1950s regarding stiff ODEs is that efficient
integration requires implicit (A-stable) methods, at least outside transients where
the time steps may be chosen large from an accuracy point of view. Using an
explicit method (with a bounded stability region) the time steps have to be small
at all times for stability reasons, and thus the advantage of a low cost per time step
may be counter-balanced by the necessity of taking a large number of steps. As a
result, the overall efficiency of an explicit method for a stiff ODE may be small.

The question is now if it is possible to combine the low cost per time step of an
explicit method with the possibility of choosing large time steps outside transients.
To reach this favorable combination some kind of stabilization of the explicit method
seems to be needed, and the basic question is then if the stabilization can be realized
at a low cost.

The stabilization technique proposed in this note relies on the inherent property
of the stiff problem itself: rapid damping of high frequencies. This is achieved by
stabilizing the system with a couple of small stabilizing (explicit Euler) steps. We
test this idea in adaptive form, where the size and number of the small time steps
are adaptively chosen according to the size of different residuals. In particular, we
compute rates of divergence to determine the current mode X of largest amplification
and determine a corresponding small time step k = % with high damping. We test
the corresponding adaptive method in the setting of the ¢G(1) method with fixed
point iteration, effectively corresponding to an explicit method if the number of
iterations is kept small. We show in a sequence of test problems that the proposed
adaptive method gives a significant reduction in work in comparison to a standard
implementation of an explicit method, with a typical speedup factor of ~ 100. We
conclude that for many stiff problems, we may efficiently use an explicit method,
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if only the explicit method is adaptively stabilized with a relatively small number
of small time steps, and so we reach the desired combination of a low cost per
time step and the possibility of taking large time steps outside transients. If the
proposed method can be efficient also in comparison to implicit methods remains
to be seen.

We have been led to this question in our work on multi-adaptive cG(q) or dG(q)
ODE-solvers based on Galerkin’s method with continuous or discontinuous polyno-
mials of degree ¢, where individual time steps are used for different components, see
[7, 8]. These methods are implicit and to realize efficient implementations, we need
to use fixed point iteration with simple preconditioners. With a limited (small)
number of iterations, these iterative solvers correspond to explicit time-stepping
and the same question of the cost of stabilization arises.

The motivation for this work comes also from situations where for some reason we
are forced to using an explicit method, such as in simulations of very large systems
of chemical reactions or molecular dynamics, where the forming of Jacobians and
solution of the linear system become very expensive.

Possibly, similar techniques may be used also to stabilize multi-grid smoothers.

2. BASIC STRATEGY

We consider first the test equation: Find u : [0,00) — R such that
w(t) + Au(t) =0 for ¢t >0,

(2.1) w(0) —

where A > 0 and u is a given initial condition. The solution is given by u(t) =
exp(—At)u’. We define the transient as {t > 0 : At < C} with C a moderate
constant. Outside the transient u(t) = exp(—At)u® will be small.

The explicit Euler method for the test equation reads

U =k, U4+ U = (1= B, N U™

This method is conditionally stable and requires that k,A < 2, which outside
transients is too restrictive for A large.

Now let K be a large time step satisfying KA > 2 and let k be a small time step
chosen so that kA < 2. Consider the method

(2.2) U =(1-kN™(1—-K\NU 1,

corresponding to one explicit Euler step with large time step K and m explicit
Euler steps with small time steps k, where m is a positive integer to be determined.
Altogether this corresponds to a time step of size k, = K + mk. Defining the
polynomial function P(z) = (1 — 6z)™(1 — z), where § = %, we can write the
method (2.2) in the form
U" = P(KNU™ L,
We now seek to choose m so that |P(K )| < 1, which is needed for stability. We
thus need to satisfy
[1—kA™(KA-1) <1,
that is,
log(KA —1) log(K\)
= —log|l—k\ ¢

with ¢ = k) a moderate constant, for definiteness ¢ = 1/2.

(2.3)




ON EXPLICIT TIME-STEPPING FOR STIFF ODES 3

We conclude that m will be of moderate size and consequently only a small
fraction of the total time interval will be spent on time-stepping with the small
time step k. To see this, define the cost as

14+m
o= —
K+ km
that is, the number of time steps per unit time interval. The classical stability
analysis with m = 0 gives
(2.4) a=1/k, =1/2,
with a maximum time step k, = K = 2/\. Using (2.3) we instead find

_ l4log(KN)/c A

for KA > 1. The cost is thus decreased by the cost reduction factor
2log(KA)  log(KX)
cK )\ KX’

which can be quite significant for large values of KA.

A similar analysis applies to the system @ + Au = 0, if the eigenvalues {\;}¥
of A are separated with 0 < A\; <... <3 <2/Kand2/K <\ <...<An.In
this case, the cost is decreased by a factor
2log(K);)  log(K\;)

KN K\

In recent independent work by Gear and Kevredikis [2], a similar idea of combin-
ing small and large time steps for a class of stiff problems with a clear separation of
slow and fast time scales, is developed. This work however, is not focused on adap-
tivity to the same extent as ours, which does not require any a priori information
about the nature of the stiffness (for example distribution of eigenvalues).

€ (1/K,1/k),

(2.6)

3. PARABOLIC PROBLEMS

For a parabolic system,
u(t) + Au(t) =0 fort >0,

(3.1) u(0) — u,

with A a symmetric positive semidefinite N x N matrix and u® € RV a given initial
condition, the basic damping strategy outlined in the previous section may fail to
be efficient. This can be seen directly from (2.6); for efficiency we need K\; > 2,
but with the eigenvalues of A distributed over the interval [0, Ax], for example with
\i ~ i as for a typical (one-dimensional) parabolic problem, one cannot have both
Ai-1 <2/K and K\; > 2!

We conclude that for a parabolic problem, the sequence of time steps, or equiv-
alently the polynomial P(z), has to be chosen differently. We thus seek a more
general sequence ki, ..., k,, of time steps such that |P(z)| < 1 for z € [0, KAn],

with
o= (1 52) (1 ),

and K a given maximum step size.
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3.1. Chebyshev damping. A good candidate for P is given by the shifted Cheby-
shev polynomial of degree m,

P.(z) = T}, (1 - ;;N> .

This gives P.(0) =1 and |P.(z)| <1 on [0, KAn], see Figure 1. A similar approach
is taken in [10].
Analyzing the cost as before, we have & = m/(k1 + ...+ kp,), with

ki=2/(An(1 = s$my1-i)),

and s; the ith zero of the Chebyshev polynomial T}, = T,,(s), given by s; =
cos((2i — 1)w/(2m)), i = 1,...,m. It follows that

= mAN /2 _ mAn/2
ST st sy mz w/Em

The reduction in cost compared to Ay /2 is thus a factor 1/m. A restriction on the

maximum value of m is given by k,,, = 2/(An(1 — s1)) < K, that is,

2 2
K 2 S T = cos(m/@m))) ~ Awn/(8m?)

for m > 1. With m = (v/4)vKAn, the cost reduction factor for Chebyshev
damping is thus given by

a

= 16m?/(An7?),

4
F\/K)\N

3.2. Dyadic damping. Another approach, more closely related to the original
approach of alternating large and small time steps, is to take

L 2z \ 2ig \2'
P, = 1-— 1—

Jj=gq+1

1/m = ~ (KXn)"Y2,

where p and ¢ < p are two integers to be determined. This gives a sequence
increasing time steps, starting with 27 time steps of size kg = 1/\y, 277! time
steps of size k; = 2ko and so on, until we reach level ¢ where we take one time step
of size k; = 29k,. We then continue to increase the size of the time step, with only
one time step at each level, until we reach &k, = 2Pky = K.

Determining the minimal value of ¢ for |Py(z)] <1 on [0, KAn] for p=0,1,...,
we find ¢(p) =~ %(p — 1), see Table 1. The cost is now given by

2+...+1)+ (-0 _ (@R -1+ (p-9)
= (20(g+ 1) + (2041 + .. 4 27))  29(g + 1) + (2P — 20F1)

o =

~
~

)‘N/21 o AN oopr2(p-1)/341 _ AN 9—(p-1)/3
T

Since p = log(K An)/log(2), the reduction in cost for dyadic damping is then a

factor
1

(KAn/2)/3
which is competitive with the optimal cost reduction of Chebyshev damping.

~ (KXn)"Y3,
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p|l0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
g0 0 01 2 3 3 4 45 7T 8 8 9 10 10
TABLE 1. Number of required levels with multiple zeros, ¢, as
function of the total number of levels, p.

0
6

4. COMPARISON OF METHODS

We summarize our findings so far as follows. The reduction in cost for the
simple approach of large unstable time steps followed by small stabilizing time
steps, outlined in Section 2, is a factor log(KAn)/(KAn), and thus this simple
approach can be much more efficient than both the two approaches, Chebyshev
damping and dyadic damping, discussed in the previous section. This however
requires that the problem in question has a gap in its eigenvalue spectrum, that
is, we have a clear separation into small (stable) eigenvalues and large (unstable)
eigenvalues.

In the case of a parabolic problem, without a gap in the eigenvalue spectrum, the
simple approach of Section 2 will not work. In this case, Chebyshev damping and
dyadic damping give a reduction in cost which is a factor (KAyx)~/2 or (KAyx)~1/3,
respectively. The efficiency for a parabolic problem is thus comparable for the two
methods. Since the method of dyadic damping is a slightly modified version of the
simple approach of Section 2, consisting of gradually and carefully increasing the
time step size after stabilization with the smallest time step, thus being simple and
flexible, we believe this method to be advantageous over the Chebyshev method.

As a comparison, we plot in Figure 1 the shifted Chebyshev polynomial P,.(z)
and the polynomial Py(z) of dyadic damping for KAy = 64. We also plot in Figure
2 the stability regions for the two polynomials P.(z) and P4(z) for z € C. In this
context, the two polynomials are given by

i 1—81 )
4.1 P =TT (14—},
(@) =11 (r 7230

for s; = cos((2i — 1) /(2m)), and

PR Ce) (e

J=q+1 i=0

As can be seen from this figure, another advantage of the method of dyadic damping
as compared to the method of Chebyshev damping, is the larger stability region in
the complex plane. We thus need not assume that the eigenvalues of A in (3.1) lie
in a narrow strip along the negative axis in the complex plane, as is needed with
Chebyshev damping. (The stability region of the Chebyshev polynomial can be
slightly modified to include a narrow strip along the negative real axis, see [10].)
When comparing the size of the stability regions to the results presented in [10], it
should be noted that here z = — K\, with K the maximum time step in a sequence
of time steps, rather than the sum of the time steps in the sequence. (The difference
for Chebyshev damping is approximately a factor 27%/16 ~ 1.2.)
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x

FI1GURE 1. A comparison of the two polynomials for KAy = 64:
we take m = 6 for the shifted Chebyshev polynomial P.(z) and
(p,q) = (6,3) for the dyadic polynomial Py(z). With K = 1, the
costs are 5.3 and 8, respectively.

5. THE GENERAL NONLINEAR PROBLEM

We consider now the general nonlinear problem,

u(t) = f(u(t)) fort >0,

u(0) = u?,

where f : RNV x (0,7] — R¥ is a given bounded and differentiable function. The
explicit Euler method for (5.1) reads

(5.2) Ur=U""1 4+ k, f(U™ 1),

where the function U = U(t) is piecewise constant and right-continuous with U™ =
U(t}). The exact solution u satisfies a similar relation,
tn
(5.3) u =u"t 4 f(u(t)) dt,
tn—1
with u™ = u(t,). Subtracting (5.2) and (5.3), we find that the error e(t) = U(t) —
u(t) satisfies

(5.1)

et — et ) = [ JOE) - ) dt:/t" Je dt,
tn—1 tn—1

where J is the Jacobian %5 of the right-hand side evaluated at a mean value of

U and u. We conclude that the efficiency of the proposed method for the general
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FIGURE 2. A comparison of stability regions for the two polyno-
mials, with m = 6 for the shifted Chebyshev polynomial P.(z) and
(p,q) = (6,3) for the dyadic polynomial Py(z).
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nonlinear problem will be determined by the distribution of the eigenvalues of the
Jacobian.

6. ITERATIVE METHODS

From another viewpoint, we may consider using an explicit-type iterative method
for solving the discrete equations arising from an implicit method. The implicit
c¢G(1) method with midpoint quadrature for the general nonlinear problem (5.1)

reads
n—1 n
6.1) U™ = U 4 ko f (#) .

We can solve this system of nonlinear equations for U™ using Newton’s method,
but the simplest and cheapest method is to apply fixed point iteration directly to
(6.1), that is,

Un—l + Un,l—l
Unl — Un—l kn _
+ knf . :
for | = 1,2,... until convergence with U™° = U""!. The fixed point iteration

converges for small enough time step k,,, and so the stability condition for a standard
explicit method appears also in explicit-type iterative methods as a condition for
convergence of the iterative solution of the implicit equations.

To determine a stop criterion for the fixed point iteration, we measure the size
of the discrete residual,

Tnl :i(Unl_Un—l)_f< 5

Un—l + Unl
: ),

which should be zero for the true ¢G(1) approximation. We continue the iterations
until the discrete residual is smaller than some tolerance tol > 0. Usually only a
couple of iterations are needed. Estimating the error e(T") = U(T) — u(T) at final
time T (see [7]), we have
0
lle(T)II < S(T) I[{)lfg](kllRll +5°(T) I[Raj?](”T“a
where R(t) = U(t) — f(U(t)) is the continuous residual and S(T) and S°(T) are
stability factors. For the test equation we have S(T') < 1 and S°(T) < 1/), which
suggests that for a typical stiff problem we can take tol = TOL, where TOL is a
tolerance for the error e(T) at final time.
For the discrete residual, we have

1 Unfl + Unl
nl _ X orml prm—1y |
e U ( a )
grt+un urt+un ymi—1 _gni
- (f) - ( 5 ) = I
= 1 n,l—1 n—1 Ur-1l 4 pyni-t
which gives
(62) Tnl — k—nJTn’l_l‘

2
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Thus, by measuring the size of the discrete residual, we obtain information about
the stiff nature of the problem, in particular the eigenvalue of the current unstable
eigenmode, which can be used in an adaptive algorithm targeted precisely at sta-
bilizing the current unstable eigenmode. We discuss this in more detail below in
Section 8.

7. MULTI-ADAPTIVE SOLVERS

In a multi-adaptive solver we use individual time steps for different components.
An important part of the algorithm described in [7, 8] is the iterative fixed point
solution of the discrete equations on time slabs. The simple strategy to take small
damping steps to stabilize the system applies also in the multi-adaptive setting,
where we may also target individual eigenmodes (if these are represented by differ-
ent components) using individual damping steps. This will be explored further in
another note.

8. AN ADAPTIVE ALGORITHM

The question is now whether we can choose the time step sequence automatically
in an adaptive algorithm. We approach this question in the setting of an implicit
method combined with an explicit-type iterative solver as in Section 6. We give the
algorithm in the case of the simple damping strategy outlined in Section 2, with
extension to parabolic problems as described in Section 3.

A simple adaptive algorithm for the standard ¢G(1) method with iterative solu-
tion of the discrete equations reads as follows.

(1) Determine a suitable initial time step k; and solve the discrete equations
for the solution U(t) on (to,t1).
(2) Repeat on (t,_1,tn) forn =2,3,... until ¢, > T
(a) Evaluate the continuous residual R,,_; from the previous time interval.
(b) Determine the new time step k, based on R,_1.
(¢) Solve the discrete equations on (t,—1,t,) using fixed point iteration.

In reality we want to control the global error, which means we have to solve also
the dual problem, compute stability factors (or weights), evaluate an a posteriori
error estimate and possibly repeat the process until the error is below a given
tolerance TOL > 0. The full algorithm is thus slightly more elaborate, but the
basic algorithm presented here is the central part. See [1] for a discussion.

We comment also on step (2.b): For the ¢G(1) method we would like to take
kn = TOL/(S(T)||Rn-1l]), but this introduces oscillations in the size of the time
step. A small residual gives a large time step which results in a large residual,
and so on. To avoid this, the simple step size selection has to be combined with
a regulator of some kind, see [3, 9] or [8]. It turns out that a simple strategy that
works well in many situations is to take k, as the geometric mean value
(8.1) ky = M
kn + knfl
where &, = TOL/(S(T)||Rn_1]))-

Now, for a stiff problem, what may go wrong is step (2.c); if the time step k,
is too large, the fixed point iterations will not converge. To be able to handle
stiff problems using the technique discussed above, we propose the following simple
modification of the adaptive algorithm.
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(1) Determine a suitable initial time step k; and solve the discrete equations
for the solution U (t) on (¢o,t1).
(2) Repeat on (t,—1,t,) for n =2,3,... until ¢, > T
(a) Evaluate the continuous residual R,,_; from the previous time interval.
(b) Determine the new time step k, based on R,_1.
(c) Solve the discrete equations on (¢,_1,t,) using fixed point iteration.
(d) If (2.c) didn’t work, compute

_2 |
a1

and take m = log(k,L) explicit Euler steps with time step & = ¢/L
and c close to 1.
(e) Try again starting at (2.a) with n — n + m.

In the analysis of Section 2 we had ¢ = 1/2, but it is clear that the damping steps
will be more efficient if we have ¢ close to 1. An implementation of this algorithm in
the form of a simple MATLAB code is available for inspection [6], including among
others the test problems presented in the next section.

We also note that by (8.1), we have k,, < 2k,_1, and so following the sequence
of small stabilizing time steps, the size of the time step will be increased gradually,
doubling the time step until we reach k, ~ K or the system becomes unstable
again, whichever comes first. This automatically gives a sequence of time steps
similar to that of dyadic damping described in Section 3, with the difference that
most of the damping is made with the smallest time step.

9. EXAMPLES

To illustrate the technique, we take a simple standard implementation of the
c¢G(1)-method (with explicit fixed point solution of the discrete equations) and add
a couple of lines to handle the stabilization of stiff problems. We try this code on a
number of well-known stiff problems taken from the ODE literature, and conclude
that we are able to handle stiff problems with this explicit code.

When referring to the cost o below, this includes also the number of fixed point
iterations needed to compute the c¢G(1) solution on intervals where the iterations
converge. This is compared to the cost o for the standard ¢G(1) method in which
we are forced to take small time steps all the time. (These small time steps are
marked by dashed lines.) For all example problems below we report both the cost
a and the cost reduction factor a/ay.

9.1. The test equation. The first problem we try is the test equation,
w(t) + Au(t) =0 for ¢t >0,

(9.1) 4(0) — a0,

on [0,10], where we choose u® = 1 and A = 1000. As is evident from Figure
3, the time step sequence is automatically chosen in agreement with the previous
discussion. The cost is only a ~ 6 and the cost reduction factor is a/ag =~ 1/310.

Note how the time steps are drastically decreased (step (2.d) in the adaptive
algorithm) when the system needs to be stabilized, and then gradually increased
until again the stabilization is needed.
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FIGURE 3. Solution and time step sequence for eq. (9.1), a/ag &= 1/310.

9.2. The test system. For the test system,
u(t) + Au(t) =0 fort >0,
u(0) = u°,

on [0,10], we take A = diag(100,1000) and u® = (1,1). There are now two eigen-
modes with large eigenvalues that need to be damped out. The dominant eigen-
value of A is A2 = 1000 and most of the damping steps are chosen to damp out
this eigenmode, but some of the damping steps are chosen based on the second
largest eigenvalue A\; = 100. When to damp out which eigenmode is automatically
decided by the adaptive algorithm; the bad eigenmode that needs to be damped
out becomes visible in the iterative solution process. Since there is an additional
eigenvalue, the cost is somewhat larger than for the scalar test problem, a ~ 18,
giving a cost reduction factor of o/ ~ 1/104.

(9.2)

9.3. A linear non-normal problem. The method behaves similarly even if we
make the matrix A highly non-normal. We now solve

u(t) + Au(t) =0 fort >0,

9.3

(9:3) u(0) =,

on [0, 10], with
L [ 1000 —10000
=l o 100 |’

and u® = (1,1). The cost is about the same as for the previous problem, a ~ 17,
but the cost reduction factor is better: a/ag = 1/180.
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FIGURE 5. Solution and time step sequence for eq. (9.3), a/ap =~ 1/180.
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9.4. The HIRES problem. The so-called HIRES problem (“High Irradiance RE-
Sponse”) originates from plant physiology and is taken from the test set of ODE
problems compiled by Lioen and de Swart [5]. The problem consists of the following
eight equations:

u; = —1.71u; + 0.43us + 8.32us + 0.0007,
dy = LTluy — 8.75us,
a3 = —10.03u3 + 0.43uq + 0.035us,
(9.4) g = 8.32us + 1.71ug — 1.12uy,
us = —1.745u5 + 0.43ug + 0.43ur,
g = —280.0ugug + 0.69uq + 1.71us — 0.43ug + 0.69ur,
1'1,7 = 280.0u6u8 — 1.81’[1,7,
L ug = —280.0ugug + 1.81u7,

together with the initial condition u® = (1.0,0,0,0,0,0,0,0.0057). We integrate
over [0,321.8122] (as specified in [5]) and present the solution and the time step
sequence in Figure 6. The cost is now a =~ 8 and the cost reduction factor is
afag ~1/33.

| 1
. 0.8
— o S
Eos =
< >
0.4 0.4
| G o2 .b
|| — 0
0 100, 200 300 ’ 1 e 4 |

2

0 100 200 300

FIGURE 6. Solution and time step sequence for eq. (9.4), a/ag ~ 1/33.

9.5. The Akzo-Nobel problem. The next problem is a version of the “Chemical
Akzo-Nobel” problem taken from the ODE test set [5], consisting of the following
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six equations:

(9.5)

Ue

where F' = 3.3 -(0.9/737 — u3) and the reaction rates are given by r; = 18.7 -
u%\/@, ro = 0.58 - uguq, 73 = 0.58/34.4 - wyus, r4 = 0.09 - uluZ and rs =
0.42 - u\/us. We integrate over the interval [0,180] with initial condition u® =
(0.437,0.00123,0,0,0,0.367). Allowing a maximum time step of kyax = 1 (chosen
arbitrarily), the cost is only a ~ 2 and the cost reduction factor is a/ap ~ 1/9.
The actual gain in a specific situation is determined by the quotient between the
large time steps and the small damping time steps, as well as the number of small
damping steps that are needed. In this case, the number of small damping steps is
small, but the large time steps are not very large compared to the small damping
steps. The gain is thus determined both by the stiff nature of the problem and the

—2r1 + 72 — T3 — Ty,
—0.571 —ry — 0.5r5 + F,
= rn—re+rs,

—7ro + 13 — 21y,

ro — T3 + s,

—Ts,

tolerance (or the size of the maximum allowed time step).

0.4

10

150 0 1

I )
60 80 100 120

) ) ]
140 160 180

FIGURE 7. Solution and time step sequence for eq. (9.5), a/ap ~ 1/9.

9.6. Van der Pol’s equation. A stiff problem discussed in the book by Hairer

and Wanner [4] is Van der Pol’s equation,

i+ pw? = Di+u=0,
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which we write as

(9.6) {ul = Y2

e = —p(ud—1)us —us.

We take u = 1000 and compute the solution on the interval [0,10] with initial
condition u® = (2,0). The time step sequence behaves as desired with only a small
portion of the time interval spent on taking small damping steps. The cost is now
a = 140 and the cost reduction factor is a/ag ~ 1/75.

x 10
2 0
—_
>
~—1.998 -1
—
1.996 2
Nadl
1.994 =-3
Q. ¢ 2 4 6 8 10 = _4
x 10 +
=0 -
&2 6
S
-7
6t |
1.994 1.996 1.998 2
-8 (t)
0 2.05 0.1 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

FIGURE 8. Solution and time step sequence for eq. (9.6), a/ag ~ 1/75.

9.7. The heat equation. A special stiff problem is the one-dimensional heat equa-
tion,

Wz, t) —u'(z,t) = f(2,1), 2€(0,1), t>0,
u(0,t) = u(1,t) =0, t>0
u(z,0) =0, z¢€][0,1],

where we choose f(z,t) = f(z) as an approximation of the Dirac delta function at
z = 0.5. Discretizing in space, we obtain the ODE

u(t) + Au(t) = f,

u(0) =0,
where A is the stiffness matriz. With a spatial resolution of A = 0.01, the eigenval-
ues of A are distributed in the interval [0,4 - 10*] (see Figure 9).

Using the technique of dyadic damping described in Section 3 for this parabolic
problem, the cost is a & 2000, with a cost reduction factor of a/ag ~ 1/31.

(9.7)



16 KENNETH ERIKSSON, CLAES JOHNSON, AND ANDERS LOGG

0 10 20 30 40 50 60 70 80 90 100

FIGURE 9. Solution and time step sequence for eq. (9.7), a/ay ~
1/31. Note that the time step sequence in this example is chosen
slightly differently than in the previous examples, using the tech-
nique of dyadic damping discussed in Section 3. This is evident
upon close inspection of the time steps sequence.

9.8. A non-stiff problem. To show that the method works equally well for non-
stiff problems, we finally consider the following simple system:

©.8) {ul - Sua,

’[Lg —Uj.

With the initial condition u° = (0, 1), the solution is u(t) = (v/5 sin(v/5t), cos(v/5)).
Since this problem is non-stiff (for reasonable tolerances), no stabilization is needed
and so the solver works as a standard non-stiff ¢cG(1) solver with no overhead. This
is also evident from the time step sequence (see Figure 9) which is chosen only to
match the size of the (continuous) residual.
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F1GURE 10. Solution and time step sequence for eq. (9.8), /oo = 1.
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