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Abstract

Hyperbolic models for compressible two-phase flows including a conservative symmetric hy-
perbolic model are reviewed. The basis for a theory of shock waves is developed within the
framework of this conservative model. The analysis of small amplitude discontinuities allows
us to conclude that in general there are two types of shocks corresponding to two sound waves.
The problem of transition between a pure phase and a mixture (the phase vacuum problem) is
analysed. It is proved that for some models the smooth centred wave solution can not provide
such a transition. Within the framework of our conservative model there is the possibility of
constructing discontinuous solutions which can resolve the phase vacuum problem.
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1 Introduction

A very large variety of scientific and technological problems are intrinsically of a multi-phase flow
nature. Examples arise in the petrochemical industry, nuclear processes, environmental flows and
propulsion technology, to name but a few. In this paper we are concerned with mathematical
models for processes in which at least of the phases is compressible. In some cases, and depending
on the particular application in mind, simplifying assumptions may lead to useful limiting cases.
One such case is the dusty gas approximation in which more than one velocity vector are admitted
but the volume occupied by one of the phases is neglected. Another simplification is the multi-
component flow model, in which a single velocity vector is assumed, namely that of the carrier
fluid. Of course the simplest case is that of a single phase, in which the multi-phase nature of the
process is incorporated via an appropriate equation of state. In any event, the physical nature of
multi-phase flows is by now only partially understood and the construction of mathematical models
contains uncertainties. Incorporating other phenomena, such as combustion, makes the problem
of modelling even more challenging. For simple two-phase flow situations, such as in stratified and
annular flow, in which the two phases are separated by a single interface, one may write down
balance equations for the dynamics of each phase together with interfacial conditions. For more
complex situations, such as those involving a mixture of water droplets and a gas, any attempts at
following the evolution of all interfaces involved would lead to an intractable mathematical model.

Focusing only on the dynamical description of multi-phase flow processes leads to still largely
unresolved physical and mathematical issues. For instance, the initial-value problem for some of
mathematical models for compressible flow in current use is ill-posed. This is a consequence of the
equations being mixed elliptic-hyperbolic. See Stewart and Wendroff (1984) for a comprehensive
review of the subject. A practical consequence on this is the situation that numerical computa-
tions, based on these mixed models, on course meshes and or diffusive numerical methods, provide
reasonably-looking solutions that are comparable to experimental measurements. But when the
mesh is sufficiently refined or and the numerical method used is sufficiently accurate the solution
blows up. In addition to hyperbolicity there is another difficulty: most current mathematical mod-
els cannot be expressed in conservation-law form. This may appear paradoxical, as the equations
are in all cases derived from the application of physical conservation principles. This difficulty



means that the definition of discontinuous solutions, such as shock waves, is not a straightforward
procedure (see for example Serre(1993), Gouin & Gavrilyuk(1999)). It also means that modern,
conservative shock-capturing methods (Toro 1999) cannot be directly applied to solve multi-phase
flow problems.

The area of multiphase flow model is currently a very active area and the following are are
partial list of relevant references: Baer & Nunziato (1986); Bdzil et al. (1999); Bestion (1999);
Coquel et al. (1997); Drew et al. (1979); Drew & Passman (1998); Fitt (1993); Gavrilyk & Saurel
(2001); Ishii (1975); Nigmatulin (1991); Ransom & Hicks (1984); Resnyansky et al. (1997); Saurel
& Abgrall (1999); Saurel & LeMetayer (2001); Stadtke et al. (2001); Stewart & Wendroff (1984);
Toro (1989); Toumi & Kumbaro (1996); Toumi et al. (1999); Wallis (1982).

A common theory of two-phase compressible flow is based on the consideration and averaging
of local balance laws for each phase. In such a theory the two-phase medium is supposed to be
an averaged continuum in which the interfacial interaction is taken into account (see for example
Drew & Passman 1998; Ishii 1975). There are different approaches leading to hyperbolic-two phase
models Baer & Nunziato (1986); Bdzil et al. (1999); Gavrilyk & Saurel (2001). In this paper we
are concerned with a single pressure two-fluid model Ishii (1975). But we note that the basic single
pressure model is not hyperbolic (Drew & Passman 1998). Further development of two-phase single
pressure models is based on more detailed consideration of interfacial interaction and consists
of including extra differential terms to governing balance equations, such as virtual mass and
interfacial pressure forces (see for example Drew & Passman 1998; Stidtke et al. 2001). The system
of governing equations modified by these additional differential terms have real eigenvalues and a
complete set of linearly independent eigenvectors and hence is hyperbolic. Note that there exists
a comprehensive theory of solvability of the initial value problem for multidimensional quasilinear
symmetric hyperbolic systems introduced by Friedrichs (1954,1958). That is why the hyperbolic
two-phase flow models for which the governing equations can be written in symmetric form are
preferable, because the symmetric form guarantees the existence and uniqueness of solution for
some kinds of initial and boundary value problem (Godunov 1987; Okazava& Unai 1993).

In this paper (Section 2) we review two two-phase hyperbolic models including a conservative
symmetric hyperbolic model. That follows the phenomenological approach is based on the principle
of extended thermodynamics and was proposed in Romensky (1998, 2001). In Section 3 we consider
the one-dimensional conservative equations, study their characters, and formulate shock conditions.
Characteristic analysis shows that there are two types of sound waves and hence two types of shock
waves exist. The analysis of shock waves of small amplitude confirms this conclusion. In Section
4 we study the problem of construction of solutions providing the transition between pure phase
and mixture. In practice this problem is very important to understand whether the numerical
simulations of processes in which there are regions of pure phase are correct. It is shown that some
of reviewed models have no centred wave solutions providing the transition between pure phase
and mixture. But there is the possibility of constructing a discontinuous solution to resolve this
problem.



2 A hyperbolic model of two-phase media

2.1 Single pressure models

In general the modelling of multiphase flows can be based on two different approaches. One of them
uses separate balance equations for each of the phases and coupled by terms describing momentum
and energy interaction. Another approach is the phenomenological one, supposing the multiphase
medium as homogeneous. In such a methodology the system of governing equations is derived for
the parameters of state which are assumed to take into account the multiphase character of the
flow. In this paper we only consider two-phase two-fluid models. If dissipative processes, such
as viscous friction or thermoconductivity are neglected, then the typical form of the governing
equations in the first approach consist of balance laws for mass, momentum and energy for each
of the phases (with numbers i = 1,2) (see for example Ishii 1975; Drew & Passman 1998):
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Here o' are the volume concentrations of phases (a! + a® = 1), p’ are mass densities, v} are
velocities, p’ are pressures, ¢! = e’(p’, S?) are equations of state (specific internal energy), S? are
specific entropies of phases and F,j are body forces.

It is supposed that the first law of thermodynamics holds for each of the phases separately:
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where T is the temperature of i-th phase. It is easy to see that the number of unknown variables
is greater than the number of differential equations. To close the system it is necessary to make an
additional assumption. The simplest way leads to the widely known single pressure model, which
rests on the assumption that the pressure of the two phases are equal, that is p* = p?> = p. Hence,
the closing relationships can be chosen in the form:

pt=pp, 5", p*=pp,S?). (2)

The body forces F} in the momentum equations must satisfy the requirement F}} + FZ = 0, which
follows from the total momentum conservation law. These forces take into account the different
processes of momentum exchange. The simplest example of such a process is the interfacial friction.
It means that F} is proportional to the relative velocity v7 — v} and is an algebraic (not differential)
term of the equation. In this case the study of hyperbolicity of system (1) can be done under
assumption F} = 0.

The analysis of the characteristics of system (1) with closing relationships (2) and F} = 0 shows
that there exists a large region for the relative velocity values for which the system is not hyperbolic
(Stewart & Wendroff 1984). In order to resolve difficulties associated with non-hyperbolic models,
additional non-dissipative momentum exchange forces are usually introduced into the momentum
balance equations (see for example Drew & Passman 1998). The general form of such forces is
given by the functions
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Naturally, the vector function Fj must be Galilean invariant, that is rotation and translation
invariant. This restriction is caused by the requirement of invariance of the governing equations.
Concerning the physical meaning of the various new terms, it is argued that these correspond
to interfacial forces of different nature (virtual mass, interfacial pressure and others) (see Bestion
1990; Drew & Passman 1998; Drew et al. 1979; Ransom & Hicks 1984; Stadtke et al. 2001):
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where g—i = % + v,ia%k, k € [0,00) is a parameter open to choice. The new differential terms,

introduced in the manner just described, allow the modified system to be hyperbolic, and even
explicit formulae for characteristics are in some cases derived (Stadtke et al. 2001).

Unfortunately, it appears as if the resulting system cannot be reduced to a symmetric form.
In addition, the modified system cannot be expressed in conservative form, and this is why the
definition of discontinuous solutions, such as shock waves and contacts, do not admit a correct
mathematical formulation. Thus the properties of the governing equations in the approach just
reviewed are not suitable for a complete mathematical analysis. Needless to say, the generalization
of the above approach to modelling multiphase flow for the case when the number of phase is
greater than two is unclear.

There are other ways of constructing models of two-phase flow, see for example the Baer-
Nunziato model (Baer & Nunziato 1986) or variational approach leading to a closed system of
governing equations presented in Gavriljuk & Saurel (2002). We remark however that, in common
with the approach described above, the equations derived by these methods are not in conservative
form.

2.2 Phenomenological conservative model

We now describe an approach which is based on the phenomenological theory of continuum me-
chanics and the principles of extended thermodynamics, which has been developed in the last
decades on the basis of the analysis of various well-posed equations of mathematical physics. It is
applicable to creating a new well-posed model of complicated media (Godunov & Romenski 1995;
Godunov & Romenski 1998; Miiller & Ruggeri 1998; Romensky 1998; Romensky 2001).

We emphasize that this theory allows the derivation of symmetric hyperbolic systems of con-
servation laws for multiphase fluid flow in which the number of phases can be greater than two
(Romenski 2001). The resulting models are then well suited for the study of shock waves in multi-
phase media and the application of modern conservative shock-capturing numerical methods (Toro
1999) to solve technological and scientific problems of current interest.

Note that the rather complicated model taking into account process of relaxation of the differ-
ence between phases pressure is considered in Romenski et al. (2003). The fundamental assumption
in this approach is the existence of a common equation of state (internal energy) for two-phase
medium, e = e(alp!,a?p?, S), where S is the entropy of the medium. Note that the momentum
balance laws in this phenomenological model can be written in the usually employed manner
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But the conservation requirement of the governing equations leads to the following definition of
momentum interfacial force:
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where p = a'p' + a'p' is the mass density of the medium.
Here an additional thermodynamic parameter n is introduced into the momentum exchange
force. Further we determine its connection with the parameters of state.
For processes without dissipation the two-phase flow is governed by the system of conservation
laws (Romenski 1998; Romenski 2001)
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Here the first two equations are the mass conservation laws for the phases, the third equation is
the total momentum conservation law, the fourth equation is the conservation law for the relative
velocity, and the fifth one is the entropy conservation law. It is more convenient to introduce new
parameters of state: p = alp! + a?p? is the mass density of the medium, ¢ = (a®p?)/p is the mass
concentration of the 2-nd phase, vy, = "“—1‘;‘111,1c -+ a—zpl‘ﬁv% — the average velocity, wy = v} — v}, — the
relative velocity, and S — the specific entropy of the medium.

We introduce now the new generalized thermodynamic potential
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Then system (3) can be written in the form
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Here p = p’E, = p’e, is the pressure, B, = n + (1 — 2¢)“4% n = e.. Note that the system
(4) admits an additional steady conservation law caused by the structure of the equation for the
relative velocity:
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This conservation law follows directly from the fourth equation of system (4). Using this equation

for wy, it is easy to see that
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Hence, if the equation (5) holds for ¢ = 0, then it holds for ¢ > 0. The conservation law (5)
postulates that the relative velocity vorticity for the non-dissipative processes is equal to zero.
Further, we shall see that dissipation leads to the generation of relative velocity vorticity.

The proof of hyperbolicity of system (4) (and hence the system (3)), and the method of reducing
this system to a symmetric form, can be found in Romenski (2001). The hyperbolicity presupposes
the potential energy e(p, ¢, S) to be a convex function of variables V = 1/p, ¢, S, that is the matrix

=0. (5)
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is positive definite.

The proof of hyperbolicity is based on the methods of extended thermodynamics (Godunov
& Romenski 1995; Romenski 2001). It is necessary to introduce the generated thermodynamic
potential

L(qw, g0, v1,v2,03,m, j1, j2, j3) = —Ev + pwi B,
where viv:
qo =T = Fg, qozE—SES—VEV—cEC—%, n=~FE., ji=pkj.

In terms of these new thermodynamic variables the system (4) and additional steady conservation
laws (5) can be written in the form

OLyy , OWiL)ay _

ot oxy, =9,
0L, | O((vgL)n + jk)
8t + 8:1:k N 07
6Lvi + 6((vkL)’Ui +jiji - 6ikjaLja) -0
ot oxy, ’
8ij 8(UaLja —I—n) _
T T
6qu 6(ukL)qw _
ot + al'k N 07
L;, OL;,
8ma 8£L'k N

One can proved that the five first equations of this system can be transformed, with the help of
the last steady equation, to the following system:
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This system is symmetric because the first two terms of each equation can be written by the
matrices of the second derivatives of functions L and viyL. The symmetry of other terms is quite
clear. The hyperbolicity condition is the convexity of the generating potential L and is equivalent
to the convexity of the equation of state on its arguments.

Note that smooth solutions of system (4) satisfy the additional energy conservation law:
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which is used for the definition of the generated thermodynamic potential L and and variables
dws 40,1, Ji (Romenski 1998; Romenski 2001). This energy conservation law will be used later in
this paper to study discontinuous solutions.

Up to now we have discussed the governing equations for two-phase media without any dissi-
pation. Certainly, models of real processes should take into account various dissipative processes.
For the case of two-phase flow, when the dissipation consists of the phase interfacial friction and
diffusion, such a model can be derived on the basis of system (4) and takes the form:
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These unsteady equations must be supplemented by two equations providing the compatibility
of system (7):
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Here ey is the unit pseudoscalar, wg is the vorticity vector and 7, is the interfacial friction force.

To prove the compatibility of equations (7) and (8) it is necessary to differentiate the equation
for wy, of system (7) with respect to x, and subtract the equation for w, differentiated with respect
to . Using the second equation from (8) we derive
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In fact the vorticity vector w; is the additional variable and is not a parameter of state. To close
the system (7),(8) it is enough to define the coefficient of phase diffusion ¢ and the interfacial
friction force my(p, ¢, S, w;) as a function of the state parameters. After that it is possible to derive
a closed system of governing equations:
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Note that in this system the fourth equation is not in a conservative form.
Systems (7),(8) or (9),(8) admit an additional energy conservation law in the form:
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To study discontinuous solutions it is preferable to use system (7),(8) and (10), where all
equations are in conservative form. The interfacial friction force can be chosen in the form

Tk = XE’LUk = XC(]' - C)wkv (11)

where the coefficient of friction y can be a function of the parameters of state. The diffusion
coefficient € also can be a function of the state.
Note that the {riction force (11) provides the non-negativeness of the entropy production auto-
matically:
Q= pEy, Tk iaEc OFE. > 0.
ES ES 8xk 8xk

Finally, we emphasize that the described phenomenological approach can be similarly expanded
for multiphase flow models when the number of phases is greater than two (Romenski 2001).

3 Shock waves

3.1 One-dimensional equations, shock conditions, characteristics

As mentioned earlier, conservative models admit correctly defined discontinuous solutions. That is
why we now deal with the phenomenological conservative model described in the Subsection 2.2.
Consider one-dimensional flow of a two-phase medium. Suppose that the medium moves along the
r1 = x axis and that there is only one component of the velocity vector v; = v and one component
of the relative velocity w = w; vector. Under such assumptions we shall study the closed system
of balance laws that consists of the first four equations of system (7) and the energy conservation
law (10), written for the one-dimensional case. That is
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To study discontinuous solutions here, we include in the closed system the energy conservation
law instead of the entropy balance law. The entropy balance law is a consequence of system (11)
and has the form:
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Note that the additional compatibility equations (8) are valid automatically for the one-dimensional
case, because of w; = 0.
Further, we shall study waves moving with constant velocity D in the positive direction of the x
— axis and connecting two states of the medium with parameters of state vg, po, co, wo, So ahead of
the wave (x = +00), and v, p, ¢, w, S behind the wave (z = —o0). Such a solution depends only on
the one variable £ = z — Dt. To determine this solution one can derive the following consequence
of system (12):
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For finding a continuous solution of system (12) we can replace the last energy equation by the
entropy equation (13) in system (14). The entropy equation can be derived from (13) and has the

form:
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Continuous solutions can exist due to the presence of dissipative mechanisms in the model, such as

phase diffusion and interfacial friction. We shall study discontinuous solutions called shock waves.
These solutions can be found from the special case of system (14), where dissipation is neglected:
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Here m denotes the mass flux through the shock wave. This is a system of non-linear algebraic
equations, where the unknowns are the parameters of state behind of the wave p, ¢, v, w, S and the
velocity of the wave D. If one of the above parameters is given, then the other can be found from
system (15).

Rewrite now system (15) using the specific form of thermodynamic potential

2
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Note that the third equation for the jump of momentum can be written in the equivalent form
m(v —wo) +p+ pe(l — c)w® — po — poco(1 — co)wy = 0. (16)

To transform the equation for energy we use the following formula obtained with the help of
equation (16)
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After the above transformations we obtain a new form of the system (15), which is convenient
to analyse its solution:
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Before studying the possible shock waves it is interesting to study the eigenvalues of the one
dimensional system (12) without dissipation. As was noted in the previous section the model under
consideration can be reduced to symmetric form, hence eigenvalues of the characteristic polynomial
are real. If dissipative effects are neglected, then system (12) in quasi-linear form is
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The full analysis of eigenstructure of the system (18) is quite complicated. But we are interested
in a qualitative analysis only, that is why we study now the simplest case when the relative velocity
of phases vanishes: w = 0. It allows to derive explicit formulae for characteristics. Under such an
assumption the above quasi-linear system takes the form:
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The eigenvalues A of the coefficient matrix are the roots of the equation
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which can be written in the form
AA" = (pp + (1 = Jece) A + c(1 =€) (Ppece — Peepe)) = 0,
where A = u — A\. There are five roots of this equation. One of them is A = u, and the other four
roots are determined by formula
A2 = 55y + o1 = Jece £ VD),
where

D= (pp + C(l - C)ecc)2 - 40(1 - C)(ppecc - pcepc)-

To prove that the eigenvalues are real it is more convenient the other form of coefficients in the
characteristic equation. Passing to the variable specific volume V = 1/p instead of density p we
obtain

1
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and

1 c(l—c¢ . 4c¢(l — ¢
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c(l—c . 4c(l —¢) .
(eVV - %ecc)z + (VZ )6%/0 > 0.

;From the last expression we can see that A? are real. Furthermore, we have supposed that the
equation of state e(p, ¢, S) is a convex function of V = 1/p, ¢, S, that is eyye.. — €3, > 0. Hence,
we can conclude that

. 1
A% = 5+ el = c)ece = VD) >0,

and so the considered one-dimensional system is hyperbolic with eigenvalues
AM=U—C,A=V—C1,A3 =0, Ay =V+c¢1, 5 =0+ C3,

where v is the velocity of the flow and c;, ¢y are the velocities of sound expressed by formulae

1 1
= §(pp +¢(1—c)ece — VD), &= i(pp +¢(1 = ¢)ece + VD)

Hence, it should be expected that in general there can be two types (fast and slow) of shock
waves in a two-phase medium. In the next section we shall prove this fact through the analysis of
small amplitude shocks.

3.2 Shock waves of small amplitude

In order to obtain information concerning the character of the possible shocks we shall study
shock waves of small amplitude. The analysis of this problem allows us to describe the qualitative
behaviour of such discontinuities. For example, the investigation of small amplitude shocks in gas
dynamics gives approximate formulae for the variation of parameters of state, the velocity of wave
propagation, etc. (see for example Courant & Friedrichs 1985).

We shall study system (17) and note that it is more convenient to use the specific volume
V = 1/p as the parameter of state instead of density p. Then the system (17) can be written in
the form

’U—D_’Uo—D

v ™
1-— 1-
mc + 76( Vc)w = mcy + —CO( VOCO)w07
. 1- . 1- .
m2V+p+c( C)w2:m2VO +p0+uw§,
Vv Vo
’LU2 0 wg
mVw + e, + (1 = 2¢) 5 = mVowo + (ec)” + (1 = 2¢0) 7%, (19)
w? (1l -c)w w?
e+c(1—c)?+7 <ec+(1—2c)7> -
w2 co(l —co)w wi
€g — C()(]. — 00)70 — O(TVE)O)O <(€c)0 + (1 — 200)70) +
1 c(1—c) , co(l —co) » _
5P+ =’ +po+ T wg) (V = Vo) =0,

12



where p = —ey . Further, for the sake of the simplicity we study a shock wave propagating in the
two-phase medium where there is no relative motion,

Wo = 0.
Moreover, we suppose that the the medium ahead of the shock is not a pure phase, that is
0<e<1.

The cases ¢co = 0 or ¢g = 1 lead to a degenerate form of the equations and we consider them
separately. Substituting wo = 0 into equations (19) we obtain:

v—D wvy—D

A A
mc—l—Mzmco
v )
(I-¢ ,

c .
m2V +p+ Tw =m?V, + po,

2
mVw + ee + (1 — 2@“’7 = (e.)°, (20)

2 1— 2
e—l—c(l—c)%—l—%(ec—l—(l—%)%) —eg+

orm+ Dy v oy =0

Suppose that the mass flux m is constant and assume that the parameters of state ahead and
behind the shock wave are connected by the following relations

V=W-AV, c=c—Ac¢, w=Aw, S=5y+AS,

where AV > 0, Ac, Aw, AS are sufficiently small quantities. We shall draw a conclusion about the
shock wave using a linearization of the system (20). Such linearization can be done with the help
of the approximate formulae:

1 1 AV
c(l—c) =co(1—co) — (1 —2¢)Ac, v 70+V—02,
c(l—¢) co(l—co) co(l—co) 1—2¢ 5 5
% i + 7z T ¢, w w, w = (Aw)

First of all, we derive the formula for the entropy variation behind the shock wave. To do it we
consider the last equation of the system (20), which can be rewritten using the second equation of
the system (20)

c(ln:Vc)w e
in the form: ) ) )
e—eo+%—(c—co) (ec+(1—2c)w7> +

torpo+ LDy v v =0

13



Expanding each term of this equation we can neglect all terms of the second and third order
containing the entropy variation. We can do it because the term of the first order containing the
entropy variation exists in the expansion. As a result we obtain

. . 1
esAS — ey AV — e, Ac+ eyy (AV)? + ece(Ac)? 4 ey AV Ac + 500(1 — ¢o)(Aw)?

1 1 1 . 1
—Eevvv(AV)3 - geccc(Ac)S - §€VVc(AV)2AC - §€chAV(AC)2+

Ac(e. — ey AV — e Ac+
1

1 1 .
F€eVv (AV)? + ieccc(Ac)2 + eve e AV Ac + 5(1 — 2¢0)(Aw)?)—

1 1 1
§AV(2p0 +eyvAV + ey .Ac — §6VVV(AV)2 — §3Vcc(AC)2 — BVVCAVAC) =0.

Here all derivatives of equation of state are calculated at pg,co,So. Taking into account that
po = —ey we obtain after some transformation
1 , 1 1 , 1 5
egAS = §ecc(Ac) + §eVCAVAc — 500(1 —¢o)(Aw)® — Eevvv(AV) —
1 s 3 , 1 ) 1 )
geccc(Ac) - ZevccAV(Ac) - §€ch(AV) Ac — 5(1 — 2¢0)Ac(Aw)”. (21)

Thus the formula for the entropy variation behind the shock wave of small amplitude is derived.
Furthermore, we prove that the terms of the second order vanish due to the other linearized
equations of the system (20). As a result we will obtain that the entropy variation is proportional
to the cube of variations of other parameters of state.

Note, that the formula (21) allows us to neglect entropy variation terms in the expansion for
other equations of the system (20). That is why the linearization of second, third, and fourth
equations of the system (20) can be written in the form

—mAc+ co(1 — o)V *Aw = 0,

(evv — m2)AV +eycAc=0, (22)
—ev AV — e Ac+mVpAw = 0.

Excluding Aw from the above system one can obtain the system

(evy —mA)AV + ey, Ac=0,

co(1 = co)eveAV + (co(1 = cp)ece — m?VE)Ae =0 (23)
The system (23) has a nontrivial solution if the determinant of the system is equal to zero:
2

eyy —m €ve -0
co(1 — co)eve co(1 — co)ece — m?VE

This equation can be written in the form of a biquadratic equation

co(l—c 5 co(l—c
m* — (evv + %600) m? + %(evvecc - e%/c) =0,
0 0

from which the possible values for the mass flux m can be found from the equation

1 co(l —c
m2 — 5 (eVV_I_%ecc) +

14



1 C()(l — Co) Co(l — Co) .
5\/ (evy + et — A evve = o). (24)

Hence if we suppose that the shock wave is determined by the jump of the specific volume V',
then the other parameters of state (except the entropy) behind the shock can be obtained with
the help of (22)—(24) by formulas:

mVy

_ 2 a2
Ac= VT Ay Aw= VV T AV, Av = —mAV.
eve co(l—co) eve

Finally, we can conclude that there are two possible shock waves of small amplitude. The

velocities of these waves are close to the velocities of two sound waves. In fact, it follows from the
first equation of the system (20), that

D = vy — mly,

and using formulae for eigenvalues (see previous section) we can conclude that D = ¢; or D = c¢q,
hence the velocity of the shock is equal to the speed of sound.
Consider again the equation (21) for the entropy variation. Using the expression

mVy

Aw=——"2—
Co(l — Co)

Ac,

which can be obtained from the first equation of system (22) we have for the second order terms
of the equation (21):

co(1 = co)ece — m2VE

ce(Ac)? AV Ae— (1 — Aw)? =
ecc(Ac)® + ey AV Ac — (1 — ¢p) (Aw) ol —co)

(Ac)® + ey AV Ac.

Obviously this expression is equal to zero due to the last equation of system (23). Therefore, for
the entropy variation we have the following expression:

1 1
esAS = —ﬁevvv(AV)3 — geCCC(Ac)?’—

5 1 1
%evccAV(Ac)z - Eevvc(AV)2Ac - 5(1 — 2¢o)Ac(Aw)?. (25)

So, the entropy variation is proportional to the cube of variations of other parameters of state.
The laws of thermodynamics require the positiveness of AS. This requirement leads to some
restriction on the third derivatives of the equation of state, but it is difficult to draw any useful
conclusions from formula (25).

4 On the transition between a pure phase and the mixture:
the phase vacuum problem

An interesting special problem has initial conditions consisting of two constant states (Riemann
problem) and in which in addition one initial state consists of a mixture and the other initial state
is a pure phase. Generally, such a flow can be an intrusion (separation) of one phase into (from)
the other. An example is the propagating of a shock wave through a surface separating a pure
liquid and pure gas. In practice such a shock wave cause intensive mixing of the phases in the
vicinity of the interface.
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The governing differential equations of existing models of two-phase media described in Section
2 degenerate when the concentration of one phase vanishes. A pragmatic approach to avoid this
degeneracy consists of artificially introducing a very small concentration value for the missing
phase. The physical and mathematical validity of the above procedure is not obvious but for the
simpler situation of water and no water this is an incorrect approach (Toro 2001). In the context
of two-phase compressible flow we pose the following question: is it possible to construct a solution
providing the transition between a pure phase and the mixture of two phases?

We consider models governed hyperbolic equations without dissipation. Such equations in one-
dimensional case admit two types of solutions, which could provide a transition between the pure
phase and the mixture. These solutions are a centred wave smooth solution depending on the
variable £ = z/t, and a shock-type discontinuity. As was noted earlier, the non-conservative single
pressure models described in Section 2 has no strictly defined shock-type solutions. That is why,
for this model, the only possibility is to try to construct a smooth centred wave, providing the
transition between the pure phase and the mixture.

4.1 Centred waves

Let us consider the simplified submodel consisting of the four isentropic equations of the single
pressure model. This can be derived from system (1) by neglecting the equations for energy and
consists of the mass and momentum balance laws for each phase:

dalpt N dalpivl

=0
8t 8a:k ’

8aipiv;'€ 30”'/)"02031 iapi _ g
ot ox; oxy K

Here o' are volume concentrations (a! + a® = 1), p’ are densities and v}, are velocities of phases.
The closing assumption is the equality of pressures p' = p?> = p and hence the closing relationships
are p' = p(p), p?> = p(p). As was mentioned in Section 2, differential source terms F' are associated
with interfacial forces of different nature and provide the hyperbolicity of the system:

dv?  d*o} (v} —v})
Fjlz—kpaloz2< dtj _d_tj> +a1a2(a1p2—a2p1)(vi1—v?)le—
. . day . o (ot dipt  a? d?p?
1 271 2 1 2 1 2 1 .2/.1 2 1 2
~alat(p! 4 ) (0} — )0}~ G — el + e} — o) (S T+ )

We attempt to find a centred wave solution for the one-dimensional version of the above equations,
which are:

6&1/)1 aalplvl

ot oz O
aa2p2 aa2p2v2
ot T ar
8(a1plvl —I—alplvl) + a(alpl(vl)Q +a2p2(v2)2 +p) _ 0
ot oz ’
da'plvl  dalp'(w')® L Op
o T e e
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where p' = p'(p), p* = p*(p).
For the sake of simplicity the momentum exchange force F' has been chosen in the simplest
form when k = 0 (the conclusion for the case k # 0 is similar to the case under consideration):

(vt —v?) 9.0 0
W) ata2(pt 4 )t 022 20

F' =a'a?(a'p? —a?p') (vt —v?)
A(atv! + a?v?)
oz '

A centred wave is a smooth solution of one-dimensional equations depending only on the variable
& =x/t. A system of ordinary differential equations can be derived to find such a solution:

+ala?(p! + o) (0! —0?)

da dp dv!
P - L1 O P (1) =
P - 9%+ (- -9 (-t =0,
da dp o dv?
2 2 4 0Q 202 av” _
p™(v f)d5 + ag? (v? f)df +ap’ = (26)
dp 1,1 dvt dv?
d£+(1 a)p (v f)d5 +ap® (v? €)d5 =0,
dp 11 dv* "
(- + (- apeh - % = 1
Here o = an, ¢' = %}S”), 2 =2 I()p ). Momentum exchange force F is also a combination of
the derivatives with respect to &:
L L dv?
F'=a(l—a)@' —v*)((1 = 2a)p" +2(1 —a)p )df
1 dv®
a(l —a)(wt —v?)(2ap' — (1 - 2a)p*) = R

System (26) admits a nontrivial solution if its determinant is equal to 0. Such an equality gives the
equation for &, and gives for £ a dependence on the parameters of state inside the centred wave:

&= % = )\(a,p,vl,vz).

There are four possible values for A, which correspond to eigenvalues of original hyperbolic system
and connected with speed of sound (Stadtke 2001).

To construct a centred wave solution we should reject one equation or some linear combinaton
of equations in the system (26) and operate with the three equations system. The convenient
resulting system for a centred wave solution can be written in the form:

—p' (vt = Nda + (1 —a)¢' (v' = Ndp + (1 — a)p*dv' =0,
P*(v* = Nda + ag?® (v — N)dp + ap®dv® = 0,
(p'(v? = &) = (v' =) A)dv! — (P*(v' = &) + (v} —v?)B)dv* =0,

where A = (1 —2a)p' +2(1 — a)p?, B = 2ap' — (1 — 2a)p?. The third equation can be derived
from the last two equations of the system (26) by eliminating the pressure p.

17



Let us suppose that p € [pg,p1] is the parameter characterizing the centred wave. Then the
equation for the concentration «a can be derived:

o —all- a)Qap ),
where Q # 0 if « = 0 or @ = 1. The conclusion is this: if « = 0 for p = py then a = 0 at
D € [po,p1]. Hence, there is no centred wave connecting the pure phase (a = 0) and the mixture
(1 > a > 0). The conclusion about the constancy of a can also be made for the case a = 1 in the
initial data.

The analysis of the centred wave solution can also be done for the conservative model without
dissipation. The one-dimensional equations for this model are written in the form (18)

ap ap ov

ot "'er T Por T

B 0v (pptell—cwd)dp  (petp(l-20wN)dc  dw  psdS
ot +U3x P Oz + P Oz +2(1 C)wax + p Or 0,
Oc dc ¢l —c)wdp Oc ow

3t+v&r+ 5 6x+(1 2c)w6x—|—c(1 C)Ox_o’

ow ow ov Op N ow as
E—l—v%—l—w%—l—ew%—l—(ecc—w )%4—(1—20)11)%—{—605%—0,
o5 05 _,

ot or

Proceeding in a similar way to the previous case and searching the centred wave solution p(x/t),v(z/t),
c(z/t), w(x/t),S(x/t) we can obtain a system of equations for the velocity, mass concentration and
relative velocity inside the centred wave:

dv de dw
Gl, dp C( C)Gg, dp

dp = GS)

where functions G; depend on the parameters of state, and Gs # 0 if ¢ =0 or ¢ = 1. ;{From these
equations we can see that there is no centred wave solution connecting the single phase and the
mixture of two phases.

In summary we arrive to the conclusion: for both nonconservative single pressure model and
conservative model the centred wave smooth solution can not provide the transition between a
pure phase and the mixture.

4.2 Mixing discontinuity

As was noted it is impossible to construct a mathematically correct discontinuous solution for a
single pressure model that is non-conservative. With the help of a conservative model we discuss
the possibility of searching for a solution as a discontinuity separating a pure phase and a mixture
of phases and moving into the pure phase.

Consider the degenerate case, when discontinuity separates two states of a two-phase medium,
one of which is a mixture and the other is a pure static phase. We study the case ¢g = 1 (the
analysis for the case ¢ = 0 can be done in a similar manner). Substituting ¢y = 1 into the second
equation of the system (20) we obtain

e(l—c)

v w=(1-c)m.
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From above equation we conclude that there are two possible solutions of the system. One of
them corresponds to ¢ = 1 and represents a shock wave propagating in the medium in which one
of the phases vanishes. We study the other case when the solution is determined by the equation

% = m. (27)

Using (27), the last three equations of the system (20) can be rewritten in the form

cw? Vo
pP—Dpo+ v ( CV) ,

2
w_ + €c — (60)0 = 0’ (28)

2
S w? 1 c(1 — c)w?
e—eo+(1—c)27+(1—c)ec+—(p+po+ ( V)

; )(V = V) =0.

(From the second equation of system (28) we can see that if the value of parameter n behind
the wave differs from its value ahead the wave then the solution with relative velocity w # 0 exists.
Such a solution can be called a "mixing” discontinuity. We again restrict the study to the wave of
small amplitude. It means that the parameters of state behind the wave are connected with the
parameters ahead of the wave by formulae

V=W-AV, ¢c=1-Ac¢, w=Aw, S5=5y+AS,

where AV > 0, Ac, Aw, AS are small quantities.

Let us suppose that the wave is determined by the given value of AV and other unknown
parameters can be determined by solving of system (28). As in the previous section, it is possible
to prove that the entropy variation has third order smallness with respect to AV. We will present
the formula for entropy below. But under such an assumption it is easy to conclude that the first
terms of the expansion of the first equation of the system (28) gives the connection between Ac
and AV:

eyv AV +ey.Ac=0.

Now from the second equation of the system (28) it is easy to derive the following formula

w? = _QM AV, (29)
Eve
Equation (29) gives the expression for relative velocity w behind the wave if the variation of
specific volume is prescribed. Note that for thermodynamically correct convex equation of state
(evvece — e}, > 0) the compression wave (AV > 0) exists if ey. < 0. The analysis of the third
equation of the system (28) gives the formula for the entropy variation

1 1
AS =—— A R cee A -
esAS Tpevvv(AY) 3¢ (Ac)
§evccAV(Ac)z - 1evvc(AV)2Ac - lAc2w2 + LAcAVw2 (30)
4 2 2 2Vy ’

and taking into account (29) we conclude that the entropy variation has third order of smallness.
To find the variation of velocity Av = v — vy it is necessary to use the first equation of the
system (20):
v—D Vo — D
= =m.

14 o
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Obviously
vg+Av—D =mV =mVy —mAV, vg— D =mV,

and subtracting these equations one from another we obtain by using (28):

AV
Av =-mAV = —w——.
Vo
The expression for w is given by (29). So we have the final formulas for variations of all parameters
of state if the variation of specific volume V is prescribed

w? = g SVVEe = Ve ry
€ve

m iw

= 7w
Ac= -2V Ay,

€ve
Av = -—mAV = —wA—V,
Vo

AS = _L (AV)? — E (Ac)® —
€s = 126VVV 3eccc c
3 > _ 1 VYV I 2
4eVCCAV(Ac) 2eVVC(AV) Ac 2Ac w” + Vo AcAVw?.

Note that the velocity of small amplitude discontinuity is determined by formula
D =vyg—mVy = vy —w.

Thus we have proved the existence of moving discontinuity which is a compression wave separating
the pure phase and the two-phase mixture. The velocity of such a discontinuity can be very small.

The theory of mixing discontinuity solution requires more detailed consideration. For a better
understanding of the mathematical and physical meaning of such a solution it is useful to consider
interfacial diffusion processes (see Subsection 2.2). This type of discontinuity could be the limit of
solutions for the system with diffusion if the coefficient of diffusion tends to 0.

5 Conclusions

In the present paper we have reviewed two different approaches to model two-phase flows: single
pressure nonconservative hyperbolic models and phenomenological conservative hyperbolic models.
The latter approach seems to be more attractive from the mathematical and numerical viewpoints.
Conservative models allow the formulation of discontinuous solutions such as shock waves. There
are two type of shocks corresponding to two types of sound wave in two-phase flow. Consideration
of the problem of transition between the pure phase and the mixture (phase vacuum problem) shows
that it is impossible to construct centred wave providing such a transition. The only possibility
to resolve the phase vacuum problem is the mixing discontinuity which can be constructed within
the conservative model.
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