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Abstract. The system of balance laws describing a compressible fluid flow in a nozzle forms a non-strictly

hyperbolic systems of partial differential equations which, also, is not fully conservative due to the effect of

the geometry. First, we investigate the general properties of the system and determine all possible wave

combinations. Second, we construct analytically the solutions of the Riemann problem for any values of the

left- and right-hand states. For certain values we obtain up to three solutions whose structure is carefully

described here. In some range of Riemann data, no solution exists. When three solutions are available, then

exactly one of them contains two stationary waves which are super-imposed in the physical space. We include

also numerical plots of these solutions.

1. Introduction

We consider the Riemann problem for the following system describing the evolution of an isothermal
fluid in a nozzle with discontinuous cross-sectional area a(x) > 0:

(1.1)

∂t(aρ) + ∂x(aρu) = 0,

∂t(aρu) + ∂x(a(ρu2 + p(ρ))) = p(ρ)∂xa,

∂ta = 0, x ∈ RI , t > 0.

Here, ρ and u stand for the density and the particle velocity of the fluid under consideration, respectively,
and the pressure function p = p(ρ) is given by

(1.2) p(ρ) = κργ , 1 < γ < 5/3.

Observe that the third equation in (1.1) is trivial since the function a depends only on x. Since we are
interested in discontinuous functions a it is convenient (following [13]) to consider the full set of three
equations. The third equation is associated with a linearly degenerate field with constant characteristic
speed.

First, observe that the system (1.1) does not take the usual form of a system of conservation laws
and is not fully conservative. This is due to the effect of the geometry modeled by the function a.
When a admits discontinuities, Dirac masses appear on the right-hand side of the second equation of
(1.1). Therefore, the usual notion of weak solutions for systems of conservation laws does not apply.
The product still makes sense as a measure within the framework introduced by Dal Maso, LeFloch, and
Murat [5]. Throughout this paper, the function a will be assumed to be piecewise constant, so that the
application of the theory in [5] is particularly immediate, as we see below.

1 Centre de Mathématiques Appliquées & Centre National de la Recherche Scientifique, U.M.R. 7641, Ecole Polytech-

nique, 91128 Palaiseau Cedex, France. E-mail: lefloch@cmap.polytechnique.fr.
2 Institute of Mathematics, P.O. Box 631 BoHo, 10000 Hanoi, Vietnam. E-mail: thanh@cmap.polytechnique.fr.

2000 Mathematics Subject Classification. Primary: 35L65, 74XX. Secondary: 76N10, 76L05.

Key words and phrases: compressible fluid, nozzle with discontinuous cross-section, conservation law, non-strict hyperbol-

icity, shock wave, entropy inequality, Riemann problem.

Typeset by AMS-TEX

1



2 LEFLOCH AND THANH

For smooth solutions (x, t) 7→ (ρ, u, a), the system (1.1) is equivalent to the following three conservation
laws:

(1.3)

∂t(aρ) + ∂x(aρu) = 0,

∂tu+ ∂x(
u2

2
+ h(ρ)) = 0,

∂ta = 0,

where the function h is defined by h′(ρ) = p′(ρ)/ρ, thus

h(ρ) :=
κγ

γ − 1
ργ−1.

On the other hand, the Rankine-Hugoniot relation associated with the third equation in (1.1) takes
the form

(1.4) −λ[a] = 0,

where λ denotes the speed of the discontinuity, [a] := a+ − a− is the jump of the quantity a, and a±
denotes its left- and right-hand traces. The relation (1.4) implies that :

(i) the component a remains constant across the shock, or
(ii) a is discontinuous but the shock velocity vanishes.

The following discussion provides us the list of admissible waves for solving the Riemann problem, and
is central to this paper.

Let us assume first that the component a remains constant across some shock wave. Since a is
piecewise constant, it should be constant in a neighborhood of the shock. Eliminating a from (1.1), we
obtain the following system of two conservation laws

(1.5)
∂t(ρ) + ∂x(ρu) = 0,

∂t(ρu) + ∂x((ρu2 + p(ρ))) = 0.

Thus, the left- and right-hand states are related by the Rankine Hugoniot relations corresponding to (1.5)

(1.6)
− λ[ρ] + [ρu] = 0,

− λ[ρu] + [ρu2 + p(ρ)] = 0,

where [ρ] := ρ+ − ρ+, etc.
Suppose next that the component a is discontinuous and that, therefore, the shock speed vanishes.

The solution is independent of time, ad it is natural to search for a solution as the limit of a sequence of
time-independent smooth solutions of (1.1). Following Marchesin-Paes-Leme [18] and LeFloch [13], this
motivates us to consider the system of ordinary differential equations

(1.7)

(aρu)′ = 0,

(
u2

2
+ h(ρ))′ = 0.

The integral curve of (1.7) passing through each point (ρ0, u0, a0) can be parameterized by u, say

u 7→ (ρ(u), u, a(u)),

and satisfie
u2

2
+

κγ

γ − 1
ργ−1(u) =

u2
0

2
+

κγ

γ − 1
ργ−1
0 ,

a(u) =
a0ρ0u0

ρ(u)u
.
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Letting u → u± and setting ρ± = ρ(u±), a± = a(u±), we see that the states (ρ±, u±, a±) satisfy the
Rankine-Hugoniot relations associated with (1.3), but with zero shock speed:

(1.8)

[aρu] = 0,

[
u2

2
+ h(ρ)] = 0.

It is easy to check (LeFloch [13]) that discontinuities satisfying (1.8) are solutions of the nonconservative
system (1.1) in the sense of DalMaso-LeFloch-Murat for the family of paths based on the ODE trajectories
(1.7).

In this paper, we will construct solutions of the Riemann problem associated with (1.1), made of
elementary waves defined as follows.

Definition 1.1. The admissible waves for the system (1.1) are the following ones:

• the rarefaction waves, which are smooth solutions of (1.1) with constant component a depending
only on the self-similarity variable x/t;

• the shock waves which satisfy (1.6) and Lax shock inequalities (see [12]) and have constant
component a;

• and the stationary waves which have zero propagation speed and are given by (1.8).

As will become clear in Section 2, the system under consideration in this paper is not strictly hyperbolic.
This makes the analysis of the Riemann problem particularly challenging. For previous works in this
direction we refer to [3,6,9,10,11,16,17,18]. For numerical work on hyperbolic systems with source-term
we refer to [1, 2, 7, 8]. An outline of this paper is as follows: Section 2 presents basic material on the
system (1.1). Then, in Section 3, for each wave family we construct one-parameter sets of states which
can be connected to a given state by using shock and rarefaction waves in one family plus a stationary
wave. In Sections 4 and 5, we exhibit the solution (or solutions) of the Riemann problem: first using a
single stationary wave (Section 4) and, second, using two stationary waves (Section 5). The Riemann
solutions are finally plotted numerically in Section 6.

Note : The authors gratefully acknowledge the support and hospitality of the Isaac Newton Insti-
tute for Mathematical Sciences, University of Cambridge, where this research was performed during the
Semester Program “Nonlinear Hyperbolic Waves in Phase Dynamics and Astrophysics”. After the com-
pletion of this work, the authors received an interesting preprint by N. Andrianov and G. Warnecke “On
the solution to the Riemann problem for the compressible duct flow”, which addresses the existence and
uniqueness for the full model of three equations of fluid dynamics in a nozzle. Based on two-dimensional
numerical computations, the authors propose an interesting selection criterion which may be relevant
to select physically meaningful solutions in the cases where we exhibit multiple solutions in the present
paper.

2. Preliminaries

It will be convenient to write U = (ρ, u, a). For smooth solutions the system (1.3) can be written in
the standard form

(2.1) ∂tU + A(U) ∂xU = 0,

where

A =





u ρ ρu/a
h′(ρ) u 0

0 0 0



 .
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The matrix A is not the Jacobian of a function. It admits the following three eigenvalues and right-
eigenvectors:

(2.2)
λ1 := u−

√

p′(ρ), λ2 := 0, λ3 := u+
√

p′(ρ),

r1 := (ρ,−
√

p′(ρ), 0)t, r2 := (ρu,−p′(ρ), a(u− p′(ρ)

u
))t, r3 := (ρ,

√

p′(ρ), 0)t.

The first and the second characteristic speeds may coincide, and so do the second and the third charac-
teristic speeds. More precisely, setting

(2.3) C± : u = ±√
κγ ρ

γ−1

2 ,

we see that
λ2 = λ1 on C+,

λ2 = λ3 on C−

and (1.1) is not strictly hyperbolic.
In (ρ, u)-plan, the boundaries of strict hyperbolicity C± separates the half-plane ρ > 0 into three (open)

domains. For convenience, we will refer to them as the “lower region” G1, the “middle region” G2, and
the “upper region” G3 :

G1 = {(ρ, u) : u < −
√

p′(ρ)},
G2 = {(ρ, u) : |u| <

√

p′(ρ)},
G3 = {(ρ, u) : u >

√

p′(ρ)}.

In each of these regions the system (2.1) is strictly hyperbolic and we have

λ1 < λ3 < λ2, in G1,

λ1 < λ2 < λ3, in G2,

λ2 < λ1 < λ3, in G3.

It will be also convenient to use the notation

G+
2 = {(ρ, u) ∈ G2 : u > 0},

G−2 = {(ρ, u) ∈ G2 : u < 0}.

The second characteristic family is linearly degenerate, while the 1- and the 3-characteristic families
are genuinely nonlinear:

−∇λ1 · r1 = ∇λ3 · r3 =
1

2
√

p′(ρ)
(ρp′′(ρ) + 2p′(ρ)) > 0.

A shock wave in the first or third family connecting a given left-hand state U0 to a right-hand state U
must satisfy the Lax shock inequalities (see [12])

(2.4) λi(U) < λ̄i(U,U0) < λi(U0), i = 1, 3,

where λ̄i(U,U0) denotes the shock speed.
Shock waves from 1- and 3-families are constrained by the jump conditions (1.6). The so-called

Hugoniot set is determined

(u− u0)
2 = κ(

1

ρ0
− 1

ρ
)(ργ − ργ

0).
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We can distinguish between two families. Using the condition that the 1-Hugoniot curve issued from U0

is tangent to the 1-eigenvector vector r1(U), we find

H1(U0) : u =















u0 −
(

κ(
1

ρ0
− 1

ρ
)(ργ − ργ

0)
)1/2

, ρ > ρ0,

u0 +
(

κ(
1

ρ0
− 1

ρ
)(ργ − ργ

0)
)1/2

, ρ < ρ0.

Similar arguments lead to H3(U0). Using Lax shock inequalities (2.4), we can define the 1-wave and a

3-wave (left-to-right) shock curve S1(U0) and
→

S 3(U0) consisting of all right-hand states U that can be
connected to U0 by a shock by:

(2.5)

S1(U0) : ω1(ρ;U0) := u0 −
(

κ(
1

ρ0
− 1

ρ
)(ργ − ργ

0 )
)1/2

, ρ > ρ0,

→

S 3(U0) : ω3(ρ) := u0 −
(

κ(
1

ρ0
− 1

ρ
)(ργ − ργ

0 )
)1/2

, ρ < ρ0.

The condition ρ > ρ0 for S1(U0) (respectively ρ < ρ0 for
→

S 3(U0)) is derived from the Lax shock inequalities
(2.4).

Similarly, the 1-wave and 3-wave (right-to-left) shock curve
←

S 1(U0),S3(U0) consisting of all left-hand
states U that can be connected to U0 by a Lax shock are :

(2.6)

ω1(ρ) := u0 +
(

κ(
1

ρ0
− 1

ρ
)(ργ − ργ

0 )
)1/2

, ρ < ρ0,

ω3(ρ) := u0 +
(

κ(
1

ρ0
− 1

ρ
)(ργ − ργ

0 )
)1/2

, ρ > ρ0.

Next, we search for rarefaction waves, i.e., smooth self-similar solutions to the system (1.3). As usual,
we consider for ordinary differential equations

(2.7)

dU

dξ
=

ri(U)

∇λi · ri(U)
, i = 1, 3,

U(ξ0) = U0.

Therefore, we can determine the 1-wave (left-to-right) rarefaction curve R1(U0) by

(2.8)

ω1(ρ) = u0 −
∫ ρ

ρ0

√

p′(ρ)

ρ
dρ

= u0 −
2
√
κγ

γ − 1
(ρ(γ−1)/2 − ρ

(γ−1)/2
0 ), ρ ≤ ρ0,

ρ
γ−1

2 (ξ) = ρ
γ−1

2

0 − γ − 1√
κγ(γ + 1)

(ξ − ξ0), ξ ≥ ξ0.

and the 3-wave (right-to-left) rarefaction curve R3(U0) by

(2.9)

ω3(ρ) = u0 +

∫ ρ

ρ0

√

p′(ρ)

ρ
dρ, ρ ≤ ρ0,

ρ
γ−1

2 (ξ) = ρ
γ−1

2

0 +
γ − 1√
κγ(γ + 1)

(ξ − ξ0), ξ ≤ ξ0.
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If we take ξ ≤ ξ0 and ρ ≥ ρ0 in the formulas (2.8), (2.9) instead, we get the 1-wave (right-to-left) and

3-wave (left-to-right) rarefaction curve
←

R1(U0),
→

R3(U0).
In conclusion, we can define the wave curves

(2.10)

W1(U0) := S1(U0) ∪ R1(U0),
←

W1(U0) :=
←

S 1(U0) ∪
←

R1(U0),

W3(U0) := S3(U0) ∪ R3(U0),
→

W3(U0) :=
→

S 3(U0) ∪
→

R3(U0).

Let us investigate properties of the wave curves. A state U0 being given we consider the wave curves
in the (ρ, u)-plan issuing from U0. It follows from (2.6) that

(2.11a)
dω1(U0, ρ)

dρ
= −

κ
[

1
ρ2 (ργ − ργ

0) + ( 1
ρ0

− 1
ρ )γργ−1

]

2|ω1(U0, ρ) − u0|
< 0, ρ > ρ0,

and, clearly,

(2.11b)
dω1(U0, ρ)

dρ
= −√

κγρ
γ−3

2 < 0, ρ ≤ ρ0.

Similar calculations show that

(2.12)
dω3(U0, ρ)

dρ
> 0, ρ > 0.

From (2.11)-(2.12), we have the well-known property:

Lemma 2.1. (1- and 3-wave curves)

The wave curve W1(U0) : ρ 7→ ω1(U0, ρ), ρ > 0 is strictly decreasing. The wave curve
→

W3(U0) : ρ 7→
ω3(U0, ρ), ρ > 0 is strictly increasing.

As observed in Section 1, a stationary shock from a given state U0 to some state U must satisfy

(2.13)
W2(U0) : u = ω2(U0, ρ) := sgn(u0)

(

u2
0 −

2κγ

γ − 1
(ργ−1 − ργ−1

0 )
)1/2

, u0 6= 0,

Σ(U0, ρ; a) := ω2(U0, ρ)ρ−
a0u0ρ0

a
= 0.

If u0 = 0, then the equations (2.13) determine three points (ρ0, 0), (0,±
√

(2κγ)/(γ − 1)ρ
(γ−1)/2
0 ). Assume

u0 6= 0. The function ρ 7→ ω2(U0, ρ) is defined provided the expression under the square root is non-
negative:

u2
0 −

2κγ

γ − 1
(ργ−1 − ργ−1

0 ) ≥ 0,

which requires that

(2.14) ρ ≤ ρ̄(U0) :=
(γ − 1

2κγ
u2

0 + ργ−1
0

)
1

γ−1

.

In the interval [0, ρ̄(U0)], the function ρ 7→ ω2(U0, ρ) is decreasing for u0 > 0 and increasing for u0 < 0.
On the other hand,

(2.15)
∂Σ(U0, ρ; a)

∂ρ
=
u2

0 − 2κγ
γ−1(ργ−1 − ργ−1

0 ) − κγργ−1

(

u2
0 − 2κγ

γ−1 (ργ−1 − ργ−1
0 )

)1/2
.
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Assume, for simplicity, that u0 > 0. The last expression means that

(2.16)

∂Σ(U0, ρ; a)

∂ρ
> 0, ρ < ρmax(ρ0, u0),

∂Σ(U0, ρ; a)

∂ρ
< 0, ρ > ρmax(ρ0, u0),

where

(2.17) ρmax(ρ0, u0) :=
( γ − 1

κγ(γ + 1)
u2

0 +
2

γ + 1
ργ−1
0

)
1

γ−1

.

The function ρ 7→ Σ(U0, ρ; a) takes negative values at the endpoints. Thus, it admits some root if and
only if the maximum value is non-negative. This is equivalent to saying that

(2.18) a ≥ amin(U0) :=
a0ρ0|u0|

√
κγρ

γ+1

2
max(ρ0, u0)

.

For u0 < 0, the same properties hold provided we reverse the inequalities (2.16) and replace “negative”
by “positive”. Based on these observations, we have

Lemma 2.2. (Waves associated with the linearly degenerate field.)
Given U0, a stationary shock issuing from U0 and connecting to some state U = (ρ, u, a) exists if and

only if a ≥ amin(U0). More precisely, we have :

(i) If a < amin(U0), there are no stationary shocks.
(ii) If a > amin(U0), then there are exactly two values ϕ1(U0, a) < ρmax(U0) < ϕ2(U0, a) such that

(2.19) Σ(U0, ϕ1(U0, a), a) = Σ(U0, ϕ2(U0, a), a) = 0.

Accordingly, along the curve W2(U0), there are two distinct points that can be attained from U0

using a stationary shock.
(iii) If a = amin(U0), then on the curve W2(U0) there is a unique point that can be attained from U0

using a stationary shock.

The following lemma compare together terms arising in the previous lemma.

Lemma 2.3.

i) We have

(2.20)

ρmax(ρ0, u0) < ρ0, (ρ0, u0) ∈ G2,

ρmax(ρ0, u0) > ρ0, (ρ0, u0) ∈ G3 ∪ G1,

ρmax(ρ0, u0) = ρ0, (ρ0, u0) ∈ C±.
ii) After a stationary jump, the state (ϕ1(U0, a), ω2(U0, ϕ1(U0, a))) belongs to G1 if u0 < 0, and belongs

to G3 if u0 > 0, while the state (ϕ2(U0, a), ω2(U0, ϕ2(U0, a))) always belongs to G2. Moreover, for u0 6= 0,
we have

(2.21)
(ρmax(U0, a), ω2(U0, ρmax(U0, a))) ∈ C+ if u0 > 0,

(ρmax(U0, a), ω2(U0, ρmax(U0, a))) ∈ C− if u0 < 0.

In addition, we have

– If a > a0, then

(2.22a) ϕ1(U0, a) < ρ0 < ϕ2(U0, a).

– If a < a0, then

(2.22b)
ρ0 < ϕ1(U0, a) for U0 ∈ G1 ∪ G3,

ρ0 > ϕ2(U0, a) for U0 ∈ G2.
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iii)

(2.23)

amin(U, a) < a, (ρ, u) ∈ Gi, i = 1, 2, 3,

amin(U, a) = a, (ρ, u) ∈ C±,

amin(U, a) = 0, ρ = 0 or u = 0.

Proof. The inequalities (2.20) are straightforward. To demonstrate ii) and iii), we can assume for sim-
plicity that u0 > 0. Let us define the function

g(U0, ρ) = ω2
2(U0, ρ) − κγργ−1

= u2
0 −

2κγ

γ − 1
(ργ−1 − ργ−1

0 ) − κγργ−1.

Then, a straightforward calculation gives

g(U0, ρmax(U0)) = 0,

which proves (2.21). On the other hand, since

dg(U0, ρ)

dρ
= −(γ + 1)κγργ−2 < 0,

and that ϕ1(U0, a) < ρmax(U0, a) < ϕ2(U0, a) it holds that

g(U0, ϕ1(U0, a)) > g(U0, ρmax(U0)) = 0 > g(U0, ϕ1(U0, a)).

The last two inequalities justify the statement in ii). Moreover,

Σ(U0, ρ0; a) = ρ0u0(1 − a0/a) > 0 iff a > a0,

which proves (2.22a), and shows that ρ0 is located outside of the interval [ϕ1(U0, a), ϕ2(U0, a)] in the
opposite case. It is then derived from (2.15) that

∂Σ(U0, ρ0; a)

∂ρ
=
u2

0 − κγργ−1
0

u0
< 0 iff U0 ∈ G2,

which, together with the earlier observation, implies (2.22b).
We next check (2.23) for a = a0. It comes from the definition of amin(U0) that amin(U0) < a0 if and

only if √
κγρ∗

γ+1

2 > ρ0|u0|,
that can be equivalently written as

l(m) :=
2

γ + 1
m− (κγ)

1−γ

γ+1m
2

γ+1 +
γ − 1

κγ(γ + 1)
> 0,

where m := ργ−1
0 /u2

0. Then, we can see that

(2.24) l(1/κγ) = 0,

which, in particular shows that the second equation in (2.23) holds, since (ρ0, u0) ∈ C± for m = 1/κγ.
Moreover,

dl(m)

dm
=

2

γ + 1
(1 − (κγm)

1−γ

γ+1 ),

which is positive for m > 1/κγ and negative for m < κγ. This together with (2.24) establish the first
statement in (2.23). The third statement in (2.23) is straightforward. This completes the proof of Lemma
2.3. �
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Proposition 2.4. i) The 1-shock speed λ̄1(U0, U), (for ρ > ρ0) may change sign along the 1-shock curve
S1(U0). More precisely, if U0 ∈ G1 ∪ G2 then λ̄1(U0, U) remains negative:

(2.25a) λ̄1(U0, U) < 0, U ∈ S1(U0).

If U0 ∈ G3, then λ̄1(U0, U) vanishes once at some point Ũ0 corresponding to a value ρ = ψ1(U0) > ρ0 on
the 1-shock curve S1(U0) : ρ 7→ U = (ρ, ω1(ρ;U0)), such that

(2.25b)

λ̄1(U0, Ũ0) = 0,

λ̄1(U0, U) > 0, ρ ∈ (ρ0, ρ̃0),

λ̄1(U0, U) < 0, ρ ∈ (ρ̃0,+∞),

Ũ0 ∈ G+
2 .

ii) The 3-shock speed λ̄3(U0, U), (for ρ > ρ0) may change sign along the 3-shock backward curve
S3(U0). More precisely, if U0 ∈ G2 ∪ G3 then λ̄3(U0, U) remains positive:

(2.26a) λ̄3(U0, U) < 0, U ∈ S3(U0).

If U0 ∈ G1, then λ̄3(U0, U) vanishes once at some point Ũ0 corresponding to a value ρ = ψ2(U0) > ρ0 on
the 3-shock backward curve S3(U0) : ρ 7→ U = (ρ, ω3(ρ;U0)), such that

(2.26b)

λ̄3(U0, Ũ0) = 0,

λ̄3(U0, U) < 0, ρ ∈ (ρ0, ρ̃0),

λ̄3(U0, U) > 0, ρ ∈ (ρ̃0,+∞),

Ũ0 ∈ G−2 .

Proof. We only prove i), since similar arguments can be used for ii). From (1.6) and (2.6) we deduced
that

(2.27) λ̄1(U0, U) =
ρω1(U0, ρ) − ρ0u0

ρ− ρ0
= u0 −

(

κ
ρ

ρ0

ργ − ργ
0

ρ− ρ0

)1/2

.

Thus, if U0 ∈ G1 ∪ C−, then u0 < 0 and λ̄1(U0, U) < 0. If U0 ∈ G2, then, since the function ρ 7→ ργ is
convex and ρ > ρ0, we deduce from (2.21) that

λ̄1(U0, U) < u0 −
√
κγρ

γ−1

2

0 < 0,

where the last inequality holds by U0 ∈ G2. Letting U0 → C+ in the last inequality, we obtain

λ̄1(U0, U) < 0, U 6= U0, U0 ∈ C+.

Thus, (2.25a) is established.
Assume now that U0 ∈ G3. Set

(2.28) l(ρ) := κ
ρ

ρ0

ργ − ργ
0

ρ− ρ0
− u2

0 = 0, ρ ≥ ρ0.

Observe that the function l(ρ) and λ̄1(U0, U) have the same roots and take values of opposite signs. Then,
a straightforward calculation shows that

l(ρ0) = κγργ−1
0 − u2

0 < 0, l(+∞) = +∞,

l′(ρ) = κ
(γ − 1)ργ + ργ

0

ρ0(ρ− ρ0)
> 0,
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which implies the existence of the value ψ1(U0) as indicated in (2.25b). Moreover, the three statements
in the beginning of (2.25b) are satisfied. In view of the jump relation

[ρu] = 0,

for a Lax shock with zero speed, the value ω1(U0, ψ1(U0)) must be positive. The fact that the function
ρ 7→ ργ is convex and that the function ω1 is decreasing in ρ yields

0 = λ̄1(U0, Ũ0) = u0 −
(

κ
ρ

ρ0

ργ − ργ
0

ρ− ρ0

)1/2

> u0 −
√
κγψ1(U0)

γ−1

2

> ω1(U0, ψ1(U0)) −
√
κγψ1(U0)

γ−1

2

= λ̄1(ψ1(U0), ω1(U0, ψ1(U0))),

which, since ω1(U0, ψ1(U0)) > 0, proves the last statement of (2.25b). This completes the proof of
Proposition 2.4. �

Let us introduce two other curves in the (ρ, u)-plane:

(2.29)

C∗ : u∗(ρ) = −2
√
κγ

γ − 1
ρ

γ−1

2 ,

C∗ : u∗(ρ) =
2
√
κγ

γ − 1
ρ

γ−1

2 ,

Formally, the curve C∗ is given by R1(ρ0 = 0, u0 = 0), and the curve C∗ is given by
→

R3(ρ0 = 0, u0 = 0).
At this stage, we have:

Lemma 2.5. i) If U0 is located above the curve C∗, then the curve W1(U0) has a unique intersection
with each curve C±, C∗ and C∗. If U0 is located below C∗, no such an intersection is available.

ii) If U0 is located below or on the curve C∗, then the curve W3(U0) has a unique intersection with
each curve C±, C∗ and C∗. If U0 is located above C∗, no such an intersection is available.

3. Two-parameter sets of composite waves

Solution curves of the Riemann problem for (1.1) are understood to be either wave curves that were

already defined in the previous section or sets of composite waves W1,2(U0, a),
←

W1,2(U0, a) (for 1- and

2-wave families) or W2,3(U0, a),
→

W2,3(U0, a) (for 2- and 3-wave families). For simplicity, we restrict our
attention in this section to the situation that there is only one stationary shock in each composite wave.
Two stationary shocks in a composite wave is also possible and this will be discussed later in Section 5.

Definition 3.1. The composite curve W i
1→2(U0, a) is the set of all states U = (ρ, u, a) such that there

exists a state U ′ ∈ W1(U0) and the 1-wave from U0 to U ′ can be followed by the stationary shock from U ′

to U by using ϕi(U
′, a), i = 1, 2. The composite curve W i

2→1(U0, a) is the set of all the states U = (ρ, u, a)
such that the (fixed) stationary jump from U0 to some U ′ (using ϕi(U0, a)) can be followed by the 1-waves
from U ′ to U , i = 1, 2.

Under the transformation

(3.1) x 7→ −x, u 7→ −u,

a right-hand state U = (ρ, u, a) becomes a left-hand state of the form (ρ,−u, a). Therefore, without loss
of generality, we can always assume from now on that

(3.2) a0 < a.
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Figure 3.1: U0 below C∗

We need only construct W1,2(U0, a), as similar arguments can be used for other cases. Set

(3.3) U± := W1(U0) ∩ C±, Z(U0) = W1(U0) ∩ {u = 0}.

First, assume that U0 is below or on the curve C∗ (Figure 3.1). The curve W1(U0) always remains
in G1 and does not cross the strict hyperbolicity boundary C±. Therefore, all the 1-waves have negative
speeds. Consequently, the 2-waves can not be followed by 1-waves. The only way is that the 1-waves are
followed by 2-waves. Thus, we have in this case

(3.4) W1,2(U0, a) ⊃ W1
1→2(U0, a) ∪ W 2

1→2(U0, a).

Second, U0 is between C∗ and C+ or on the curve C+ (Figure 3.2).

The construction can be a 1-wave from U0 to U = (ρ, u) ∈ W1(U0) as long as U do not belong to G3,
followed by a stationary jump by either using ϕ1(U0, a) to a state U1 with

(3.5)
U1 ∈ G1 if u ≤ 0,

U1 ∈ G3 if u ≥ 0,

or using ϕ2(U0, a) to a state U2 ∈ G2. Such states U2 form W2
1→2(U0, a). The states U1 ∈ G1 form the

set W1
1→2(U0, a). In the case U1 ∈ G3 reached by a stationary jump from U ∈ Ḡ+

2 , we have

(3.6) λ1(U1) > 0,
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Figure 3.2: U0 between C+ and C∗

the construction can therefore be continued with W1(U1) as long as the 1-shock speed from U1 is non-
negative. This is W1

2→1(U, a) with any U belongs to W1(U0) between U+ and Z(U0). Hence, we have in
this case two curves and a one-parameter family of solutions described by

(3.7)
W1,2(U0, a) ⊃ W1

1→2(U0, a) ∪ W 2
1→2(U0, a) ∪ W1

2→1(U, a)

U ∈ W1(U0), U betweenU+ andZ(U0).

Finally, assume that U0 is above C+, i.e, U0 ∈ G3 (Figure 3.3).

In a neighborhood of U0, the shock speed and the characteristic speed are positive, so that stationary
shocks can be followed by 1-waves, only: using ϕ1(U0, a), the solution can begin with a stationary shock
to a state U1 ∈ G3, followed by using W1(U1) as long as the shock speed is non-negative, i.e.,

(3.8) U ∈ W1(U1) : ρ ≤ ψ1(U1).

This is the curve W1
2→1(U0, a). Clearly, this curve crosses the curve C+. If the solution jumps by a

stationary shock using ϕ2(U0, a) to a state U2, then we know by Lemma 2.2 that U2 ∈ G2 in which 1-wave
speeds are always negative so that 1-waves can not follow. In other words, W2

2→1(U0, a) is empty.
On the other hand, from U0, the construction can begin with a non-positive shock from U0 to some

state U with ρ ≥ ψ1(U0), followed by a stationary shock using either ϕ1(U, a) to a state U1 with

U1 ∈ G1 if u ≤ 0,

U1 ∈ G3 if u ≥ 0,
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Figure 3.3: U0 above C+

or using ϕ2(U, a) to a state U2 ∈ G2, These two ways determine two composite curvesW1
1→2(U0, a),W

2
1→2(U0, a).

When using ϕ1(U, a) to attain a point U1 ∈ G3, similarly, by virtue of (3.6) the construction can be con-
tinued by using W1(U1) as much as 1-shock speeds from U1 are non-negative. In this case, the composite
wave set consists of three curves and a one-parameter family of solutions:

(3.9)
W1,2(U0, a) ⊃ W1

1→2(U0, a) ∪ W2
1→2(U0, a) ∪ W1

2→1(U0, a) ∪ W1
2→1(U, a)

U ∈ W1(U0), U between Ũ0 andZ(U0),

where Ũ0 := (ψ1(U0), ω1(U0, ψ1(U0))) the point at which the 1-shock from U0 has zero speed. The
construction is complete.

Obviously, the curve W1
2→1(U0, a) is monotone, as a part of W1(U1) for some U1. Moreover, it is

derived from the above construction that the two curves W1
1→2(U0, a),W2

1→2(U0, a) can be parameterized
by ρ:

(3.10) ρ 7→ (ϕi(ρ, ω1(U0; ρ); a), ω2((ρ, ω1(U0; ρ));ϕi(ρ, ω1(U0; ρ), a))), i = 1, 2,

where ϕi(ρ, ω1(U0; ρ)) is defined by the implicit equation

(3.11) Σ((ρ, ω1(U0; ρ)), ϕi(ρ, ω1(U0; ρ)); a) = 0.

We will show that parts of these two curves are monotone. These parts are sufficient to the construction
of Riemann solutions in the next section.

Lemma 3.1. The u-component of the curve W 2
1,2(U0, a) is a decreasing function of ρ. The u-component

of the curve W1
1→2(U0, a), as a function of ρ, is increasing for ρ < ρ∗ and decreasing for ρ > ρ∗, where

the point (ρ∗, ω1(U0, ρ
∗)) ∈ G2.
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Proof. Without loss of generality we can assume that u0 > 0. For simplicity we may omit U0 in (3.10).
Obviously, for both components u of the two curves we have

(3.12) u2(ρ) = ω2
1(ρ) −

2κγ

γ − 1

[(a0ω1ρ

au

)γ−1

− ργ−1
]

.

Taking the derivative with respect to ρ on both sides we find

uu′ = ω1ω
′

1 − κγ
[(a0ω1ρ

aω2

)γ−2 a0

a

(ω1 + ω′1ρ)ω2 − ω′2ω1ρ

ω2
2

− ργ−2
]

= ω1ω
′

1 − κγ
(

ϕγ−1
i

(ω1 + ω′1ρ)ω2 − ω′2ω1ρ

ω1ω2ρ
− ργ−2

)

.

Combining together terms having ω′2 of the last equality, we obtain

(3.13) (u2 − κγϕγ−1
i )

u′

u
= ω1ω

′

1 + κγργ−2 − κγϕγ−1
i (ω1 + ω′1ρ)

ω1ρ
.

Observe that the first factor on the left-hand side of (3.13)

(3.14)
u2(ρ) − κγϕi(ρ)

γ−1 > 0 for i = 1,

u2(ρ) − κγϕi(ρ)
γ−1 < 0 for i = 2.

For the right-hand side we proceed as follows. For U on the curve W1(U0) we have

(3.15) ω1ω
′

1 + κγργ−2 − κγϕγ−1
i (ω1 + ω′1ρ)

ω1ρ
=
ω′1
ω1

(ω2
1 − κγϕγ−1

i ) +
κγ

ρ
(ργ−1 − ϕγ−1

i ) < 0,

which is

– positive from U− down to infinity for i = 1,
– but negative between U0 and U− for i = 2.

From now on we need only consider the case i = 2 as the other case is similar. Therefore we just consider
the part ρ > ρ− in which

(3.16) (ρ, ω1(ρ)) ∈ G1.

The right-hand side of (3.13) is estimated as

(3.17)
ω1ω

′

1 + κγργ−2 − κγϕγ−1
i (ω1 + ω′1ρ)

ω1ρ
< ω1ω

′

1 + ω2
1/ρ−

κγϕγ−1
i (ω1 + ω′1ρ)

ω1ρ

≤ ω1 + ω′1ρ

ω1ρ
(ω2

1 − κγϕγ−1
i ).

The first factor on the right-hand side of (3.17) is positive. We will show that the second factor is negative.
Actually,

(3.18) ω2
1 − κγϕγ−1

i =
γ − 1

2
(u2 − ω2

1) + ω2
1 − κγργ−1 := l(ρ).

Taking the derivative of the function l(ρ) we obtain

l′(ρ) = (γ − 1)(uu′ − ω1ω
′

1) + 2ω1ω
′

1 − κγ(γ − 1)ργ−2,
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or

(3.19)

2

γ − 1
l′(ρ) =

κω1

u0 − ω1

[ργ − ργ
0

ρ2
+ γργ−1(

1

ρ0
− 1

ρ
)
]

− κγργ−2

=
κω1(ρ− ρ0)

(u0 − ω1)ρ2

(ργ − ργ
0

ρ− ρ0
+
γργ

ρ0

)

− κγργ−2

≤ 2κγργ−3
0 ω1(ρ− ρ0)

u0 − ω1
− κγργ−2 < 0, ρ > ρ0,

and tends to −∞ as ρ → +∞. The fact that the right-hand side of (3.13) takes a negative value at U−
and the inequality (3.19) implies that the right-hand side of (3.13) is always negative. It is then derived
from (3.14) that the function defined in (3.11) is dereasing for u < 0. It is similar to prove the case u > 0.
The proof of Lemma 3.1 is complete. �

Lemma 3.2. The ρ-component of the curve W2
1→2(U0, a) is increasing in ρ at least when (ρ, ω1(ρ))

remains in G2.

Proof. Let the function u be defined as in (3.12). Taking the derivative in ρ of the identity

u(ρ)ϕ2(ρ) = a0ω1(ρ)ρ/a,

we obtain

ϕ′2u+ u′ϕ2 = a0(ω1 + ω′1ρ)/a,

or

ϕ′2(ρ) = −ϕ2u
′/u+ a0(ω1 + ω′1ρ)/a.

Replacing u′/u from (3.13) in the last equality and after rearranging the terms, we obtain

(3.20) ϕ′2(ρ) = ϕ2(ρ)
(ω1 + ω′1ρ

ω1ρ
− u′

u

)

.

As long as (ρ, ω1(ρ)) belongs to G2, it follows from (3.13) that

(u2 − κγϕγ−1
i )

u′

u
= ω1ω

′

1 + κγργ−2 − κγϕγ−1
i (ω1 + ω′1ρ)

ω1ρ

ω1ω
′

1 + ω2
1/ρ−

κγϕγ−1
i (ω1 + ω′1ρ)

ω1ρ

=
ω1 + ω′1ρ

ω1ρ
(ω2

1 − κγϕγ−1
i ).

Thus,

ω1 + ω′1ρ

ω1ρ
≥ u′

u

u2 − κγϕγ−1
i

ω2
1 − κγϕγ−1

i

>
u′

u
,

so that (3.20) yields

ϕ′2(ρ) > 0.

This completes the proof of Lemma 3.2.

�
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Corollary 3.3. The curve W2
1→2(U0, a) can be parameterized by expressing the ρ-component as a function

of the u-component, i.e.,
ρ = ρ(u).

Moreover, this function is monotone decreasing, at least for (ρ, ω1(ρ)) ∈ G2.

Proof. As seen by Lemma 3.1, the component u = u(ρ) of W2
1→2(U0, a) is a decreasing function of ρ. So,

it admits in inverse
ρ = u−1(u).

Using this identity into the expression of the component ρ in (3.10), we get the component

ρ = ρ(u).

Lemmas 3.1 and 3.2 yield the desired monotonicity property.

�

4. The monotonicity criterion : Solutions with one stationary wave

As seen in the previous section that the Riemann problem for (1.1) may admit up to a one-parameter
family of solutions. This phenomenon can be avoided by requiring Riemann solutions to satisfy a mono-
tone condition on the component a.

Monotonicity Criterion.

(a) Along any stationary curve W2(U0), the cross-section area a is monotone as a function of ρ.
(b) The total variation of the cross-section component of any Riemann solution must not exceed (and,

therefore, is equal to) |al − ar|, where al, ar are left-hand and right-hand cross-section levels.

A similar criterion was used by Isaacson and Temple [9, 10] and by Goatin and LeFloch [6].
In this section we will consider Riemann solutions containing one stationary wave only. Consequently,

only the requirement (a) of the a-monotone criterion affects on the construction of solutions. The re-
quirement (b) will be taken into account for solutions containing two stationary waves, which will be
discussed in the next section. Under our monotonicity criterion, we will show that there exist two solu-
tions containing one stationary wave at most.

As before, for definiteness we assume in this section that

(4.1) al < ar.

Moreover, the notation
Wi(U1, U2) ⊕ Wj(U2, U3),

will be used when the i-wave connecting some state U1 to some state U2 is followed by a j-wave connecting
U2 to U3 (here i, j = 1, 2, 3).

Lemma 4.1. The Monononicity Criterion (a) is equivalent to saying that any stationary shock does not
cross the boundary of strict hyperbolicity. In other words:

(i) If U0 ∈ G1 ∪ G3, then only the stationary shock based on the value ϕ1(U0, a) is allowed.
(ii) If U0 ∈ G2, then only the stationary shock using ϕ2(U0, a) is allowed.

Proof. Taking the derivative with respect to ρ in the identity

a2(ω2ρ)
2 = (a0u0ρ0)

2,

we get

(4.2) a(ρ)a′(ρ)(ω2ρ)
2 + 2a2(ω2ρ)(ω

′

2ρ+ ω2) = 0.
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To demonstrate the lemma, it is sufficient to show that the last factor of the second term in (4.2) remains
of a constant sign whenever the curve W2(U0) does not cross the boundary of strict hyperbolicity C±.
Indeed, assume for simplicity that u0 > 0, then

ω′2(ρ)ρ+ ω2 =
−κγργ−1

ω2
+ ω2

=
ω2

2 − κγργ−1

ω2
,

which remains of a constant sign if and only if W2(U0) does not cross C±. This completes the proof of
Lemma 4.1.
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Figure 4.1: Ur below or on C1

Let us denote by W i,a
1→2(U0) the part of W i

1→2(U0, a), i = 1, 2, which is admissible for Monotonicity
Criterion. In view of Lemma 4.1 we have

(4.3)
W1,a

1→2(U0) = {U ∈ W1
1→2(U0, a), ρ ≥ ρ−},

W2,a
1→2(U0) = {U ∈ W2

1→2(U0, a), ρ ≤ ρ−},

where ρ− is the value at which the curve W1(U0) intersects the boundary C−.



18 LEFLOCH AND THANH

Lemma 4.2. When U describes the curve W3(U0), U0 ∈ G1 from the boundary C− to the horizontal axis
{u = 0}, the critical value amin(U) decreases to zero.

Given left-hand and right-hand states Ul = (ρl, ul, al), Ur = (ρr, ur, ar), we now discuss the construc-
tion algorithm for the corresponding Riemann solution. We need some further notation. First, define
the two curves C1, C2 made of states reached by stationary jumps from points on C− when the variable
a jumps from al to ar. Here we use ϕ1(U(a = al), ar) and ϕ2(U(a = al), ar), U ∈ C−, respectively.
Obviously, we have

C1 ∈ G1, C2 ∈ G2.

Lemma 4.3. The curves C1, C2 can be parameterized so that the u-component is decreasing as a function
of the ρ-component.

Second, it is convenient to introduce the two points at which the curve W1(Ul) crosses the boundary
of strict hyperbolicity:

(4.4) {U±} := W1(Ul) ∩ C±.

In view of Proposition 2.4, for each U ∈ C2, there exists a point Ũ ∈ G1 such that the 3-shock speed
vanishes:

λ̄3(U, Ũ) = 0.

Such states Ũ where U ∈ C2 form a curve denoted by C̃2.
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Figure 4.2: Ur between or on C̃2, C∗
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Construction 1. Ur is below or on the curve C1 (Figure 4.1).

The solution may have a (right-to-left) jump from Ur to U1 ∈ G1 ∪ C− by ϕ1(Ur, al). In view of

Proposition 2.4, there exists a point Ũ1 ∈ W3(U1) at which the 3-shock speed vanishes. Then, define U2

by
{U2} = W1(Ul) ∩ W3(U1).

The solution can be

(4.5) W1(Ul, U2) ⊕W3(U2, U1) ⊕W2(U1, Ur),

which makes sense if and only if the 3-shock speed λ̄3(U2, U1) is non-positive. In other words, Ul is below

or on the curve
←

W1(Ũ1).
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Figure 4.3: Ul below C∗, Ur above C∗

Construction 2. Ur is between or on the two curves C̃2, C∗ ( Figure 4.2).

Let
{U1} = W3(Ur) ∩ C2.

Since U1 ∈ C2, by definition, there exists a point U2 ∈ C− which can be attained from U1 by using a
stationary shock. Let

{U3} = W1(Ul) ∩ W3(U2).
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The solution is then

(4.6) W1(Ul, U3) ⊕W3(U3, U2) ⊕W2(U2, U1) ⊕W3(U1, Ur),

provided U2 is above or on the curve W1(Ul). In other words, Ul is below or on the curve
←

W1(U2).

Construction 3. Ul is below or on the curve C∗, and Ur is above or on the curve C∗ ( Figure 4.3).

Set
{U1} = W3(Ur) ∩ {ρ = 0},

{U2} =
←

W1(Ul) ∩ {ρ = 0}.

The solution is then

(4.7) R1(Ul, U2) ⊕R1(U2, (O, al)) ⊕W2((O, al), (O, ar)) ⊕R3((O, ar), U1) ⊕R3(U1, Ur).
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Figure 4.4: Ur between W3(U2),W3(U4)

Construction 4. Ul is below or on C+.

At U−, the solution can jump by a stationary wave using either ϕ1(U−, ar) to U1 ∈ G1, or ϕ2(U−, ar) to
a state U2 ∈ G2. At U+, the solution can jump by a stationary wave using either ϕ1(U+, ar) to U3 ∈ G3,

or ϕ2(U+, ar) to a state U4 ∈ G2. It is easy to see that Ui is an endpoint of W i,a
1→2(Ul, ar), i = 1, 2.
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On the other hand, by virtue of Proposition 2.4, from any point U ∈ W2,a
1→2(Ul, ar), the exists a point

Ũ ∈
→

W3(U) ∩ G1 such that the 3-shock speed from U to Ũ vanishes:

λ̄3(U, Ũ) = 0.

Such states Ũ form a curve in G1, denoted by L.
On the curve W1(U3) there exists a point Ũ3 ∈ G2 at which the 1-shock speed vanishes:

λ̄1(U3, Ũ3) = 0.

This construction gives a (unique) solution in the following two cases:
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Figure 4.5: Ur above W3(Ũ3)

(i) Assume that Ur is above or on the curves L and W3(U2), and is below or on the curve W3(U4) (
Figure 4.4).

Set
U5 ∈ W3(Ur) ∩ W i,a

1→2(Ul, ar),

U6 ∈ W2(U5) ∩ W1(Ul).

The solution is then

(4.10) W1(Ul, U6) ⊕W2(U6, U5) ⊕W3(U5, Ur).
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(ii) Assume that Ur is above or on the curve W3(Ũ3) ( Figure 4.5).
If

W3(Ur) ∩ W1(U3) = ∅,
then the solution contains a component of empty density. Otherwise, set

{U7} = W3(Ur) ∩ W1(U3).

The solution is then

(4.11) R1(Ul, U+) ⊕W2(U+, U3) ⊕W1(U3, U7) ⊕W3(U7, Ur).
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Figure 4.6: U2 above W1(Ul)

Construction 5. Ur is above C− and is below C∗. This construction gives the same solutions as Con-
structions 2, 4.

Let us denote by W2,a
3→2(Ur) the composite (backward) curve constisting of all the states U such that

there exists some state U1 ∈
→

W3(Ur) and the stationary shock from U using ϕ2(U, ar) admissible to the
a-monotone criterion to U1 can be followed by the 3-wave from U1 to Ur. We then define

{U1} = W2,a
3→2(Ur) ∩ C+,

{U2} = W2,a
3→2(Ur) ∩ C−.
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Figure 4.7: U2 below W1(Ul)

Then, if Ul is below or on the curve
←

W1(U1), the following construction gives a unique solution:

(i) If U2 is above or on the curve W1(Ul), then

W2,a
3→2(Ur) ∩ W1(Ul) = {U3}.

See Figure 4.6.

By definition, the point U3 determines a point U4 ∈ W3(Ur) to which the solution jumps by a
stationary shock. The solution is then

(4.12) W1(Ul, U3) ⊕W2(U3, U4) ⊕W3(U4, Ur).

This solution however coincides with the one given by Construction 4.
(ii) If U2 is below the curve W1(Ul), then the point U2 determines a point U5 ∈ W3(Ur) to which the

solution can use a stationary jump, and

W1(Ul) ∩ W3(U2) = {U6}.

See Figure 4.7.
The solution is then

(4.13) W1(Ul, U6) ⊕R3(U6, U2) ⊕W2(U2, U5) ⊕W3(U5, Ur),

which coincides with the one given by Construction 2.
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Figure 4.8: Ur between
→

W3(U2) and
→

W3(U3)

Construction 6. Ul ∈ G3.

From Ul, a stationary jump using ϕ1(Ul, ar) attains a state U1, the solution can be continued by using

W1(U1) as long as the 1-shock speed from U1 is non-negative, i.e., until a state Ũ1 at which the 1-shock
speed from U1 vanishes. On the other hand, the solution can jump by a non-positive shock from Ul to
any state U below or at a state Ũl at which the 1-shock speed from Ul vanishes. The solution then can
be continued by a stationary jump using ϕ2(U, ar) where U ∈ W1(Ul). Let us denote U2, U3 the states

reached by a stationary jump from Ũl, U−, respectively, using ϕ2(Ũl, ar), ϕ2(U−, ar), respectively.

(i) Assume that Ur is above or on the curve
→

W3(U3), and is below or on the curve
→

W3(U2) (Figure
4.8).

Then
W2,a

1→2(Ul) ∩ W3(Ur) = {U4}.
By definition, the point U4 determines a point U5 belonging to W1(Ul) corresponding to a sta-
tionary jump. The solution is then

(4.14) S1(Ul, U5) ⊕W2(U5, U4) ⊕W3(U4, Ur),

provided the 3-shock speed λ̄3(U4, Ur) is non-negative, i.e., Ur is above or on a curve L - the set of

all states at which the 3-shock speed from any state U on the part {u ≤ 0} of the curve W 2,a
1→2(Ul)

vanishes.
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Figure 4.9: Ur above
→

W3(Ũ1)

(ii) Now, let Ur be above or on the curve
→

W3(Ũ1) (Figure 4.9).

If

(4.15) W3(Ur) ∩ W1(U1) = {U6}.

The solution is then

(4.16) W2(Ul, U1) ⊕W1(U1, U6) ⊕W3(U6, Ur).

If (4.15) is not satisfied, i.e.,

W1(U1) ∩ {ρ = 0} = {U7},
W3(Ur) ∩ {ρ = 0} = {U8},

so that U8 is above U7, the solution then contains a component of empty density.
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5. Solutions with two stationary waves
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Figure 5.1: Ur ∈ G1

In this section we will complete the description of Riemann solutions by considering solutions that
contain two stationary waves. Under the Monotonicity Criterion, this happens when a stationary shock
jumps from the level a = al to an intermediate level a between al and ar, and then we use a k-shock
with zero speed which keeps constant the level a, k = 1, 3, then we finally use another stationary shock
jumping from the level a to ar. Hence, there are only two possibilities:

(i) Ur belongs to G1 and the shock with zero speed is a 3-shock,
(ii) Ul belongs to G3 and the shock with zero speed is a 1-shock.

We are going to discuss these two situations.

Construction 7. Ur ∈ G1 (Figure 5.1).

Any a ∈ (al, ar) determines a state U1 ∈ W2(Ur) which can be attained by a stationary jump using
ϕ1(Ur, a). In view of Proposition 2.4, there exists a point U2 ∈ W3(U1) such that the 3-shock speed
λ̄3(U2, U1) = 0. The state U2 determines a state U3 ∈ W2(U2) attainable by a stationary jump using
ϕ2(U2(a), al). The curve W1(Ul) passing through U3 will determine the Riemann solution:

(5.1) W1(Ul, U3) ⊕W2(U3, U2) ⊕ S3(U2, U1) ⊕W2(U1, Ur).

In order for this construction to make sense, the following requirements must be imposed

(5.2)

{

a ≥ amin(Ur),

al ≥ amin(U2).
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Figure 5.2: Ul ∈ G3

Observe that amin(Ur) < al (< a) if and only if Ur is below the curve C1 so that the first line in (5.2) is
obvious. The condition (5.2) can be seen as a constraint on the contracting duct.

Construction 8. Ul ∈ G3 (Figure 5.2).

Any a ∈ (al, ar) determines a state U1 ∈ W2(Ul). It is derived from Proposition 2.4 that there exists
a point U2 ∈ W1(U1) such that the 1-shock speed λ̄1(U1, U2) = 0. The state U2 determines a state

U3 ∈ W2(U2) attainable by a stationary jump using ϕ2(U2(a), ar). The curve
→

W3(Ur) passing through
U3 will determine the Riemann solution:

(5.3) W2(Ul, U1) ⊕ S1(U1, U2) ⊕W2(U2, U3) ⊕W3(U3, Ur).

There is no constraint on expanding duct.
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6. Numerical results

In this section we plot the solution of the Riemann solution for various range of values of the data.

Construction 1. (See Figure 4.1, Section 4)

−6 −4 −2 0 2 4 6
1

1.5

2

2.5

3
Nozzle Area

−6 −4 −2 0 2 4 6

1

2

3

Density

−6 −4 −2 0 2 4 6

−5

−4

−3

−2

Velocity

−6 −4 −2 0 2 4 6
1

1.5

2

2.5

3
Nozzle Area

−6 −4 −2 0 2 4 6

2

4

6

8

Density

−6 −4 −2 0 2 4 6

−4

−3.5

−3

−2.5

Velocity

Figure C1.1: S1 ⊕R3 ⊕ Z Figure C1.2: S1 ⊕ S3 ⊕ Z

Figure C1.1: The solution is a 1-shock from Ul = (ρl, ul, al) to U2 followed by a 3-rarefaction wave
from U2 to U1, followed by a stationary wave from U1 to Ur = (ρr, ur, ar).

Figure C1.2: The solution is a 1-shock from Ul = (ρl, ul, al) to U2 followed by a 3-shock from U2 to
U1, followed by a stationary wave from U1 to Ur = (ρr, ur, ar).

Construction 2. (See Figure 4.2, Section 4)
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Figure C2.1: R1 ⊕R3 ⊕Z ⊕R3 Figure C2.2: R1 ⊕R3 ⊕Z ⊕S3

Figure C2.1: The solution is a 1-rarefaction wave from Ul = (ρl, ul, al) to U3 followed by a 3-rarefaction
wave from U3 to U2, followed by a stationary wave from U1 to U1, followed by a 3-rarefaction wave from
U1 to Ur = (ρr, ur, ar).
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Figure C2.3: S1 ⊕R3 ⊕Z ⊕R3 Figure C2.4: S1 ⊕R3 ⊕Z ⊕ S3

Figure C2.2: The solution is a 1-rarefaction wave from Ul = (ρl, ul, al) to U3 followed by a 3-rarefaction
wave from U3 to U2, followed by a stationary wave from U1 to U1, followed by a 3-shock from U1 to
Ur = (ρr, ur, ar).

Figure C2.3: The solution is a 1-shock wave from Ul = (ρl, ul, al) to U3 followed by a 3-rarefaction
wave from U3 to U2, followed by a stationary wave from U1 to U1, followed by a 3-rarefaction wave from
U1 to Ur = (ρr, ur, ar).

Figure C2.4: The solution is a 1-shock wave from Ul = (ρl, ul, al) to U3 followed by a 3-rarefaction
wave from U3 to U2, followed by a stationary wave from U1 to U1, followed by a 3-shock from U1 to
Ur = (ρr, ur, ar).

Construction 3. (See Figure 4.3, Section 4)
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Figure C3.1: R1 ⊕R1 ⊕ Z ⊕R3 ⊕R3

Figure C3.1: The solution is a 1-rarefaction wave from Ul = (ρl, ul, al) to U2 followed by a rarefaction
wave with zero density, i.e. in empty, from U2 to O at which it suffers a shift on the component a,
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followed by a rarefaction wave with zero density from O to U1, followed by a 3-rarefaction wave from U1

to Ur = (ρr, ur, ar).

Construction 4. (See Figure 4.4, Section 4)
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Figure C4.1: R1 ⊕ Z ⊕ R3 Figure C4.2: R1 ⊕ Z ⊕ S3

Figure C4.1: The solution is a 1-rarefaction wave from Ul = (ρl, ul, al) to U6 followed by a stationary
wave from U6 to U5, followed by a 3-rarefaction wave from U5 to Ur = (ρr, ur, ar).

Figure C4.2: The solution is a 1-rarefaction wave from Ul = (ρl, ul, al) to U6 followed by a stationary
wave from U6 to U5, followed by a 3-shock from U5 to Ur = (ρr, ur, ar).
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Figure C4.3: S1 ⊕ Z ⊕ R3 Figure C4.4: S1 ⊕ Z ⊕ S3

Figure C4.3: The solution is a 1-shock wave from Ul = (ρl, ul, al) to U6 followed by a stationary wave
from U6 to U5, followed by a 3-rarefaction wave from U5 to Ur = (ρr, ur, ar).

Figure C4.4: The solution is a 1-shock wave from Ul = (ρl, ul, al) to U6 followed by a stationary wave
from U6 to U5, followed by a 3-shock from U5 to Ur = (ρr, ur, ar).

Construction 5. (See Figure 4.5, Section 4)
Figure C5.1: The solution is a 1-rarefaction wave from Ul = (ρl, ul, al) to U+ followed by a stationary

wave from U+ to U3, followed by a 1-rarefaction wave from U3 to U7, followed by a 3-rarefaction wave
from U7 to Ur = (ρr, ur, ar).
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Figure C5.1: R1 ⊕Z ⊕R1 ⊕R3 Figure C5.2: R1 ⊕Z ⊕R1 ⊕S3

Figure C5.2: The solution is a 1-rarefaction wave from Ul = (ρl, ul, al) to U+ followed by a stationary
wave from U+ to U3, followed by a 1-rarefaction wave from U3 to U7, followed by a 3-shock wave from
U7 to Ur = (ρr, ur, ar).
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Figure C5.3: R1 ⊕ Z ⊕ S1 ⊕R3

Figure C5.3: The solution is a 1-rarefaction wave from Ul = (ρl, ul, al) to U+ followed by a stationary
wave from U+ to U3, followed by a 1-shock wave from U3 to U7, followed by a 3-rarefaction wave from
U7 to Ur = (ρr, ur, ar).

Construction 6. (See Figure 4.8, Section 4)
Figure C6.1: The solution is a 1-shock wave from Ul = (ρl, ul, al) to U5 followed by a stationary wave

from U5 to U4, followed by a 3-rarefaction wave from U4 to Ur = (ρr, ur, ar).
Figure C6.2: The solution is a 1-shock wave from Ul = (ρl, ul, al) to U5 followed by a stationary wave

from U5 to U4, followed by a 3-shock from U4 to Ur = (ρr, ur, ar).

Construction 7. (See Figure 4.9, Section 4)
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Figure C6.1: S1 ⊕ Z ⊕ R3 Figure C6.2: S1 ⊕ Z ⊕ S3
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Figure C7.1: Z ⊕R1 ⊕ R3 Figure C7.2: Z ⊕R1 ⊕ S3

Figure C7.1: The solution is a stationary shock from Ul = (ρl, ul, al) to U1 followed by a 1-rarefaction
wave stationary wave from U1 to U6, followed by a 3-rarefaction wave from U6 to Ur = (ρr, ur, ar).

Figure C7.2: The solution is a stationary shock from Ul = (ρl, ul, al) to U1 followed by a 1-rarefaction
wave stationary wave from U1 to U6, followed by a 3-shock wave from U6 to Ur = (ρr, ur, ar).

Figure C7.3: The solution is a stationary wave Ul = (ρl, ul, al) to U1, followed by a 1-shock wave from
U1 to U6, followed by a 3-rarefaction wave from U6 to Ur = (ρr, ur, ar).
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