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Abstract

We present several recent applications of nonlinear diffusion equations. We focus on the
so-called geometrical nonlinearities which are often expressed in a dependence of diffusion
coefficient on the solution and/or its gradient. As working examples we take generalized
mean curvature flow equations in direct and level-set formulations, nonlinear diffusions of
Perona-Malik type and nonlinear degenerate porous-medium equations. They model, for
example, the motion of interface in free boundary problems and are used in image process-
ing applications like image selective smoothing or image segmentation. We present related
mathematical models, computational schemes for their solution, numerical examples and
applications, and stability and convergence analysis of the numerical methods.

1 Introduction and motivations

In this work we are going to discuss several recent applications of geometrical nonlinear dif-
fusion equations. We will mainly deal with generalized mean curvature flow equations in
direct and level set formulations, nonlinear diffusions of Perona-Malik type and nonlinear de-
generate porous-medium type problems. They are related, e.g., to motion of free boundaries
in phase transition and to image processing applications like selective smoothing or segmen-
tation. In this first Chapter we present mathematical models related to image processing
and phase transition applications and illustrate some of their properties on the number of
examples. In the second Chapter we describe how curve evolution equations can be solved
by the so-called direct (Lagrangian) approach. In the third Chapter we concentrate on a
solution of level-set-like equations and Perona-Malik type diffusion by means of variational
techniques, namely finite element and finite/complementary volume methods.
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1.1 Why nonlinear diffusion equations are used in image processing

In many applications computers analyse images or image sequences which are often contam-
inated by noise, and their quality can be poor (e.g. in medical imaging). Nonlinear partial
differential equations (PDEs) can be used to automatically produce an image of higher quality,
enhance its sharpness, filter out the noise, extract shapes, etc. From the mathematical point
of view, the input processed image can be modelled by a real function u%(z), u® : Q@ — R,
where Q C R? represents a spatial domain. Typically € is rectangular and d = 2 or 3. In the
case of an input image sequence u°(z,6), u® : Q x [0,T4] — R, it depends on the additional
parameter 0 representing a point in a real time interval of acquisition [0, 74].

Image processing operations involving PDEs are nonlinear image filtration, edge detec-
tion, deblurring and image enhancement, restoration, image inpainting, shape extraction and
analysis, image segmentation, motion analysis, motion based filtering etc. [3, 5, 117, 133,
136, 30, 105, 120, 109]. Typical 2D examples are given by a large variety of medical images,
satellite or camera system images, old archive documents, texts pre-processed for automatic
reading, old corrupted photographs or any other digital images of poor quality. 3D examples
arise in bioengineering, medicine or in material quality control, where 3D volumetric aqui-
sition methods are widely used nowadays. The processing of image sequences can be found
in the restoration of movies, video sequence analysis, visual recording of growth (of human
organs, leaves of plants, etc.) or in improvement of the quality of medical image sequences.
For example, the ultrasound acquisition of a beating heart in 3D echocardiography gives one
interesting application.

The first step to use PDEs for image processing was done in the beginning of eighties
[80, 140]. By the simple observation that the Gauss function

1 —|z|% /40
Gg(w) = W@ =%/ (].].)

is a fundamental solution of the linear heat (diffusion) equation, it has been possible to re-
place the classical image processing operation — convolution of an image with G, with a
given variance v = v/20 (Gaussian smoothing) — by solving the linear heat equation for a
corresponding time ¢ = ¢ with initial condition given by the processed image. It is well
known that Gaussian smoothing (linear diffusion) blurs edges in the images and moves their
positions. Although such a phenomenon can cause no problems in some examples of data
analysis, in image processing, where the visual impression is important and a precise local-
ization of edges is also necessary (e.g. to compute volumes of segmented objects), the linear
image smoothing is generally not the best choice. A way has been found to overcome these
shortcomings, namely to switch to nonlinear diffusion models.

Due to the evolutionary character of the process which controls the processing using
diffusion equations, application of any PDE to an initially given image is understood as
its embedding in the so-called scale space. The Gaussian smoothing represents linear scale
space. In the case of nonlinear PDEs one speaks about nonlinear scale space. The axioms and
fundamental properties of such embeddings have been summarized and studied by Alvarez,
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Guichard, P.L. Lions and Morel in [3, 5, 65], where the notion of image multiscale analysis has
been introduced. The image multiscale analysis associates with a given image u°(z) a family
u(t,z) of smoothed-simplified images depending on an abstract parameter ¢t € [0,7], the
scale. As has been proved in [3], if such a family fulfills certain basic assumptions — pyramidal
structure, regularity and local comparison principle — then u(t,z), v : [0,7] X 2 — R, can
be represented as the unique viscosity solution (in the sense of [34]) of a general second
order (degenerate) parabolic partial differential equation. This theoretical result has also
an important practical counterpart. The equations of (degenerate) parabolic type have a
smoothing property, so they are a natural tool for filtering (image simplification) by removing
spurious structures, e.g. noise. Moreover, the simplification should be “image oriented”, e.g.
it should respect edges and not blur them. Or, it should recognize motion of a structure in
an image sequence, and consequently the smoothing (diffusion) should respect the motion
coherence in consecutive frames. Such requirements, or even more sophisticated ones related
to the geometrical characteristics of the image, bring strong nonlinearity into the parabolic
PDEs, and make this field interesting not only because of the applications but also from a
mathematical and numerical point of view.

1.2 Anisotropic diffusion of Perona-Malik type

Since the end of the 80s, the nonlinear diffusion equations have been used for processing of
2D and 3D images. After the pioneering work of Perona and Malik [114] who modified the
linear heat equation to nonlinear diffusion preserving edge positions, there has been a great
deal of interest in the application and analysis of such equations. At present, the following
nonlinear PDE suggested by Catté, P.L.Lions, Morel and Coll [31] is widely used

ur — V.(9(|[VGy * u|)Vu) =0, (1.2)

where u(, ) is an unknown function defined in Q7 = [0, 7] x Q. The equation is accompanied
by zero Neumann boundary conditions and the initial condition

2%20 on 1Ix 99, (1.3)
u(0,2) =u’(z) in Q, (1.4)

where n is the unit normal vector to the boundary of Q. We assume that Q C R? is a bounded
rectangular domain, I = [0,77] is a scaling interval,

g : R — RT is a nonincreasing function, g(1/s) is smooth, (1.5)
g(0) =1, and we admit g(s) — 0 for s — oo,
G, € C®(R?) is a smoothing kernel (e.g. the Gauss function), (1.6)
Go(z) dz = 1, / VG| dz < Cy,
R R

Gy(x) = 05 for 0 — 0, 0, is the Dirac measure at the point x,

u’ € Lo (), (1.7)
and

VGU*u:/VGU(x—f)&(f) d¢, (1.8)

Rd
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where 4 is an extension of u to RY. One can consider the extension of u by 0 outside € or
the reflective periodic extension of the image [31].

Figure 1: Smoothing of the noisy image keeping the edges using anisotropic diffusion. Shown
are the Oth, 10th, 20th, 30th, 40th and 50th discrete steps of a semi-implicit finite volume
algorithm [96].

The equation (1.2) represents a modification of the original Perona-Malik model [114,
106, 74]

uy — V.(9(|Vu|)Vu) =0, (1.9)

called also anisotropic diffusion in the computer vision community. Perona and Malik in-
troduced (1.9) in the context of edge enhancement. The equation selectively diffuses the
image in the regions where the signal has small variance in intensity in contrast with those
regions where the signal changes its tendency. Such a diffusion process is governed by the
shape of the diffusion coefficient given by the function ¢ in (1.5) and by its dependence on
Vu, which is understood as an edge indicator [114]. Since g — 0 for large gradients, the
diffusion is strongly slowed down on edges, while outside them it provides averaging of pixel
intensities as in the linear case. From a mathematical point of view, for practical choices of
g (e.g. g(s) =1/(1+5s2), g(s) = e~*), the original Perona-Malik equation can behave locally
like the backward heat equation. It is, in general, an ill-posed problem which suffers from
non-uniqueness and whose solvability is a difficult problem [74]. One way to overcome this
disadvantage has been proposed by Catté, P.L.Lions, Morel and Coll in [31]. They introduced
the convolution with the Gaussian kernel G, into the decision process for the value of the
diffusion coefficient. Since convolution with the Gaussian is equivalent to linear diffusion,
their model combines ideas of linear and nonlinear scale space equations. Such a slight mod-
ification made it possible to prove the existence and uniqueness of solutions for the modified
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Figure 2: Initial image (left); result after 20 steps of regularized Perona-Malik filtering (right)
using semi-implicit complementary volume discretization [60].

equation, and to keep the practical advantages of the original formulation. Moreover, usage
of the Gaussian gradient VG, * u combines the theoretical and implementation aspects of
the model. The convolution (with prescribed o) gives a unique way to compute gradients
of a piecewise constant image. It also bounds (depending on o) the gradient of the solution
as input of the function g in the continuous model — which corresponds to the situation in
numerical implementations where gradients evaluated on a discrete grid are finite. Also, the
local edge enhancement is more understandable in the presence of noise.

We illustrate behaviour of the regularized Perona-Malik equation (1.2) in three examples.
First, the artificial image (Fig. 1, 256 x 256 pixels) with additive noise is processed by our
finite volume scheme [96]; then nonlinear multiscale analysis of the medical image (Fig. 2,
463 x 397 pixels) computed by the co-volume discretization [60] is given; and finally, there is
an application of the 3D adaptive finite element method [70, 16, 17] to 3D echocardiographic
image of one moment of the cardiac cycle with the left ventricle in open phase. In Fig. 3,
one can see a visualization of the isosurface representing the boundary between blood and
muscle forming an edge in 3D image intensity.

1.3 Slow and fast degenerate diffusion added to Perona-Malik equation

The following generalization of the Perona-Malik equation has been introduced by Kacur and
Mikula [71, 72]:

ob(z,u) — V.(9(|VGy x B(z,u)|)VE(z,u)) = f(u0 —u). (1.10)

The functions b and 8 represent new nonlinearities which make the image multiscale analysis
locally dependent on values of the intensity function v and on the position in the image x.
Such a generalization is useful in any situation where properties of the image or requirements
to the image processing operation can be expressed in dependence on x and u. For example,
if a different speed of the diffusion process is desirable in different parts of the image or for
different ranges of the intensity function, then equation (1.10) can be used. In the points,
where the derivative (), is small (b, is large), the diffusion process is slowed down, while
where [, is large (b], is small) the diffusion process is speeded up. Degenerate cases from
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Figure 3: Smoothing of the human left ventricle by anisotropic diffusion. We visualize cor-
responding level surfaces in the Oth, 2nd, 4th and 8th discrete steps of the semi-implicit
adaptive finite element algorithm [17].

the point of view of the theory of parabolic PDEs, when either /3], or b/, is equal 0 or oo, can
also be included. The degenerate cases can be interpreted as total stopping of diffusion, or as
diffusion with the infinite speed in some image regions. Applying the regularized anisotropic
diffusion (1.2) improves some set of edges. On the other hand, it destroys details which are
under the edge threshold (given by g) or undistinguished from the noise at some scale. If such
details are contained in certain ranges of greylevels, then they can be conserved by a special
choice of the function 5 or b. As a demonstration we present Fig. 4. In that image, the colors
of Flora’s face are demaged only. We present the reconstruction of the original (left image) by
anisotropic diffusion accompanied with the slow diffusion effect (image on the right). Using
the proper choice of 8 (b is linear), which is constant for darker (lower) greylevels and linear for
the upper range of u, the face is selectively smoothed and the details around it are conserved.
For the existence of the solution to (1.10) and numerical algorithm which converges to this
solution we refer to [72]. The right-hand side of (1.10) with nondecreasing function f can
be used to force the solution to be close to original u® [108]. The Lipschitz continuous f
causes no important difference in numerical analysis compared to the zero right-hand side
[70, 72, 96].



Solution of geometrical nonlinear diffusion equations 7

Gt
g

Figure 4: Processing of a color image using slowed anisotropic diffusion [72].

1.4 Structural tensor based anisotropic diffusion

Weickert (see e.g. [136, 137, 138]) introduced a generalization of the Perona-Malik equation
of the form

ug — V.(DVu) =0 (1.11)

where D is a matrix depending on the eigenvalues and eigenvectors of a regularization of the
so-called structure tensor Vu(Vu)?. The dependence is such that diffusion strongly prefers
direction of line structures in the image. That idea has also been used by Preusser and Rumpf
in multiscale flow field visualization in computational fluid dynamics [115, 40].

1.5 Diffusion systems and color image processing

There exist generalizations of the basic equations from the previous Sections to the processing
of color images. An RGB image can be viewed as a composition of three greyscale images
(channels) representing the levels of intensity for red, green and blue colors. Then it is
natural to consider a Perona-Malik-type system of equations adapted to the RGB image.
The image in Fig. 4 was processed using independent diffusion processes (1.10) for each
channel. It gives good result, but certainly a better idea is not to apply the Perona-Malik-
like anisotropic diffusion to each channel independently, but to synchronize the diffusion by
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Figure 5: In the top: red, green, and blue channels before smoothing (from left to the right).
In the bottom: red, green, and blue channels (from left to the right) after 8 steps of the
synchronized smoothing model (1.12). In the middle: composition of smoothed channels.

computing a common diffusion coefficient depending on the information coming from all three
colors. In [139, 138, 81], dealing with color images and vector valued diffusion, the following
system of nonlinear partial differential equations has been considered:

3

Opui = V.(90) VG 5 uj|*)Vug) =0, i=1,2,3. (1.12)

j=1

The equations are accompanied by initial and zero Neumann boundary conditions for each
color. In the case (1.12) the edges of a highly destroyed channel can be recovered by infor-
mation coming from the remaining channels [81]. The experiment documented in Fig. 5 was
performed on the RGB image of the size 512 x 402 pixels. The picture is a result of scanning
and has a significantly damaged blue channel (top of Fig. 5). The Fig. 5 shows, that with
help of red and green channels, which are of much better quality, the synchronized smoothing
(1.12) recovered the blue channel to the form shown in the bottom of the Fig. 5, on the right.
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1.6 Space-time filtering of image sequences

A given 3D space-time image sequence (e.g. in 3D echocardiography) u"(z, 6) is a special 4D
image where a motion coherence of subsequent frames is present. Usually, the aim is to extract
relevant motion information from the sequence, filter out the noise, and enhance moving
structures. To that end, it seems reasonable to use additional information (in comparison
with still image processing) given by the motion correspondence in the image sequence.

We can assume that certain objects acquired at different times, and thus being in different
frames of the sequence, are formed by points that preserve their intensity along the motion
trajectory. Such objects are called Lambertian structures. Moreover, we assume that motion
48 smooth in time, and thus the motion trajectories are close to straight lines locally. Designing
the model we consider the following quantity [3, 5] proposed by Guichard [53]:

) 1
clty(t,z,0) = min W(AO [(Vu(t,z,0), w; —ws)]
+ |u(tv:B - 'LU1,0 - AQ) - U(t,ZL’,Q)l
+ |u(t, z + we, 0 + AO) — u(t, z,0)|)

(1.13)

where wi,ws are arbitrary vectors in RN and A# is a time increment. The scalar function
clt, will introduce a measure of coherence in time for the moving structures. It consists of the
sum of three positive parts and we want to find the minimum in all possible directions wy, wo.
The last two terms in the sum on the right-hand side of (1.13) are related to the differences
in the intensities of end-points of the candidate Lambertian velocity vectors wq,ws. To find
the directions of such vectors, we look at the points whose intensity value is closest to the
intensity u(¢,z,0) in the previous frame (term |u(t,z — wi,0 — Af) — u(t,z,0)|) and in the
next frame (term |u(t, z +waq, 0 + Af) —u(t, z,0)|). Those differences are scaled by the factor
1/(A6)2. Note that if we find corresponding Lambertian points, then both terms vanish.
The first term in the sum, namely [(Vu(t, z,0),w; — wa)|/(AB), corresponds to the so-called
apparent acceleration, i.e. to the difference between the candidate Lambertian velocity vectors
wy and we in the direction of Vu. For details and some more background from the optic flow
point of view we refer to [3, 5, 53]. The quantity clt, is thus related to the curvature of the
space-time level curve passing through the space-time point (z,6) in the scale ¢ (curvature
of the Lambertian trajectory). The value of clt, vanishes for the Lambertian points that are
in uniform motion. This is consistent with the purpose not to alter such trajectories. On
the other hand, for the noisy points there is no motion coherence and thus clt, will be large
there.

Concerning the space coherence, we assume that distinguished structures are located in
the regions with a certain mean value of the image intensity, and that the object boundary
forms an edge in the image. In order to construct a spatial diffusion process we thus require
specific behavior on the edges as in the Perona-Malik anisotropic diffusion equation.

To combine time coherence of moving objects with their spatial localization we consider
the following equation for the processing of image sequences [125]:

up = clt,V.(g(|VGy * u|)Vu). (1.14)

As an application, we are dealing with a phantom-like image sequence consisting of ex-
panding, slightly deforming and moving ellipses with the inner structure in the form of qua-
trefoils. We add impulsive (salt & pepper), Gaussian noise and blurring to the frames of
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Figure 7: The multiscale analysis of the 1st frame of a 3D-echocardiographic image sequence
by the equation (1.14) [125].
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Figure 8: The multiscale analysis of the 7th frame of a 3D-echocardiographic image sequence
by the equation (1.14) [125].

the image sequence. The original six-frame sequence and its destroyed version are shown in
the first two columns of Fig. 6. The reconstruction of any noisy frame of this sequence by a
standard (still image) filtering algorithm is very difficult task (by our experience impossible).
The right-hand column of Fig. 6 represents the results of (1.14) applied to the noisy sequence
after 10 discrete scale steps of the numerical implementation from [125].

Next we have applied the method to 3D echocardiographic sequence. In Figs. 7-8 the iso-
surfaces corresponding to the blood-muscle interface have been visualized. Figs. 7-8 consist
of three sub-figures. For each row, on the left we show the echo-volume visualized using the
original noisy data, in the middle the result after three discrete scale steps, and on the right
after nine discrete scale steps of the model (1.14). Some further experiments (also in parallel
implementation) and more detailed discussion can be found in [125, 92, 126, 127].

1.7 The curvature-driven nonlinear diffusion equations

In rather general situations, edges corresponds to specific level lines (level surfaces in 3D) of
the image intensity function [23]. For example, as one can see in Fig. 9, the edge representing
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the blood-cardiac muscle interface corresponds also to an isosurface of the greylevel image
intensity function. In the three subfigures, the corresponding isolines are visible in 2D cutting
slices. The isoline gives a curve in 2D plane representing the boundary of the left ventricle
in the slice. If one would like to smooth it in order to remove the large acquisition errors,
one way how to proceed is to move the curve (surface in 3D) in the direction of its inner
normal with the velocity proportional to its (mean) curvature. The motion of convex and
concave pieces is opposite due to the sign of the curvature, and the large fingers shrink much
faster than the smoother parts, due to the curvature dependence of the flow. This motion
by (mean) curvature is governed by heat equation (Gaussian smoothing), but applied in
the intrinsic curve (surface) geometry. In Fig. 10 we present the smoothing effect of such
geometrical diffusion [91, 97]. On the left, the cuttings of unfiltered iso-surfaces are plotted,
on the right the filtered ones (all after binarization with the same treshold). We can see an
immediate extinction of small structures (noise) due to their high curvature, and a smoothing
of the larger structures in the image. Recently, Perona-Malik-like effects have been included
into geometrical diffusion models by Preusser and Rumpf [116] which allow smoothing of the
image level lines (surfaces) together with enhancing of their edges and corners. Geometrical
diffusion models based on representation of a color image as a hypersurface in 3D space which
is then moved by mean curvature motion are used for processing of color images, too (e.g.
[77]). An image sequence analysis based on anisotropic geometrical diffusion in space and
time which, in spite of the previous Section, is capable to take into account highly accelerated
motions in motion based filtering, has been suggested by Mikula, Preusser and Rumpf ([94],
see also [95]).

Figure 9: 2D orthogonal slices crossing in the centre of the 3D echocardiographic cube with
the image of the human left ventricle.

The level lines (level surfaces) of the image intensity function correspond to plane curves
(hypersurfaces in 3D) and, in geometrical diffusion models, the smoothing corresponds to their
properly designed motion. Since usually objects which are of particular interest are contained
inside the image, without lost of generality (in 3D case it is similar), we may restrict attention
to evolutions of closed plane curves I'; = Image(x(p, t)), where x : Rx [0, Trhaz ) — R? is a C?
vector function, periodic in the first argument with a period given by the range of a curve
parametrization p. The motion is driven by the normal velocity v which is assumed to be a
function of the curvature k, tangential angle v and position vector z € I'y:

v=0(z,k,v). (1.15)

The experiment presented in Fig. 10 corrresponds to the simple linear curve shortening flow
(linear intrinsic diffusion) equation f(z,k,v) = k (see e.g. [49, 52, 1, 45, 6, 8, 9, 10]) Let us
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Figure 10: 2D cuts of the result of 3D processing by geometrical diffusion of mean curvature
flow type.

note that geometric equations of the form (1.15) can be found not only in image processing
but in a large variety of applied problems like e.g. multiphase fluid dynamics, material science,
dynamics of phase boundaries in thermomechanics, modelling of flame front propagation in
combustion, computational geometry, robotics, semiconductors industry, etc. For an overview
of important applications of (1.15) we refer to a recent books by Sethian [133], Sapiro [120]
and Osher and Fedkiw [109]. They have not only the practical application in image filtering
but also special conceptual importance in computer vision. Namely, affine invariant scale
space which is a generalization of the linear intrinsic diffusion (curve shortening flow) is given
by equation (1.15) provided S(z, k,v) = k'/3 [3, 121, 122, 123, 124, 14].

There exists a mathematical theory for evolving curve and surface problems [46, 33];
also, numerical methods are available and in further development. From the computational
point of view there are two main approaches for solving curve or surface evolution. In the so-
called Lagrangian (or direct) approach, the curve, respectively surface, itself is discretized and
moved. In spite of that, the so-called Eulerian (or level-set) approach implicitly handles the
motion by passing the problem to a higher dimensional space and solving there the evolution
equation for a graph whose evolving level sets correspond to the evolving curve or surface.
So one looks for the function u : R? x Rf — R, for which the moving curve z is the same
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level line at each time moment ¢, i.e.
u(z(t),t) = ¢ (1.16)

for every t € I = [0,T},4,) and certain ¢ € R . As initial datum for u one can consider e.g.
the so-called signed distance function [133, 109] given by

u(z,0) = xd(z), (1.17)

where d(z) is distance from the point z to the initial curve I'g and the plus (minus) sign is
chosen if the point z is outside (inside) the initial curve I'y. Differentiating (1.16) in time
one gets

v Ou_ (1.18)

Since only normal component of velocity influences image of the evolution (see e.g. [14]) by
(1.15) we get

ox -

— = fAN 1.19
where

- Vu

N=— 1.20

is the outer normal vector to the level line of u. Using (1.19) and (1.20) in (1.18) we obtain
the Hamilton-Jacobi partial differential equation

ou

— Vu| =0 1.21

2 4 IVl (1.21)
for the unknown function w. This equation is a basis for construction of the Osher-Sethian
numerical level set method ([110], [131]). Due to the relation

Vu
k=-v.[ 2L
v (|Vu|>

which holds for the curvature k of the level line of u passing through point x, we get, provided
Bz, k,v) = k, the well-known level set equation

up = |Vul|V. <|§—Z|> (1.22)
for curvature-driven motion. As noticed in the beginning of the Section, it is well suited
for image processing applications, since it smoothes intrinsically any level set and moreover
the smoothing is done at once for all level sets. It also fulfills the so-called morphological
principle: if u is a solution then, for any nondecreasing function ¢, ¢(u) is a solution as well.
This contrast invariant property has large significance in the axiomatic theory of the image
processing and computer vision [3]. It also means that level sets move independently of each
other; they diffuse only intrinsically, there is no diffusion across them in the normal direction.
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The level set equation (1.22) provides a directional smoothing of the image along its level
lines and contains implicitly the idea of Weickert’s directional diffusion (see Section 1.4) if
we think about level lines instead of edges. Such an idea was used by Alvarez, P.L.Lions and
Morel in [4], where the equation

ur = g(|VGy * u|)|Vul|V. <|§—Z|> (1.23)
has been suggested for computational image and shape analysis. It is accompanied by the
same boundary and initial conditions (1.3)—(1.4) as in the case (1.2). Equation (1.23) can
be used for image silhouettes smoothing (g = 1, see e.g. [3, 5, 91, 97]), or it can be used for
edge-preserving smoothing in a similar way as equation (1.2). The Perona-Malik function
g(s) depending on |VG, * u| is used to strongly slow down the motion of silhouettes which
are at the same time edges. The regions between them are smoothed by the mean curvature
flow.

Figure 11: Initial image (left); result of smoothing after 5 (middle) and 10 (right) scale steps
using equation (1.23) and co-volume discretization [59].

In Fig. 11 we smooth an initial 321 x 373 pixel image (ancient coat-of-arms of the Slovak
town Kremnica shown on the left), scanned from a book with neither paper nor colors of
good quality. Also shown are the results after 5 and 10 discrete scale steps of the co-volume
scheme [59] for equation (1.23) with g(s) = 1/(1 + s?). We also present Fig. 12, where two
chromosomes are extracted from an initial noisy 3D image of a human cell by image selective
smoothing (1.23) with the same g.

To end of this Section, let us mention a general useful use of viewing gradient-dependent
nonlinear diffusion equations. The nonlinear diffusion term V.(g(|Vu|)Vu) can be rewritten
in 2D as

V.(g(IVul)Vu) = g(|Vul)uge + H'(|Vu]) gy,

where H(s) = sg(s) and £,n are tangential and orthogonal vectors to the level line, respec-
tively. From this form one can clearly see how diffusion works along and across the image
silhouettes with different choices of g. There is always positive, but possibly strongly slowed-
down (depending on the shape of g) diffusion along level lines. Across level lines there can
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Figure 12: Extraction of two chromosomes in a human cell using geometrical diffusion (1.23)
[58].

be forward diffusion (when H'(s) is positive), zero diffusion (e.g. in the Rudin-Osher-Fatemi
model [118, 111] dealing with total variation denoising, and also in the mean curvature flow
equation in the level set formulation, where g(s) = 1/s), or backward diffusion (in the original
Perona-Malik model [114] where g(s) = 1/(1 + s2)).

1.8 Interface dynamics in phase transition

If a solid phase occupies a subset Q4(t) C Q and a liquid phase - a subset €;(t) C Q, Q C R?,
at a time ¢, then the phase interface is the set I'y = 9€Q,(t) N 0 (t) which is assumed to be a
closed smooth embedded curve. The sharp-interface description of the solidification process
is then described by the Stefan problem with a surface tension

pcolU = NAU in Q(t) and Q(?), (1.24)
A,.U)L = —Lv  onTy, (1.25)

§
;e(U —U*) = —7@)k+m(v)vonTy, (1.26)

subject to initial and boundary conditions for the temperature field U and initial position
of the interface I' (see e.g. [19, 21, 128, 129]). The constants p,c, A\ represent material
characteristics (density, specific heat and thermal conductivity), L is the latent heat per unit
volume, U* is a melting point and v is normal velocity of the interface. Discontinuity in the
heat flux on the interface I'; is described by the Stefan condition (1.25). The relationship
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(1.26) is referred to as the Gibbs — Thomson law on the interface 'y, where de is difference in
entropy per unit volume between liquid and solid phases, ¢ is a constant surface tension, v;
is a coefficient of attachment kinetics and dimensionless function 7, describes anisotropy of
the interface. One can see that the Gibbs — Thomson condition can be viewed as a geometric
equation having the form (1.15). Let us note that solution of (1.26) is an important part of
the solution and in general it is connected to (1.24)—(1.25) by the term on the left side of
(1.26). Such coupling allows computer simulations of complex physical phenomena, e.g. the
dendrite growth in solidification process presented by Béansch and Schmidt [128, 129, 18].

In the series of papers [11, 12, 13], see also [54], Angenent and Gurtin studied perfect
conductors where the problem can be reduced to a single equation on the interface. Following
their approach and assuming a constant kinetic coefficient one obtains the equation

v=_p(zkv)=vv)k+F

describing the interface dynamics. It is often referred to as the anisotropic curve shortening
equation with a constant driving force F' (energy difference between bulk phases) and a given
anisotropy function .

1.9 Geodesic curvature driven flow and image segmentation

Let us now consider a flow of curves on a two dimensional surface M in R?. The surface
M = {(z,$(z)) € R®, z € Q} is assumed to be represented by a graph of a smooth function
¢:Q CR? = R defined in a domain  C R?>. We assume the simplest possible case in which
the normal velocity V of a curve G on M is a linear function of its geodesic curvature Xy and
external force [101, 103]

V=K, +F (1.27)

where F is the normal component of a given external force é, ie. F =GN and N is the
unit normal vector to G belonging to the tangent space T,(M).

Hereafter, we will frequently use the abbreviation (z, z) standing for a vector (z1, z9,2) €
R? where x* = (z1,72) € R?. Any smooth closed curve G on the surface M can be then
represented by its vertical projection to 2, i.e.

G={(z,4(z)) eR’, z €T}

where T is a planar curve in  C R? (see Fig. 13).

It is possible to derive a geometric equation for evolution of the family of planar curves
I'y,t > 0, provided that the flow G;,t > 0, of surface curves satisfies (1.27) [101, 103]. For
that goal, we have to find how the normal velocity v of I'; depends on geometric quantities
corresponding to I'y. Straightforward calculations enables us to conclude that the unit inward
normal and tangent vectors N, T € T, (M) to a surface curve G C M relative to M are given
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Figure 13: A surface curve G (left) and its projection I' to the plane R? (right).

) (:F Vqs.:ﬁ)
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(1 + (V¢.:F)2) :
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For a curve G = {(z, #(z)) € R®, x € T'} on a surface M = {(x1, T2, p(71,22)) € R, (71,72) €
1} the geodesic curvature I, is given by

K, = —VEG-F? <m'1'w'2 — a2l — T2 2 + Tlyah
—(2I'F, = Ty)afzh + (201, — F%2)1’3'1$'22>

where E, G, F' are coefficients of the first fundamental form and Ffj are Christoffel symbols of
the second kind. Here (.)" denotes the derivative with respect to the unit speed parametriza-
tion of a curve on a surface. Taking into account that the surface M is a graph of a smooth
function ¢ we obtain, after some calculations, that

. o
(1+|Ve2)? &+ %v .
K, = ) (1.28)
(1 + (V¢.T)2> 2

where k,f,]\_f are the curvature, unit tangent and inward normal vector of a plane curve
I C Q. The external vector field G is assumed to be perpendicular to the plane R? and it
depends on the vertical coordinate z = ¢(x) only. As a typical example one can consider
gravitational like external force
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where ¥ = 3(z) = J(¢(z)) is a given scalar ”gravity” functional. Taking the normal com-
ponent of such an external force we obtain expression for the driving term F = G.N in the
form

F=— 7)) V4N, (1.29)
(W +19gP) 1+ (Vo1)?))*

////////

Figure 14: An image intensity function I(z) (left-top) corresponding to a ”dumb-bell” image
(left-bottom). The plot of function ¢(x) = ¢g(|VI(z)|) (right-top) and its density plot together
with the corresponding vector field —V¢(z) (right-bottom).

—

Now we are in a position to derive a geometric equation v = f(z, k, v) having the form of
(1.15) for the normal velocity v of I'y in such way that corresponding family of surface curves
G, satisfies (1.27). For description of the evolution of the position vector z = z(.,t) € R? of
a planar curve I'y we consider the position vector equation

Oz = BN + oT (1.30)

where § and « are normal and tangential velocities of I', resp. Since G; = {(z, ¢(z)), z € I';}
the normal velocity V of G; satisfies

V = Oz, 4x)N = (N,V.N).AN

(e ),
1+ (Vg.T)? '
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It follows from (1.28) and (1.29) that the flow of surface curves Gy C M, ¢ > 0, fulfills (1.27) if
and only if the normal velocity v of the flow of planar curves I';, ¢ > 0, satisfies the geometric
equation

v =Bz, k,v) = alz,v) k — b(z,v) Vé(z).N (1.31)

where a = a(z,v) > 0 and b = b(z,v) are smooth functions given by

1
a(x, I/) = W’ (132)
1 . TTV2¢ T
e = g (e - oo )

Here ¢ = ¢(z) and T = (cosv,sinv), N = (—sinv,cosv). Notice that the function b is
positive provided that 4 > 1 is large enough. Furthermore, § is a 27 periodic function in v
variable and A3 is C*~2 smooth provided that ¢ € C*.

A similar equation to (1.31) arises from the theory of image segmentation. A given
greylevel image can be represented by its intensity function I. The aim of segmentation is
to find boundaries of distinguished object of the image, i.e. closed planar curves on which
the gradient VI is large [114]. The idea behind the so-called active contour models is to
construct an evolving family of plane curves converging to an edge [73]. One can construct
such a family respecting the geometric equation v = vk + ¢ where ¢ = ¢(z,v) is a driving
force and v = y(z,v) > 0 is a smoothing coefficient [25, 88]. These functions may depend
on the position vector = as well as orientation angle v of a curve. If ¢ > 0 then the driving
force shrinks the curve whereas the impact of c is reversed in the case ¢ < 0. Let us consider
an auxiliary function ¢(z) = g(|VI(z)|) where g is a smooth edge detector function like e.g.
the Perona-Malik one g(s) = 1/(1 + s2). The gradient —V¢(z) has the important geometric
property: it points towards regions where the norm of the gradient V1 is large (see Fig. 14).
Let us therefore take c(z,v) = —ba(¢(2))Vh(z).N and v(z,v) = by (¢(z)) where by, by > 0
are given smooth functions. Now, if an initial curve belongs to a neighborhood of an edge of
the image and it is evolved according to the geometric equation (cf. (1.31))

v = Bla.k,v) = bi($(2)k - ba((a)) Ve(2).N

then it is smoothly driven towards this edge. In the context of level set methods, segmentation
techniques based on this idea were first discussed by Caselles et al. [25] and Malladi, Sethian
and Vemuri [88]. Later on, the models have been revisited and significantly improved by
finding the proper driving force in the form —V¢(z) by Caselles, Kimmel and Sapiro ([26, 27],
also [28, 29]) and Kichenassamy et al. [75, 76].
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2 Computational methods for the curve evolution equations

From the computational point of view, two main approaches are used for solving the equation
(1.15):

1. Direct (or Lagrangian) approach, in which the geometrical parameters of the evolving
curve itself are unknowns in related initial boundary value problems. For example, there are
methods of this type based on computing the

- position vector in intrinsic heat equations, e.g. [41, 42, 43, 35, 99, 100, 78, 79, 128, 129]

- curvature or crystalline curvature in porous-medium like equations [93, 90, 50, 51, 134]

- nonlinear intrinsic systems for geometrical quantities describing curve [61, 62, 101, 102, 103]
- morphological methods based on erosion of polygons [104, 24], etc..

2. Level set (or Eulerian) approach based on introducing of an auxiliary function v(z,t),
v:RY x R{f — R specific level set of which corresponds to the evolving curve (surface) and
which is solution to the

- level set formulation (1.21) (see e.g. [110, 131, 132, 133, 109]) or

- various phase-field formulations in the form of reaction-diffusion equations (see e.g. [22,
107, 44, 112, 19, 20, 21]).

The level set equation is used in sharp interface motion modelling while the phase-field
equations are used to describe motion of diffussive interface and the curve evolution by (1.15)
is then given as a limit when thickness of diffusive interface tends to zero.

In this Chapter we will be mainly concerned with direct methods for curve evolution and
postpone discussion on the level set approach to Chapter 3. The computational techniques
and applications of the phase-field equations have been extensively studied in the last decades,
we refer e.g. to [107] or [19] for numerical methods of this type; we will not present more
detailed discussion on these methods in this publication.

We will consider a regular plane curve I' which can be parametrized by a C? smooth
function z : S' — R? such that I' = Image(r) = {z(u),u € [0,1]} and |0,z| > 0. One
can define the unit tangent vector T = Oyx/|0yz| and the unit normal vector N in such
a way that T AN = 1 where @A b is the determinant of the 2 x 2 matrix with column
vectors a, b. Henceforth, we will denote & . b the Euclidean inner product of two vectors. By
|@| = (@.@)"/? we denote the Euclidean norm of a vector @ The derivative of a function
[ = f(&) with respect to £ we will be denoted by 0 f or %éi. The arc-length parametrization
will be denoted by s. We denote by g = |9,z| the local length. Then clearly, ds = gdu. Note,
that in the first and third Chapter we use v and g as greylevel image intensity resp. Perona-
Malik function while in this Chapter as unit interval parametrization resp. local length, but
since the contexts are quite different we hope no confusion can appear. By k& we denote the
signed curvature of the curve I' = Image(z) defined as

2
k= 0.z A0z = % (2.1)
u

then Frenet’s formulae read as follows Ty = kN , N, = —kT. The angle v of the tangential
vector is given by v = arg(T), i.e. (cosv,sinv) = dsz = T. To describe the time evolution
{T'y},t € [0,T) of an initial curve I' = T’y = Image(z°) we adopt the notation I'; = {x(u,t),u €
[0,1]}, t€[0,T), where z € C*(Qr,R?) and Qr = S* x [0,T). We will frequently identify
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Qr with [0,1] x [0,T) and the space C'(Q7, R?) with the space of C! differentiable functions
defined on [0, 1] and satisfying periodic boundary conditions. We will study a motion driven
by the normal velocity v which is assumed to be a function of the curvature k, tangential
angle v and position vector x € I'y:

v=0(z,k,v). (2.2)

Assumptions on a specific form of the governing function § will be given in subsequent Sec-
tions. First, we will describe convex curves evolution, driven by anisotropy and nonlinear
function of curvature, solving doubly-nonlinear asymptotically degenerate porous-medium
type equation. Then we use intrinsic heat equation formulation to solve general nonconvex
curvature driven evolution. Next, we will stabilize the intrinsic diffusion based method by
suitable tangential redistribution. Finally we develop formulation and solution method for
system of ordinary-partial differential equations of convection-diffusion-reaction type govern-
ing evolution of all geometric quantities (curvature, tangent angle, local length and position
vector), which is well suited for numerical solution and can be used in very general situations
of anisotropic and geodesic curvature motions with strong external driving forces depending
on current position of the curve.

2.1 Solution using porous-medium like equations

In this Section, let us consider closed and convex initial curve z(u,0) and evolution of the
form

v = B(k,v), (2.3)

with 8 smooth, increasing in k. Then, due to [12, 14], the evolution by equation (2.3) preserves
convexity. The evolving curve admits various parametrizations. In convex case, v - the angle
of the tangent to the curve with the horizontal axes - gives a convenient parametrization
varying in fixed interval [0, 27rw], where w € N corresponds to the index of the curve.

Let the initial closed convex curve z° = x(v,0) be parametrized by v and let ko(v) be its
curvature. Then we have that the flow z(v,t) of the curves, which solves the problem (2.3)
with the initial curve z°, is given uniquely up to a translation by the formula [49, 11]

z(v*,t) = 2(0,t) — /0 ﬁdu, v* € [0, 2nw], (2.4)
in which the curvature k(v t) is the solution of the following doubly nonlinear porous-medium

type initial boundary value problem:

ob(k) = 0wp(k,v)+ B(k,v), (2.5)
E(v,t) = k(v+27nw,t),
k(v,0) = ko(v),

with b(k) = —1/k. Doubly nonlinear porous-medium type equations can be solved efficiently
by the so-called Jager-Kacur algorithm ([63, 68, 64, 67], see also [55, 56, 57, 89]). The ap-
proach based on Jager-Kacur method for solving the curve evolution problem (2.4)-(2.5) was
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suggested by Mikula and Kacur in [69, 93, 90] and has been applied first to classical (i.e. lin-
ear in k) anisotropic curve shortening [69, 93] and then to general nonlinear curve shortening
problem [90]. The discrete curvature function is computed in each discrete time step of the
numerical scheme designed to solve equation (2.5) and the curve flow is reconstructed by the
formula (2.4). Using the so-called Rothe’s technique [66], the ideas of Alt and Luckhaus [2],
Magenes, Nochetto and Verdi [87] and the Jager-Kacur method we were able to prove con-
vergence of the scheme to the true solution. By our knowledge, the methods from [69, 93, 90]
were first computational techniques which have guaranteed the convergence to anisotropic
as well as nonlinear curve shortening problem, although only in convex curve evolution case.
Due to that theoretical property we have used these methods to test and compare behaviour
of more general schemes given e.g. in [99, 100, 101, 19, 59] for which such complete theory is
not yet available.

Let us briefly recall the main ideas of approximation of the equation (2.5). In [93, 90], we
consider the case of separated anisotropy and nonlinearity in the form

B(k,v) = 11 (v)Bi(k) +72(v),

where y1 > g > 0,71,7},72 are bounded measurable functions, periodic in interval [0, 27w]
and 1 is C?-function in R — {0} with g](s) > 0,s # 0, 81(0) > 0, B1(0) = 0. The mathe-
matical and numerical difficulties are caused by degeneracies in the equation (2.5). Namely,
asymptotical degeneracy of slow diffusion type (b' = oo, i = 0) is related to the parts of
the curve, where curvature is close to 0 and plays the role in the presence of anisotropy
and porous-medium-like nonlinearity, 81(s) = s",m > 1. Asymptotical degeneracy of fast
diffusion type (V' = 0, 5} = 00) is related to both, large and small curvatures, and plays the
role near the shrinking, singularities formation and influences a more shape preserving (e.g.
affine invariant, (k) = k'/3) evolution. The special form of the problem causes a blow up of
the curvature in a finite time which corresponds to the shrinking of the curve to a point or
to other singular behaviour [48, 10].

If we denote I = [0, Taz), J = [0,27w], V = {w € W (0,27w) : w(0) = w(27w)}, V* its
dual space, and assuming that 81 (ko) € V, we can define weak solution of (2.5) as a function
ke LQ(I, LQ(J)) with 8tb(k) S LQ(I, V*) for which ,6(]{7,1/) € LQ(I, V), k(l/, 0) = ]{?0(1/) and

/I/J@tb(k:)godydt—l—/I/Jayﬂ(k,u)goydz/dt=/I/Jﬂ(k,y)godydt? Yo € Ly(I, V).

In order to find the weak solution we use the following approximation scheme for the
porous-medium curve evolution equation (2.5)[93, 90]:
Let m € N,7 = Imaz ¢, = jr for j =0,...,m, k° = ko(v), K° = Bi (ko). For j =1,...,m we

look for the functions K7 € V (K7 ~ 1(k?)), 4! € Loo(€) such that

/ 1 (K — By () pdv + 7 / B, B(K7 ) pydv = 7 / BEKI v)pdv, Vo eV (2.6)
J J J

where (s, v) = BB (s),v) = y1(v)s + y2(v), provided the convergence condition

b(By (K7 + (1 — a)Bi(k71))) — b(kI~1)
KJ — B (ki—1) ’

a% <l < (2.7)
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holds with 0 < a < 1 (« close to 1) and A is a lower bound of derivative of a regularized
bo ! function (details and a role of the regularization are given in [93, 90]). The curvature
function k7 is obtained by the algebraic correction

b7 = b(k 1) + i (K7 — By (k9 1)). (2.8)

In the scheme (2.6)-(2.8), the nonlinearity of equation is treated by the optimal choice of
relaxation function 4/ corresponding to d5(bo B ') constructed in an iterative way (for details
we refer to [93, 90]). The linear elliptic convection-diffusion equation (2.6) can be solved by
finite element discretization (see e.g. [32]) or by finite volume method including up-wind
principle (see e.g. [113, 47]).

Using k7, K7 obtained in each time step of (2.6)-(2.8), the Rothe functions

E) =k for tjy <t <tjj=1,....m, E"(0) =k, (2.9)
K'(t)=Kifort; y <t<t;j=1,...,m, K (0)=Kg (2.10)

are constructed. Then due to [93] and [90] we have
2.1 Theorem Let E(n),Fn be given by (2.9)-(2.10). Then

E™ Sk oin Lo(I, La(J), K" = pi(k) in Lo(I,V),

where k is unique bounded weak solution of the initial-boundary value problem (2.5).

2.2 Solution by intrinsic heat equation

In the concept presented above, the existence and uniqueness of the solution as well as
convergence and error estimates of approximations has been proved in [93, 90]. However,
such approach holds only for convex curve motions and, from practical point of view, we
would like to handle general nonconvex curve evolution governed by equation (2.3). In the
nonconvex case, v-parametrization seems to be not convenient due to a changing of its range
during the evolution for each convex/concave piece of a curve. Another idea, originating in
the Dziuk algorithm for evolutionary surfaces [41] can be used. Let us first consider isotropic
but possibly in nonlinear way dependent on curvature normal velocity v,

v = B(k) (2.11)

and assume that § is a smooth increasing function of k. Mikula and Sevéovic in [99] use the
representation of equation (2.11) by the (generalized) intrinsic heat equation

ox 0%z

5= 52 (2.12)

where s, is a special curve parametrization related to standard arc-length parametrization s
by

ds, = 9(s)ds, 9 = k'/?B(k)~"/2. (2.13)
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Then clearly

9z 1 9 ( 1 0z _ L (s)
ot~ (s) 8<19(s) 35) Blk)N T. (2.14)

Hence the normal velocity v = (%—f,]\?) fulfills the equation (2.11). If s, is equal to s, i.e.
B(k) = k, we get standard intrinsic heat equation (see e.g. [42]).
Let us define scalar valued function G : R?> x R? — R(J{,

G(p,q) = Iplk(p, q)"*B(k(p, q)) /2

where
_ 1/2
kp,q) = |7 (pPla® = 0,9)2)"? pqe R

With this notation, (2.12) can be rewritten as follows

Oz 1 9 1 oz
ot Gy, Tuy) Ou \ G(

) , (u,t) €10,1] X [0, Tnaz)- (2.15)

o :Euu) %

The system of two nonlinear PDEs (2.15) is subject to the initial condition z(u,0) = 2°(u),u €
[0,1] and periodic boundary conditions at u = 0, 1.

Approximation scheme for the curve evolution based on intrinsic heat equation:
Let 7 = T’Zgﬂ”,m € N denote time discretization step. By 27,7 = 0,1,...,m, we denote the
approximation of a solution of (2.15) at time ¢t = j7, i.e. 2/(.) = z(.,j7). The idea of the
construction of a time discretization scheme is based on approximation of the intrinsic heat

equation (2.12) by the backward Euler method

A X o
=—,
T 0s?

j=1,2,..,m,

where the parametrization s, is computed from the previous time step z7~!. The semidiscrete
scheme thus reads as follows

xJ

J :
- %% (%%) =7l j=1,2,...m, (2.16)
where G971 = G(a7 ", #J") and 2 is the initial condition. One can prove (see [99]) that the
length of the curve I'; = Image(z’) decreases along the semidiscrete evolution generated by
(2.16) which represents a kind of stability property for the scheme.

To derive a fully discrete analogue of (2.16) we use the uniform spatial grid u; = ih
(¢ =0,...,n) with h = 1/n. The smooth solution x is then approximated by the discrete
values 7 corresponding to z(ih,j7) which are solutions to the following semi-implicit fully
discrete scheme

i3

j j—1 Jjoo_.J J

Iy — X _ T T T3 i—1

) =T T (2.17)
i+1 i

1 i1 i1
5@+ G
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i=1,...n,5 =1,...,m, where (we slightly regularize Gg ~! in order to avoid zeroes in denom-
inator)

. . ji—1 . . .
-1 j—1 k7 e j—1 j—1 j—1
J—1 ’ —11
i i Bk~ +e) i i i
-1 j—1 _j—1__j—1 -1 j—1y.5—1_ _j—1

kj_l _ |arCCOS((IZ+1 I e MY VA ey | f:rﬁ,zl))l

) - pi—1 .

1

The scheme is subject to periodic boundary conditions mg in = x‘z (¢ =0,1). In each discrete
computational time step j7 the scheme (2.17) leads to solving of two tridiagonal systems for
the new curve position which is fast procedure. Let us mention that (2.17) does not involve
the spatial grid parameter h (i.e. the scheme respects the intrinsic character of the equation)
and in the linear case (k) = k it coincides with Dziuk’s scheme [42].

Recently, the previous approach based on solution to the intrinsic heat equation has been
adopted to anisotropic case with 3 linear in k by Dziuk [43], and also to the general anisotropic
and nonlinear case (2.3) by Mikula and Sevcovié [100]. Such approach we will explain in the
next Section.

We present several computational results related to the schemes (2.6)-(2.8) and (2.17).
They show good correspondence of both methods in convex case (until formation of singu-
larities) and also successful computation of nonconvex curves evolution.

1

2 ~1 0 1 2

(@]

Figure 15: Comparison of two different methods for evolution of convex curve; tick marks
- method (2.17), solid lines - method (2.6)-(2.8), affine invariant case (k) = k'/3. We also
remark, a proper redistribution of flowing points representing the discrete curve in the method
(2.17) due to the presence of convenient (for this experiment) tangential velocity, see (2.14).

2.3 Solution by intrinsic heat equation with tangential velocity preserving
relative local length

In this Section, let us consider anisotropic and nonlinear in curvature normal velocity

v = Blk,v) = 1)k (2.18)
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2 -1 0 1 2

Figure 16: Comparison of two different methods for evolution of selfintersecting quatrefoil
curve, B(k) = k'/3. Tick marks - method (2.17), solid lines - method (2.6)-(2.8). The
evolving curve is plotted at the same discrete time moments until the "hair” singularity is
formed [48, 10]. The method (2.6)-(2.8) cannot continue beyond singularity.

Figure 17: Evolution of the affine transformed quatrefoil through "hair” singularities com-
puted by the method (2.17), B(k) = k'/3.

given by the power like function, where m > 0 and y(v) > 0 is a given anisotropy function
satisfying

0<Cil<yw)<C, W) <Gy for any v € R (2.19)

where C7 > 0 is a constant.

The approach from the previous Section where we solve the intrinsic heat equation can
be generalized, theoretical results about existence of the solution can be proved and com-
putational algorithm can be significantly improved by tangential stabilizing terms. In [100]
Mikula and Sevéovié established the short time existence of a family of regular smooth plane
curves satisfying the geometric equation (2.18), suggested the tangential redistribution con-
serving relative local length and presented numerical experiments showing the important role
of tangential redistribution in computational algorithm. In the theory of curve evolution, it
extends the result due to Angenent, Sapiro and Tannenbaum obtained for the power m = 1/3
to the general fast diffusion powers 0 < m < 1 as well as for degenerate slow diffusion cases
where 1 < m < 2. Some further interesting theoretical results can be found in [6, 24].
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)
/

Figure 18: Evolution of initial nonconvex curve computed by the method (2.17), 8(k) = k
(left) and (k) = k'/3 (right).

The idea how to describe a family of evolving plane curves is to parameterize I'y by a
solution = € C%(Qr,R?) to a slightly more general intrinsic heat equation as in the previous
Section, namely

0r _ 10 (100
81& _9188

@E) , 2, 0) =2°() (2:20)

where 601,05 are geometric quantities for the curve I'y = Image(x(.,t)), i.e. functions whose
definition is independent of particular parametrization of I'; and such that

k
0100 = —— . 2.21
Blk.v) 220
By using (2.21) and Frenet’s formulae, equation (2.20) can be rewritten into the following
equivalent form

— =BN+al, (,0)=21°) (2.22)

where 8 = ((k,v) is the normal velocity of the evolving curve and « is the tangential velocity

given by
190 (1
=—— =) . 2.23
@ 01 E)s (02) ( )

The normal component v of the velocity d;z is therefore equal to S(k,v). By [14, Lemma
4.1] the family I'; = Image(x(.,t)) parametrized by a solution z of the geometric equation
(2.22) can be converted into a solution of 8,z = SN + &I for any continuous function & by
changing the space parametrization of the original curve. In particular, it means that one
can take & = 0 without changing the shape of evolving curves. On the other hand, as it can
be observed from our numerical simulations, the presence of a suitable tangential velocity
term oT is necessary for construction of a numerical scheme which is capable of suitable
redistribution of numerical grid points along computed curve.



Solution of geometrical nonlinear diffusion equations 29

In the previous Section we have studied the intrinsic heat equation (2.20) with particular
choice 0; = 6y = (k/B(k))"/?. In this case equation (2.20) has the form 9,z = 92 z where
ds, = 601ds. Using such 01,60, we were able to simulate the evolution of plane convex and
non-convex curves for the case where v = |k|™ k. Satisfactory results were obtained only
for 0 < m < 1 whereas various numerical instabilities appeared for the case m > 1. The
mathematical explanation for such a behavior is simple. If §; = 6 = |k|mT_1 then, by (2.23),
o = 2L k™ 3kdk = $9,(]k|™ ). In the case m > 1 numerical grid points were driven by
the tangential velocity oT towards pieces of the curve with the increasing curvature where
they fastly accumulate and the Lagrangian algorithm broke down soon due to computer
zeroes in denominators of (2.17). The effect of « is just opposite when 0 < m < 1. This
observation leads us to study formulation where tangential velocity is not given a-priori, as
in the previous Section, but can be controlled and thus is capable to give an adequate grid
points redistribution.

To that goal, first we derive a system of PDEs governing the evolution of the curvature k
and some other geometric quantities for z = x(u, t) a solution to the curve evolution equation
(2.18). Notice that such an equation for the curvature is well-known for the case when oo =0
and it reads as follows: 9,k = 928 + k?$ (indeed, in Section 2.1 we have solved this equation
written in v-parametrization, cf. [49, 11]).

Let us denote p'= 9yx. Then by using Frenet’s formulae one has

Op = |0ux|((9s8 + ak)N + (—Bk + dy)T)

7.0 = |0uz| T .0 = |0ua|?(—Bk + 050) (2.24)
PAOG = |0uz| T AOp = |0uz|? (0,8 + ak)
WP N Oup = —[0yz]0y|0uz] (asﬂ+ak)+|8ux|3 (—Bk + 0sa)

because p, = 82z = 9,(|0yz| T) = 04|0uz| T + k|Oyz|> N. Since 9, (5 A ) = Ouff A Oy +
P A 0y 0 we have pA 0,05 = Oy (PN O1p) + 0P A Oyp. As k= (A 0up) |P] 73 (see (2.1)) we
obtain

Ok = =3lp|°(F. 0P (F A 0uP) + |71 (85 A OuP) + (B A 8,0,7))
= —3k|p|"2(F. 0:p) + 2P 2 (0F A 8uP) + |2 0u(F A )

Finally, by applying identities (2.24) we end up with the second order nonlinear parabolic
equation for the curvature

Otk = 028 + adsk + k2B, k(.,0) =K°() . (2.25)

The identities (2.24) can be used in order to derive an evolutionary equation for the local
length |0yx|. Indeed, |0,z|; = (Oyx . 0,0:x)/|0ux| = (P'. 01P)/|Oux| and by (2.24) we have the
local length equation

Oda
ou’
where (u,t) € Q. By integrating equation (2.26) over the interval [0, 1] and taking into
account that « satisfies periodic boundary conditions we obtain the total length equation

d

Lo+ /Ft kB(k,v)ds =0 (2.27)

0
5710wl = ~|0uz| KB + |Ouz (., 0)] = |0uz® ()] - (2.26)
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where L; = L(T';) is the total length of the curve Ty, Ly = [ ds = fol |0y (u, t)| du. Tf
kB(k,v) > 0 then the evolution of plane curves represents a curve shortening flow, i.e. Ly, <
Ly, < Ly for any 0 < t; < t9 < T. The condition kB(k,v) > 0 is obviously satisfied in the
case B(k,v) = y(v)|k|™ 'k where m > 0 and v is a nonnegative anisotropy function.

The area enclosed by an embedded nonselfintersecting curve I' = Image(z) can be com-
puted as A = % fol x A Oyx du. Applying the identities (2.24) and taking into account that

0= fol Ou(x A Opz) du = fol (P A Owx + = A Orp) du we obtain the area equation

d
— A"+ [ Bk,v)ds =0 . (2.28)
dt r,
If B(k, v) is nonnegative along the evolution then the area is a non-increasing function of the
time.

Denote by [0, 0s] the commutator of the differential operators d; and 0s, i.e. [0, 0s] =
0105 — 050y. Since ds = |0y z|du it follows from the local length equation (2.26) that

[0, 0s] = (Bk — 0sa)Os . (2.29)
Recall that the tangential vector v to a curve I' = Image(x) is given by v = a,rg(f), ie.
(cosv,sinv) = Odsz. From (2.29) we obtain Oy = dsz A 00z = Osz A 050 + (Bk —
0sa)(0sz N Osz). Applying Frenet’s formulae and (2.22) we obtain dyv = 9508 + ak, and
using 05 8(k,v) = B,0sk + B,0sv = B,0?v + B,k we get the second order nonlinear parabolic
equation for the tangential angle

ow = B.0%v +k(a+p), v(.,0) =220). (2.30)

Now we are in a position to write a closed system of governing equations for the geometric
motion satisfying equation (2.18):

ok 10 (10 adk o,

o ~ gou (E%ﬂ(k’»’/o + 7 0u +k°B(k,v)

v B(k,v) 0 (1ov y

o _ 9 (lov 2.31
> (250 ) R B w) 2.31)
dg da

E - —gkﬁ(k@u)—i—%

(u,t) €[0,1] x (0,T). A solution to (2.31) is subject to the initial conditions
k(70) :]{707 V('70) = Voa 9(70) :gO (232)

and periodic boundary conditions except of v for which we require v(1,t) = v(0,t) + 2m.
Notice that the initial conditions for k°, 0, ¢° are related through the identity 8,0° = ¢°k°.
In general, the function « is a free parameter in the model. The main idea behind a
roper construction of « is to analyze the relative local length function defined as the ratio
M where L; is the total length of I'; and |0,z (u,t)| represents the local length of T';.
The idea is to keep this ratio constant with respect to time, i.e.

% (W) _0 (2.33)
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for any u € [0,1] and ¢t € I = (0,7). Taking into account (2.26) and (2.27) one sees that
(2.33) is fulfilled iff

da

1
55 = kBkv) - £ /F kp(k,v)ds (2.34)

where I' =Ty, L = L(I"), k is the curvature of I" and 3 is the given normal velocity function.
Let 9 be new variable, such that 63 = exp(«J). Since 6; = k/(602) we get

_ 1o/l _ B0, __BOY
“T 8,05 \0,) ~ 2= s

and, using (2.34), ¥ should be a solution to the stationary intrinsic heat equation

8 (pov 1
— o <E%> — kB — E/Fkﬂds. (2.35)

Due to [100] there exists unique solution of (2.35) as well as solution of the fully nonlinear
system (2.31) by which we can construct solution of (2.20) and correspondingly the flow
(2.22). So we can state the main theoretical result of [100]:

2.2 Theorem Suppose that B(k,v) = y(v)|k|™ 'k where 0 < m < 2 and v satisfies (2.19).
Let T° = Image(z°) be a smooth reqular plane curve. Then there exists T > 0 and a family
of regular plane curves T'y = Image(z(.,t)),t € [0,T] such that

1. 2,0,z € (C(Q1))?, 0%z, iz, 00 € (Loo(Qr))?;

2. the flow T'y = Image(z(.,t)),t € [0,T] of regular plane curves satisfies the geometric
equation

atac = ,Bﬁ—l—af

where B = B(k,v) and « is the tangential velocity preserving the relative local length,
i.e. « satisfies (2.34) and

|0y (u,t)| _ |5ux0(u)|
L; Lo

for any t € [0,T] and u € [0,1].

Now we describe a numerical procedure which can be used for computing the curve evolu-
tion satisfying the geometric equation (2.18) accompanied with equation (2.34) for tangential
velocity a. To this end, we propose a scheme solving the coupled system of intrinsic heat
equations (2.20) for the position vector z and (2.35) for the redistribution parameter .

Approximation scheme for the curve evolution solving intrinsic heat equation
with tangential redistribution [100]: A

A smooth solution z is approximated by discrete plane points mg ,t=1,..,mn, 7 =0,...,m,
where index ¢ represents space discretization and index j a discrete time stepping. The
approximation of a curve in time j7 (with uniform time step 7 = %) is given by the polygon
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with vertices z7,4 = 1,...,n. In order to obtain such an approximation of an evolving curve

in j-th time step we use the following fully discrete semi-implicit scheme

J

1 . . IJ.'—Ij.'il mj —$j T —xj
j—1 7—1 i+l 7 7 1—1
5(92' +9i1)— - — = Y Y (2.36)
141 %

i =1,...,n, for every j = 1,...,m. The coefficients in (2.36) (for simplicity we omit upper
index j — 1) are given by the following expressions

k.
gi = |ril61i, hi = |rilbo;, Ti=1zi— 31, b1, =—1—,
Bi02,;
; = Lsgn(r- 1 A Ti11) arccos <M> (2.37)
L 2] ’ ’ [rigl|riz] )’

v; = arccos(ry, [|ri|) if r, >0, v; =27 — arccos(ry, /|ri|) if 5, <0,

Bi = B(ki,vi), 62, = exp(;),

and the system (2.36) is subject to the periodic boundary conditions :vngn = xi (1 =0,1).
In order to compute 9;,¢ = 1,...,n, governing tangential redistribution of flowing points we
solve

Bi 4 Bit1 Bi 4 Bi-1

iy iy

ki kit (¥ 9 ki~ ki1

B L gy — ) L (9 — 9, )
il +[rigal Ul

n n -1
= |ril | kiBi — <Z|Tl|kl5l> <Z|Tz|) (2.38)

for i = 1,..n, accompanied by the periodic boundary conditions 9,1, = 9; (i =0, 1).

The system (2.38) can be represented by a symmetric positive semidefinite tridiagonal

matrix with kernel containing n-dimensional vector each component of which is equal 1. Since
n

> bj = 0, where b; are the components of the right hand side of (2.38), we have assured the

Zex%stence of a solution which is also unique up to an additive constant. We choose the unique

solution by imposing the constraint condition ¥y = 4, = 0.

Then, the linear systems (2.36) can be represented by two symmetric positive definite
tridiagonal matrices for which we have the existence and uniqueness of a solution. In each
discrete computational time step j7 the scheme (2.36)-(2.38) leads to solving of three tridiag-
onal systems, namely one for the redistribution of points along the curve and two for finding
the new curve position.

2.3 Remark The scheme (2.36)-(2.38) can be derived using so-called flowing finite volume
method (c.f. [100, 101, 102, 103]). Let us consider points z;,7 = 1,...,n, belonging to a
smooth curve I'; = Image(x(.,¢)) where z is a solution of (2.20) at time t. By [z;_1,z;] we
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denote the arc of the curve between the points z;_; and z;. Let us consider a dual volume V;
around z; consisting of part of the arc connecting centers &;, Z;11 of arcs [x;—1,x;], [, Ti+1],
respectively. Such a centered control volume is flowing and changing a length during the
evolution respecting the new positions of the points x; along the curve. Let us integrate
intrinsic diffusion equation (2.20) along the flowing control volume V;. We obtain

ozx 1 9z )%+

e = | 22 . 2.
/91 2 s [92 as] (2.39)
Vi

z;

Let us consider piecewise linear approximation of z, i.e. a polygon connecting points z;,7 =
1,...,n. From (2.37) we can compute constant geometrical quantities k;, v;, 5; for each line
segment [z;_1,%;]. The quantity ¥; can be computed numerically again by solving flowing
finite volume approximation of the intrinsic equation (2.34). Integrating (2.34) along [z;_1, x;]
yields

-1
_ [%g]x 1 = |ri| | kiBi — (Z Irllklﬁl> (Z |rl|> ) (2.40)

. . Yit1—V;
Approximating 2% (z;) by 2m

2.38). Now, approximating 22 by #; inside V; we obtain from (2.39) the system of ordinary
g 5 PY
differential equations

and %(mz) by %(g—: + g:j:) we end up with the system

1z —a 1z —xi

1 .
5 (7il61i + [rigl61,i41) 2 (2.41)
2

O2ir1  |rig1] Oa;  |ri
There is a range of possibilities how to solve this system. In order to obtain the scheme
(2.36) we approximate time derivative by time difference of the new and previous discrete
curve position and all nonlinear terms are taken from the previous time step and linear terms
are considered at a new time level. The numerical simulations show that such approximation
is sufficient in very general cases regarding accuracy and efficiency of computations.

We test properties of the model and the numerical scheme in evolution of convex as well as
nonconvex (and nonrectifiable) initial curves in the presence of nonlinearity and anisotropy in
the shape of function 8. The effect of redistribution of discrete points representing evolving
curve is documented at the same time. We have found several examples where the grid
redistribution based on relative local length conservation of flowing curve segments is an
important tool in correct handling of the curve evolution without other artificial operations
like points removing or artificial cutting of the so-called swallow tails. The redistribution of
grid points based on (2.34) preserves the initial discretization of a curve and thus makes its
discrete representation smooth enough during evolution. First such examples are given in
Fig. 19. In those experiments 5(k) = k, i.e. we have classical curve shortening, and we start
with initial curve with large variations in the curvature, namely

z1(u) = cos(2mu),

xo(u) = %Sin(Zﬂ'u) + sin(zy (u)) + sin(27u) (0.2 4 sin(27w) sin(67u) sin(67u))
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Figure 19: S(k) = k, discrete evolution using tangential redistribution of points (left) and
without redistribution, only normal component of velocity is used (right).

Figure 20: B(k) = k'/3, discrete evolution using tangential redistribution preserving relative
local length (left) and without redistribution, computation collapses due to vanishing of the
local length element |0,z| (right).
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u € [0,1], and initial discretization is given by uniform division of the range of parameter
u. The curve is represented by 100 discrete points. Addition of a nontrivial tangential
velocity obeying (2.34) leads to the evolution plotted in Fig. 19 left. In Fig. 19 right,
the points move only in the normal direction and one can see their fast merging in several
regions and very poor discrete representation in other pieces of the curve. In all experiments
we have used the uniform time step 7 = 0.001. The blow up time for the curvature was
Trazr = 0.363. Isoperimetric ratio starting with 3.02 tends to 1.0 which is consistent with
Grayson’s theorem [52]. In both subfigures, we plot each 20-th discrete time step using
discrete points representing the evolving curve and in each 60-th time step we plot also
piecewise linear curve connecting those points.

In the next Fig. 20 we computed affine evolution of the same initial curve for the affine
scale case (k) = k'/3. The initial curve has been discretized almost uniformly. In Fig. 20 left
we show how this discretization is then preserved in evolution when using the scheme (2.34).
The blow up time T},4, = 0.694, a solution converges to an ellipse with the isoperimetric ratio
stabilized on 1.33. This is in a good agreement with analytical results of Sapiro and Tannen-
baum [121]. On the other hand, without any grid redistribution we can see rapid merging of
several points leading to degeneracy in the distance |r;| corresponding to discretization of the
term |0, z| and subsequent collapse of computation. In Fig. 20 right, one can see evolution
until ¢ = 0.38 just before collapse of the numerical solution.

In the next figures we show evolutions of initial ”co-like” curve. In the left and right parts
of Fig. 21 the tangential velocity preserving relative local length has been used whereas in
the middle, one can see that computation without tangential redistribution cannot prevent
vanishing of the term |0, z|. In Fig. 22 evolution of general nonconvex curves are plotted.

Figure 21: Evolution of ”oco-like” curve; 8(k) = k'/*, using redistribution (left); g(k) = k'/4,
without redistribution leading to merging of points (middle); 8(k) = k2, using redistribution
(right).

In Figures 23 - 24 the affine invariant evolution of initial ellipse with half-axes ratio 3:1
is shown. In Fig. 23 the exact blow up time T},,; = 1.560 while the numerically computed
one is equal 1.570 using time step 7 = 0.001 and 100 grid points for curve representation.
The half-axes ratio as well as isoperimetric ratio were perfectly conserved during numerical
evolution. Without any tangential velocity (i.e. @ = 0 and 6 = 1), the numerical solution
collapses as it should be obvious from Fig. 24.

In Figures 25 - 26 we present various computations including anisotropy in the model.
The last numerical experiment represents affine invariant evolution of a spiral. In Fig. 27 we
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Figure 22: Evolution of general nonconvex curve using tangential redistribution of points,
B(k) = kY% (left), B(k) = k* (right).

Figure 23: Affine invariant motion of ellipse using tangential redistribution of points.

Figure 24: Computation using only normal component of velocity.
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present several time moments of the motion until it is shrinking to an ellipse-like point.

Figure 25: Anisotropic evolution of the unit circle using redistribution, g(k,v) = (1 —
7/9cos(3v))k (left), B(k,v) = (1 — 7/9cos(3v))k? (middle), 8 = (1 — 0.8cos(4(v — w/4)))k
(right).

Figure 26: Anisotropic evolution of nonconvex curve using redistribution,
B=(1-0.8cos(4(v —m/4)))k3* (left), B = (1 — 7/9cos(3v))k*/* (right).

2.4 Solving the intrinsic system for geometric quantities

In this Section we develop a method where, additionally to previous Sections, normal velocity
v may depend also on the curve position vector z. For the sake of simplicity and due to
applications in mind, namely motion of interfaces with external forces, geodesic curvature
flow and image segmentation (cf. Sections 1.8, 1.9), we will assume a linear dependence on
the curvature k, i.e. we consider the normal velocity of the form

v =0z, k,v)=a(z,v)k+c(z,v) (2.42)

where a > 0 and ¢ are smooth functions depending on x and v. One could treat also nonlinear
dependence of # on curvature k using ideas of the previous Sections, but we are not going to
study such situation here.



38 K. Mikula

N

Figure 27: The sequence of evolving spirals for B(k,v) = k'/3 using redistribution. The
limiting curve is an ellipse rounded point.

Whereas in the previous Section the nonlinear system of governing equations (2.31) was
only a theoretical tool to get analytical results for evolving curves, in [101, 102, 103] Mikula
and Sevcovic discretize such a system to compute numerically the curve evolution. Since in
(2.42) the flow depends on z itself, we must slightly modify (2.31) and close the system by
adding equation for the position vector. Since dsv = k and 0sf(x, k,v) = 5,05k + B,0sv +
Vaf .T we end up with the following closed system of parabolic-ordinary differential equations:

Otk = 0?8 + adsk + K*8, (
O = B0 + (a+ B.)0sv + VuB.T, (2.44
g = —gkp + éua, (
Oix = BN + oT (

where (u,t) € [0,1] x (0,T), ds = gdu, T = dsz = (cosv,sinv),N = T+ = (—sinv,
cosv), 8 = Bz, k,v). A solution (k,v,g,z) to (2.43)—(2.46) is subject to initial conditions

k(.,0) = ko, v(.,0) =vo, g(.,0) = go, z(.,0) = zo(.)

and periodic boundary conditions at © = 0,1 except of v for which we require the boundary
condition v(1,t) = v(0,t)+2n. The initial conditions for kg, g, go and xy must satisfy natural
compatibility constraints:

9o = |0umo| > 0, ko = g5 *Ouwo A 020, Oy = goko

following from (2.43) and Frenet’s formulae applied to the initial curve I'g = Image(zg).
Notice that the functional « is still undetermined and it may depend on variables k, v, g, ©
in various ways. One suitable choice of a was given in the previous Section, here we will give
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further appropriate tangential velocities and embed the previous approach to a more general
framework . As we have already seen, the construction of « is rather simple and consists in
the analysis of the relative local length g/L. Let us take quantity € defined as follows:

0 =1In(g/L).
As in the previous Section, taking into account local and global length equations we have
00 + kB — (kB)r = 0sav. (2.47)

By a choice of dsa on the right hand side of (2.47) appropriately we can therefore control be-
havior of §. Equation (2.47) can be also viewed as a kind of a constitutive relation determining
redistribution of grid points along a curve.

Non-locally dependent tangential velocity functional:

We first analyze the case when dsa (and so does «) depends on other geometric quantities
k, and g in a non-local way. The simplest possible choice of Js« is:

Osa = kB — (k) (2.48)
yielding 9,6 = 0 in (2.47). Consequently,

t
9(u,1) = 9(u,0) for any u € Sl, t €10, Tmaz) -
Lt LO

Notice that a can be uniquely computed from (2.48) under the additional renormalization
constraint «(0,t) = 0. Tangential redistribution driven by a solution « to (2.48) is refereed
to as a parametrization preserving relative local length. It has been first utilized by Hou et
al. for linear curve shortening in curvature equation formulation [61] and by Mikula and
Sevcovic [100] for intrinsic heat equation formulation given in the previous Section.

A more general choice of « is based on the following setup [101, 102, 103]:

dea = kB — kB)r + (7 1) w(t (2.49)

where w € LY¢([0, Trnaz)). If we additionally suppose
Tma:c
/ w(T)dT = 400 (2.50)
0

then, after insertion of (2.49) into (2.47) and solving the ODE 9,6 = (e~ — 1) w(t), we obtain
O(u,t) — 0 as t = Tjpq, and hence

g(u,1)

7 —1 ast— Tipee uniformly w.r. to u € St.
t

In this case redistribution of grid points along a curve becomes uniform as ¢ approaches the
maximal time of existence Ty,q,. We will refer to the parametrization based on (2.49) to as
an asymptotically uniform parametrization.

Asymptotically uniform redistribution of grid points is of a particular interest in the case
when the family {I';,¢ € [0,7T)} shrinks to a point as t — Tjeq, i€ lmy,p Ly = 0.
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Then one can choose w(t) = ko(kB)r, where ko > 0 is a positive constant. By (2.27),
fgw(T) dr = —ko fg InL,;dr = k(ln Ly — In L) — 400 as t — Tynaz- On the other hand, if
the length L; is away from zero and Tj,q; = +00 one can choose w(t) = k1, where k1 > 0 is
a positive constant in order to meet the assumption (2.50).

Summarizing, in both types of grid points redistributions discussed above, a suitable
choice of the tangential velocity functional « is given by a solution to

Osa = kf3 — <kﬁ>F + (L/g - Dw, Oé(O) =0, (2'51)

where w = k1 + ko(kB)r and k1, ke > 0 are given constants.

If we insert tangential velocity functional a computed from (2.51) into (2.43)—(2.46) and
make use of the identity adsk = 0s(ak) — kOsa then the system of governing equations can
be rewritten as follows:

Otk = 028 + 0s(ak) + k(kB)r + (1 — L/g) kw, (2.52)
O = Bidiv + (a + B,)dv + V5.1, (2.53)
g = —g(kB)r + (L — g)w, (2.54)
Oy = BN + T . (2.55)

It is worth to note that the strong local length shrinking term &£ in (2.45) which influences
also strong reaction term k23 in (2.43) has been replaced by the averaged term (kS3)r in (2.54)
and (2.52). The pointwise influence of these terms (e.g. in numerical solution) is replaced by
the integral average. This is very important feature and indeed the main point behind the
tangential redistribution. It allows us to construct a stable Lagrangian numerical scheme for
curve evolution equation (2.42).

Locally dependent tangential velocity functional:

Another possibility for grid points redistribution along evolved curves is based on a tangential
velocity functional defined locally. If we take o = 0,0, i.e. dsa = 026 then the constitutive
equation (2.47) reads as follows: 0,0 + kB — (kB)r = 926. Since this equation has a parabolic
nature one can expect that 6 will be redistributed along the curve I' due to the diffusion
process. The advantage of the particular choice

a =040 = 0s1n(g9/L) = 0s1ng (2.56)

has been already observed by Deckelnick in [35]. He analyzed the mean curvature flow of
planar curves (i.e. v = k) by means of a solution to the intrinsic heat equation

u € Stte (0,T),

describing evolution of the position vector = of a curve I';y = Image(z(., t)). By using Frenet’s
formulae we obtain 9,z = kN + o where a = 8;1Ing = d, In(g/L) = d,0.

Inserting the tangential velocity functional @ = 050 = 05(In g) into (2.43)—(2.46) we obtain
the following system of governing equations:
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Otk = 026 + a0k + K,

O = 0% + (a+ B.)0sv + Vo 8.1,
Oig = —gkpB + g0 (Ing),

Oy = BN + oT'.

Notice that equation (2.59) is a nonlinear parabolic equation whereas (2.54) is a non-local
ODE for the local length g.

2.4.1 Local existence and uniqueness of classical solutions to intrinsic system
for geometrical quantities

In [101] has been proven local in time existence and uniqueness of a classical solution of the
governing system of equations (2.43)—(2.46) by means of the abstract theory of nonlinear
analytic semigroups developed by Angenent in [7]. If we denote ® = (k, 7, g,x) where (u) =
v(u) + 27u,u € S', then the system of governing equations can be rewritten as a fully
nonlinear PDE of the form

8® = f(®),  ®(0) = &, (2.61)

where f(®) = F(®,a(®)) and F(P,«) is the right hand side of (2.52)-(2.55) if « is defined
as in (2.51), or (2.57)—(2.60) if « is defined as in (2.56), resp. We had to shift the function v
by 27u because of the boundary condition v(1) = v(0) + 27 imposed on the tangential angle
v. Let 0 < p <1 be fixed. By £}, E,lC we denote the following Banach spaces

Er = 2hte o 2hte o Jlte o (CQk—l—g)z
Ellc = 2kto o 2kto o 2kto o (C2k+g)2

where k = 0,1, and ¢?#1+¢ = ¢?k+e(81) is the "little” Holder space, i.e. the closure of C°(Sh)
in the topology of the Holder space C2¢+2(S1) (see [8, 9, 7]). By the superscript "n” resp.
71" we distinguished the functional space setting for two different choices of the functional «
depending on whether « is defined non-locally or locally, i.e,

E, =E} if « is defined as in (2.51) (2.62)
E, =E! if o is defined as in (2.56)

Then we have the following result (for proof we refer to [101]):

2.4 Theorem Assume ®y = (ko, Do, go, o) € E1 where kg is the curvature, vy is the tan-
gential vector, gy = |Oyxo| > 0 is the local length element of an initial reqular curve Ty =
Image(z) and the Banach space Ej, is defined as in (2.62). Assume 8 = B(z,k,v) is a C*
smooth and 2m-periodic function in the v variable such that minp, B (zo, ko, v0) > 0 and o is
defined either as in (2.51) or (2.56). Then there exists a unique solution ® = (k,U,g,x) €
C([0,T), E1) N CY([0,T], Eo) of the governing system of equations (2.43)—(2.46) defined on
some small time interval [0,T], T > 0. Moreover, if ® is the maximal solution defined on
[0, Taz) then either Ty = +00 or liminf, ;- minp, Br(x,k,v) =0 or Thae < +00 and
maxr, |k| = 0o as t = Thaq-
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2.4.2 Full space-time discretization scheme

To describe the full space-time discretization scheme, we consider the normal velocity
v =Bz, k,v) =alz,v)k + c(z,v)

and the tangential velocity functional « given by a linear combination of non-local and local
tangential redistributions discussed above. Let us denote n = Ing. Then we have 6 =
In(g/L) =n —In L, and, for the redistribution functional a, we obtain

dsa = e1 (kB — (kB)r) + w (L/g — 1) + £20%n (2.63)

where €1, w, €2 are weights for parametrization preserving relative local length, asymptotically
uniform parametrization and locally diffusive parametrization, respectively. Recall that the
parameter setting: ey = 1,69 = 0,w = k1 +r2(kS)r with K1, K9 > 0 is associated with the non-
locally dependent tangential velocity functional o whereas the choice ¢y = 0,60 = 1,w =0
corresponds to the locally defined . The governing system of equations (2.43)—(2.46) can be
rewritten in the form suitable for numerical approximation:

Otk = 026 + 0 (ak) + (kB — 050, (2.64)
O = B,0%v + (a+ B)0sv + V. B.T, (2.65)
on = —kB + 0sa, g = exp(n), (2.66)
ox = a(x,v)0%x + adsz + &(z,v) (2.67)

where &z,v) = c¢(z,v).N = ¢(z,v)(—sinv, cosv). By using Frenet’s formulae one can easily
verify that the last equation (2.67) is equivalent to (2.46) in the case of linear dependence
on the curvature k.

In our computational method a numerical solution to the system (2.63)-(2.67) is repre-
sented by discrete plane points mg where the index ¢+ = 0, ..., n, denotes space discretization
and the index j = 0, ...,m, denotes a discrete time stepping. The approximation of an evolv-
ing curve in j-th discrete time step is thus given by a polygon with vertices z,i = 0, ..., n, for
which the periodicity condition x% =z}, is required. If we take a uniform division of the time

interval [0, 7] with a time step 7 = L and a uniform division of the fixed parametrization
interval [0, 1] with a step h = %, a point ! corresponds to z(ih, jT).

To construct the approximation of an evolved curve we will derive systems of difference
equations corresponding to (2.63)—(2.67) to be solved at every discrete time step. Difference
equations will be given for discrete quantities af, 7737 rZJ-7 k37 I/Z-J7 xf, 1=1,...,n, j=1,....,m,
representing approximations of the unknowns «, 1, gh, k, v, z. The fully discrete quantities
represent time stepping of time dependent functions «;(t), n;(t), ri(t) = |z;(t) —zi—1(t)|, ki(2),
v;(t), z;(t) which will be also used in the sequel. The function «;(t) represents tangential
velocity of a flowing node z;(t). Functions n;(t), r;(t), k;i(t), v;(t) represent piecewise constant
approximations of the corresponding quantities in a flowing-in-time linear segment, the so-
called flowing finite volume [z;—1(t), z;(t)]. We will also use the corresponding flowing dual
volumes defined as: [Z;_1,Z;], where Z; = w’%ﬂc’

Our algorithm is semi-implicit in time. It means that all non-linear terms in equations
are treated from the previous time step whereas linear terms are solved at the current time

level. Such a discretization leads to a solution of linear systems of equations at every discrete
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time level. At the j-th time step, j = 1,..,m, we first find discrete values of the tangential
velocity functional . Then the values of the redistribution parameter 7/ are computed and
subsequently utilised for updating discrete local lengths rf . Using already computed local
lengths, tridiagonal systems with periodic boundary conditions are constructed and solved
for discrete curvature k7, tangent angle v/ and position vector z7.

In order to construct a discretization of (2.63)—(2.66) we subsequently integrate equations
over flowing finite volume [z;_1, z;]. Then, at any time ¢, for the tangential velocity functional

o we have
T T;

/ Osads = / e1(kp — (kB)r)ds + / w(L/g —1) 4 e90%n ds

Tj— Ti—1 Ti—1

and thus

a; — a1 = e1(riki B(Zi, ki, vi) — ri(kB)r) +w (L/n — 1) + €2 <7h‘+1q— o ; Thl) .
i i1

By taking discrete time stepping in the previous relation we obtain the following expression
for discrete values of the tangential velocity functional o

j j i— i—1 j—1,5—1 paj—1 35—1  j—1 i—1 i
o =o_; + wM? T ) e (Tf K B@ KT T =l B 1)
1

(2
Jj—1 J— Jj—1 Jj—1
Miv1 — o T i
+ €9 1 — 1
i1

where

Jo g j—1 j—1
_rz-—i-riﬂ -1 T;_1 t+w; .
—_— I —— i=1,...,n
2 ? ? 7 ?
ozf) =0, i.e. the point xf) is moved in the normal direction, and

n

) 1 )
-1 }: -1
M] = ELjfl, Ljfl = ’I"l] ;
=1
) 1 < . . ) )
Jj—1 J=119-1pr~j—1 35-1  j—1
B = I 15 R TBE TRy
=1

and w = K1 + ke B/ with ki, ko being redistribution parameters.
Concerning discretization of equation (2.66) we proceed along the following lines:

/ omnds = / —kB+e1(kB — (kB)r)ds + / w(L/g—1)+ 625?7] ds,
Ti—1 Ti—1 Ti—1
dn; )
Ti% = (e1 — VrikiB(3;, ki, vi) — errikB)r +w (L/n — i) +e2[0snl. | -

Replacing the time derivative by time difference, approximating dsn in nodal points, taking
all linear terms at the new time level 5 and all the remaining terms from the previous time
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level 5 — 1 we obtain

_ gl o ‘ , , ‘ : , ,
ri- o (61— Drd B KT Y — el BT (MY — i

-
J J J J
i1 = T — i
+é2 -1 T -1 )
q; ;1

fori=1,...,n, 773 = 77%, 77n+1 = 77{. Note that this is either an updating formula in the
case €9 = 0 or a tridiagonal system (if 9 # 0) for new values of redistribution parameter 7.
Next we update local lengths by the rule:

’I“ZJ- = exp(nlj-), 1=1,...,n, ré = 7“%, rle = r{.
Subsequently, new local lengths are used for approximation of intrinsic derivatives in (2.64)—
(2.67). First, we derive a discrete analogy of the curvature equation (2.64). We have

/ Otkds = / O2B(z,k,v)ds + / Os(ak)ds + / k(kB — 0sa) ds
i—1 Ti-1 Ti—1 Ti—1
dk; . o N
i = [0sB(w, ky V)] + [kl |+ riki(kiB(Z4, ki vi) — (q — @i—1)).

Now, by replacing the time derivative by time difference, approximating k in nodal points
by the average value of neighboring segments, taking all linear terms at the new time level j
and taking all the remaining terms from the previous time level j — 1 we obtain a tridiagonal
system subject to periodic boundary conditions imposed on new discrete values of curvature:

alkl w0k vkl =dl, i=1,..,n, K=k, K =k,

2V —1
where
J ~j—1 j—1
i oGy a’(xz—17’/z 1)
i1
I Jj— 1 J 1 30— 1 j—l J J
bl = <——k kT v T ) +al —af
o Ozj, a@ LU a@ T
S R + v 07 + v 07
2 2 J J ’
g1 q;
- ~i—1 -1
Jo— _a_g_a(xi-l—l?’/i-l—l)
T j )
2 q]
j =j=1 -1 ~i—1 -1 oy T B RNy s R S |
&= T_ikj—1+ (H—l? Vig) — (@ v )_C(%' v ) =@y, v)
i i J J
T q; a4

In the next step we solve the tangent angle equation (2.65) using the following approximation:

T; T; T;
/ Owds = B (Zi, ki, v;) / d%vds + / adsv ds
Ti—1 Ti—1 Ti—1

X Z;
+06,, (&4, ki, vi) / Osv ds + / V.B(Ei, vi, ki). T ds,

Ti—1 Ti—1
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ri%i = a(Z4, ;) [881/]3:,1 + [O‘V]ij,l

Ty
—v; f Jdsads + ,Bllj(i'z, k;, Vi) [V]iiil + Tivx,@(fi, Vi, ki).(COS v;, sin Vi) .

Ti—1

Again, values of v in nodal points are approximated by the average of neighboring segments
values, the time derivative is replaced by the time difference. By applying a semi-implicit
approach we obtain

TZ T

R ] F_ I/‘»j —I/‘»j I/‘?—I/‘»j ‘I/‘»j +1/j ; I/‘»j—f—lj‘? ; 1 ;
Jvi v _ a(xf I,I/J 1) ( z+1: i Vi —1) +C¥J~ i+1 Y 0‘?_1 i 21—1 . sz(ag o 0‘?_1)
=1 =1 =1y Vi v i—1 =1 =1 i1 . -1

+8,(& KT T (%) + TV BET v T K] (cos ! T siny! ).

Collecting the corresponding terms we again end up with a tridiagonal system with periodic
boundary conditions for new values of the tangent angle

J g J.J i J 0 _ i
Ajvi_+ Bjv; +Cjv, =Dy, i=1,..,n, yy=v,—2m, v, =1 +2m,

where

. P P
of 4B KL YT a@ T

J _ 1073 i
41
) rl . )
Joo_ i 4l J
B; = = (Ai + Ci),
J JO~Y et W A B ~j—1 j—1
C] = _ai +/Bu($z 7ki’yi ) . G’(Iz‘ 7’/2' )
VA 2 J )
q;
j rl 1 j—1 i—1 §—1 14 j—1 j—1
g g Jj— ~j—1 _j—1 1] J=1 i
D] = ?Vi +r VeB(E v k). (cosy) T, siny) 7).

In order to construct discretization for (2.67) we integrate it in the dual volume [Z;_1,Z;].
We obtain

Tit1 Tit1 Tit1 Tit1
[ Owxds= [ a(z,v)0?zds+ [ adszds+ [ &(z,v)ds,

g% = a(wy, L) [0,2]3 1 + ci(Fis — Fi) + qidl(i, D),

qi%i = G(wi, I/i+21/i+1) (x,:;—lx, _ -Ti—r-fi—l) + Oéi(SNUi+1 — jz) + qz-é'(xi, %(VZ + Vi+1))-
By replacing z; with the average of grid points, time derivative by time difference and using
a semi-implicit approach in nonlinear terms we end up with two tridiagonal systems for
updating the position vector

JoJ J . JJd P J _ Jjoo_.J
Aizi_ +Bjz; +Ciz; , =Dj, i=1,...,n, xy=mx), Tp, =,
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where
W a(wi, 3 (vi +vin) N of
] J 2 ?
L
) qJ' ) A
B o= e,
o - _almi s Wit vin) 0é_§7
VA
7"%'7+1 2
. q] 1 . 1 ]_ . .
D‘Z = 72353 —|—qgc(xg 75(’4 +Vi]+1))'

Given a discretized initial curve z{ further initial quantities for the algorithm are com-
puted as follows:

R, = (RilvRiQ):x?_x?—la i1=1,...,n, Ry= Ry, RnJrIZRl;

rd = |Ry, i=0,..,n4+1, 0 =exp(r?), i=0,..,n+1,
]. R‘+1.R‘71 .

k‘i = ﬁsgn(Ri_l A R¢+1)arccos <ﬁ , U= ]., ceey T, k?g = k)g, k?l-l—l = k'(l),
? i+1"3—1

vy = arccos(Ry, /1Y), if R;, >0, v)=2r — arccos(R;, /r;) if R;, <0,

o= k) i=1,..n+ 1.

Figure 28: Isotropic curvature driven motion, (k) = vk + F, with v = 1, F = 10, without
(left) and with (right) asymptoticaly uniform tangential redistribution of grid points. The
merging of the grid points in the left figure is overcome by proper tangential redistribution
in the right.

2.4.3 Discussion on numerical experiments

In Figures 28-29 we present numerical solutions computed by the numerical scheme described
in the previous Section for the case v = B(k,v) = vk+ F. As an initial curve for computation
shown in Fig. 28 we chose: z(u) = cos(2mu), x2(u) = 2sin(27u) — 1.99 sin3(27u), u € [0, 1].
In Fig. 29 we considered an initial curve zi(u) = (1 — Ccos?(27wu)) cos(2mu), zo(u) =
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Figure 29: Isotropic curvature driven motion of an initial nonconvex curve including asymp-
toticaly uniform tangential redistribution of grid points; (k) = vk + F, with v = 1 and
F =10 (left); v = 0.1 and F = —10 (right). Resolution of sharp corners in the case of a
highly dominant forcing term F' = —10 (right) is possible.

Table 1: The exact Tyq, and numerical 7T}, ... blow-up times for the family of shrinking circles

on a surface M = Graph(¢).

axr

[¢@) [T Tnar [ T |
1 — |z|? 0 | 0.187489 | 0.1876
1 || 0.269843 | 0.2700
V122 |0 | 0143833 | 0.1440
1 || 0.169667 | 0.1698

(1 — C cos?(2mu)) sin(27u), u € [0,1] with C = 0.7. In Fig. 28 we chose 7 = 0.00001, 400
discrete grid points and we plotted every 150th time step. For computations depicted in
Fig. 29 we took 7 = 0.00001 and 400 (Fig. 29 left) resp. 800 (Fig. 29 right) grid points.
In presented experiments we have used the non-local tangential velocity functional o with
parameters k1 = ko = 10. It is worth to note that the method with tangential redistribution
can correctly resolve the sharp corner formation and their further evolution as seen in Fig.
29 right, which is not an easy task at all for any Lagrangian scheme.

Now we consider a flow of curves on a given graph surface driven by the geodesic curvature
and external force (1.27). Then the flow of vertically projected planar curves is driven by the
geometric equation (1.31) with coefficients a(z,v), b(x,v) defined as in (1.32).

In the first example we have tested accuracy of the computed numerical blow-up time for
the family of shrinking curves with finite extinction time. Comparison of exact and numerical
blow-up of a family of shrinking circles on a surface M = {(x, #()),z €  C R?} for various
¢ and G = —(0,0,%) is presented in Table 1. In this example the time step was 7 = 0.0001,
there were 100 grid points and we chose the circle with radius 0.5 centered at the origin as
an initial curve.

In the example shown in Fig. 30 we present inner and outer evolution of circles belonging
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Figure 30: A geodesic flow on the ”hat-like” surface and its vertical projection to the plane.
Outer and inner evolutions of initial circles I'g with radii 7o = 1.5 (left) and ro = 0.1 (right).

to a "hat-like” surface and converging towards a circular valley. We chose ¢(z) = (1 — |z|?)2,
t € (0,0.0315) and there was a strong external force y = 100. Profiles of the radius r = r(t)
for inner and outer evolution are presented in Fig. 31.

T T T TR U
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.3
.2
.1

1
.9

0

0 0.005 0.01 0.015 0.02 0.025 0.03 0 0.005 0.01 0.015 0.02 0.025 0.03

Figure 31: Time evolution of the radius of shrinking circles (left) and expanding circles (right).

The next example having an explicit solution is the family of shrinking circles belonging
to a transversal plane. The projection to the base plane is the family of shrinking ellipses.
More precisely, we consider a surface M as a graph of ¢(x1,z2) = kzq where k € R is a fixed
parameter. Let r(t),t > 0, be a solution to ODE 7 = —1/r, r(0) = ro > 0. Then r(t) =

2(T —t) where T = r3/2 and the normal velocity v of a family of shrinking ellipses I'; =
{z(u,t),u € [0,1]}, z(u,t) = r(t) (1 + k?)~1/2 cos(2mu), sin(27u)) satisfies the geometric
equation v = [(z,k,v) where g is given by (1.31) with zero external force, i.e. 5 = 0.
Clearly, the family of shrinking circles G; = {(z,¢(z)),z € 'y} on the surface M satisfies
the geometric equation V = K,. In the numerical experiment shown in Fig. 32 we chose
d(z1,29) = 1, t € (0,0.5), ¥ =0 and ro = 1.

An important tool for testing numerical algorithms is the so-called experimental order of
convergence (EOC). The idea behind the definition of EOC is rather simple. Suppose that
a numerical scheme has an order of convergence o with respect to a spatial discretization
parameter h. Here h can be defined as: h = 1/n where n is the number of grid points. It means
that the error err(h) (calculated in a certain prescribed norm) of an approximate numerical
solution and the true solution satisfies err(h) ~ h*. Now if we halve the discretization step
h we can determine the exponent o of EOC as follows:

a = log, (err(h)/err(h/2)) .
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Figure 32: A geodesic flow with no external force (7 = 0) on an affine plane and its vertical
projection to the plane. We plot inner evolution of an initial ellipse corresponding to a circle
with radius 7o = 1 belonging to transversal plane over the time interval (0,0.5).

We have tested the experimental order of convergence for the explicit example of shrinking
circles on a transversal plane. Since the solved system of governing equations has the parabolic
nature we adopted the natural constraint between time stepping and space discretization:
7 = h%/2. In Table 2 we present results obtained by using non-local tangential velocity
functional defined as in (2.51) whereas in Table 3 we summarize results obtained by using
the locally depending tangential velocity functional defined as in (2.56). Those two methods
seem to have the same strength measured in terms of the EOC. Also in case of these highly
nonlinear problems the experimental order of convergence in all quantities is at least one,
which is usual for the finite volume approximations.

Table 2: Computation using the non-local tangential velocity « defined as in (2.51);
L,((0,T), La(S')) errors and their EOC for z, k, v and g.

| h P ” T | eoc ” k ‘ eoc H v | eoc H g ‘ eoc |
0.1 2 0.009398 0.07258 0.1286 0.03289
oo || 0.01421 0.1162 0.1371 0.05433
0.05 2 0.004015 1.227 0.03388 1.099 0.06842 0.9109 0.008914 1.884
o0 0.005955 1.255 0.06471 0.8445 0.07381 0.8939 0.01483 1.873
0.025 2 0.001877 1.097 0.0165 1.038 0.03473 0.978 0.002296 1.957
o0 0.002761 1.109 0.03347 0.9508 0.03761 0.9727 0.003808 1.961
0.0125 2 0.0009225 | 1.025 0.00827 0.9961 0.01743 0.9944 0.0005814 | 1.982
o0 0.001352 1.031 0.01705 0.9734 0.01889 0.9931 0.0009625 | 1.984
0.00625 2 0.0004588 | 1.008 0.004105 | 1.011 0.008723 | 0.9991 0.0001454 | 1.999
o0 0.0006711 | 1.01 0.008483 | 1.007 0.009458 | 0.9983 0.0002404 | 2.001

The next example of this Section illustrates a geodesic flow V = K, on a surface with
two sufficiently high humps. In Fig. 33 we considered a surface M defined as a graph of the
function ¢(z) = 6(f(z1 — 1,22) + f(z1 + 1,32)) where f(z) = 2701 for || < 1 and
f(z) =0 for |z| > 1 is a smooth bump function. We took the time step 7 = 0.0002. Initial
curve was an ellipse centered at the origin with axes 2 and /2. The spatial mesh contained
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Table 3: Computation using the local tangential velocity « defined as in (2.56);
L,((0,T), La(S')) errors and their EOC for z, k, v and g.

| h P ” T | eoc ” k ‘ eoc H v | eoc H g ‘ eoc |
0.1 2 0.009608 0.07163 0.1286 0.03324
00 || 0.01463 0.1135 0.1371 0.05545
0.05 2 0.004064 | 1.241 || 0.03369 | 1.088 || 0.06845 | 0.9095 || 0.009231 | 1.849
00 || 0.006049 | 1.274 || 0.06387 | 0.83 0.07381 | 0.8939 || 0.01549 1.84
0.025 2 0.001889 | 1.106 || 0.01642 | 1.037 || 0.03475 | 0.9779 || 0.002389 | 1.95
0o || 0.00278 1.122 || 0.03318 | 0.9447 | 0.03761 | 0.9727 || 0.003985 | 1.958
0.0125 2 0.0009264 | 1.028 || 0.008235 | 0.9954 || 0.01744 | 0.9944 || 0.0006056 | 1.98
00 || 0.001356 | 1.035 || 0.01692 | 0.9719 || 0.01889 | 0.9931 || 0.001008 | 1.984
0.00625 2 0.0004604 | 1.009 || 0.004088 | 1.01 0.008728 | 0.999 || 0.0001515 | 1.999
00

0.0006729 | 1.011 0.00842 1.006 0.009458 | 0.9983 || 0.0002517 | 2.001

400 grid points. The initial curve was evolved until the time 7" = 13. As it can be seen from
Fig. 33 the evolving family of surface curves approaches a closed geodesic as t — oo. The
existence of a closed geodesic curve follows from a simple calculation of the lower bound of the
length of a curve passing through tops of both humps at the same moment which should be
greater than 4v/3% 4+ 12 &~ 12.64. Since the length of the initial curve is approximately 10.81
and the flow of surface curves is length shortening the family of surface curves converges to
a nontrivial closed geodesic with the length strictly less than 10.81.

Finally, we apply our computational method to the image segmentation problem. Let us
consider the normal velocity v = B(z, k,v) where

Bm,k,v) = $(z)k — b($(z))V(z). N,

#(x) =1/(1 + |VI(z)|?) and I(z) is a given image intensity function. The numerical exper-
iment is shown in Fig. 34. We look for an edge in a 2D slice of a real 3D echocardiography
which was prefiltered by the method of [125]. The testing data set (the image function I)
is a courtesy of Prof. Claudio Lamberti, DEIS, University of Bologna. We have inserted an
initial ellipse discretized by 400 points into the slice close to an expected edge (Fig. 34 left).
Then it was evolved according to the normal velocity described above using the time stepping
7 = 0.0001 and non-local redistribution strategy with parameters x; = 20, k2 = 1 until the
limiting curve has been formed (400 time steps). The final curve representing the edge in the
slice can be seen in Fig. 34 right.

Next we present results for the image segmentation problem computed by means of a
geodesic flow with external force. We consider an artificial image whose intensity function

1 1 222 + |22\
I(z) = = + —arctg | 12.5 -1 LI
(x) 5 + —arctg ( 00 (|x|4x% yp

is depicted in Fig. 14. If we take ¢(z) = 1/(1 + |VI(z)[?) then the surface M defined as
a graph of ¢ has a sharp narrow valley corresponding to points of the image in which the
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Figure 33: A geodesic flow on a surface with two sufficiently high humps (left) and its vertical
projection to the plane (right). The evolving family of surface curves approaches a closed
geodesic as t — 0.

gradient |VI(z)| is very large representing thus an edge in the image. In contrast to the
previous example shown in Fig. 34 we will make use of the flow of curves on a surface M
driven by the geodesic curvature and strong ”gravitational-like” external force F. According
to Section 1.9 such a surface flow can be represented by a family of vertically projected plane
curves driven by the normal velocity

v = a(z, )k — b(z,v)Vé(z).N

where coefficients a,b are defined as in (1.32) with strong external force coefficient 5 = 100.
Results of computation are presented in Fig. 35.
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Figure 34: An initial ellipse is inserted into the 2D slice of a prefiltered 3D echocardiography
(left), the slice together with the limiting curve representing the edge (right).
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Figure 35: A geodesic flow on a flat surface with a sharp narrow valley (left) and its vertical
projection to the plane with density plot of the image intensity function I(z) (right).
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3 Computational methods for the regularized Perona-Malik
and level-set type equations

The aim of this Chapter is to present numerical schemes for solving some of the nonlinear
diffusion equations presented in Chapter 1 and for the level-set formulations of the problems
presented in Chapter 2. We will be mainly concentrate on applications to image processing.
Since images are given on a discrete grid (pixel/voxel structure), we discretize the PDEs to
get a numerical scheme implemented on a computer. One can use a wide range of meth-
ods devoted to the numerical solution of nonlinear PDEs. However, semi-implicit schemes
[31, 70, 16, 17, 137, 138, 96, 81, 82, 83, 91, 97, 58, 59, 60, 115, 40], where the nonlinear terms
of the equation are treated from the previous discrete scale step, and linear terms are con-
sidered at the current scale level, have favorable stability and efficiency properties. For space
discretization either finite element method [70, 16, 17, 115, 40], finite/complementary volume
method [96, 81, 82, 83, 59, 60] or finite difference methods [137, 138] can be used. In this
Chapter we discuss discretization in space by variational techniques, i.e., using finite element
and finite/complementary volume methods. They are based on integral (weak, variational)
formulations of the initial-boundary value problems for PDEs. Variational methods have a
strong physical background since they are based on principles like minimization of energy (fi-
nite element method) or conservation laws (finite and complemetary volume methods). They
allow a clear and physically meaningful derivation of difference equations which are local and
easy to implement. Convergence of the schemes to weak solutions of the PDEs can be studied
using methods of functional analysis. Such convergence analysis indicates that the discrete
model really follows properties of the continuos one when we refine the image resolution.
It is an important property, since the continuos PDE is usually designed to respect various
differential characteristics of the ”continuos image” which is recorded on a photosensitive
surface and pixelize.

For our presentation we have chosen two representative geometry-driven diffusion models:
the regularized Perona-Malik anisotropic diffusion equation due to Catté, P.L.Lions, Morel
and Coll [31]

uy — V.(9(|[VGy * u|)Vu) =0, (3.1)

and the nonlinear degenerate diffusion equation of mean curvature flow type due to Alvarez,
P.L.Lions and Morel [4]

Vu
ur — g(|VG4y * u|)|Vu|V(W) =0, (3.2)

where u(t, ) is an unknown function defined in Qr = I x Q. They are accompanied by the
boundary and initial conditions (1.3)—(1.4), and for both equations we assume the hypothe-
ses (1.5)—(1.7). Both models represent a similar view to image selective smoothing, in the
sense that edge positions are preserved in the image multiscale analysis, see Chapter 1.

In the first Section of this Chapter we will describe semi-implicit scale discretization of
both equations and we establish some of their stability properties. In the next Sections we
describe in detail finite element and finite volume spatial discretization of equation (3.1) and
complementary volume discretization of equation (3.2).
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3.1 Remark In the next paragraphs, we will use the standard notations for the functional
spaces L,(Q), p > 1, and C¥(Q). By V we denote the Sobolev space W12(Q) of Lo(f)-
functions with square integrable weak derivates [84]. The absolute value will be denoted by
| - | and the norm by || - || with a subscript given by the corresponding functional space. By
C we denote a general (large) constant.

3.1 Semi-discretizations in scale

We start by the semi-discretizations in scale of the problems given by (3.1) and (3.2), respec-
tively. Choosing N € N we obtain the length of the uniform discrete scale step k = T'/N.
We replace the scale derivative in (3.1), (3.2) by backward difference. The nonlinear terms of
the equations are treated from the previous scale step while the linear terms are considered
at the current scale level — this means semi-implicitness of the method. Let us start with
approximation in scale of equation (3.1).

Semi-discrete linear scheme for solving equation (3.1) [70]: Let N € N, k =T/N
and o > 0 be fized numbers, and let u® be given by (1.4). For every n = 1,...,N, we look
for a function u™ which is a solution of the equation

n—1

—V.(g(|[VGy % u" 1) Vu™) = 0. (3.3)

n

U —u

k

Due to smoothing properties of convolution,
gL i=g(|VGy xu™ ) > v >0 (3.4)

holds true and then it is not difficult to see that there exist unique variational solution u" of
(3.3) at every discrete scale step for which the stability estimates

u" o) < N6 lmo@)s N0 i@ S M6 lLw@): 7 =1,...,N,
N N
> IVu™([7, )k < C, >l - u" [0y < O,
n=1 n=1

hold, too [70, 17]. Moreover, for the so-called Rothe’s step function @™ () = u™, (n — 1)k <
t < nk, Ka¢ur and Mikula [70] proved convergence in Ly(Q7) to the unique weak solution of
(3.1).

In spite of equation (3.1), the equation (3.2) is not in divergence form. For second order
partial derivatives, as is usual in variational methods, we would like to use integration by
parts or the divergence theorem to get an integral formulation (see the next Sections). Thus,
we first move the term in front of the divergence to the time derivative, and then we write
semi-implicit discretization of (3.2) in scale

Semi-discrete linear scheme for solving equation (3.2) [59]: Let N € N, k = T/N
and o > 0 be fized numbers, and let u® be given by (1.4). For every n = 1,...,N, we look
for a function u™ which is a solution of the equation

1 u” — L Vu™
NG e Ve kY <|Vu"1|) =0 (3.5)
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At this place, let us note another possible approach for the scale discretization of (3.2)
based on an interesting approximation of the degenerate diffusion term given in [135]. Follow-
ing the idea of Walkington one could, instead of (3.5), use the following implicit (nonlinear)

semi-discretization
1 u — 1 Vau™
— 2V. =0. 3.6
Ve (e T (36)

Walkington considered averaging the gradient terms from the previous and current scale step
in the denominator of the divergence term to get an important W' estimate, i.e. estimate
on the decay of the total variation of discrete solutions. This estimate is a basic property of
the flow by mean curvature and of a solution of the level set equation as well [135] and can
be interpreted as a curve shortening property which means smoothing of the image level lines
(see previous Chapters). Any reasonable numerical approximation should respect this fact.
Following [135], one can multiply (3.6) by u" — u"~! and integrate it over €. Then using
integration by parts and zero Neumann boundary conditions one gets

/ (u™ — u"1)? 4z +2 Vu™ (Vu" — Vu”_l)d
e T I N IR

z=0 (3.7)
where short notation (3.4) has been used. Using the relation
2a(a — b) = a® — b + (a — b)? (3.8)

where a, b are arbitrary real numbers, and by a simple manipulations related to the sum in
the denominator we get

(u" _ un71)2 |Vun|2 _ |Vun71|2
———dx + dxr +
A A e
|vun _ vun71|2 / (un _ unfl)Q
dr = - 3.9
R e e L 39

[V — V2 / n / n-1)7\ —
-l-/Q |Vu"_1|+|Vu"|dx+ Q|Vu |dx Q|Vu |dz | =0

which means that
VU, ) < IIVU" L @) (3.10)

and by recursion
IVu™ |1y < VW1 ), 1<n<N. (3.11)

It represents the important stability property of this nonlinear scheme. However, the previous
scheme leads in each discrete scale level (after any spatial discretization) to solving of a
nonlinear system of equations. This is a rather non-efficient approach. In order to have
convergence, which is however very slow, one has to use fixed point-like nonlinear iterations;
faster possibilities like Newton’s method have no guarantees for convergence [135] and are
rather complicated from the implementation point of view.
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In [59] Handlovicovd, Mikula and Sgallari get the estimate (3.11) also for the scheme
(3.5) which is much more simple and efficient. Since it is linear, it allows the use of the fast
preconditioned iterative linear solvers at every scale level. Let us multiply (3.5) by u” —u"~!,
then integrating it over © and using (3.8) we get

n|2 n—1(2 n __ n—1|2
/ (u™ d 21 /|Vu| |IVu™*|* + |Vu™ — Vu ldx=0.

Tgn 1|Vun 1| |Vun—1|
Since
Vu™ Vur—!\?
n _ n—12 _ n|_ n—11\2 _ n n—1
|[Vu" — Vu" ™| (|IVu"| = |[Vu" ) +<|Vu"| |Vu”—1|> [Vu"| [Vu" 7,
we get
VU”Q n712_ Vu'| — vunfl 2
[yt g f, T
(V"] = [Vur—!)? / A A A R
—l—/ﬂ Vur] dr + = V| |Vu"—1| |Vu"|dz = 0.

Due to positivity of other terms we get for the second term

n n—1| _ n—1|2
/ [Vu"| |V7|lvun|1||vu | d < 0
which gives
VU1, ) < VUL @) (3.12)
and thus
IVu™ 1) < IVE|lri@)y 1<n<N (3.13)

which is the desired W11 estimate for the linear semi-implicit scheme (3.5). Since in the
general situation there can be zero in denominators of (3.5), the above derivations were
formal. However, in the Section devoted to the complementary volume spatial discretization
we will regularize the problem, e.g. approximating |Vu™ !| ~ /e + |Vu"~1]2 and show that
(3.13) is fulfilled for the regularization parameter ¢ tending to zero.

3.2 Space discretizations

A discrete image is given on structure of pixels/voxels with rectangular shape in general. Such
shape restriction is not necessary for the methods presented bellow, but for simplicity we will
use this simple image structure to create a computational grid for the spatial discretization
methods.

Concerning the relation of the computational grid to the pixel structure, there will be
a difference between the finite element and the complementary volume methods on the one
hand, and the finite volume method on the other. The difference is related to the type of
approximation of the solution of the partial differential equations assumed in those meth-
ods. While in the finite volume method the approximation of the solution is assumed to
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be piecewise constant [47], in the complementary volume and finite element methods it is
assumed to be continuous and, e.g. piecewise (bi)linear. Thus, in the finite volume method,
the computational grid will directly be taken to be the pixel structure of the image and
computational domain €2 corresponds to image domain. The initially given and subsequently
computed values of discrete intensity are considered as approximations of average of continu-
ous intensity function on pixels. On the other hand, in the finite element and complementary
volume methods, the initially given values of discrete intensity, and also the computed values,
are considered as approximations of the continuous intensity function in the centers of pixels.
The centers of pixels then correspond to the nodes of the finite element or the complementary
volume grid (triangulation). We can get such a grid by connecting the centers of pixels by a
new rectangular mesh (see Fig. 36). We can take either bilinear approximation of the image
on this rectangular grid or further divide every rectangle into two triangles (or six tetrahedra
in 3D) and consider linear approximation. By the construction, it also means that in these
two methods the computational domain €2 is given as the union of all triangles constructed in
this way and €2 thus corresponds to the image domain minus the outer half of every boundary
pixel — see Fig. 36. Let us note that the splitting of every pixel into two triangles, as depicted
in Fig. 36, is not the only possibility. The orientation of triangles can change locally, e.g. be
given by a refinement procedure in a bisection algorithm [15]. Given a triangulation, for the
complementary volume method, we will construct a dual mesh. This dual mesh will again,
in a sense, copy the pixel structure of the image. Let us note that in the finite element
method we will use just the triangulation, in the complementary volume method we use both
the triangulation and the dual mesh, and in the finite volume method we use just the pixel
structure of the image corresponding to the dual mesh.
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Figure 36: The image pixels (solid lines) corresponding to the finite volume mesh and to the
dual mesh for the complementary volume method. Triangulation (dashed lines) for the finite
element and complementary volume methods, with nodes (round points) corresponding to
the centers of pixels.

We now define quantities which will be used in descriptions of fully discrete schemes (see
also [135, 47, 32]). Let us assume that we are given a triangulation 7 (e.g. given by a previous
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construction). that has no interior angle larger than 7/2. The dual mesh 7 will consist of
cells p (also called complementary or finite volumes, or co-volumes) associated with the pth
node of the triangulation 7, p = 1,..., M. Since there will be one-to-one correspondence
between nodes of triangulation and co-volumes we will use the same notation for them; we
also hope that no confusion can appear with 7 which denoted time step in Chapter 2 and
dual grid here. The co-volume p is bounded by the lines (planes in 3D) that bisect and are
perpendicular to the edges emanating from the node. By m(p) we denote measure in R¢ of p.
We will denote the edge of 7 connecting the pth node to the gth by oy,,, and its length by d,.
We denote by E,, the set of simplices having o,, as an edge, i.e., E,y = {T € T|op, C T'}.
Let ey, denote the co-edge (co-plane) that is the perpendicular bisector of o,,, and let zp,
be a point of intersection of e,, and 0,,. By m(ey,) we denote the measure of e, in R~
For each T' € E,q, let cg;q be the measure in R4 of the portion of epg that is in T, i.e.,
cgq = m(epy NT). Let S(p) be the set of simplices that have the pth node as a vertex, and
for each node of T let N(p) denote the set of nodes ¢, ¢ # p, which are connected to the
pth node by an edge and for which m(e,q) # 0. In the situation depicted in Fig. 36, N(p)
consists of four neighbouring nodes ¢ in the direction of the coordinate axes, for every inner
node p of the triangulation. We denote by £ the set of pairs of adjacent finite volumes,

&= {(pv q) € 7—27 p 7é q, m(BPQ) ?é 0}

Given a triangulation 7, we define the set V;, C V of piecewise linear finite elements, i.e.,
Vi =Vi(T) :={v € C°(Q)| v|r € Py for all T € T}.

For any v, € V}, we will use the notation v, := vy (z,), where ), is the coordinate vector of the
pth node of the triangulation. Let u) = I,(u®) € V,(T) be the nodal interpolant of u°. This
will be the initial function for the finite element and complementary volume methods. In the
finite volume method we denote by @, the representative value for the cell (the bar indicates
that we mean the average value in the cell and not a nodal value). The initial condition for
the finite volume scheme is then assumed to be

ﬂg = % /uo(x) de, per. (3.14)

Before going to spatial discretizations, let us make the following remark on the realization
of the convolution included in the evaluation of the Perona-Malik function g in either (3.3)
or (3.5). We use two strategies. The first is the following: Using the Gauss function G, as
the smoothing kernel, one can replace the term G, * u™ ! by solving the linear heat equation
for time o with the initial condition given by w"~!. This linear equation can be solved
numerically at the same grid by just one implicit step with length 0. Thus, as a realization of
the convolution, we look for a function u¢ which is a solution of the heat equation discretized
in time by the backward Euler method with step o:

c__ ,n—1
i (3.15)

o

where A denotes the Laplace operator. This strategy is very suitable for the finite element
and complementary volume methods, since in this case, the numerical solution u¢ of (3.15)
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is piecewise linear on triangles, its gradients are constant, and thus we can simply evaluate
the Perona-Malik function on every triangle.

In the finite volume method we can use another approach. Since we will consider piece-
wise constant spatial approximations u, in every discrete scale step n, we can replace the
convolution (integral) by a sum over pixels. For the gradient of the convolution term at any
point z we get

VG, xu" Y z) = Zﬂf_l /VGg(x — s)ds, (3.16)
r T

where we used the convolution derivative property
0 n—1 aG n—1
5 (G w1 (@)) = 1 s (o)

wd g G,

o n—1 _ . _ —n—1
T U (z) = - Tz — s)u™ " (s)ds = Z azz 7 (x — s)ds.

The sum in (3.16) is evaluated over control volumes r which surround the point z. If we
choose a C* compactly supported smoothing kernel with support in a ball B,-(0) with
radius o*, e.g. the function

G, (z) = %euﬁ/uxﬁ—a%,

where ¢* = ¢ and the constant Z is chosen so that G, has unit mass, then the sum is restricted
only to the control volumes contained in By« (z), the ball centered at z. If the point z is
close to the boundary of the image domain, we use an extension of a discrete solution. The
coefficients fr VG, (z —s)ds in (3.16) can be computed in advance using a computer algebra
system, e.g. Mathematica [141]. The same situation arises when we use the Gauss function
and consider as the ball B, (0) a “numerical support” of the Gauss function (i.e., we consider
a domain in which the values of the Gauss function are above some treshold). Then, again,
just a finite sum is evaluated in (3.16).

3.3 Finite element method in image processing

To describe the ideas of finite element space discretization, let us consider the equation (3.1)
[70, 16, 17]. Let k,o be given numbers. Before the discretization we use approach (3.15) for
the realization of the convolution, and then we write (3.3) as a couple of integral identities
(weak formulations):

/u"vdx+k/g(|VuC|)Vu"VUd:E:/u”lvdzc, (3.17)

Q Q Q
/ucvdx—l-U/VuCVvdx:/u”lvdx (3.18)
Q Q Q

that hold for all v € V. Then, at each scale level n, we look for a continuous piecewise linear
function u} € V;,(7T) satisfying

/Quﬁvhdx—|—/<:/Qg(|Vu,Cl|)VuZVvhdI:/Quz1vhdac (3.19)
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for all v, € Vi,(T), with uf € Vj,(T) being the solution of

/uivhdzc—ka/Vuinhdzc:/uzlvhdx, Yo, € Vi (T). (3.20)
Q Q Q

Considering the standard Lagrangian base functions ¢, € V,(T), ¢ = 1,..., M, given by
q(xp) = d¢p (Kronecker delta) for all nodes of 7, the functions uj, uf are given by

M M
uy = Zuggop, up = ZUIC)S%- (3.21)
p=1 p=1

Then using (3.21)) in (3.19)-(3.20) and taking v, = ¢q, ¢ = 1,..., M, as test functions, we
get two Ritz-Galerkin systems of linear equations for the nodal values uy, ug, p =1,..., M,
of the piecewise linear functions uy, uf, respectively:

M
Z (/ <ppg0qu+k/g(|Vuﬁ|)V<ppV<pqu) ug:/uzlwqd,fr, g=1,....M, (3.22)
Py Q Q

M

Z (/ gopgoqu—i-a/ V(ppVgoqu> Uy, = / up logdr, g=1,..., M. (3.23)
Q Q Q

p=1

Thus, in every discrete scale step we need to solve two linear systems with the matrices M+
EA(g(|Vus|)), M+oA(1), respectively, where My, = [, ¢p9q dz is the so-called mass matrix
and A(w)gp = [qwVepVpgde is the stiffness matrix, which are symmetric and positive
definite. The discrete solutions can be found efficiently by the preconditioned conjugate
gradient method or by Gauss-Seidel (SOR) iterations [119]. It is also customary to use
the so-called lumped (diagonalized) mass matrix Mg, = 224:1 op(zr)pq(zk) [o vk dz in the
systems (3.22)—(3.23). In order to improve the efficiency of the finite element method, a
choice of different (coarsened) triangulations 7, in subsequent scale steps n = 1,..., N, is
possible (see [16, 17, 115] and the next Section).

The analysis of the finite element method for the regularized Perona-Malik equation with a
proof of convergence to the weak solution was first given by Kac¢ur and Mikula [70]. Discussion
on convergence of the tenzor product finite element methods can be found in [85, 86].

The same ideas as above can be used for the finite element discretization of equation
(3.2). The only difference will be in the facts that the mass matrix M(w) will depend on
w = 1/(g(|Vu§|)|Vuy ™), the stiffness matrix A (w) will depend on w = 1/|Vu}!|, and that

Evans-Spruck regularization |Vu} ' = /e + |[Vu}"!|2 is used in the denominators. Deep

numerical analysis of the finite element schemes for the various level-set type equations can
be found in the series of papers by Deckelnick and Dziuk [36, 37, 38, 39].

3.3.1 Adaptivity in the finite element method

Bénsch and Mikula [16] suggested to improve efficiency of the finite element method in
image processing by the use of adaptively chosen grids at each scale step. Usually, for
time-dependent problems, a modification consisting of refinement and coarsening steps is
necessary to adjust the grid at a given time step [15]. However, for the problem (3.1) it
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is sufficient to coarsen the initial grid successively. There is no spatial movement of edges,
hence no refinements of the grids are needed. This access may reduce the computational
effort considerably, since with the increasing scale the solution tends to be more flat in large
sub-regions of the image. The coarsening of the computational grids rapidly reduces the
number of unknowns in the linear systems to be solved at the discrete scale steps of the
method.

Concerning the adaptive algorithm, first we generate a triangulation 7y corresponding
to a pixel/voxel structure of the image by (globally) refining a coarse grid 79, the so-called
macro triangulation. The refinement procedure generates a sequence 70,7, 72, ... of finer
and finer meshes until the desired structure is reached. Then Tg := T%0, where kg is the last
refinement step. For the refinement we have chosen the so called bisection method due to
Bansch, which allows easily for coarsening.

Refinement of the grid by bisection [15]: Before starting the refinement process, one
edge of every triangle of the triangulation at kth refinement level is marked (Fig. 37). This
edge is called the refinement edge (a good choice is the longest one). To divide a single
triangle, it is cut through the midpoint of the refinement edge and the vertex opposite to the
refinement edge. The new refinement edges are chosen opposite to the new vertex (Fig. 38).

Let us start with 7°. Then for every bisection level k let ¥ T be the set of those triangles
which have to be divided (X* = 7% in case of uniform refinement). Then one bisection step
(see also Fig. 39) at level k is given by:

while ¥ # () do

e bisect all T € X1 as described above, obtain an
intermediate triangulation Tk (possibly non-conforming)

e let now X" be the set of those tetrahedra with a
non-conforming node.

endwhile

Th+l . Gk

Figure 37: Triangle with refinement edge
To provide a local coarsening, we make the following definitions:
1. A simplex T' € T has level [ if T' was obtained after [ refinement steps.

2. A simplex T is said to have locally finest level if the levels of all neighbours are less
than or equal to the level of T.
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Figure 38: Bisection of a single triangle

Figure 39: 7°, 70 and 7!

3. Let T € T, and let T" be the father of T. A vertex P of T which was inserted while
bisecting T is called the coarsening node of T.

4. Let K be an edge of the triangulation 7 and K’ the “father”-edge of K with midpoint
Q. Set M :={T € TIT N K' # (}. If Q is the coarsening node for all T' € M, then M
is called a resolvable patch (Fig. 40).

If M is a resolvable patch, then all T' € M can be coarsened without interfering with
T' € T outside M. Therefore resolvable patches are the configurations which we allow to be
coarsened. This guarantees that the coarsening process stays local.

Coarsening of the grid [15]: Let T, be a triangulation obtained by refinement and coars-
ening steps. Let X~ C 7, be the set of triangles to be derefined. Then one coarsening step
consists of:

for each T € ¥~ do
if T belongs to a resolvable patch M then
if " € ¥~ for all 7' € M then
derefine M
endif
endif
enddo

Coarsening criterion and our adaptive method [16, 17]: As the local behavior of
VG, *u determines the evolution process and is an indicator for edges, the coarsening criterion
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N =

Figure 40: Resolvable patch M with coarsening node () and coarsened patch

is based on this value. Let ¢ > 0 be a given tolerance. For the nth scale step and uj, the
corresponding numerical solution on the grid 7,,, we allow all triangles T' € T, to be coarsened,
if

hT|VU7};L| <e on T,

where hp is the diameter of triangle T'. Thus we have the following adaptive scheme:

Let 7o, u) be given.

for n=1,2,...N do
define ¥~ :={T € T,_1;hr|Vu} ' <€ on T}
derefine 7,_; according to X~ to obtain 7,
set up the matrix M+ cA(1)
compute uj € Vj(7,)
set up the matrix M+ kA(g(|Vuj)))
compute uj € Vj(Tp)

enddo

The same adaptive algorithm can be used in the 3D case, just changing triangles to
tetrahedra. For 3D implementation and computational results we refer to [17]. There ex-
ist finite element software packages (see e.g. [130]) based on the bisection refinement and
coarsening method, thus the adaptivity described above can be implemented also in such an
environement.

3.4 Complementary volume spatial discretization

In this Section we will discretize equation (3.2) or, more precisely, the semi-discrete approx-
imation (3.5) by means of the complementary volume method [59]. In order to derive the
complementary volume spatial discretization [135], we integrate (3.5) over a co-volume p

un
dz. .24
/nww i /V (wun 1|> g (3.24)

Using the divergence theorem on the rlght-hand side we get

Vau 1
- — - 2
/pv<|wn1|>d5” /a T RS / T 3¢ (3:25)

geEN(p)
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N\

Figure 41: Processing of a noisy image by the adaptive finite element method for the
anisotropic diffusion equation (3.1). Upper part: Original image and its noise-corrupted
version; lower part: smoothed image after 8 discrete scale steps and corresponding 2D trian-
gulation which is fine only along edges [16].
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Figure 42: Denoising of an artificial object in a 3D image by the adaptive finite element
method for the anisotropic diffusion equation (upper and middle parts) together with cuttings

of subsequently coarsened 3D adaptive grids (lower part).
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where ¢ is unit outer normal to co-volume p. If ul € V},(T) is a continuous piecewise linear
function on a triangulation 7 and if its nodal values are denoted by u; = uj/(x,), then

1 auh CT u® —
d 21 17 3.26
Z en |Vu | oo 5= Z Z |Vur711:1 dpq ’ ( )

gEN(p geN(p) \Te€Epq

where |Vu/"!| denotes the constant value of the gradient of u} ™' in the simplex T. The
complementary volume method approximates the left-hand side of (3.24) by

n n—1

m(p)(up - U’p_ )
kg(|Vus)) | Vup ™|’

(3.27)

where |Vu;}_1|, |Vug| denote an approximation of the gradient in co-volume p. For that

purpose we have chosen the average value of gradients in the co-volume [135]

m(TNp
Vup| = Y %Wuﬂ. (3.28)
TeS(p) p

Let 6 > 0, & > 0. For any uy, € V;, and each T' € T, we define

B |VU,T| if |VU,T| >0
WW“‘{& it |Vur| <, (3:29)

and for any function uy € V), define

|Vuple = V€2 + |Vup|? sothat  |[Vur|. = e+ |Vur|?2, T € Th. (3.30)

The difference between regularizations (3.29) and (3.30), respectively, is that in the first case
we replace by § only vanishing or small gradients, while in the second case we add small
regularization parameter to gradient everywhere. Let us denote by

TN TN
Vali= 3 | lp'|vUT|5, Vigle= 3 ||p||VuT|e,
TeS(p) p TeS(p) P

the regularized approximations (3.28) of the gradient in co-volume p. If we denote

= %T@uzlb’ (31

Ty di TEZEM %7 (3.32)
or

5 T 639

Gpg | = dLMT;Em %7 (3.34)
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we can write the

Linear fully-discrete complementary volume scheme for solving equation (3.2)
[59]: Forn =1,...,N we look for uy, p=1,..., M, satisfying the equation

bptuy k> aps(up —ul) = b lun (3.35)
9eN(p)

If coefficients of (3.35) are regularized by (3.29), i.e. we use (3.31)-(3.32), the solution
(uf,...,ul,) of this linear system will be denoted by ui’n. If coefficients of (3.35) are regu-
larized by (3.30), i.e. we use (3.33)-(3.34), the solution will be denoted by u;". From the
construction of the scheme it is clear that the matrix of the system (3.35) is symmetric and
diagonally dominant M-matrix, thus it always has unique solution. So we have

3.2 Proposition Let coefficients of the scheme (3.35) be given by (3.31)-(3.32). Then there
ezists unique solution ui’n = (uy,...,ul,) of the scheme (3.35) for any 6 >0, n=1,...,N.

3.3 Proposition Let coefficients of the scheme (3.35) be given by (3.33)-(3.34). Then there
exists unique solution u;™ = (uf,...,u%) of the scheme (3.35) for any e >0, n=1,...,N.

3.4 Remark With € or § very small the diagonal dominance of the system (3.35) can be
weak, thus one has to be carefull with a choice of proper solver, we refer to [59] for discusson
on this linear algebra problem.

Before solving (3.35), we have to put [Vug| into (3.31), (3.33). The function uj, € V4(T)
is found by the same idea as given in (3.24)—(3.27) applied to (3.15); i.e., we solve (3.35) with
upy replaced by uf, and with by~ = b, = m(p), aj; "’ = apg = m(epq)/dpg. Then |Vuf] is
computed by (3.28) and put into the Perona-Malik function g.

In order to derive an analogue of the estimate (3.11) for our fully discrete scheme we use

the following result (see e.g. [135])

3.5 Lemma Let Ty be a two-dimensional mesh having simplicies with interior angles not
exceeding w/2 and let u,v € Vi, and w be piecewise constant on Ty,. Then

M

/Qqu.Vvdx = Z Z apg(w)(up — ug) | vp, (3.36)

p=1 \geN(p)

_ 1 T ;
where opg(w) = @Tg];: wrcy, and wr denotes value of w in T € T.
rq

Then we can prove the following assertions.

3.6 Theorem There exists limit u} of a subsequence of ufl’” for 6 — 0 where ufl’” s the
solution of the scheme (3.35) with coefficients given by (3.31)-(3.32). Moreover for this gen-
eralized solution ujy the following estimates hold

lupline ) < luplleo@y IVURllo ) < IVupllL, @), 1<n<N. (3.37)



68 K. Mikula

Proof Let us rewrite (3.35) in the form

T -1 -1
wp e Y - ) = (3.39)
P 4qeN(p)
and let max ui’n = max(uf,...,ul};) be achieved in the pth node. Then the whole second
term on the left hand side is nonnegative and thus value u; < u;}_l < max(uf” L. Uy 1).

In the same way we can prove the relations for minima and together we have

. 0 . 0
min u, < min u, < max u, <max u,, n <N (3.39)
which imply
J,
uy"™ oo (9) < lUpllLw@), 1<n<N. (3.40)

Since estimate (3.40) is independent on § we can choose convergent subsequence of ui’” as

0 — 0. The limit of this subsequence we denote by u} € V} and it is clear that it fulfills the
first estimate of the Theorem. To get the second estimate of the Theorem, let us multiply

(3.35) by u — u?~! and sum it over all nodes. We get

Z NG R 2 Z S an - )k — u ) = 0 (3.41)

p=1geN(p)

using definition of a/i "' and (3.36) we obtain

M n n—1\2 &,n o n—1
- Vu,".V(u," —
I e A A (3.42)

We denote second term of this equation by I7 and further we denote
Qo = {T € Ty; [Vup | < 8}
O = {T € Tp; |Vuli'| > 6}

Using the relation (3.8) we can rewrite the second term in the equation (3.42) as follows

2 (S,Tl n—1
II _/ Mdm—/ Mdm
Qo Q0

4] 4]
+1/|Vﬁﬂ”ﬁ P V" = VP
2 Ja, [Vuy ™|
Since the following identity holds
sn n—12 s;n woipe | Vu" Vup! ’ on ~1
[Vuy"™ — V™ |* = (V™| = [Vup 7 |)° + |Vui’" - |Vuz_1| |V B
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we get
Va2 AT T
11 —/ | u ‘I dx—/ de
0 0 0 0
_Q/IW#PHWWW (Ve = [V
2 Ja, Yy |

Vup" V!
|Vu2’n |Vu

\V/ — |Vup! 1
+/ (V"] - Ui dzc+—/ Vul"|da.
Q1 |Vuh 2 Q1

Because the first term of (3.42) and last two terms in the previous expression are nonnegative,
using Cauchy-Schwartz and then Young inequality we obtain

Joo IV de + [, T P < [ (Tun N ds + o |Vl ds <
Joo IV + & fo T4 Py L f bds
from where
|Vuy" _— 1
5 5 —r—dzr + |Vu "dz < |Vuy |d:r+§(5|90|. (3.43)
Qo ol
If we use again
Vuy"|? 1
/ |Vu "dr < = / | u | —2—dz + =0|Q] (3.44)
QO 2 QO 5 2
we obtain
IV Ly < IV 12, @) + 0190l. (3.45)

on : n : N — (N n n
Let u,”" be subsequence converging to uj corresponding to vector uy = (uh’l, Up gy - - - v“h,M)'

It is clear that there exists subsequence of the previous one for which |Vu5’n
VI € T, as § — 0. Thus ||Vu2’n||L1(Q — ||Vuh||L1 for § — 0. From the estlmate

3.45) then follows that |Vul |z, ) < IVuy L, Wthh gives the second estimate of the
RIIL1(€) h ()
Theorem. O

3.7 Theorem There exists limit u} of a subsequence of uy" for e — 0 where uy™ is the solu-
tion of the scheme (3.35) with coefficients given by (3.33)-(3.34). Moreover for this generalized
solution uy the following estimates hold

lupllre @ < Uiz IVURlli < IVUpllL @), 1<n<N. (3.46)
Proof In the same way as in the proof of Theorem 3.6 we get

Juy" o) < lupllie@), 1<n<N (3.47)
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and from there the first estimate of this Theorem. Now, we prove the second estimate. Let
us again multiply (3.35) by uy — u?~! and sum it over all nodes. As in the previous proof we

> P
obtain

M n n—1\2 emn e,n n—1
— Vu;”".V(u,
Zbﬁ_l—(% e +/ - |v(uh 7 =0 (3.48)
T (9] u £

Let us use the notation
Vv = (vg,vy,€), Vov = (vg,0y,0).

where v,, v, denote partial derivatives of a function v in 2D case (in 3D analogously). Then
IVeup ! = [Vul e, [Vour"| = |[Vuy"|, Veul t.Vou;™ = Vu ™ .Vl =t (3.49)

We again denote second term of equation (3.48) by I'l. Using the relation (3.8) we have

dz.

_ 1/ |V, 2 _ |Vu271|2 + [Vu,™ — Vuzfl|2
[Vup .

We can compute

Vup"™ = Vup P = [Vup" [* = 2|Vu, " || Vup ™ 1|5

IVul 2 + 2| Vuy ||Vl e — 2Vap" - Vap ! —e? =
_ 2Vu;" - V! _
1911910+ (2 et ) e -
1>

and using (3.49) we get

2Vu;" - Vult | Voup™  Veud !
Ve "IV~ e [IVou™] [ Veup™|
which together gives us
-1 1
L P g . R
n—1 x 2 n—1 z
|Vuh le 0 |Vup ™"
1 / Vou;™ ¥V uZ !
+= Vu;™" |dx
2 o) |VOU2’H |VE | |

and finally

M n n—1\2 2
- - 5
Shp (T,
T 9)

V™"

p=1

1 / Vous™ vu’,; !
2 |V0’U,E’n |V5
/IVu "2 - IVUZHI? (IVU "= [Vaup )
2 Q |V“h |e

|Vu; ™ |dz +

dzr = 0.
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Since the first three terms are positive we have for the last one

1 [ 2|Vu"[[Vup e = 2[Vup |2
_/ [Vuy ™ [[Vuy, n|—81 [Vuy, dr <0
2 /o |Vuy e

from where

/Q|Vu‘;’” dxg/ﬂwug1|de:/ﬂ,/|wg1|2+e2dxg/ﬂ|vugl|dx+g|g|,

holding for any € > 0. The rest of the proof uses the same arguments as in the end of the
proof of Theorem 3.6. O

Figure 43: Comparison of the curve evolution given by the scheme (3.35) (solid lines represent
zero level set of numerical solution in ¢ = 0, 1,2, 3,4) and by exact solution given by shrinking
unit circle (dots) at the same time moments. (see Example 5)

In Fig. 43 we test our co-volume algorithm (3.35) in simple situation of known exact
solution of the level set equation (1.22) given by a shrinking circle into the point. We consider
unit circle which extincts at time 0.5. From our comparison one can see precise coincidence
of exact and numerical solutions and only very small error in extinction time which is for
numerical solution 0.5010. The parameters were h = 0.01, time step 7 = 0.0001 and €2 =
10-S.

In Fig. 44 we test the algorithm (3.35) in the nonconvex curve evolution by mean cur-
vature. We evolve numerically the initial curve given in the top. In all images we plot by
solid lines numerical solution by (3.35) and by points numerical solution given by concep-
tually different method based on discretization of the intrinsic heat equation described in
Section 2.3. In case of the scheme (3.35) we use space discretization parameter h = 0.01,
time step 7 = 0.001, €2 = 10~% and both solutions are plotted at the same time moments
(t = 0.05,0.1,0.2,0.3,0.5,0.8) after which the curve shrinks in a circular form into a point.
From the comparison one can see a precise coincidence of two methods during evolution. We
have also observed very similar behaviour of both studied regularizations.
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Figure 44: Comparison of numerical solutions using semi-implicit complementary volume
scheme for solving level set equation (solid lines) and Lagrangian approach based on solving
the intrinsic heat equation (points).
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Figure 45: Initial image (left), result of multiscale analysis by equation (3.2) after 30 (middle)
and 100 (right) discrete scale steps [59].

Fig. 45 gives an example of an application of the complementary volume scheme to a
mammogram image (171 x 192 pixels).

Using the integration (3.24) and the relation (3.26), one can also derive a complementary
volume discretization of equation (3.1) or, more precisely, for the semi-discrete coupling (3.3),
(3.15). In such a way, we get the system (3.35) with

_ _ 1
byt =mp), ap = i D cpg([Vus)), (3.50)
Pl TRy,

where uj is computed in the same way as above. Let us note that such a discretization
of (3.1) can be considered as a special mass lumping approximation in the finite element
method.

3.5 Finite volume discretization

In this Section we will consider the finite volume discretization of equation (3.1). In our
approach, the finite volume grid corresponds to the dual mesh 7, and finite volumes corre-
spond to co-volumes as they are identical with the pixel/voxel structure of the image. In
general, the finite volume can be either a simplex of the triangulation or a co-volume of
the dual mesh [47]; we use the second strategy. The main difference as compared to the
finite element and complementary volume techniques, is that in the finite volume method
the approximating functions are not in V(7 ), but they are just piecewise constant on finite
volumes. Thus, in theoretical analysis of the schemes, we cannot work directly with gradients
or normal derivatives since they are either zero (inside finite volumes) or infinite (on their
boundaries). However, from conceptual point of view such approach seems to be the most
natural for digital image processing because pixelwise constant values are given in practice.
Using the technique from [47], Mikula and Ramarosy proved convergence of the finite volume
scheme [96] to solution of the regularized Perona-Malik equation (3.1). A similar result has
been obtained by Mikula and Sgallari [98] also for the 3D problem in cylindrical geometry
inspired by a recent fast noninvasive medical acquisition technique. The improvement of
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efficiency can be done, similarly as in the finite element method, using adaptively coarsened
grids. Such approach based on quad-trees in 2D and oct-trees in 3D has been developed by
Krivd and Mikula [81, 82, 83]. In Fig. 46 the result of smoothing and final grid are given
after 25 scale steps of the adaptive algorithm applied to a noisy photograph.

The derivation of the finite volume scheme follows the ideas of the previous Section. We
integrate the equation (3.1) in every finite volume p. Then, by means of @,, @, representing
an approximate values of the solution inside the finite volumes p,q,p € 7,9 € N(p), we
approximate fluxes through the boundary of p (cf. (3.26)). The value of diffusion coefficient
along e, is approximated by its value at the point x,,. We denote by T, = m(epq)/dp, the
transmissivity coefficient, and get the

Linear fully-discrete finite volume scheme for solving equation (3.1) [96]: Let
N eN, k=T/N and o > 0 be fized numbers, t, =nk, n=0,...,N. Forn=1,...,N we
look for uy,p € T, satisfying

sk D o T (@ — ) = mp)ay (3.51)
qEN(p)
starting with
1
ﬂg = —— /uo (z) dz, pET, (3.52)
m(p) Jp
where
ggqn b= (VG * k(qu,tn V) (3.53)

and Uy, g is an extension of the piecewise constant function Gy, (h = maxpe, diam(p)) defined
as follows

U,k (1) Z Z“px{rep}X{tn 1<t<tn} (3.54)

n=0 peT

1 if Ais true

with the boolean function x{ay = {0 lsowh
elsewhere.

The function @y, i, constructed using discrete values given by the scheme (3.51), is con-
sidered as the approximation of the solution and its convergence to a unique weak solution
of (3.1) as h,k — 0 has been proved (see [96] for all details and next Section for main ideas).
It is clear that (3.51) gives a linear system with a symmetric, strictly diagonally dominant
M-matrix, so there exists a unique discrete solution at every discrete scale step. Moreover,
using the same trick as in (3.38), we get Loo-stability of the scheme

min7) < min%? < max@” < max@., 1<n<N. (3.55)
PET p peET peET PET P’
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Figure 46: Processing of noisy photograph; noisy original (top left), smoothing after 25 scale
steps (top right), final adaptive finite volume grid (down)
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3.5.1 Convergence of the finite volume scheme

3.8 Definition A weak solution of the regularized Perona-Malik problem (1.2)—(1.4) is a
function u € Lo(I,V) satisfying the identity

T T
/ / uaﬁ(m,t) dx dt +/ uo(x)e(z,0)dr — / / 9(|VGs xu|)VuVepdrdt =0 (3.56)
0o Jo O 0 0 Jo
for all ¢ € ¥, where U is the space of smooth test functions
U ={pecC*(Qx[0,T)),Ve. W =0 on I x (0,T), (-, T) = 0}. (3.57)

In [31] Catté, Lions, Morel and Coll proved that there exists unique weak solution of (1.2)-
(1.4) which is also the classical solution of the problem at the same time. To get the existence
they used Schauder’s fixed point theorem with iterations in entire parabolic equations. In [96]
we look for that solution in a computationally natural and efficient way using a semi-implicit
finite volume scheme. In this Section we give the main ideas of the proof of the convergence
of the finite volume solution to the weak solution of (1.2)—(1.4). Strategy is first to prove
some a priori estimates of the numerical solution, using the scheme (3.51). These estimates
will lead to the so-called space and time translate estimates for the approximate solution @y, .
The space and time translate estimates are specific formulations of the equicontinuity in the
following well-known criterion (see e.g. [84]):

Kolmogorov’s relative compactness criterion in La(Qr) The set K C Lo(Qr) is
relatively compact if and only if

(i) K is bounded, i.e., there exists C' > 0 such that ||f|| < C for every f € K;

(ii) K is mean equicontinous, i.c., for every € > 0 there exists § > 0 such that

/ (& +7) — f(@))? di < 2

T

for each f € K and y with |y| <.

Proving relative compactness one gets that there exists a limit function u € Lo(Q7) of the
sequence Uy as h,k — 0. Moreover, the space translates give that this limit is in Lo(Z, V),
so it is a good candidate for the weak solution. It will be the last step of the convergence
proof that v fulfills the weak identity (3.56).

3.9 Lemma (a priori estimates) There exists a positive constant C, independent of h
and k, such that

(i) maxo<n<n Yoy, (@p)?m(p) < C;
(ii) 27]’:7:1 k Z(p,q)GE TPQ(US - U(r;)Q < C;

(i) Y0 Ype, (@ —un =) ?m(p) < C.
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Proof Let us multiply the scheme (3.51) by @, to obtain
(ay —ap)un =k Y g5 Ty, (uy —un)un.
qEN(p)
Using (3.8) on the left-hand side of (3.58) and summing over p € 7, we have that

S @ mi) — 5 S mp) + 32@2 " m(p)

peET peET peET

The following trick is often used in the finite volume technique for anti-symmetric apq =

Z Z apqbp = Z apgbp = Z agpbg = — Z apgby,

PET geN(p) (p,9)€€ (g;p)E€ (p,9)€E
hence
2% > apgby=— D apglbg—by)
PET geN(p) ()€€
whence

Z Z gan 1T — _ = Z gan 1T U, —U,q)2

PET geN(p) (10 q)es
Applying (3.61) in (3.59) and summing over n =1,...,m < N, we have

%Z(E;n)2 ZZ —n_ﬂn 1 Zk Z gpn 1qu EZL)?

peET n 1per n L (p.g)e€
= 3 @ mip)
PET
Since u® € L (£2) we get the results (i) and (iii). We also have

a /
<
Rd

0x;

Gy * ah,k(xpm tnfl)

ox;

7

(3.58)

—Qgp:

(3.60)

(3.61)

0
—Ga(qu_g)a(gvtnfl) df <Cy ||u( n— 1)||Loo (©2)-

Because of (3.55) we have that |VGy * Uk (2pg, tn—1)| < oo, which in turn implies that

there exists a positive constant a such that gg(}"_l > «a > 0, from which one can deduce the

assertion (ii) of the lemma.

0O

In order to apply Kolmogorov’s compactness criterion we have to estimate the integral

/ (T (2 + E,1 + 8) — Ty (0, 1)) da dt
Qr

< 2/ (T + &, + 5) —uh,k(x,t+s))2dxdt+2/ (@ (st + ) — T, 1))? .
Qr Q

T
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Using an extension of the solution (e.g. by 0 outside of 2) the main point is to estimate two
integrals on the right-hand side restricted to domains ¢ x (0, T") with Q¢ = {z € Q, [z,2+¢] €
2} and Q x (0,7 — s) with s € (0,T'), respectively [47, 96].

3.10 Lemma (Space translate estimates) For any vector ¢ € RY there exists a positive
constant C such that

/ (@ + €, 1) — Wy (. £))2 dar dt < CIE|(€] + 20), (3.62)
Q&X(O,T)

where Q¢ = {x € Q, [z, 2 +£] € Q}.

Proof Let ¢ € R? be a given vector. For all (p,q) € &, let us denote &y, = £/|€|.np,. For all
x € (¢, we denote by E(x,p,q) the function defined as follows:

1 if the segment [z, + ] intersects epq, p and ¢, and &, > 0

E(z,p,q) = {

0 otherwise.

For any t € (0,T) there exists n € N such that (n — 1)k < ¢t < nk. Then for almost all z € Q¢
we can see that

ﬂh,k(aj + f?t) - uh,k(*x?t) = _Z(I‘f'f) - HZ(I) = Z E(ZC?p? Q)(UZ - EZ)7
(p.a)e€

where p(z) is the finite volume p € 7 such that z € p. By the Cauchy-Schwarz inequality we
obtain

(ﬂh,k(f‘C + 67 t) - ﬂh,k($7 t))2

! —ul)? 3.63
< Z E(xapaQ)qudpq Z E(x,p, q)M ( )
qudpq

(p,9)€€ (p,9)€E
and using the fact that &,,dpq = &/|&| . npedpg = &/|€].(xg — xp) We have
§
Z E(z,p, Q)qudpq = |§_|'($p(a:+§) - xp(a:)) < |$p(x+§) - xp(a:)l < 2h + [¢].
(pa)€€

Now, we integrate the relation (3.63) on Q¢ x (0,7T) :

/ (@ (z + &) — Tp (1)) d dt
Q&X(O,T)

N —n)2

<ER+IEDDY kY D/g E(z,p, q) dz.
3

= Ggee Sl

(3.64)

Taking into account the area of a parallelogram we have

[ Bla.p.a)do < mlepp)éeny = m(epq>|§—|.npq|§| — m(epy) € éng:
3
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and applying this result in (3.64) we obtain

N
/ (n (5 + &,1) = Tn g, 1) dwdt < 20+ [EDIEID b D Tog(ug —5)* (3.65)
Qex(0.1) n=1 (p,q)€€
Finally, using a priori estimate (ii) of Lemma 3.9 we complete the proof. O
In a more technical way, but basically using again the a priori estimate (ii) of Lemma 3.9

we get:

3.11 Lemma (Time translate estimate) There exists a positive constant C such that
/ (T (st + ) — T () da di < Cs
Qx(0,7—s)

for all s € (0,T).

3.12 Lemma (Convergence of Uy ) There exists u € Lo(Qr) such that for some subse-
quence of Up,j,
Up ke — U n LQ(QT)

as h,k — 0. Moreover, this limit function is in Lo(1,V').

Proof From the estimate (i) of Lemma 3.9 we have that [Ty kl/1,(Q,) < C, so the space
and time translate estimates allow us to use Kolmogorov’s relative compactness criterion in
Ly(Qr) and we have the first assertion of the lemma.

Let ¢ € C§°(Qr), ¢ > 0 and ¢(z,t) = 0if |z — 0| < e. Let 0 < |{| < . Then by the
Cauchy-Schwarz inequality

Tnh(@ +&,8) = Tn (7, CIENE + )
’ : drdt < Y5010 .
/QX(O,T) €] plz,t) dzdt < €] lell 2o (@r)

For the limit function u we have

u(r +¢&,t) —ulz,t
/ (z +&t) —u( )¢(x,t) dz dt < V|9l 1y (Qr)-
QX(O,T) |€|

On the other hand, by a changing of the variables y = z + ¢ we get

/ u(z +&,t) —u(z,t) (1) da dt
Qx(0,T)

[3
u(y,t u(y,t
=/ v )SO(y—&,t)dydt—/ (v )w(y,t)dydt
Qx(0,T) |§| Qx(0,T) |€|
— _/ W(yat) B W(y - f,t) U(y,t) dy dt
Qx(0,T) |£|
< Cllell Lor)-

Let £ = we;, where e; is i-th coordinate vector, and let w — 0. Then

Op(x,t .
[ 98D e v < Clllan: Ve € CF@1).
Qx(0,T) L
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Thus u has generalized spatial derivatives in Lo(Q7), so it is in Lo(I, V). |

The last step is to prove that u given in Lemma 3.12 fulfills the weak identity (3.56) from
Definition 3.8, and thus is a weak solution of the regularized Perona-Malik problem. Since
such a solution is unique [31], not only a subsequence of @y, ; but the whole sequence will
converge to u. Let ¢ € ¥ be given. We obtain a discrete analogy of the weak solution identity
multiplying the finite volume scheme

@ =T ) =k Y o Tyl — )
q€N(p)
by ¢(zp,tn—1) and summing the resulting identity over allp € 7 and n =1,...,N:
5 @ )
Sk B b ) = SRS S G T~ B 1)
n=1 peT n=1 PET qeN(p)
Next we perform a discrete integration by parts
Z(an o an—l)bn—l — a Za — 1
n=1
on the left-hand side, and a rearrangement of the sum
1
D2 aabp =5 > aplbg—1by)
PET gEN(p) (p.g)e€

on the right-hand side, which together with ¢(z,,ty) = 0 gives

Zk Z —n‘P xp; ];P(fﬂp, n— 1 + Z p‘P il?p, )

n=1 pETy, PETH

1 N

B § Zk Z an lT u _ up)((p(xq,tn,l) — (p(:l?p,tnfl)) =0.

n=1 (p,g)e&

The correspondence of the discrete terms of the previous equation and the continuous integral
terms of the weak identity (3.56) can be clearly seen, and the convergence as h,k — 0 can
be proved (see [96] for details). Thus we get:

3.13 Theorem The sequence Gy, j, converges strongly in Lo(Qr) to the unique weak solution
uw of (3.1)~(1.4) as h,k — 0.
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