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Abstract. We solve the Riemann problem for a class of resonant hyperbolic systems of

balance laws. The systems are not strictly hyperbolic and the solutions take their values in a

neighborhood of a state where two characteristic speeds coincide. Our construction general-

izes the ones given earlier by Isaacson and Temple for scalar equations and for conservative

systems. The class of systems under consideration here includes, in particular, a model from

continuum physics that describes the evolution of a fluid flow in a nozzle with discontinuous

cross-section.

Résumé. Nous résolvons le problème de Riemann pour une classe de systèmes hyper-

boliques non-conservatifs et résonants. Ces systèmes ne sont pas strictement hyperboliques

et les solutions considérées prennent leurs valeurs au voisinage d’un état constant où deux des

vitesses caractéristiques coincident. Notre construction généralise celle donnée précédemment

par Isaacson et Temple pour les équations scalaires et les systèmes conservatifs. La classe

générale de systèmes étudiée ici comprend, en particulier, un modèle important de la dy-

namique des milieux continus qui décrit l’évolution d’un fluide dans une tuyère dont la

section est discontinue.
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1 Introduction

In this paper we study the Riemann problem for a general class of nonlinear hyperbolic

systems of balance laws, which is motivated by the Euler system of compressible fluids in

a nozzle with variable cross-section (see (1.9) below). Precisely, we are interested in the

Riemann problem for the nonlinear hyperbolic system

∂tu+ ∂xf(u, a) = g(u, a) ∂xa, (1.1)

∂ta = 0, (1.2)
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with initial data consisting, by definition, of two constant states (aL, uL) and (aR, uR):

(u, a)(x, 0) =

{
(uL, aL), x < 0,

(uR, aR), x > 0,
(1.3)

The unknowns are the two functions u = u(x, t) ∈ IRn and a = a(x, t) ∈ IR.

It is assumed that the flux-function f = f(u, a) in (1.1) is a given smooth mapping such

that, for each value a ∈ IR, f(·, a) : IRn 7→ IRn is strictly hyperbolic; that is, for each u ∈ IRn

the Jacobian matrix Duf(u, a) admits n real and distinct eigenvalues

λ1(u, a) < . . . < λn(u, a)

and, therefore, corresponding basis of left- and right-eigenvectors li(u, a), ri(u, a) (i = 1, . . . , n),

normalized so that

li(u, a) · ri(u, a) = 1, li(u, a) · rj(u, a) = 0 if i 6= j. (1.4)

We also assume that each characteristic field of Duf(u, a) is either genuinely nonlinear or

linearly degenerate, that is, for each i = 1, . . . , n, the function (u, a) 7→ ∇uλi(u, a) · ri(u, a)

never vanishes or vanishes identically, respectively.

In addition, we observe that the equation (1.2) trivially corresponds to a linearly degen-

erate field with eigenvalue

λ0 := 0.

We are interested in studying the problem (1.1)–(1.3) when the Riemann data lie in a neigh-

borhood of a state (u∗, a∗) at which one of the wave speeds of (1.1) also vanishes, that is, we

assume that for some index k

λk(u∗, a∗) = λ0. (1.5)

The k-characteristic field is assumed to be genuinely nonlinear, so after normalization

(
∇uλk · rk

)
(u∗, a∗) > 0. (1.6)

Throughout this paper, we restrict attention to data in the ball B(u∗, δ0) with center

u∗ and (small) radius δ0 > 0 and we impose on the functions f and g the following two

conditions (
lk · (∂af − g)

)
(u∗, a∗) 6= 0 (we assume that it is negative), (1.7)

(
lk ·Dug. rk

)
(u∗, a∗) 6= 0 (we assume that it is negative). (1.8)

which, as we will show, give the generic structure of elementary waves near (u∗, a∗). By

continuity, we can always assume that (1.6)–(1.7) still hold for all u ∈ B(u∗, δ0) and a ∈

B(a∗, δ0).
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Hyperbolic systems of balance laws, having the form of conservation laws with a source

arise in many applications. Most notably, the Euler equations for a fluid flow in a nozzle

with cross-sectional area a = a(x) read (see for instance [5]):

∂tρ+ ∂x(ρu) = −
ρu

a
∂xa,

∂t(ρu) + ∂x(ρu2 + p) = −
ρu2

a
∂xa, (1.9)

∂t(ρe) + ∂x

(
(ρe+ p)u

)
= −

(ρe+ p)u

a
∂xa.

Here, ρ > 0 denotes the density of the fluid, p the pressure, and e is the internal energy.

The equations express balance laws for the mass, momentum, and total energy of the fluid

through the nozzle.

We emphasize that the model (1.1)-(1.2) has two important features. On one hand, it

contains a nonconservative product g(u, a) ∂xa which cannot make sense within the framework

of the theory of distributions. Instead, a rigorous definition of weak solutions must be based

on the theory of nonconservative products due to Dal Maso, LeFloch, and Murat [6]. See also

LeFloch [12] for a review of several applications, including the model (1.9) above. On the

other hand, (1.1)-(1.2) is non-strictly hyperbolic; work on resonant systems goes back to Liu

[14, 15] and to Isaacson and Temple [10, 11]. The construction proposed in this paper can be

regarded as an extension to resonant nonconservative systems of [10] (conservative systems)

and [11] (scalar, nonconservative equations). For other recent related works, especially the

construction of numerical schemes for equations like (1.9), see [8, 7, 1, 2].

2 Preliminaries

By setting

U := (u, a), F (U) := (f(u, a), 0), G = (g(u, a), 0),

the set of equations (1.1)–(1.2) can be regarded as a nonconservative system of n+1 equations:

Ut +
(
DUF (U) −G(U)

)
Ux = 0. (2.1)

We denote byRi(U), i = 0, . . . , n the corresponding right-eigenvectors of the matrixDUF (U)−

G(U). Clearly, we have Ri = (ri, 0), i = 1, . . . , n. The vector R0 is associated with the eigen-

value λ0 and will be determined shortly.

First, we discuss some consequences of our assumptions (1.5)–(1.8). By the implicit

function theorem, (1.6) guarantees that the equation λk(u, a) = 0 defines (locally) a smooth

n-dimensional manifold of IRn+1,

T :=
{
(u, a) / λk(u, a) = 0

}
⊂ IRn+1,
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which passes through the state U∗ := (u∗, a∗) and will be called the transition manifold.

The integral curves of rk are transversal to T , and this property allows us to distinguish two

“half-spaces”

T ± :=
{
U ∈ IRn+1 / for all V ∈ T , Rk(V ) · (U − V ) ≷ 0

}
.

We now determine the right-eigenvector R0(u, a). Thanks to (1.7) the Jacobian matrix

DUF (u, a) =

[
Duf ∂af − g

0 0

]

has rank n on T in a neighborhood of U∗. We claim that the eigenvectors R0 and Rk can be

chosen outside the manifold T in such a way that they remain continuous across the manifold

T . This is clear for the vector field Rk. The vector R0 =: (r0, b0) must satisfy

(∂af − g) b0 +Duf. r0 = 0. (2.2)

If we search for the component r0 in the general form r0 =
∑n

i=1 αiri and we multiply (2.2)

by each left-eigenvector li we obtain

li · (∂af − g) b0 + λi αi = 0,

which determines the coefficient αi. Hence, imposing R0 to be a unit vector, we find

R0 = c

(
λk ,−

n∑

i=1

λk

λi

li · (∂af − g) ri

)
, (u, a) 6∈ T ,

where the normalization coefficient c > 0 is given by

1

c2
:= λ2

k +

n∑

i=1

(
λk

λi

li · (∂af − g)

)2

. (2.3)

It is now easy to check that, as the state (u, a) approaches the manifold T , we have r0 → rk

and b0 → 0, and that R0 can be extended smoothly to the manifold and coincides with

Rk = (rk , 0) on T , in other words,

R0(u, a) −Rk(u, a) → 0 as (u, a) approaches T . (2.4)

In particular, provided δ0 > 0 is sufficiently small, |R0(U)−Rk(U)| ≤ ε for |U−U∗| ≤ δ < δ0.

To parametrize the wave curves it will be convenient to introduce at this stage a globally

defined parameter µi(u) ∈ IR which should depend smoothly upon u and be strictly monotone

along the wave curve. More precisely, we assume that the parameter µi is given such that

∇µi(u) · ri(u) 6= 0, u ∈ Ω (2.5)
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(here and in the sequel a is kept fixed and we will neglect it while it does not play a role).

In view of condition (2.5), when the field is genuinely nonlinear a natural choice for µi is the

wave speed λi, while there is no canonical choice for linearly degenerate fields. In particular,

for i = k we will set

µk(u) = λk(u), u ∈ Ω, (2.6)

and we will reparametrize the wave curves accordingly. For some δ1 < δ0, uL ∈ B(u∗, δ1),

and ε > 0, we will denote by m 7→ vk(m;uL) the Hugoniot curve (or shock curve) consisting

of all right states uR that can be connected to uL by a k-shock of speed λk(m;uL), and by

m 7→ wk(m;uL) the rarefaction curve, parametrized so that we can refer to

m 7→ ψk(m;uL) :=

{
vk(m;uL), m ∈ (−ε, µk(uL)],

wk(m;uL), m ∈ [µk(uL), ε)
(2.7)

as the k-wave curve issuing from uL (for details, see for example [13, Chapter VI]). We will

also use the notations

Sk(uL) :=
{
vk(m;uL), m ∈ (−ε, µk(uL)]

}
,

Rk(uL) :=
{
wk(m;uL), m ∈ [µk(uL), ε)

}
,

Wk(uL) := Sk(uL) ∪ Rk(uL) =
{
ψk(m;uL), m ∈ (−ε, ε)

}
.

Thanks to (2.5) and (1.6), we can choose the parameter m to coincide with µk, that is:

µk(ψk(m;uL)) = m. (2.8)

In this situation, by setting m̃ := m−µk(uL), we have the following expansion for the shock

curve

vk(m;uL) = uL +
m̃

a(uL)
rk(uL) +

m̃2

2a(uL)2
(
Drk .rk + brk

)
(uL) + O(m̃3), (2.9)

and the corresponding shock speed satisfies

λk(m;uL) = λk(uL)+
m̃

2a(uL)

(
∇λk ·rk

)
(uL)+

m̃2

6a(uL)2
(
∇(∇λk ·rk)·rk+c∇λk·rk

)
(uL)+O(m̃3),

(2.10)

where a = ∇µk · rk = ∇λk · rk 6= 0 and b, c are smooth and real-valued functions of uL, while

the expansion of the rarefaction curve wk(m;uL) takes the same form as (2.9). Derivation of

(2.10) gives the following expansions for the partial derivatives of λk(m;uL):

∂mλk(m;uL) =
1

2
+

m̃

3a2

(
∇(∇λk · rk) · rk + c∇λk · rk

)
+ O(m̃2), (2.11)

∇λk(m;uL) · rk =
1

2
∇λk ·rk −

m̃

3a

(
∇(∇λk ·rk)·rk + c∇λk ·rk

)
+O(m̃2), (2.12)
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(where rk = rk(uL), λk = λk(uL), a = a(uL) = ∇λk · rk(uL)).

Given some state (u−, a−) we now investigate the properties of two important curves, that

will play a central role in the construction of the solution of the Riemann problem. First

we study the standing wave curve, denoted by m 7→ (ϕ, α)(m;u−, a−), made of all states

which can be attained by using time-independent smooth solution of (1.1)-(1.2). Second, we

consider the composite transformed standing curve, made of states which can be reached by

a standing wave followed by a shock wave with zero speed. We state the properties of these

curves in the following two lemmas.

Lemma 2.1 Given some state (u−, a−) ∈ T consider the standing wave solution of (1.1)–

(1.2), denoted by m 7→ (ϕ, α)(m;u−, a−) and determined by

(ϕ, α)′ = γ(m)R0(ϕ, α),

ϕ(0) = u−, α(0) = a−,

for some smooth scalar function γ(m) bounded away from zero and such that γ(0) = 1/a(u−).

Then we have

α′(0) = 0 and α′′(0) = −
1

a(u−)2
(∇λk · rk)(u−, a−)

(lk · (∂af − g))(u−, a−)
> 0. (2.13)

Proof. We have
{

α′ = γ(m)b0(ϕ, α),

ϕ′ = γ(m)r0(ϕ, α),
with

{
α(0) = a−,

ϕ(0) = u−.

The standing wave satisfies

∂afα
′ +Duf ϕ

′ = g α′,

that we rewrite as

(∂af − g)α′ +Duf ϕ
′ = 0. (2.14)

We decompose the vector ϕ′ along the right-eigenvector as

ϕ′ =
n∑

i=1

ci(m) ri(m). (2.15)

Since ϕ′(0) =
(
1/a(u−)

)
r0 =

(
1/a(u−)

)
rk, we must have ci(0) = 0 for i 6= k and ck(0) =

1/a(u−). Differentiating (2.14) with respect to m we obtain

(∂aaf − ∂ag)(α
′)2 + (∂af − g)α′′ +Du(∂af − g)ϕ′α′ +

d

dm
{Duf ϕ

′} = 0. (2.16)

We can rewrite the last term of the left-hand side using the decomposition (2.15). In fact,

Duf ϕ
′ = Duf

n∑

i=1

ci(m) ri(m) =

n∑

i=1

ci(m)λi(m) ri(m),
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and thus

d

dm
{Duf ϕ

′} =
n∑

i=1

c′i(m)λi(m) ri(m) +
n∑

i=1

ci(m)
d

dm
{λi(m) ri(m)}.

At m = 0 we have λk(0) = 0 and α′(0) = 0, hence

n∑

i=1

c′i(0)λi(0) ri(0) =
∑

i6=k

c′i(0)λi(0) ri(0)

and

n∑

i=1

ci(m)
d

dm
{λi(m) ri(m)}

∣∣∣∣
m=0

=
1

a(u−)

{
1

a(u−)
∇λk · rk + ∂aλkα

′(0)

}
rk

∣∣∣∣
(u−,a−)

=
1

a(u−)2
(∇λk · rk)rk

∣∣
(u−,a−)

.

We now evaluate (2.16) at m = 0, and we obtain

(∂af − g)α′′ +
∑

i6=k

c′iλi ri +
1

a(u−)2
(∇λk · rk)rk = 0.

Finally, multiplying on the left by lk(u−, a−) yields

α′′(0) = −
1

a(u−)2
∇λk · rk

lk · (∂af − g)

∣∣∣∣
(u−,a−)

> 0,

where we have used the hypothesis (1.7). 2

Remark 2.2 Lemma 2.1 shows that the standing wave curve that passes through U− =

(u−, a−) ∈ T touches the hyperplane a = a− only at U− and does not cross it. The sign

assumptions in (1.6) and (1.7) imply that the curve lies above the hyperplane, and crosses

any hyperplane a = a1, a1 > a− exactly twice in a neighborhood of U−.

We note also that given u−, a−, a connecting state u+ can always be found for a+ > a−,

while for a+ < a− this is true only as far as a+ ≥ α(0;u−, a−). This means that smooth

stationary flow is always possible for expanding ducts. On the contrary, for contracting ducts

the change in area must not be too large.

We now describe the transformed standing curve corresponding to a given standing wave

curve. By the sign assumption in (1.6), shock curves cross T from T + to T −. By the

Rankine-Hugoniot condition

s[u] = [f(u)],

the 0-speed shocks (s = 0) cross T at a constant value of f .
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Figure 1: The mutual position of the standing wave (continuous) and the transformed stand-

ing wave (dotted).

Denote by Z(m;u−, a−) = (ϕ(m), α(m)) a given standing wave curve (here we will assume

Z(0;u−, a−) = (u−, a−) ∈ T ). For a given state (uL, aL) = (ϕ(mL), α(mL)) ∈ T +, (mL > 0),

on this curve, define ūL and ũL such that the states (ūL, aL) and (ũL, aL) lie on the other

side of T at the same a-level and belong, respectively, to the same standing wave curve and

to the same level curve of f as the state (aL, uL). That is, ūL and ũL must satisfy

(ūL, aL) = (ϕ(mR), α(mR)) (2.17)

(for some mR < 0) and

f(uL, aL) = f(ũL, aL). (2.18)

Definition 2.3 The transformed standing curve corresponding to a standing wave curve

Z(m;u−, a−) = (ϕ(m), α(m)) is the curve

{(u, a) ∈ T − : f(u, a) = f
(
ϕ(m), α(m)

)
, m > 0}.

Lemma 2.4 If lk ·Dg. rk < 0, then for each standing wave Z(m;u−, a−), the corresponding

transformed standing curve lies closer to the transition surface T than Z. That is,

µk(ūL) < µk(ũL) < 0.

If lk · Dg. rk > 0, then the corresponding transformed standing curve lies farer from the

transition surface T than Z. That is,

µk(ũL) < µk(ūL) < 0.

Proof. We denote the positive and negative branches of the standing wave curve as

(ϕ(m), α(m)) =

{
(ϕ+(m), α+(m)) if m > 0,

(ϕ−(m), α−(m)) if m < 0,
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Each of these branches can then be parametrized by a:

(ϕ+(m), α+(m)) → Φ+(a), a ≥ a−,

(ϕ−(m), α−(m)) → Φ−(a), a ≥ a−,

We compute

f(ūL, aL) − f(uL, aL) = f(ϕ(mR), α(mR)) − f(ϕ(mL), α(mL))

=

∫ mR

mL

[Duf ϕ
′ + ∂afα

′] dm

=

∫ mR

mL

g(ϕ(m), α(m))α′(m) dm

=

∫ 0

mL

g(ϕ+(m), α+(m))α′
+(m) dm+

∫ mR

0

g(ϕ−(m), α−(m))α′
−(m) dm

=

∫ a−

aL

g(Φ+(a), a) da+

∫ aL

a−

g(Φ−(a), a) da

=

∫ aL

a−

[g(Φ−(a), a) − g(Φ+(a), a)] da.

Hence

lk ·
(
f(ūL, aL)−f(uL, aL)

)
=

∫ aL

a−

∫ 1

0

lk ·Dg
(
sΦ−(a)+(1−s)Φ+(a), a

)
.
(
Φ−(a)−Φ+(a)

)
ds da,

(2.19)

that is different from 0 thanks to (1.8). Hence the two curves are distinct. On the other side

by (2.18) we have

lk ·
(
f(ūL, aL) − f(uL, aL)

)
= lk ·

(
f(ūL, aL) − f(ũL, aL)

)

=

∫ 1

0

lk ·Duf
(
sūL + (1 − s)ũL, aL

)
. (ūL − ũL) ds

∼ λk lk · (ūL − ũL), (2.20)

where λk < 0 since ūL, ũL ∈ T −. Identities (2.19) and (2.20) imply that

lk ·Dg. rk < 0 =⇒ µk(ūL) < µk(ũL), (2.21)

lk ·Dg. rk > 0 =⇒ µk(ūL) > µk(ũL). (2.22)

(see Fig.1). 2

In the next section will be also useful to know the mutual position of the transformed

standing curve corresponding to Z(m;uL, aL) = (ϕ(m), α(m)) and the standing curve passing

through (ũL, aL), that we will denote by Z(m; ũL, aL) = (ϕ̃(m), α̃(m)) (see again Fig. 1).

For a given state aR, define ũ′L and u′′L such that the states (ũ′L, aR) and (u′′L, aR) lie in
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T − respectively on the standing curve Z(m; ũL, aL) and on the transformed standing curve

corresponding to (uL, aL). That is, ũ′L and u′′L must satisfy

(ũ′L, aR) = (ϕ̃(m′), α̃(m′)), for some m′ < 0,

and

f(u′′L, aR) = f(u′L, aR) = f(ϕ(m′′), α(m′′)), for some m′′ > 0.

Lemma 2.5 Let us assume that lk ·Dg. rk < 0. Then the following holds:

aR < aL =⇒ µk(u′′L) < µk(ũ′L) < 0, (2.23)

aR > aL =⇒ µk(ũ′L) < µk(u′′L) < 0. (2.24)

Proof. We follow closely the lines of the proof of Lemma 2.4. We compute

f(ũ′L, aR) − f(u′′L, aR) = f(ϕ̃(m′), α̃(m′)) − f(ϕ(m′′), α(m′′))

=

∫ m′

µk(ũL)

[Duf ϕ
′ + ∂afα

′] dm+ f(ũL, aL)

−

∫ m′′

µk(uL)

[Duf ϕ
′ + ∂afα

′] dm− f(uL, aL)

=

∫ m′

µk(ũL)

g(ϕ̃−(m), α̃−(m)) α̃′
−(m) dm

−

∫ m′′

µk(uL)

g(ϕ+(m), α+(m))α′
+(m) dm

=

∫ aR

aL

g(Φ−(a), a) da−

∫ aR

aL

g(Φ+(a), a) da

=

∫ aR

aL

[g(Φ−(a), a) − g(Φ+(a), a)] da.

Hence

lk ·
(
f(ũ′L, aR)−f(u′′L, aR)

)
=

∫ aR

aL

∫ 1

0

lk ·Dg
(
sΦ−(a)+(1−s)Φ+(a), a

)
.
(
Φ−(a)−Φ+(a)

)
ds da.

(2.25)

On the other hand we have

lk ·
(
f(ũ′L, aR) − f(u′′L, aR)

)
=

∫ 1

0

lk ·Duf
(
sũ′L + (1 − s)u′′L, aR

)
. (ũ′L − u′′L) ds

∼ λk lk · (ũ′L − u′′L), (2.26)

where λk < 0 since ũ′L, u
′′
L ∈ T −. Comparing identities (2.25) and (2.26) we get the

conclusion. 2
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Remark 2.6 In the case g ≡ 0, the system (1.1) reduces to the fully conservative system

∂tu+ ∂xf(u, a) = 0, (2.27)

which has been studied in [10]. Note that in this case standing wave curves and 0-speed

shock curves coincide.

Remark 2.7 We consider as significant physical example the Euler equations of compressible

isentropic gas flow through a nozzle

∂tρ+ ∂xm = −
m

a
∂xa,

∂tm+ ∂x

(
m2

ρ
+ p(ρ)

)
= −

m2

aρ
∂xa, (2.28)

where m is the momentum of the gas, a = a(x) is the cross-sectional area of the duct and

the pressure is given by p(ρ) = γ−1ργ , and γ = 1 + 2θ > 1 is the adiabatic constant.

The standing waves are determined by the following system of ordinary differential equa-

tions [3]:

mx = −
m

a
ax,

(
m2

ρ
+ p(ρ)

)

x

= −
m2

aρ
ax. (2.29)

System (2.29) can be integrated, leading to the following equations which implicitly define

the standing wave curve passing through a given state (aL, ρL,mL):

am = aLmL,

m2

ρ2
+

1

θ
ρ2θ =

m2
L

ρ2
L

+
1

θ
ρ2θ

L . (2.30)

Figure 1 shows the projection on the (ρ,m)-plane of the stationary curve as well as the

1-wave curve and 2-wave curve through the point (ρL,mL) = (1/5, 1/5), while the dotted

curves m = ±ρ1+θ define the transition curves, where the eigenvalues are equal to 0.

3 The 0-k-curve

As a first step toward the construction of the solution of the Riemann problem for (1.1)-

(1.1), we give in this section an accurate description of the set of all right states u =

W0,k(m;uL, aL, aR, ) associated with the level aR that can be reached from (aL, uL) by a

solution of the Riemann problem consisting of admissible 0-waves and k-waves, only. From

now on, let aL, aR and uL be fixed and let us impose the following admissibility criterion on

the standing waves:

11
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Figure 2: Significant curves for the 2 × 2 Euler system.

(H) A 0-wave that connects UL to UR on the same integral curve of R0 by a

contact discontinuity of speed zero is admissible if the integral curve of R0 does

not cross the transition surface T between UL and UR.

This admissibility condition was motivated in [10, 11] by the fact that the total variation of

a in Glimm’s method then does not increase. It follows from (H) that to move to the other

side of the transition surface one has to use a k-wave.

To construct the 0-k-curve we will make use of the following lemma.

Lemma 3.1 There exists δ1 < δ0 such that the following holds. Let u− ∈ B(u∗, δ1) be given

with µk(u−) > 0 and consider the wave curve m 7→ ψk(m;u−) associated to u−. Then there

exist a (unique) point ũ− and a smooth function µ̃k ≤ 0 such that

ũ− = vk(µ̃k(u−);u−) and λk(µ̃k(u−);u−) = 0. (3.1)

In particular, µ̃k is a monotone decreasing function of u− in the rk direction:

∇µ̃k · rk ∼ −∇λk · rk near the transition manifold T . (3.2)

Proof. Existence and uniqueness of the point ũ− is given by (1.6), which implies that

the shock speed λk(m;u−) is strictly increasing for small m. We are assuming here ũ− ∈

B(u∗, δ0), the other case being not interesting for our purpose. The second part of the state-

ment follows from the implicit function theorem applied to the mapping λk(m;u). Indeed, it

is a smooth mapping of its arguments, and we have λk(µ̃k(u);u) = 0 by definition. Moreover

from (2.11), ∂mλk(m;u) remains strictly positive for m − µk(u) small enough. From the

12



definition (3.1) of µ̃k(u) and (2.10) we recover

(
µ̃k(u) − µk(u)

)
+ O

(
µ̃k(u) − µk(u)

)2
= −2µk(u),

hence µ̃k(u)−µk(u) is small if µk(u) is small, that is, if u is sufficiently close to the transition

surface T .

To derive (3.2) along the critical manifold we use again the implicit function theorem:

∇µ̃k · rk(u) = −
∇λk · rk(u)

∂mλk(µ̃k(u);u)
. (3.3)

Using (2.11) and (2.12) to compute the derivatives in the right hand side of (3.3) and letting

the state u approach the manifold T , we get (3.2). 2

The standing wave curves deserve a special treatment. As we have seen in the previous

section, the standing wave through some point (u−, a−) is defined by the following ODE

Z ′ = γ(m)R0(Z), Z(µk(u−)) = U− = (u−, a−) (3.4)

(since R0 ∼ Rk close to T , we can parametrize the curve with respect to the parameter m

defined in (2.8)). Thanks to the regularity of R0, (3.4) defines a curve

m 7→ Z(m;U−) =

(
ϕ(m;u−, a−)

α(m;u−, a−)

)
, m ∈ (−ε, ε), (3.5)

for some ε > 0, which depends smoothly upon u−, a− and m, and we can write the following

expansions for the curve ϕ and its first derivative ∂mϕ :

ϕ(m;u−, a−)=u−+
m̃

a(u−)
r0(u−)+

m̃2

2a(u−)2
(
Dr0.r0+b0∂ar0+dr0

)
(uL)+O(m̃3),(3.6)

∂mϕ(m;u−, a−)=
1

a(u−)
r0(u−)+

m̃

a(u−)2
(
Dr0.r0+b0∂ar0+dr0

)
(uL)+O(m̃2), (3.7)

where d is some smooth function. Moreover the Rk directional derivative with respect to the

initial data is the vector V which solves the linear Cauchy problem

V ′ = γ(m)DR0

(
Z(m,U−)

)
V, V (µk(u−)) = Rk

(see for example [9, Chapter V] for a rigorous proof). Hence, for m − µk(u−) sufficiently

small, we have V (m) ∼ Rk and, in particular,

Du−
ϕ(m;u−, a−). rk := lim

h→0+

ϕ(m;u− + hrk, a−) − ϕ(m;u−, a−)

h
∼ rk, (3.8)

∇u−
α(m;u−, a−). rk ∼ 0. (3.9)
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Similarly, we can compute the derivatives w.r. to a−. As before, they correspond to

the derivative of Z(m;U−) w.r. to the initial data, in the direction of the vector E1 =

(1, 0, . . . , 0) ∈ IRn+1, that is given by the solution of

V ′ = γ(m)DR0

(
Z(m,U−)

)
V, V (µk(u−)) = E1.

This means that for m− µk(u−) sufficiently small, we have the following approximations

∂a−
ϕ(m;u−, a−) := lim

h→0+

ϕ(m;u−, a− + h) − ϕ(m;u−, a−)

h
∼ 0, (3.10)

∂a−
α(m;u−, a−) ∼ 1. (3.11)

We denote by aT (u−) = α(0;u−, a−) the level at which the curve Z(m;U−) intersects the

transition surface T . In view of the admissibility criterion (H), each fixed value a+ ≥ aT (u−)

uniquely defines the parameter value µ̂(a+;u−, a−) such that

α(µ̂(a+;u−, a−);u−, a−) = a+. (3.12)

Deriving (3.12) w.r to u− and a− gives respectively

Du−
µ̂(a+;u−, a−) · rk(u−) ∼ 0, (3.13)

∂mα(µ̂(a+;u−, a−);u−, a−) ∂a−
µ̂(a+;u−, a−) ∼ −1. (3.14)

For aL, aR fixed, we can thus define the map

u 7→ ϕ
(
µ̂(aR;u, aL);u, aL

)
, for u ∈ B(u∗, δ1), a

T (u) ≤ aR.

One should keep in mind that by (2.13), for aR < aL a state u is mapped closer to the sonic

line (staying on the same side of T ); the opposite is true for aR > aL.

We will distinguish two main cases, depending on whether the state UL belongs to T + or

T −.

CASE 1. We first study the case UL ∈ T +. The analysis will be further divided into four

subcases, depending on the value of aR.

Case 1a: aR ≥ aL. While moving along a 0-k-curve, one has at most three possibilities:

(A) follow the standing wave curve up to level aR, and then move along the k-wave with

nonnegative speed;

(B) use a k-wave with nonpositive speed at constant level aL followed by a standing wave;

(C) a more complex pattern, move first along the standing wave curve up to an intermediate

level aM , jump on the other side of T by means of a 0-speed k-shock and then use

another standing wave to reach aR.
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These three cases define three different branches of the curve

W̃k(uL) :=
{
W0,k(m;uL, aL, aR, ), m ∈ (−ε, ε)

}
.

Case (A) defines a first branch of the curve,

W̃+
k (uL) :=

{
ψk

(
m;ϕ(µ̂(aR;uL, aL);uL, aL)

)
, m ∈

[
µ̃k

(
ϕ(µ̂(aR;uL, aL);uL, aL)

)
, ε
)}
,

while another branch is found following case (B)

W̃−
k (uL) :=

{
ϕ
(
µ̂(aR; vk(m;uL), aL); vk(m;uL), aL

)
, m ∈

(
− ε, µ̃k(uL)

]}
.

Finally, case (C) can be described by

W̃M
k (uL) :=

{
ϕ
(
µ̂
(
aR;u′′, α(m;uL, aL)

)
;u′′, α(m;uL, aL)

)
,

u′′ = vk

(
µ̃k

(
ϕ(m;uL, aL)

)
;ϕ(m;uL, aL)

)
, µk(uL) ≤ m ≤ µ̂(aR;uL, aL)

}
.

In the following we will also set

u′ = ϕ(m;uL, aL), min{aL, aR} ≤ α(m;uL, aL) ≤ max{aL, aR},

u′′′ = ϕ
(
µ̂
(
aR;u′′, α(m;uL, aL)

)
;u′′, α(m;uL, aL)

)
,

u′L = ϕ
(
µ̂(aR;uL, aL);uL, aL

)
,

u′′L = vk

(
µ̃k(u′L);u′L

)
,

ũ′L = ϕ
(
µ̂(aR; ũL, aL); ũL, aL

)

(see Fig. 3).

The setting of the following lemma is general as to cover the next cases.

Lemma 3.2 There exists δ1 < δ0 such that for uL ∈ B(u∗, δ1) with µk(uL) > 0, and |aL −

aR| ≤ δ1, the parameter m is strictly monotone along each branch of the curve W̃k(uL).

More precisely

(i) m 7→ λk

(
ψk(m;u′L)

)
is strictly increasing for m ∈

[
µ̃k(u′L), ε

)
;

(ii) m 7→ λk

(
ϕ
(
µ̂(aR; vk(m;uL), aL); vk(m;uL), aL

))
is strictly increasing for

m ∈
(
− ε, µ̃k(uL)

]
;

(iii) if moreover aR ≥ aT (ũL), then m 7→ λk(u′′′) is strictly increasing for

m ∈
[
µk(uL), µ̂(aR;uL, aL)

]
.
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Figure 4: The curve W̃k(uL) for aR > aL (case 1a).

Proof. By definition (2.8), m is strictly increasing along W̃+
k (uL), and (i) is proved. To

prove (ii), we use (3.7), (3.13), (2.9) and (3.8) to compute

d

dm
ϕ
(
µ̂(aR; vk(m;uL), aL); vk(m;uL), aL

)

=
(
∂mϕDu−

µ̂+Du−
ϕ
)
. ∂mvk(m;uL)

∼

(
1

a(uL)
Du−

µ̂+Du−
ϕ

)
.

(
1

a(uL)
rk(uL) + O

(
m− µk(uL)

))

∼
1

a(uL)
Du−

ϕ. rk(uL)

∼
1

a(uL)
rk(uL),

for uL sufficiently close to the transition surface, and |aL − aR| sufficiently small.

In order to establish (iii), we need (2.9) and (3.7), which give

d

dm
vk

(
µ̃k

(
ϕ(m;uL, aL)

)
;ϕ(m;uL, aL)

)
=

= ∂mvk(µ̃(u′);u′)∇µ̃k(u′) · ∂mϕ+Duvk(µ̃(u′);u′). ∂mϕ

=

(
1

a(u′)
rk(u′) + O

(
µ̃k(u′) − µk(u′)

))
∇µ̃k(u′) ·

(
1

a(uL)
r0(uL) + O(m− µk(uL))

)

+Duvk(µ̃(u′);u′).

(
1

a(uL)
r0(uL) + O(m− µk(uL))

)

∼
1

a(u′)
rk(u′)

1

a(uL)
∇µ̃k(u′) · r0(uL) +

1

a(uL)
Duvk(µ̃(u′);u′). r0(uL) (3.15)

near T . Moreover we compute

u′ − uL = ϕ(m;uL, aL) − ϕ(µk(uL);uL, aL)
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= ∂mϕ(µk(uL);uL, aL)
(
m− µk(uL)

)
+ O

(
m− µk(uL)

)2

=
1

a(uL)
r0(uL)

(
m− µk(uL)

)
+ O

(
m− µk(uL)

)2

Hence we have

µ̃(u′) = µ̃(uL) + ∇µ̃k(uL) · (u′ − uL) + O
(
|u′ − uL|

2
)

∼ µ̃(uL) + ∇µ̃k(uL) ·

(
1

a(uL)
r0(uL)

(
m− µk(uL)

))

∼ µ̃(uL) +
1

a(uL)
∇µ̃k(uL) · r0(uL)

(
m− µk(uL)

)

∼ µ̃(uL) −
1

a(uL)
∇λk(uL) · rk(uL)

(
m− µk(uL)

)

∼ µ̃(uL) −
(
m− µk(uL)

)
,

where we have used (3.2), which also gives

∇µ̃k(u′) · r0(uL) ∼ ∇µ̃k(uL) · r0(uL) −∇
(
m− µk(uL)

)
· r0(uL)

∼ ∇µ̃k(uL) · r0(uL) + ∇λk(uL) · r0(uL) ∼ 0. (3.16)

Using (3.16) in (3.15) we get

d

dm
vk

(
µ̃k

(
ϕ(m;uL, aL)

)
;ϕ(m;uL, aL)

)
∼

1

a(uL)
r0(uL). (3.17)

near T . Thus, together with (3.13) and (3.14), we get the following estimate

d

dm
ϕ
(
µ̂
(
aR; vk(µ̃k(u′);u′), α(m;uL, aL)

)
; vk(µ̃k(u′);u′), α(m;uL, aL)

)
=

= ∂mϕ

(
(∇u−

µ̂)
d

dm
vk + (∂a−

µ̂) ∂mα

)
+Du−

ϕ.
d

dm
vk + ∂a−

ϕ∂mα

∼ ∂mϕ

(
1

a(uL)
∇u−

µ̂ · rk(uL) − C
b0
(
u′, α(m;uL, aL)

)

b0(u′′′, aR)

)
+

1

a(uL)
Du−

ϕ. r0(uL)

∼ −C1∂mϕ
λk

(
u′, α(m;uL, aL)

)

λk(u′′′, aR)
+

1

a(uL)
r0(uL)

∼ C2
1

a(u′′)
r0(u

′′) +
1

a(uL)
r0(uL)

for some smooth functions C,C1, C2 ∼ 1. Here we have used the fact that λk

(
u′, α(m;uL, aL)

)

and λk(u′′′, aR) have opposite signs, since
(
u′, α(m;uL, aL)

)
and (u′′′, aR) lie on opposite sides

of T . 2

It is clear that when aL = aR, the curve W̃k(uL) coincides with Wk(uL). Lemma 2.5

allows us to determine the mutual positions of the singular points ũ′
L and u′′L (see Figure 4).

In this case the curve W̃k(uL) is monotone w.r. to m.
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ûL

u′

u′′

u′′′

a

aL

aR

aT (ũL)
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Case 1b: aT (ũL) ≤ aR < aL. We still have the three branches defined by (A), (B) and (C).

By Lemma 2.5 we have µk(u′′L) < µk(ũ′L), hence the curve W̃k(uL) is no more monotone w.r.

to m, but presents a bifurcation. More precisely, W̃M
k (uL) is now described by

W̃M
k (uL) :=

{
ϕ
(
µ̂
(
aR;u′′, α(m;uL, aL)

)
;u′′, α(m;uL, aL)

)
,

u′′ = vk

(
µ̃k

(
ϕ(m;uL, aL)

)
;ϕ(m;uL, aL)

)
, µ̂(aR;uL, aL) ≤ m ≤ µk(uL)

}
.

By Lemma 3.2, the map m→ λk(u′′′) is now strictly decreasing when we move from µk(uL)

to µ̂(aR;uL, aL) (Fig. 5).

Case 1c: aT (uL) ≤ aR < aT (ũL). Let us define the point (ûL, aL) ∈ T − such that

aT (ûL) = aR. (3.18)

By construction, we have

µk(ūL) ≤ µk(ûL) < µk(ũL) = µ̃k(uL)

(see Lemma 2.5 and Fig. 3). Moreover we define the value a ∈ [aL, aR] such that

f
(
ϕ+

(
µ̂(a;uL, aL);uL, aL

)
, a
)

= f
(
ϕ−

(
µ̂(a; ûL, aL); ûL, aL

)
, a
)
.

That is, a is the level at which the standing wave issuing from (ûL, aL) intersects the trans-

formed standing wave corresponding to Z(·;uL, aL).

Case (A) still holds, while we have cases (B) and (C) changed into

(B’) use a k-wave with speed λk ≤ λk(µk(ûL);uL) at constant level aL followed by a standing

wave;
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(C’) move first along the standing wave curve up to an intermediate level aM < a, jump on

the other side of T by means of a 0-speed k-shock and then use another standing wave

to reach aR.

Hence branches W̃−
k (uL) and W̃M

k (uL) become

W̃−
k (uL) :=

{
ϕ
(
µ̂(aR; vk(m;uL), aL); vk(m;uL), aL

)
, m ∈

(
− ε, µk(ûL)

]}
,

W̃M
k (uL) :=

{
ϕ
(
µ̂
(
aR;u′′, α(m;uL, aL)

)
;u′′, α(m;uL, aL)

)
,

u′′ = vk

(
µ̃k

(
ϕ(m;uL, aL)

)
;ϕ(m;uL, aL)

)
, µ̂(aR;uL, aL) ≤ m ≤ µ̂(a;uL, aL)

}
.

Lemma 3.2 still applies, showing that even in this case the curve W̃k(uL) presents a bifurca-

tion, since the map m→ λk(u′′′) is now strictly decreasing when we move from µ̂(a;uL, aL)

to µ̂(aR;uL, aL) (Fig. 5).

Case 1d: aR < aT (uL). We take (ûL, aL) ∈ T − as defined in (3.18), except that now we

have

µk(ûL) < µk(ūL).

This time we can distinguish only two paths:

(B”) use a k-wave with speed λk ≤ λk(µk(ûL);uL) at constant level aL followed by a standing

wave;

(C”) use a shock of speed λk = λk(µk(ûL);uL) at level aL, then move along the standing

wave curve up to (ϕ(µ̂(aR; ûL, aL); ûL, aL), aR) ∈ T , and finally follow the rarefaction

curve wk

(
m;ϕ(µ̂(aR; ûL, aL); ûL, aL)

)
with positive speed at level aR.

These define respectively the following two branches for W̃k(uL)

W̃−
k (uL) :=

{
ϕ
(
µ̂(aR; vk(m;uL), aL); vk(m;uL), aL

)
, m ∈

(
− ε, µk(ûL)

]}
,

W̃+
k (uL) :=

{
wk

(
m;ϕ(µ̂(aR; ûL, aL); ûL, aL)

)
, m ∈ [0, ε)

}
,

which are monotone increasing w.r. to m as in Lemma 3.2.

CASE 2. We now study the case UL ∈ T −. The main difference in the construction of the

0-k-waves is that in this case we cannot “jump” on the other side of T by means of a k-shock.

The analysis will be divided into three subcases, depending on the value of aR.

Case 2a: aR ≥ aL. We can use the following three paths:

(A) use a k-rarefaction with nonpositive speed at constant level aL up to (wk(0;uL), aL) ∈

T , followed by the positive branch of the standing wave up to level aR, and finally move

along a k-wave with nonnegative speed at constant level aR;

20



0 0

0

PSfrag replacements

uL

uLuL

ũL

TT

Sk(uL)

W̃+
k (uL)

W̃−
k (uL)

W̃M
k (uL)

u′L u′Lu′′Lũ′L
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(B) use a k-wave with nonpositive speed at constant level aL followed by a standing wave;

(C) move first along the k-rarefaction with nonpositive speed up to the point (wk(0;uL), aL) ∈

T , then enter T + following the positive branch of the standing wave curve up to an

intermediate level aM , jump on the other side of T by means of a 0-speed k-shock and

then use another standing wave to reach aR.

These three cases define respectively

W̃+
k (uL) :=

{
ψk

(
m;ϕ+(µ̂(aR;wk(0;uL), aL);wk(0;uL), aL)

)
,

m ∈
[
µ̃k

(
ϕ+(µ̂(aR;wk(0;uL), aL);wk(0;uL), aL)

)
, ε
)}
,

W̃−
k (uL) :=

{
ϕ
(
µ̂(aR;ψk(m;uL), aL);ψk(m;uL), aL

)
, m ∈

(
− ε, 0

]}
,

W̃M
k (uL) :=

{
ϕ
(
µ̂
(
aR;u′′, α+(m;wk(0;uL), aL)

)
;u′′, α+(m;wk(0;uL), aL)

)
,

u′′ = vk

(
µ̃k

(
ϕ+(m;wk(0;uL), aL)

)
;ϕ+(m;wk(0;uL), aL)

)
,

m ∈
[
0, µ̂+(aR;wk(0;uL), aL)

]}
,

where µ̂+ means that we are moving along (ϕ+, α+). As in CASE 1, we will also set

u′ = ϕ+(m;wk(0;uL), aL), aL ≤ α+(m;wk(0;uL), aL) ≤ aR,

u′′′ = ϕ
(
µ̂
(
aR;u′′, α+(m;wk(0;uL), aL)

)
;u′′, α+(m;wk(0;uL), aL)

)
,

u′L = ϕ+

(
µ̂(aR;wk(0;uL), aL);wk(0;uL), aL

)
,

u′′L = vk

(
µ̃k(u′L);u′L

)
,

ũ′L = ϕ−

(
µ̂(aR;wk(0;uL), aL);wk(0;uL), aL

)

(see Fig. 6). The proof of the following lemma is very similar to the proof of Lemma 3.2.

Lemma 3.3 There exists δ1 < δ0 such that for uL ∈ B(u∗, δ1) with µk(uL) < 0, and |aL −

aR| ≤ δ1, the parameter m is strictly monotone along each branch of the curve W̃k(uL).

More precisely

(i) m 7→ λk

(
ψk(m;u′L)

)
is strictly increasing for m ∈

[
µ̃k(u′L), ε

)
;

(ii) m 7→ λk

(
ϕ
(
µ̂(aR;ψk(m;uL), aL);ψk(m;uL), aL

))
is strictly increasing for m ∈ (−ε, 0];

(iii) m 7→ λk(u′′′) is strictly increasing for m ∈
[
0, µ̂(aR;wk(0;uL), aL)

]
.

Moreover, by Lemma 2.4 and Lemma 2.5, the singular points ũ′
L and u′′L are placed so that

µk(ũ′L) ≤ µk(u′′L) < 0. This shows that the curve W̃k(uL) is monotone w.r. to m.

Case 2b: aT (uL) ≤ aR < aL. In this case we have only two branches, defined by cases
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(A’) use a k-rarefaction with nonpositive speed at constant level aL up to ûL (defined as in

(3.18)), then the standing wave up to level aR, and finally move along a k-rarefaction

with nonnegative speed at constant level aR;

(B’) use a k-wave with nonpositive speed at constant level aL followed by a standing wave;

We obtain respectively the following two branches

W̃+
k (uL) :=

{
wk

(
m;ϕ(µ̂(aR; ûL, aL); ûL, aL)

)
, m ∈ [0, ε)

}
,

W̃−
k (uL) :=

{
ϕ
(
µ̂(aR;ψk(m;uL), aL);ψk(m;uL), aL

)
, m ∈

(
− ε, µk(ûL)

]}
.

Again, by Lemma 3.3, the 0-k-curve W̃k(uL) is monotone.

Case 2c: aR < aT (uL). It is very similar to the previous case, apart from the position of

ûL, which makes (A’) changed into

(A”) use a k-shock with nonpositive speed at constant level aL up to ûL, then the standing

wave up to level aR, and finally move along a k-rarefaction with nonnegative speed at

constant level aR.

W̃k(uL) is still monotone.

4 The Riemann problem

We are now ready to solve the Riemann problem (1.1)-(1.3). First of all, since the parametriza-

tion of the 0-k-curve exhibit jumps at the points connecting together the various branches

(see the points ũ′L, u′′L or the intersection point with T in Section 3), it is convenient to

reparametrize the curve by choosing a global parameter s so that

µk

(
W0,k(s;uL, aL, aR)

)
= s

(we set s = m for the curves belonging to families i 6= k).

It is clear from the construction performed in Section 3 that the 0-k-curve is merely

Lipschitz continuous at the points ũ′L and u′′L (Cases 1a, 1b, 1c and 2a) or at s = 0 (Cases

1d, 2b and 2c), even when there is no bifurcation phenomena. So, it is necessary to rely on

the implicit function theorem for Lipschitz continuous mapping [4] to obtain existence (and

uniqueness) of the solution. See also [10, 13].

In addition to the lack of regularity of the wave curves, we have to handle the bifurcation

phenomena. So, we propose here to extend smoothly each branch of the wave curve in the
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rk direction. The corresponding curves are denoted by

W̃+
k (u) =

{
ψ̃+

k (s;u), s ∈ (−ε, ε)
}
,

W̃−
k (u) =

{
ψ̃−

k (s;u), s ∈ (−ε, ε)
}
,

W̃M
k (u) =

{
ψ̃M

k (s;u), s ∈ (−ε, ε)
}
.

We set s̃i = si − µi(u) for i 6= k, et s̃k = sk − µi(u
′), where

u′ =

{
ϕ
(
µ̂(aR;u, aL);u, aL

)
, if aR ≥ aT (u),

W0,k(0;u, aL, aR), otherwise.

Hence each mapping

s̃ = (s̃1, . . . , s̃n) ∈ (−ε, ε)n → Ψ+
k (s̃) = ψn(s̃n) ◦ . . . ◦ ψ̃+

k (s̃k) ◦ . . . ◦ ψ1(s̃1)(uL),

s̃ = (s̃1, . . . , s̃n) ∈ (−ε, ε)n → Ψ−
k (s̃) = ψn(s̃n) ◦ . . . ◦ ψ̃−

k (s̃k) ◦ . . . ◦ ψ1(s̃1)(uL),

s̃ = (s̃1, . . . , s̃n) ∈ (−ε, ε)n → ΨM
k (s̃) = ψn(s̃n) ◦ . . . ◦ ψ̃M

k (s̃k) ◦ . . . ◦ ψ1(s̃1)(uL)

is a C2 diffeomorphism from a neighborhood of 0 ∈ IRn onto a neighborhood of u′L. This

follows from the implicit function theorem since the partial derivatives at s̃ = 0 are

∂iΨ
±,M (0) = αiri(uL, aL), i < k,

∂kΨ±,M (0) ∼ αkrk(u′L, aL),

∂iΨ
±,M (0) ∼ αiri(u

′
L, aR), i > k,

αi 6= 0. By the strict hyperbolicity and the continuity of Duf(u, a) the differentials

DΨ±,M(0) are invertible n × n matrices. Hence there exists δ > 0 such that, for all

uL ∈ B(u∗, δ0), if |uR − uL| ≤ δ and |aR − aL| ≤ δ then

uR = ψn(s+n ) ◦ . . . ◦ ψ̃+
k (s+k ) ◦ . . . ◦ ψ1(s

+
1 )(uL),

uR = ψn(s−n ) ◦ . . . ◦ ψ̃−
k (s−k ) ◦ . . . ◦ ψ1(s

−
1 )(uL),

uR = ψn(sM
n ) ◦ . . . ◦ ψ̃M

k (sM
k ) ◦ . . . ◦ ψ1(s

M
1 )(uL),

for some s±,M
1 , . . . , s±,M

n . Equivalently, if the points ω±,M
0 , . . . , ω±,M

n are inductively defined

by

ω0 = uL, ω±,M
i = ψi(s

±,M
i )(ωi−1),

in particular

ω±,M
k = ψ̃±,M

k (s±,M
k )(ωk−1),

then ω±,M
n = uR. At this stage we keep into account only the solutions that are physically

admissible, that is, we keep the values s1, . . . , sn for which the point ωk belongs to one of
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the original branches of W̃k(ωk−1). Due to the transversality of each characteristic field (we

recall that each branch of W̃k(ωk−1) is essentially parallel to rk, and then transverse to any

other curve Wi(ωi), i 6= k), we can distinguish the following cases:

• if W̃k(ωk−1) has no bifurcations (Cases 1a, 1d and CASE 2), the solution is unique,

due to the monotonicity of the parameter s in the rk direction;

• in Cases 1b and 1c we may have up to three solutions (with one point ωk on each

branch of W̃k(ωk−1)), which reduce to two for sk = µk(ũ′L) or sk = µk(u′′L).

Now assume that

uR = ψn(sn) ◦ . . . ◦ ψ̃±,M
k (sk) ◦ . . . ◦ ψ1(s1)(uL).

When i 6= k, each Riemann problem with initial data

u(x, 0) =

{
ωi−1, x < 0,

ωi, x > 0,
a(x, 0) =

{
aL, i < k,

aR, i > k,
(4.1)

has an entropy-admissible, self-similar (that is, u = u(x/t)) solution made of two constant

states separated by a contact discontinuity, a shock or a rarefaction fan.

For i = k, the Riemann problem with initial data

(u, a)(x, 0) =

{
(ωk−1, aL), x < 0,

(ωk, aR), x > 0,
(4.2)

has a self-similar solution made of two or more constant states separated by shocks, rarefac-

tions or standing waves, that can have the same speed (equal to 0), and then be superposed.

More precisely

• if ωk ∈ W̃+
k (ωk−1):

CASE 1 ωk−1 → ω′
k−1 by a standing contact discontinuity,

ω′
k−1 → ωk by a shock or a rarefaction with nonnegative speed (one may have

ω′
k−1 = ωk );

CASE 2 ωk−1 → ω′
k−1 by a shock or a rarefaction with nonpositive speed,

ω′
k−1 → ω′′

k−1 by a standing contact discontinuity,

ω′′
k−1 → ωk by a shock or a rarefaction with nonnegative speed;

• if ωk ∈ W̃−
k (ωk−1): ωk−1 → ω′

k−1 by a shock or a rarefaction with nonpositive speed,

ω′
k−1 → ωk by a standing contact discontinuity;

• if ωk ∈ W̃M
k (ωk−1):
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CASE 1 ωk−1 → ω′
k−1 by a standing contact discontinuity,

ω′
k−1 → ω′′

k−1 by a zero speed shock,

ω′′
k−1 → ωk by a standing contact discontinuity;

CASE 2 ωk−1 → ω′
k−1 by a rarefaction with nonpositive speed,

ω′
k−1 → ω′′

k−1 by a standing contact discontinuity,

ω′′
k−1 → ω′′′

k−1 by a zero speed shock,

ω′′′
k−1 → ωk by a standing contact discontinuity;

The solution to the original problem (1.1)-(1.3) can now be constructed by piecing together

the solutions of the n Riemann problems (4.1)-(4.2) on different sectors of the (x, t) plane.

Indeed for s̃1, . . . , s̃n sufficiently small, and aR sufficiently close to aL, the speed of each wave

remains close to the corresponding eigenvalue λi(uL, aL) of the matrix Duf(uL, aL). By

the strict hyperbolicity and continuity properties, we can thus assume that the wave speeds

remain distinct.

In conclusion, we have proved the following:

Theorem 4.1 (The Riemann solver.) Suppose that, in B(u∗, δ0), the system (1.1) is

strictly hyperbolic and admits only genuinely nonlinear or linearly degenerate fields. Under

the assumptions (1.5), (1.6), (1.7), (1.8), there exists δ1 < δ0 such that the following holds.

Given any uL, uR ∈ B(u∗, δ1), the Riemann problem (1.1)-(1.3) admits at most three self-

similar solutions made up of n+ 1 constant states

ω0 = uL, ω1, . . . , ωn = uR

separated by elementary waves (shocks, rarefactions or contact discontinuities). Moreover,

the states ωk−1 and ωk are connected by at most three intermediate states {ωi
k}1≤i≤j, j≤3

separated by a standing wave and possibly shocks or rarefactions.
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