ON LINEARIZED BACKWARD EULER METHOD
FOR THE EQUATIONS OF MOTION ARISING IN THE
OLDROYD MODEL
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Abstract. In this paper, a linearized backward Euler method is discussed for the equations of
motion arising in the Oldroyd model of viscoelastic fluids. Some new a priori bounds are obtained
for the solution under realistically assumed conditions on the data. Further, the exponetial decay
properties for the exact as well as the discrete solutions are established. Finally, a priori error
estimates in H! and L2-norms are derived for the the discrete problem which are valid uniformly for
all time ¢ > 0.
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1. Introduction. The motion of an incompressible fluid in a bounded domain
Q in IR? is described by the following system of partial differential equations:
Ou

E-i—u-Vu—VU-i—Vp:F(x,t), z€N, t>0,

V-u=0, 2€Q,¢t>0,

with appropriate initial and boundary conditions. Here, ¢ = (o) denotes the stress
tensor with ¢tro = 0, u represents the velocity vector, p is the pressure of the fluid
and F is the external force. The defining relation between the stress tensor ¢ and
the tensor of deformation velocities D = (D;;,) = 1 (g, + Ukg,), called the equation
of state or sometimes the rheological equation, in fact, establishes the type of fluids
under consideration. In mid-twentieth century, the models (of viscoelastic fluids) have
been proposed which take into account the prehistory of the flow. One such model
was proposed by J. G. Oldroyd (ref. [19]) and hence, this model is named after him.

In this case, the defining relation has a special form like

a, 10
1+ AE)U =2v(l + kv 8t)D’

where ), v, k are positive constants with (v—xA~!) > 0. Here, v denotes the kinematic
viscocity, A is the relaxation time and k represents the retardation time. Now the
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equation of motion arising from the two dimensional Oldroyd’s model gives rise to the
following integro-differential equation

t
(1.1) %—ltl—i—u-Vu—,uAu—/,B(t—T)Au(x,T)dT—I-Vp:f, 2z, t>0,
0

and incompressibility condition

(1.2) V-u=0, 2€Q,¢t>0,

with initial and boundary conditions

(1.3) u(z,0) =ug, z€Q, and u(zt)=0, z€dQ, t>0.

Here, Q is a bounded domain in two dimensional Euclidean space IR? with smooth
boundary 99, i = 2kA~! > 0 and the kernel 3(t) = v exp(—4t), where v = 2271 (v —
kA7!) and § = A!. For details of the physical background and its mathematical
modelling, we refer to [14], [19] and [20].

Through out this paper, we shall assume that 4 = 1 and the nonhomogeneous
term f = 0. In fact, assuming conservative force, the function f can be absorbed in
the pressure term.

As in Temam [23], we recast the above problem (1.1)—(1.3) as an abstract evolu-
tion equation in an appropriate function space setting. Let us denote by H™ () the
standard Hilbert Sobolev space and by || - ||, the norm defined on it. When m = 0,
we call H(2) as the space of square integrable functions L?(Q2) with the usual norm
|| - || and inner product (-,-). Further, let HZ(2) be the completion of C§°(Q) un-
der H'(Q)-norm. In fact, we have a norm ||V¢|| on H}(Q) which is equivalent to
H'-norm. We also use the following function spaces for the vector valued functions.

Define

D(Q) = {$ € (C*(Q)*: V-$=0 inQ},

H := the closure of D(Q) in (L*(Q))? — space
and
V := the closure of D(2) in (HJ(2))? — space.

Note that under some smoothness assumptions on the boundary 91, it is possible to

characterize V as
V:i={pec(H})?*: V-¢=0 in Q}.

The spaces of vector functions are indicated by boldface letters, for instance, H} =
(H}(€Q))2. The inner product on H} is denoted by

M

(Vo,Vw) = (Véi, Vw;)
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and the norm by
2
IVl = Q_ IVeill*)=.
i=1

Using Poincaré inequality, it can be shown that the norm on H} is equivalent to
H! = (H'(Q))2- norm. Let P denote the orthogonal projection of L2(Q) (= (L?(Q))?)
onto H. Now the orthogonal complement V* of V in L?(2) consists of functions ¢
such that ¢ = Vp for some p € H(Q)/R. We define the Stokes operator Av =
—PAv, v € D(A) = H2(\V. The Stokes operator is a closed linear selfadjoint
positive operator on H with densely defined domain D(A) in H and its inverse is
compact in H, see [23]. Moreover, we set the s*" power A° of A for every s € IR.
For 0 < s < 2, D(A®*/?) is a Hilbert space with the inner product (4%/2v, A*/>w) and
norm ||A%/2v|| := (A*/?v, A*/>v)1/2. For v € D(A*/?), 0 < s < 2, we note that ||v||,
and ||A%/2v|| are equivalent. We also define a bilinear operator B(u,v) = P((u-V)v).

With the notations described above, we now rewrite the problem (1.1)—(1.3) in
its abstract form as:

‘Find u(t) € D(A) such that for t > 0

du

(1.4) E(t) + Au(t) + B(u(t),u(t)) + /0 B(t — s)Au(s)ds =0, t>0,

u(0) = uo.

In Oldroyd fluid, the stresses after instantaneous cessation of the motion decay
like exp(—A~!t), while the velocities of the flow after instantaneous removal of the
stresses die out like exp(—k~1t). Therefore, it is of interest to discuss the exponential
decay property of the solution of (1.4), and we derive these results in Section 2. For
some related studies in the decay of solution of the linear parabolic equations with
memory, we refer to [25] and [3].

The main focus of this paper is to discuss the linearized backward Euler method
for time discretization of the system of equations (1.1)—(1.3). For the temporal dis-
cretization of the above abstract problem (1.4), let k denote the time step and ¢,, = nk.
For smooth function ¢ defined on [0, 00), set ¢" = ¢(t,) and d;¢" = (¢" — ¢" 1) /k.
For the integral term, we apply the right rectangle rule

(1.5) 00 = kY By /0 " Bty — 5)(s) ds,

where ,Bn_j = ,B(tn — t]‘).
Now the linearized version of the backward Euler method applied to the problem

(1.4) determines a sequence of functions {U™},,>o C D(A) as solutions of

(1.6) ;U™ + AU™ + B(U" 1, U") + ¢"(AU) =0, n >0,
3



0 _
U = Uyp.

The main objective of this paper is to derive the following result.

THEOREM 1. Let ug € D(A) and let U™ satisfy the equation (1.6). Then there is
a constant C independent of k , but may depend on ||ug||2 and Q such that for some
ko > 0 with 0 < k < ko and for positive a with 0 < o < min(d, Ay)

1
lutn) = 0"l < Cluallge (17 +10g 1)

where A1 is the least eigenvalue of the Stokes operator A. Once the Theorem 1 is
proved, the proof of the following theorem becomes a routine work. However, we shall
only indicate the major steps without proving it in detail.

THEOREM 2. Under the assumptions of Theorem 1, there is a constant C in-
dependent of k , but may depend on ||ugll2 and Q such that for some ko > 0 with
0<k<kyand 0 < a < min(d, A1)

[u(tn) = U™ < C(lluoll2)e™*"" k.

Based on the analysis of Ladyzenskaya [16] for the solvability of the Navier-
Stokes equations, Oskolkov [20] proved the global existence of unique ‘almost’ classical
solutions in finite time interval for the initial and boundary value problem (1.1)—(1.3).
The invesigations on solvability were further continued by the co-workers of Oskolkov,
see [15] and Agranovich and Sobolevskii [1] under various sufficient conditions. In
these articles, the regularity results are proved under the assumption of some nonlocal
compatibility conditions on the data at ¢ = 0, which are either hard to verify or
difficult to meet in practice. In the present article, we have obtain some new a priori
bounds for the solution under realistic assumptions on the data. Recently, Sobolevskii
[22] discussed the long time behaviour of solution under some stabilizing conditions
on the nonhomogeneous forcing function using a mixture of energy arguments and
semigroup theoretic approach. When the forcing function is zero, we have derived, in
Sections 2 and 3, the exponential decay properties for the exact solution as well as
for the discrete solution using energy arguments.

For earlier works on the numerical approximations to the solutions of the problem
(1.1)-(1.3), we refer to [2] and [4]. While Akhmatov and Oskolkov [2] applied finite
difference scheme to the equation of motion arising in the Oldroyd model, Cannon et
al. [4] analysed a modified nonlinear Galerkin scheme for a periodic problem using
spectral Galerkin procedure. In [4] they discussed the rates of convergence for the
semidiscrete approximations keeping time variable continuous. In this article, we have
proposed and analysed a time discretization scheme based on linearized modification
of the backward Euler method.

The approach of the present article is influenced by the earlier results of Fujita
[8], Thomée [24] and references therein on the aprroximation of semigroups for the
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parabolic problems; Okamoto [18] on the spatial discretization and Geveci [9] on
the time discretization of the Navier-Stokes equations; and Thomée and Zhang [26]
for the time discretization of the linear parabolic integro-differential equations with
nonsmooth initial data.

The analysis of this paper is not complete as at each time level, we have still
to solve an infinite dimensional problem. Our main intension is to extend the finite
element Galerkin analysis of Heywood and Rannacher [11]-[12], Hill and Siili [13] and
the semigroup theoretic approach in Okamoto [18] for the Navier-Stokes equations to

the present problem. We shall pursue this in future.

2. Some a priori estimates. For our future use, we make use of the positive
definite property ( see, [17], for a definition) of the kernel 8 of the integral operator
in (1.1). This can be seen as a consequence of the following lemma. For a proof, we
refer the reader to Sobolevskii ([22], p.1601), McLean and Thomeé [17].

LEMMA 3. For arbitrary o > 0, t* > 0 and ¢ € L*(0,t*), the following positive
definite property holds

A %ew%M%ﬂM®®wwﬁ20

Since B(t) = ye~% with y > 0, therefore, the above result is true for 3(t).

Below, we discuss some a priori bounds for the solution u of (1.4).

LEMMA 4. Let 0 < a < min (8, 1) and ug € L2(Q). Then, the following estimate
holds

[u(t)l] < e=*[luoll, t > 0.

Moreover,

t
o oT
%Lqﬂféumﬁmwmsww.
1 Jo

Proof. Setting G(t) = e**u(t) for some a > 0, we rewrite (1.4) as
d t
(21)  Sa-ad+ e ' B(1,0) + At + / B(t — 7)e*=7) Ai(r) dr = 0.
0
Form L2-inner product between (2.1) and . Note that (B(@,1),d) = 0, (Au,v) =
(Azu, AY/2v) and ||a]|2 < A\7}||AY/24]|2, where A, is the least eigenvalue of the Stokes
operator A. Then

d a
2.2 | +2(1 = )14V 242
(2.2) dtIIHII + 2( /\1)II al|

t
2 / B(t — m)et=7) (A 2(r), AY2d(r))dr < 0.
0
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After integrating (2.2) with respect to time, the third term becomes nonnegative,
since § > « and the second term on the left hand side of (2.2) is also nonnegative if
a < A1. With 0 < a < min (6, A1), we find that

llall < [luoll.

Moreover,

t

a

2(1- 55 [ A u(r)|Pdr < Jjuol”
1 Jo

This completes the rest of the proof. O
LeEmMMA 5. Under the hypothesis of Lemma 4, the solution u of (1.4) satisfies

t
A 2u(t)|? + 6_2‘”/ e*T||Au(r)|]” dr < C(||AY ?u||)e?*".
0
Proof. Forming L?-inner product between (2.1) and A, we obtain
t
(2.3) (0, Aa) + ||Aa|® + / B(t — T)eo‘(t_T)(Aﬁ(T), Al) dr = a(d, Ad)
0
— e *(B(a,10), Ad).
Note that
. o ld s
(i, A8) = 3 1474

On integration of (2.3) with respect to time and using Lemma 3 alongwith the defi-
nition of 3, it follows for 0 < a < § that

t t
(2.4) A 20 ()| + 2/ | AG(7)||? dr < || A ?ug|? + 2a/ (@, Ad) dr
0 0
t
- 2/ e~ (B(,1), At) dr
0
= ||AY?ug|]? + I + L.

To estimate |I;|, we apply Poincaré inequality and Cauchy-Schwarz inequality with
ab < 21—6a2 + %bz, a,b >0, € > 0. Then the use of Lemma 4 yields

t t
(2.5) |I| < C(Oé,Al,G)/ | A 24 (r) |2 dT+€/ |Aa(r)|| dr
0 0
t
< Cla M, )| +e/ | Ad(r)||? dr.
0

For the estimation of I, we apply Holder’s inequality repeatedly witht the following
form of the Sobolev inequality (see, Temam [23])

@l < CllgllZ |AY20]|Z, ¢ € HY(Q),
6



to obtain

|(B(#, 1), Ad)| < || B(q, 4)||||Ad]|
< C|lal|z || A4 Aq 3.

Thus,
¢ 1 3
12| < C/ e 7|z (|4l |Ad]|? dr.
0

An application of Young’s inequality ab < a4 a,b>0,e> 0 and }—) + % =1

er/a q

yields
t t
(2.6) || < C(e)/ e o7 |42 || AY 24|t dr + 6/ || A dr.
0 0
Substituting (2.5)—(2.6) in (2.4), abd using € = %, we find that
t t
1A 2a(t)|? +/ |AG(7)|]* dr < C(a, A, |4 ug])) +C/ e~ T ||a|?|| A al|* dr.
0 0
An application of Gronwall’s Lemma yields
t t
||A1/2ﬁ(t)|l2+/ |4G(7)||* dr < C(a, A1, |42 uol]) exp {C/ e~ |la|? | A *a)? dT}-I
0 0

Using the a priori bounds in Lemma 4 for 0 < o < min (6, A1), we obtain the desired
result. This completes the proof. a

Remark 1. Based on Faedo-Galerkin method and the a priori bounds derived in the
above two Lemmas, it is possible to prove the existence of global strong solutions to
the problem (1.1)—(1.3). For a similar analysis in the case of Navier-Stokes equations,
we refer to Heywood [10], Temam [23], and Ladyzhenskaya [16]. Since the analysis is
quite standard, we state without proof the global existence theorem [21].

THEOREM 6. Assume that ug € D(A). Then for any given time T > 0 with

0 < T < o0, there exists a unique strong solution u of (1.4) satisfying
ue L2(0,T;D(A) N L>®(0,T; V)N H*0,T; H),
and the initial condition in the sense that
|IAY?(u(t) — ug)|| — 0, as ¢+~ 0.
Recently, Cannon et al. [4] have proved existence of a global weak solution u satisfying

ue L0, T;H)NL*(0,T;V), T >0,
7



for a periodic problem, under the assumption that the forcing function f € L°°(0, co; L?)Jj
and ug € H. It is easy to extend our analysis to (1.1)—(1.3) with periodic boundary
conditions and f = 0.

Below, we derive some new regularity results without nonlocal assumptions on
the data.

LEMMA 7. Under the assumptions of Lemma 4, there is a positive constant C
such that

(27) A + [l < C(lAugl)e, ¢ >0,
and
t 1/2
(2. ([ enaeuieipas) < cgiul)
0

Further,the following estimate holds

C([|Auoll)

——at t O
@z 0 T

t 1/2
(2.9) [[AY2u,(1)] + (0(t> / cr(s)nAut(s)szs) =

where o(t) = 7 (t)e2** and 7*(t) = min(¢, 1).
Proof. From (2.1), we obtain

t
(2.10)  e*|juell < [lAd[] + e[| B(d, @)]| +/ Bt — s)e* )| Aq(s)|| ds.
0

Using the form of B and the Sobolev inequality, it follows that

(2.11) |B(&,a)|| < C|lal|?||AY 2a|||Adl *
< C|[al|[|AY?a)? + C||Adl.

On squaring (2.10) and integrating with respect to time, we find from (2.11) that
¢ ¢ ¢
(2.12) / 2% ||lwy||* ds < C [/ | A ds +/ e 29|24V 2qa|* ds
0 0 0

o s — 1)e®=)|| Ad(r )2 ds
+/0</05< )e@=0)|| 4d(r)| dr)? ds| .

For the last term on the right hand side of (2.12), use the form of 8 and Hdlder’s
inequality to obtain

t s
I :/ (/ B(s — T)ea(s_T)”Aﬁ(T)” 0l7')2 ds
0 0
t s
= / ( / (-6 | Ad(r)]| dr)? ds
0 0
t s s
<ot [ ([ e an ([ e et aam|? dr) ds
0 0 0

2

t s
Y —(6—a)(s—=7) || Asy|I2
< A .
_5—a/0(/06 [|[Adl|® dr) ds

8




Using change of variable, we find that

,)/2 t s
I< / (/ e~ =7 || di(s — 7)||? dr) ds.
5 —a Jo 0
Now a change the order of integration yields
¥ ¢ t
I< / e—<5—a>f(/ |Adi(s — 7)|)? ds) dr
d—a 0 T

2 t t
Y —(6—a)(t—7) / A 112
<—— 1 e Adl|* ds) dr,

<ot ([ s a5

and hence,

—«

(2.13) r<Gror 1Aa(s)? ds.

Using (2.13) in (2.12), we arrive at

(2.14) / 03y ds < © [ / lAal? ds + / =22 A 24 ds
< O(|| 4" 2w ).

Differentiate the equation (1.4) with respect to time, and integrate by parts with
respect to the temporal variable for the integral term to obtain

(2.15) ug + Aug + /0 B(t — s)Aus(s) ds = —(B(ut,u) + B(u,u:)) — 5(t) Aug.

Forming an inner product between (2.15)) and e?**u,, we arrive at

1d ¢
§E||eatut||2 + eZat||A1/2ut||2 +/ ﬁ(t _ 8)ea(tfs)(A1/2easus’A1/26atut)ds

0
(2.16) = alleuy|? — 2 ((B(us, u) + B(u, uy),uz) — 5(t)(Aug, uy)) .

Note that (B(i,e*u;),e*u;) = 0. Thus, it follows after integration of (2.16) with
respect to time and using the positivity property of the kernel, i.e., Lemma 3 that

t t
&y |? + 2 / o AV 2y ds < [[uy(O)] + 20 / 2 | ds
0 0

t t
(2.17) + 2/ e~ | B(e“* 1y, &), e**uy)| ds + 2v|| Aug| / e~ (03|, || ds.
0 0
The last term on the right hand side of (2.17) is bounded by
t
(2.18) < (a6 14wl + [ el as]
0

For the second term on the right hand side of (2.17), we have with the help of Sobolev
inequality

t t
2/ e~ **|(B(e**ty, 1), e**uy)| ds < C' sup ||A1/2f1(s)||4/ e 4% (29%||luy||?) ds
0 0<s<t 0

t
(2.19) + / 2 || AY 2y ||? ds.
0

9



On substitution of (2.18)—(2.19) in (2.17) and using Lemma 4-5, we obtain
¢
(2.20) P+ [ A P ds < €0 [0
0

t
+ || Auo|f? —I—/ 2% |luy||? ds] .
0

From the main equation (1.4), we have at ¢t = 0, ||u:(0)||] < C(||Aug]||), and hence,
using (2.14) we find that

(2.21) e [ 09| AV 2y (5)|? ds < (] Auolf e,
To estimate ||Au(t)||, form an inner-product between (2.1) and Aw(¢) to obtain
(2.22) [ Aa]* < e*[lugl[|Ad| + e~**[(B(, @), Ad)|
+ [ Bte = et aa(o)l a0 .

The first two terms on the right hand side of (2.22) are bounded by

< ()] | + e~ 62| A/>a ] + el Adt] .
For the last term on the right hand side of (2.22), we have applied the Holder’s
inequality with Sobolev inequality. Then the last term is bounded by

t
C(v,6,0,¢) / €297 || Au(r)|[? dr + el| Ad2.
0

Note that we have used e~2(°=®)(=%) < 1. On substituting in (2.22), we choose e = 1.

An appeal to Lemma 4, 5 and the estimate (2.21) yields
| Aa]]* < C(||Auol]),

and thus, we complete the proof of (2.7)—(2.8).
In order to derive (2.9), we now differentiate equation (1.4) with respect to time
and then form an inner product with o(t) Au;, where o(t) = 7*(t)e*** to obtain

1d 1
(2:23) 5o EOIA W) + ol Aw? = —o(t)(Au, Aw) + 01|42

t
—o(t) / Bu(t — )(Au(s), Aus (1)) ds — 7 (£)e " (B(e* uy, i)
0
+ B(ﬁ, eo‘tut),eo‘tAut) = Il + Iz + Ig + .[4.

For I, we use Young’s inequality to obtain

2
" N €
(224) 1] < T Ol14a)° + So(0)|Au

Since o, = 77€2%t 4+ 2a7*e??t with 7*, 77 < 1, we infer that

(2.25) || < C(a)e?t]| A ?uy|?.
10



To estimate Iy, a use of Sobolev inequality with Young’s inequality yields
(2:26) |Ta| < C(e)e™ || AV >uy|)* (|| A"l Adl| + | A">41%) + eo (t)[| A 1>

Since B;(t — s) = —38(t — s), we have for I,

2 t
g —(0—a)(t—s N €
2 1Bl < g ([ eI Aa) o + S0l dw,

and hence, integrating with respect to time and using the estimate (2.3) for I term,

we obtain

t 2 t
(2.28) / I)ds < LT+ < / o(s)|| Aug || ds
0 2 62 0

t
<C(v,6,a,€)T / | At(s)||* ds + = / o(s)||Aug(s)||* ds.

Multiply (2.23) by 2 and integrate with respect to time. Substitute (2.24)—(2.28) in
(2.23). With e = %, it now follows that

t
(2.29) a(t)||A1/2Utll2+/ o(s)l| A (s)|* ds < C(1,6,0) [ / [4d(s)[1” ds
0
t
+/ €207 A 2uy 2| AV 24| Adl| + I|A1/2ﬁ||4)ds]
0
t
+/ 2% A ?uy(s)|* ds.
0

Using Lemmas 4, 5, and the estimates (2.7)—(2.8) in (2.29), we obtain the required
result (2.9), and this completes the rest of the proof. |

Remark. The estimate for ||A!/?u|| shows the singular behaviour near ¢t = 0 and
also indicates the exponential decay property as ¢t — co. In Lemma 7, the regularity

results are derived without any nonlocal compatibility conditions.

3. Decay properties for the discrete solution and error estimates. In this
section, we discuss the decay properties for the solution of the linearized backward
Euler method. Finally, we derive a priori bounds for the error in H'-norm and present
briefly the error estimate in L?-norm.

The right hand rectangle rule ¢” which is used to discretize the integral in (1.4)

is positive in the sense that

J
kY q"(9)¢" >0 Yo =(¢',...,¢7)".
n=1
For a proof, we refer to Mclean and Thomée ([17], pp. 40-42). Moreover, the following
Lemma is easy to prove using the line of proof of [17].
11



LEMMA 8. For any o > 0, J > 0 and sequence {¢"}5,, the following positivity
property holds

n

J
B3 (3 ettt g > 0.
n=1

j=1
LEMMA 9. With 0 < a < min (6, A1), choose kg > 0 small so that for 0 < k < kg
(Alk + ].) > eo‘k.

Then the discrete solution U”, J > 1 of (1.6) is exponentially stable in the following

Sense

J 1/2
(3.1) U7 +e <k2 llAl/zﬂ"llz) < C(Ai,0) U, T >1,

n=1

and

(3.2) |AY2UY|| < C(\, e, |AV2U° e, T > 1.

Proof. Setting U™ = et U™, we rewrite (1.6) as
¢ G,U™ + AU 4 e=otn-1 BE1, TN 4 e g™ (AU) = 0.

Note that

ek — 1

ot UM = @+ G — ( Yo,

ak

On substitution and then multiplying the resulting equation by e~®", we obtain

1—e @k

- )ﬁn + efakA-[“J-n + efatnB(-[“J-nfl,fJ-n)

(3.3) A, U™ — (

ek 3 em0-alt—t5) A3 = o,
Jj=1

Forming an inner product between (3.3) and U™, use
. . . 1 . . 1. .
(B(U"1,U"),U") =0, [[U"*< /\—IlAl/zU"||2, and (9,U",U") > S0,(|U"||*
1

to obtain

1— e—ak

AT A O

1_ .
(3.4) SOOI + (7 = (
+ye ok 3 e (et —ti) (41723, A1/207) < 0.
j=1
12



With 0 < @ < min (A, 0), choose 0 < kg such that for 0 < k < kg
Mk +1) > ek,

Then for 0 < k < kg, the coefficient of the second term on the left hand side of (3.4):
1— e—ak

k
from n =1 to J, the last term becomes nonnegative by Lemma 8 and thus, we obtain
the estimate (3.1).

For the estimate (3.2), we form an inner product between (3.3) and AU", and

—ak_(

e ))\1_1) becomes positive. Multiplying (3.4) by 2k and summing

observe that
N A~ _ A~ A~ 1_ A~
(8,0™, AU") = (§,A/?0™, A2 0" > 5at||Al/2U"||2.

Altogether, we find that

1 R . R R
(3.5) §8t||A1/2U"||2 + e AU + yem kY e 0Tl (AT, AT™)
j=1
1—e ok
k
Multiplying (3.5) by 2k and summing from n = 1 to J, the third term on the left
hand side becomes nonnegative by applying Lemma 8 as 0 < a < §. Then, we obtain

< ( )(U", AU") — e (B(U",U"), AU").

J J
||A1/2~["J-J||2 + 2]{670116‘ Z ||Aﬂn||2 < ||A1/2U0||2 + 2(1 _ efak)kz |(ﬂ",Aﬂ")|
n=1 n=1
J S A A
(3.6) +2e7%% Y " et (B(UMT, UM, AU
n=1

<[|AVPUOIP + I + I

1—e—°F

To estimate I;, we have by Mean Value Theorem = ae " for some 0 < k* <

k, and hence, using (3.1), we find that

J
|| < 206 kY (|AVPTN]P < O, ) |[U°)P.

n=1

For I, the repeated use of Holder’s inequality with Sobolev inequality yields
e—atn_1|(B(fJn—1,f]-n),Aﬁn)| < Ce_at"_l||fjn_1l|1/2l|A1/2ﬁn_1||1/2||A1/2ﬁn||1/2||Aﬁn||3/2.

By an application of Young’s inequality, it follows that

J
L] < e~k 37 emtatns (O3 2 41207 2))| 4420

n=1
J A
+ ke Ry AU,
n=1

13



Using the estimate |[U™!|| and

J
KIIAYZUTHP < kD AY2U™ P

n=1
from (3.1), we easily find that
J-1

|| < CJ[U° ke ok 37 emtatnms || AL/20m 1 |2 412G 2

n=1
J
+ C||U0||4e—ake—4at,1_1 ||A1/2ﬂJ||2 + ke—ak Z ||Aﬂn||2
n=1

Now substitute the estimates of I; and I» in (3.6). For small &, we note that (1 —
C||U°||*e=***) can be made positive. Then apply discrete Gronwall’s Lemma with

estimate (3.1) to complete the rest of the proof. |

3.1. Error Analysis. Now we are ready to discuss the proof of our main result
that is the proof of Theorem 1.

Let €™ be the quadrature error associated with the quadrature rule (1.5) and for
¢ € C0,t,], let it be given by

@)= [ Bltn — 5)d(s) ds — " (@).

0

Note that the quadrature error €™ satisfies
tn (9
6D RO < Ch [ 15 (Bt = () ds

< Ck/o " (1Beltn — )] 19()] + [B(tn — )| [85(s)]) | ds.

For the proof of the main Theorem, we appeal to the semigroup theoretic ap-
proach, see Thomée [24], Fujita and Kato [7] and Okamoto [18]. It is wellknown that
the Stoke’s operator —A generates an analytic semigroup, say E(t), ¢ > 0 on H,
see Temam [23] or Fujita and Kato [7]. Moreover, the following estimates are also
satisfied:

(3.8) JATE(t)|| < Ct™"e ™t t>0, r>0,
and for r € (0,1], and v € D(A"), the domain of A",
(3.9) I(E@) — Dv]| < Crt"|A™v]l, >0,

where C, is a positive constant. For a proof, we refer to [5], page 383. Further, we
use the discrete semigroup Ej, which is given by

Ep=(I+kA)™".
14



Using spectral representation of A, see Thomée [24], the following estimate is easy to
derive

(3.10) JATER|| < Ct,"e M, >0, 0<r<]1.

Now, using Duhamel’s principle, the equation (1.4) is written in an equivalent
form as

t t
u(t) = E(t)uo - / E(t — 5)Au(s) ds - / E(t — 5)B(us), u(s)) ds,
0 0
where for simplicity of symbol, we denote
_ t
Au(t) = / B(t — 7)Au(r) dr.
0
Similarly, using discrete semigroup Ej = (I + kA)~!, we rewrite (1.6) as

U" = Efug — Y _kE; /"¢ (AU) = Y kE; T B(UIT, UY).

j=1 j=1

Proof of Theorem 1. Note that the error e” := u(t,) — U™ is written in the form

tn ~ n . )
e” = (E(t,) — EP)ug — i E(tn — s)Au(s)ds — Y _kEp 7"¢/ (AU)
j=1
tn n . ) .
(3.11) - E(t, — s)B(u(s),u(s)) ds — Z kE} T B(UIT UY)
0 =
=1 — I} — 1P

Since F}! := (E(t,) — E}}) denotes the error operator for purerly parabolic problem,
then following Thomée [24], we estimate A'/2I} as

e—atn
1/2
ty/

(3.12) |AY217|| = ||AY2Fug || < C(||Augl], Q) k.

In order to estimate ||A'/2I}||i.e., the memory term, we first rewrite I3 as

=] Bl (Aus) - Au(ta) ) ds - JZ:; kBRI (¢ (Aw) — Au(t))
(3.13) + " E(t, —s)ds — Zn: KEPIT) Au(t,)

0 =

n
+ > KBTI (Ae) = Iy + Iy + I3
j=1
15



For I35, we obtain using the semigroup property
tn

n
=D kBT = —FpAT
0 :

and hence, using the definition of 3, we arrive at
A2 13, = |AY2FP A~ Au(t)||

e—)qtn tn
< R ot / e=(0=0)(t=7) A7) dr]|
0

$i/2

e—)qtn tn
< ChE et (/ ||Aﬁ(r)||2d7->
t 0

n

1/2

An application of Lemma 5 yields, for 0 < @ < min(\y,4,)

—atn

14215l < CA 00 lDk 7

For estimating I3';, we first use change of variable and then change of summation to

obtain
n—1 Jj+1 n—1

AVPIR =N RAE; ATV kB Aet = > kAEY JZk,@ iAl/?er T
j=0 i=1 7=0 i=0

|
-

n n—1
k > kB AE; T | AY et
=i

%

I
<}

n-1 fn-1 n—1 [n—1
=k Z Z kﬂn_iAEZ’_] A1/2e7,+1 —k Z Z k(/gn—l _ Bj—i)AE]?_J A1/2ez+1.
j=i

i=0 \ j=i

[}

For the first term on the right hand side of A%/ 2I§f 3, we have from the spectral property
of the Stoke’s operator and r(\) = (1 + \)~!:

||kZAE" = sup |Zk/\r (kX" 7|<supz/\r

j=i AESP(A) 5 A>0 5
)\r()\)
< 1.
o T—r(\)

For the second term on the right hand side of A'/213'5, we use the smoothing property
(3.8) of E}!, and therefore, we obtain

1 1
1/2 1n < 8(tn—ts) <
A2 15 ||<fykZe

= j=1i

n—1 [fn—1
k> k(e — et
i=0 \ j=i
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n—1
< Cke “tn Z et

=0

|A1/2ei+1”

—0(tn—t;) _ 1

+ Cke=%tn Z:eoztZ (Z ke~ (6—a)(t;—t:) (t — ) P (>\1—a)(tn—tj)) ||A1/2ei+1||.

Using the meanvalue property of the exponential function, we find that

n—1 —6(tn—t;) _
3 kef(éfaxtrti)gewru)(tmi) <,
= (tn —t;)

and hence, we arrive at

n
A1 || < Cem ek kY e
=0

Now for the term I3';, we first rewrite it as
I, = Z / B(ty — ) ~ Bltn-j1)) (Au(s) - Au(t,)) ds

+ Z/ ] E(tn—j+1) (fiu( ) — Aul(t )) ds

tj—

n n

+ 3 kEpTIH (fiu(tj) - Au(tn)) + S kEPTIHE (Au)

Jj=1 j=1
=M+ M3 + M3 + My.

For M{', we write it as

AP M = zn: ’ A¥2E(t, — 5)A™ (I - E(s — tj_1)) (Au(s) - Au(tn)) ds.

j=17ti-1

Thus, using (3.8)—(3.9), we obtain

||A1/2Mn|| < Z/ ||A3/2E 3)” ”A*l (I — E(S — tj—l)) (AU(S) — fiu(tn)) ||d8

tn —)\1 tn _
< Chk / o " | Aus) — Au(ty)]| ds.

In order to estimate || Au(s) — Au(t,)||, we note that
s tn
Au(s) — Au(t,) = /0 (B(s —7) — Bty — 7)) Au(r)dr — B(tn — 7)Au(r) dr

8

and hence, using the definition of [, the mean value theorem, 0 < a < min (A, ),
and Lemma 7, we now obtain

Ius) - Au(t,)] < 9e? (1) [ Laue) ar

17



tn
+ ’y/ e_‘s(t"_T)HAu(T)HdT

< 5y(ty — s)e e / e~ 0= =1 12T Au(r)|| dr
0

tn
+ C(| Auoll, ) / et gm0 g
’ s 1/2 s 1/2
< 6y(t, — s)e™** (/ e2(0-a)(s—7) dT) (/ e2*7 || Au(r)|)? dT)
0 0
+ C([[Auol], ) (tn — s)e™ .

Using Lemma 5 and the boundedness of

s 1
—2(6—a)(s—T1) dr <
/0 © TS5 -a)

we arrive at
| Au(s) — Au(tn)|| < C(l|Augll)(tn — s)e™°*.

Therefore,

tn e—()q—a)(tn—s)

1/2 n —atn —
A 2007 < O Amlke et [ s s
ot tn e—(}q—a)T
S

oo ef()\l —a)T

< ClAuglre [ T dr < Ol Auglre .
0 T

To estimate MJ', we use the definition of A and the property (3.8) to find that

tj—1

n tj - -
a2 <3 f 1AV Bt 1)l Auls) — Auty)]|ds
j=17ti

n ti o= M(tn—tj—1) _ -

<cy | (i ue) - Au(e) ds.
=1 Jti- Un = bj—

Since

1 Au(s) — Au(ty)]| < C(llAuol)(t; — s)e=** < C (|| Auo) ke,

we now obtain

" e~ (Ai—a)(tn—tj-1) tj
1442 M| < C(lAuol ket © (/ d)

tj—1

ot " e~ (Mi—a)(tn—tj—1)
< O(||Auol|) ke | k E : (tn — t;_1)1/2
n j—

< C(]| Augl) ke



Note that we have used the boundedness of the summation term within the bracket.
In order to estimate M3, we use the property of F}' and obtain
e*)\l(tn*tjfl)

=gy HAutts) - Aulen)l

A2 M| < CR )

j=1

As in the estimate of ||A'/2M}*||, we now find that

" Y e—(M—a)(tn—t;_1)
| A2 ME| < C(]| Auol|) ke e (kz Ve

(tn —tj—
< O(||Augl|) ke~
Finally for Mg, we note that
IAY2ME| <D RIAE | e (AT ).
j=1
Using (3.8), we obtain

AL/2 e~ M (tn—ti-)
M| < ki
1427 < Z e

To complete the estimate, we use (3.7) to compute the quadrature error ||/ (Au)|| as

e (Awl < Ok [ (18u(t; = 1A 2u(s)]| + 180, — A4 uc (o)) ds

and hence, we find from Lemma 6 that

lle? (Aw)]]-

tj
lf (Au)|| < C(|| Auo| ke~ / e~ (=) ti=9) g
0

t; 1/2 ¢
+ Cke™oti (/ e20-a)(ti—s) ds) (/ ‘92°‘S||Al/2us(s)||2 ds)
0 0

< O(|| Aupl) ke,

1/2

Thus, we arrive at

(M —a)(tn—tj—1)
A2 Mp|| < C(|| Aup||) ket (kze )

tn—j+1)
C(||Augl| ke e (kz )
n j—‘rl
1 —at
< O(llAuo[))k(log e~
Alltogether, we, therefore, obtain
o 1 —aty
1) 4R < Olaulhe ok (14 log ) + O(LA o) Sk

n—1
+Ce kY e —ok|| A/ 2en|.
=0
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Finally in order to estimate I3’ involving the nonlinear term, we may split it as in
Geveci [9] and apply Holder’s inequality, Sobolev imbedding theorem with Sobolev
inequality. Lastly with the help of Lemmas 4-5, 7 and Lemma 9, we obtain

—at

7+ OO Pl k4 427

atnkz 3/4||A1/2€i||.

On substituting (3.12), (3.14) and (3.15) in (3.9), we obtain, for sufficiently small %,

(3.15) (|42 < O(||Auol) ry

1
(316) AV e < O Au) [k(t;”? +log )

at;
+kz< 3/4+1>e

Using the generalized discrete Gronwall’s lemma (see, Lemma 7.1 in [6]) and the

A1/2ei||] )

arguments of Okamoto ([18], page 635), we complete the rest of the proof. O
The convergence in L2-norm now becomes a routine work. However, we only

indicate, below, the major steps in the proof for achieving this result.

Proof of Theorem 2. From (3.9), the error e™ satisfies
e"=I'-1}-1I7.

Since a straight forward modification of H!-estimates of Geveci [9] yields the L2-
estimates of I7* and I, it remains to estimate ||I3||. Note that the L?-estimates of

I35 and I35 in (3.13) follow easily as
11351l = || Fir A~ Au(ta) |

tn
< Cke”‘lt"H/ B(tn — s)Au(s) ds||
0

tn 1/2
< Che=ats ( / ||Au(s)||2ds) < (| A 2uo ) ke
0

and

n—1

11351l = [k Z AE; Z kBj_ie't|.

=0

We repeat the analysis for estimating A'/212'; in Theorem 1, but now e‘*! is made
free of A'/2. Thus, we obtain

n—1

134l < etk S e
=0
20
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In order to estimate I3, it is a routine matter to derive the estimates of || M7||, [[M3'|
and ||M%]|. To complete the rest of the proof, we, therefore, need an estimate for
[|Mf]]. Note that

n
[MP < KIAY BRI ||e? (A )|
j=1
n —)q(tn ti— 1

€
<0k2(tn e’ @l

Using the estimate of ||e/(A'/?u)]|| as in the proof of Theorem 1, we now obtain

e—(M—a)(tn—tj_1)

1)1/2

M2 < C(llAuol[ ke~ kz

< O(||Augl|) ke

Note that the summation in the bracket is bounded by a constant which is independent
of k. This competes the rest of the proof. a
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