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Abstract

As data rates increase and the size of the disk write head decreases it
is likely that a standard non-linear eddy current simulation of a disk write
head will not fully capture dynamic effects. In this paper we propose a cou-
pled eddy-current and micromagnetics model for the disk write head. We
present a simple finite difference formulation derived from a mass-lumped fi-
nite element method. This derivation allows us to verify that, before time
discretization, the semi-discrete scheme obeys the same energy decay equality
as the partial differential equation model. We show some numerical results
for an “academic” disk writer model.

1 Introduction

The disk write head in a hard disk drive is a small electromagnet (approximately
10pmx1pumx0.1pum). Current through a coil wrapped around the yoke causes an
intense magnetic field at the tip of the writer which imprints a magnetic field on the
platter to store data. The tip is roughly 0.1umx0.1um. Because of the small size of
the tip and the rate at which data is written to the disk, we shall argue that classical
non-linear eddy current models or alternatively micromagnetic models based on a
quasi-static demagnetising field may not be sufficient. We therefore propose to use
a combined eddy-current and micromagnetic model to provide a novel method for
simulating the disk writer.

In evaluating the suitability of a model for the disk write head we can first
consider the characteristic time scales for various processes in the model. In this
discussion we take the rise time of the current in the coil, denoted by t.oy ~ 0.4
nanoseconds as a representative time-scale for modelling the writer, and as a rep-
resentative length scale L ~ 10~%m. The most general partial differential equation
model of this process is perhaps the coupled system of Maxwell’s equations and the
Landau-Lifschitz-Gilbert (LLG) equation of micromagnetism [11, 4, 20, 15, 19]. If
we then consider the time-scale for electromagnetic wave propagation across the
domain we find that L/(cteou) =~ 1076 where c is the speed of light. Thus we can
neglect the displacement current in the Maxwell equations and arrive at the eddy-
current model. It is then reasonable to ask if this can be further simplified to a
quasi-static model as is usual in micro-magnetic simulations. If we consider the
time-scale for diffusion of the electromagnetic field via the Joule effect in the eddy
current model, denoted by t,, and assume the use of permalloy, we see that

ty = oppL? ~ 1 nanosecond
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This is a similar time-scale to the coil rise-time and thus eddy-currents may have
an effect on the behaviour of the electromagnet. This is the reason that a standard
nonlinear eddy current model is often used to model the writer. Now considering
the LLG equation, and assuming a typical value for the magnetic field due to the
coil of 10* Oersted we can see that the time-scale for micromagnetic fluctuations
given by t;q = 1/(v|H|) where H is the magnitude of the effective field and v is
the gyromagnetic ratio is ¢4 ~ 10~ seconds. While this is very fast in compar-
ison to the eddy current time-scale, the small dimensions of the tip suggest that
micromagnetic effects may influence the behaviour of the writer. Therefore we need
to follow the LLG equation in time to obtain the magnetisation (the static LLG
system is not easy to solve). Note that the eddy current LLG model has also been
investigated for thin films in [16, 10, 2].

A typical academic model of the disk write head is shown in Fig. 1. The inverted
U shaped writer yoke (termed the “perpendicular write head” for the remainder of
the paper) is shown above the plane of the platter. Because of the desire to write
using vertical polarisation of the magnetic field, the plane below the writer has a
very high magnetic permeability. The problem we are interested in obtaining the
magnetic field under the tip (thin part) of the yoke.

Academic Seagate Model

Figure 1: Academic Seagate model. A diagram showing a model simplified per-
pendicular write head. The ferromagnet occupies the inverted U shaped region
shaded in the figure. The lower surface of the computational domain has a very
high magnetic permeability. The artificial computational domain €2 is the larger
parallelepiped shown.

In most micromagnetic simulations the LLG equation is coupled to a scalar po-
tential equation for the demagnetising field. This system has received a great deal
of attention and can be solved by a variety of schemes including coupled integral
equation/LLG formulations using multipole methods [12] and finite element for-
mulations [23, 9, 8]. At the other extreme the full Maxwell-LLG model has been
considered by a number of authors [19, 15]. The coupled eddy current and LLG
model has been used in [16, 10, 2] to model thin films. We use the same time
discretization for the LLG equation as was used in [19] and in [16, 10, 2]. However
we use a magnetic vector potential for the eddy current solver, allow a non-uniform
mesh and take into account the coil. Note that if the exchange contribution is



not present another time integration scheme based on exact integration of the LLG
equation has been presented in [17]. One could also perhaps use a projection scheme
as in [15, 21, 7].

Finally the mathematical underpinnings of the basic Maxwell-LLG model (and
the eddy current-LLG model) are not complete. In a special degenerate case Alouges
and Soyeur [1] have demonstrated non-uniqueness in the solution.

2 Eddy Current - LLG Model

The problem is to compute the magnetic induction in a ferromagnetic medium,
located above a ground plane of infinite permeability (modelling the high perme-
ability material below the platter), and reacting to some applied field arising from a
coil surrounding it. The ferromagnetic medium is located in a bounded subdomain
of the half space Ri denoted by

Qferro C R3 = {31: = (a:,y,z) S R3, z > 0} .
The ferromagnet is assumed to have a nonzero conductivity denoted by oferro. We

define the global conductivity o by

o(w) _ Oferro ifxe Qferroa
0 elsewhere.

The unknowns of the problems are, as usual for a micromagnetic problem,

E, the electric field B, the magnetic induction
M, the magnetization | H, the magnetic field

where each field is a function of position & and time ¢.

Outside the ferromagnet (in Ri\ﬁferm) the magnetization field M = 0 and
inside the ferromagnet (in Qferro) we have M # 0. Suppose a current J,p, due
to the coil and supported outside the ferromagnet is applied to the system. The
resulting fields are governed by the eddy current equations in Ri’_ for time t > 0

0B~V x H = —Japp,

)

- B E = (1)
5 + V x 0,

V.-B=0,

coupled with an appropriate model for the ferromagnet. As discussed in the intro-
duction, we use the Laudau-Lifschitz-Gilbert (LLG) model of micro-magnetism in
the ferromagnet Qgerro. Thus the magnetic induction B is written in terms of the
magnetic field H and magnetisation M via

B = jo(H + M) (2)
and the magnetisation M satisfies the LLG equation.
oM M 0OM
W = ’YHeﬂ‘ X M—f—aw X W m Qferro (3)

where H.g is the effective field, v is the electron gyromagnetic ratio, and « is
the damping constant. In our model, we take the effective field to have three
components due respectively to the demagnetizing field, exchange energy and energy
of anisotropy. This gives
H. g = iB + Q—GAM — %P(M), (4)
Ho Ho Ho



where a is a phenomenological constant describing the exchange contribution and
P(M)=M — (p- M)p, so that P(M) denotes the projection of M on the plane
perpendicular to the fixed easy axis p of the uniaxial ferromagnet (|p| = 1). The
coefficient k gives the strength of the anisotropy contribution. When a # 0 we also
have the boundary condition

M
aa—y =0 on 9ferro- (5)
It is well-known that the magnetisation M satisfies the pointwise conservation
equality
|M(z,t)| = |M(2,0)] forallx e (6)

as can be seen by taking the dot product of the LLG equation (3) with M and
integrating in time. Thus the initial distribution of magnetisation determines | M|
for later times.

System (1)-(4) holds for & = (z,y,2)"T € R} att > 0. If OR3 = {x € R3, 2 = 0},
the boundary conditions on the infinitely permeable ground plane 8Ri is

2 x (H x 2) = 0. (7)

This magnetic wall condition arises because the magnetic recording medium is
bounded by a layer of very high permeability material. In other directions, the
fields remain bounded as |x| — oco. However, in practice, we shall truncate Ri
and compute on a bounded domain €2. Thus, from now on, we assume that the
equations are to be solved on 2 which is taken large enough to contain Qe in its
interior. For this paper 2 will be a rectangular parallelepiped given by

Q=(z7,2%) x (y~,y") x (0,z7). (8)

After we have reformulated the equations, we shall detail the boundary conditions
used on the boundaries of Q other than the ground plane 8Ri where z = 0. The
parallelepiped must be chosen large enough to contain Qferro and large enough (by
trial and error) that the field at the tip is not influenced appreciably by the choice
of Qferro-

We would like to use initial data corresponding to a ferromagnetic equilibrium.
But this would require to solve the static LLG equation which is a difficult problem
[5]. Instead, we assume that at time ¢t = 0, the magnetisation field is given by a
function M so that

M(m,t = 0) = M0($) 7£ 0 in Qferroa

and so that My = 0 in Q \ Qferro. We also assume that no electric field exists at
t=0so
E(x,t=0)=0 in Q.

In order to have a consistent set of initial conditions that satisfy the divergence
condition in (1), we need

B(z,t =0) = Bo(x), H(xz,t=0)= Hy(x) in Q,
and Bg and H( must satisfy the electromagnetic balance laws in  so that
By = puo(Mo + Hy),
V.-By =0, (9)
V x HO =0.



Thus, the splitting

1
Mo =—By— Hy,
Ho
corresponds to a Helmholtz decomposition of M (i.e. a decomposition into a
divergence free field plus a curl free field). To compute H we are led to define
Qo = Qo(x) as the solution of

AQo=-V-My in €,
(10)
Qo=0 on 99,

and to set M3VTee — My 4+ VQo. Now, it is clear that (9) will hold if we choose
Hy =V and .
BO = uo Mglv free (11)

The field H is often referred to as the demagnetization field in classical micro-
magnetic simulation. We describe B as the demagnetizing field in the eddy current
model due to the above connection with the classical field. Note that the boundary
conditions and assumption on M imply that v x M giv free — 0 on 90 where v is
the unit outward normal.

The applied current J,p, is due to the coils. We use a very simple model
for the coil that should be improved in future. We assume that the source Japp
is due to a line current source with a current I(¢) flowing alone the curve denoted
Coil. Using the Biot-Savart law this line current creates a magnetic vector potential
A, = I(t)as(x) (in the absence of the ferromagnet and assuming the domain is R% )

where
as(x) = L2 / ds(y) +/ ds(y) (12)
dr \ Jeoit 12 =yl Jsicon 1T — Yl

and where S(Coil) is the symmetric coil with respect to the plane z = 0. The image
coil §(Coil) ensures that the field due to the coil satisfies the boundary condition
(7).

In order to solve the eddy current problem in a convenient way, we define the
magnetic vector potential

A(x,t) :/0 E(x,7)dr — I(t) as(x).

where as(x) is the potential due to the coil given above.
Ampere’s law, 0B/0t = —V x E, is transformed into

B =B,V x(A+I(t)as), (13)

where By is the magnetic induction at time ¢ = 0 given by (11). Furthermore

1 1
H=—By——Vx(A+I(t)as) — M
2] 2]

or, using (11),
; 1
H =MV _ —V x (A+I(t)a,) — M. (14)
Ho

Using the vector potential A, the first equation in (1) is transformed into

02<A+I(t)as) _ VX(Mginree_

5 iv X (A+I(t)ay) —M)

Ho

- *Jappa



and futhermore

J=—-I(t)V x (iVx as>.
Ho

Thus equation (1) implies that

1 dI ;
U%A +V x (%V X A) = 02 (t)a, ~V x (M - Mgwffee) . (15)
Our goal is to discretize in space in a way that preserves the conservation of
the norm of M given in (6) and preserves a suitable electromagnetic energy that
we shall derive shortly. The discretization is based on a variational formulation
for the eddy current LLG equations that will provide the basis for our FDTD
method via an intermediate finite element discretization. To simplify notation, let
M =M — MV and A, = I(t)a,, then we seck a variational formulation for

0A 1 0
— — A)=- —o—A,. 1
v Jer(NOVx ) V x M e (16)
Equation (16) is posed in the bounded domain Q = (z~,z") x (y~,y™") x (0,z1)
containing the ferro-magnet in it’s interior. On the faces of 0€? where z > 0 we
impose

Axv=0, (17)

where v is the unit outward normal. On the surface z = 0 we impose (7) via
(VX A)xv=0. (18)

To complete the problem, we assume A =0 at t = 0 and M is a given function at
t = 0 in the way described previously.
The space for A is thus

X ={u e H(cur; Q) | u x v =0 on all faces of 2 with z > 0},

where H(curl;{2) is the space of functions in (L?(Q2))3 having curl in (L?*(Q))3
as usual for electromagnetic problems. Using this space the variational formula-
tion is classical and for a final time ¢ = T is just the problem of finding A €
C1(0,T; (L?(9))*) N C(0,T; X) such that

/02A~¢dv n /ivXA-vmdv (19)
o Ot Q Mo

= —/02A8~¢dv—//\/l-v><¢:dv,
o Ot Q

for all ¢ € X. Note that the curl has been moved from M to the test function so this
formulation is well defined for M € (L?(2))3. This integration by parts is justified
since M vanishes on the surface of Q by assumption, and M3" ™ has vanishing
tangential component on 02. The LLG equation is then satisfied pointwise in Qgerro
so we assume that M € C1(0,T; (L%°(Qferro))>) NC(0, T; (H (Qerro))?) as required
for the upcoming conservation result.

Of course the potential A is not completely determined by the above equations
since the divergence of the field is not specified. Since only the curl of A appears
in the LLG equation this is not a problem, but it can cause difficulties with the
numerical solution [6].

We now derive an energy equality for the eddy current LLG system. For sim-
plicity we shall assume that I(¢) = 0. Choosing ¢ = A, = 0A/0t in (19) we
obtain

/O'AtAth:/,LLOH(]./[LO)VXAth
Q Q



where H = Mgiv free _ pp— (1/10)V x A since I = 0. Expanding the right hand
side we obtain

/O'AtAth:*/MOHthV*/MOHMth
Q Q Q

where we have used the boundary condition (5). Now using the definition of the
effective field

/O'At'Ath + /MoHthV
Q Q
= —/uoHeﬂ-Mth
Q
7/,[1,0 <%P(M)2—QAM) - M, dV.
Q Ho Ho

But using the LLG equation

M Hoc 2
,U,OHeﬁ"MdV/OZ,LLO(HEHX—)'MCIV/ |M|* dV.
/Q ! Q | M| ! o Y| M| '

In addition,

/ o <%P(M) - 2—“AM) Myav -2 </ k| P(M)|? +a|VM|2> av.
Q o o dt \ Jo

Thus we have proved the following energy conservation result:

Theorem 1 Suppose I = 0 (the coil current vanishes). Then any sufficiently
smooth solution of the eddy-current LLG equation satisfies the energy decay equality:

d 1
— (—u0|H|2+k|P(M)|2+a|VM|2) dV+/a|At|2dV
dt Jo \ 2 o
Ho&x 2
=— [ = |M,*adV. 20
[ (20)

Remark. This theorem shows that in the absence of an applied current the elec-
tromagnetic energy

1
/ <§MO|H|2+k|P(M)|2+a|VM|2) dv
Q

is a non-increasing function of time. We would like the approximate numerical
solution to obey a similar relation (at least before time discretization).

3 The Finite Element Spaces

In this section we describe how to discretize the eddy-current and LLG equations
in a way to conserve the norm of M and the energy in (20). The resulting method
will be a finite difference scheme, but having a choice of stencils that allows us to
prove energy conservation. We find this easiest to describe as a mass-lumped finite
element method, and this is how our code is implemented. As before we assume
that Q = (7, 27) x (y~,y") x (0,27). For the x direction, the mesh is defined
through a set of given coordinates

T =20< 21 < .. < T, = . (21)



These coordinates are referred to as the integer nodes. From this set, we define the

half-integer nodes L1y T3y Ty 1, with
1 .
Ty =3 (i +xim1), =1, ., ny. (22)

We then define two mesh widths between two consecutive nodes of same type:

Az, = xT;—Ti_1, i=1,.,ns
{ i3 ! (23)

Ax; = Ty —®oy, i=1.,ng—1

Fig. 2 shows the mesh graphically.

Aa:; Aa?g Al’n _3 Aa:n _1
P 3 @ * T3
Az Azy Aﬂ?n,,,—2 Amnm—l
Zo 1 T2 Tn,—2 Tn,—1 Tn,
L1 T3 Tp,—5 Tp,—3 Lp,—1

Figure 2: The x-discretization using n, 4+ 1 points. The distance between mesh
points does not have to be uniform.

The same definitions relative to the directions y and z give

yj—%a Yj, ij—%? ij’
Zp_ 1y ks Azk_%, Azg.

These subdivisions induce a meshing of ) by parallelepipeds

ﬁ = U Ci+1 s 1 1
Li+ik+3
ok (25)
Citl+sk+d = [is Tit1] X [y, Yit1] ¥ [2i, 2i1]-

This will be the mesh for our spatial discretization procedure. Let h denote the
maximum mesh width in any of the coordinate directions. We shall use h as a
generic symbol for quantities related to the mesh.

We now need to define some basis functions on the mesh. A segment function is
a function that is 1 on a segment and 0 elsewhere. For a given direction, a (a can

be z, y or z), we define w;ﬂ_ , (a) the segment function taking the value one only
2

on [Gpm,am+1]. In addition, we define the hat function ¢>$,°f) (a) as shown next

1
53) (a) = /.\
Am—1 am Am+1 a

We shall now summarise some properties of appropriate finite element spaces for
this problem. These are well known but for completeness we provide explicit con-
structions of various operators in the case of lowest order Nédélec elements [13].



3.1 The space H{™ C H(curl; )

The vector potentials A and A are approximated by Nédelec’s finite elements
of lowest degree [13, 14, 3]. We denote this space by H$"!, which is an internal
approximation of H (curl;Q).

The approximate vector potentials are then given by

A(x’t) ~ Ah(m’t) = ZAe(t) ¢’}el(w)
‘ (26)
Ag(a,t) m Agp(a,t) =Y (As)e(t) D2 (x)

e

at every point @ in 2 where the functions d)g are suitable basis functions. For a
given edge of the mesh e, the associated basis function has a circulation equal to
length(e) for edge e and 0 for the other edges. More precisely, we distinguish edges
along the x, y or z directions. Edges are labelled by the coordinates of their middle
point. For instance, an edge in z will be associated to a point of type (xH_% JYjs 2k)-
We are then led to distinguish three families of basis functions

e= edgeinz — o@F= ¢?+%7j,k
e= edgeiny — ¢F= ¢Zj+%,k (27)
e= edgeinz — ¢Z = ¢Zj,k+%’
with n @y O o)
¢i+%,j,k<m) = wH%(ﬂJ) ¢jy (y) ¢]c (Z) z

Bl k(@) =0 ) 67 (2) 97 (2) (28)
¢Zj,k+%<m) = w;(:i%@) o (@) 6 (y) 2,

where & is the unit vector along the z axis (and similarly ¢ and 2). It is not difficult
to see that each basis function is supported by the four cubes sharing the associated
edge.

Finally, the vector potential Ay, is sought in the form

An(z.t) = D AT 0 @l (@) + AT (0] ()
bR \ (29)
+Aj,j,lc+% (t) ¢i,j,k+% (x),

and we have a similar expression for A; .

Let us remark that the components of the electromagnetic field are exactly the
ones that are used for constructing the Yee scheme, [24, 18]. As we shall see, the
final method reduces to the Yee scheme for the eddy-current portion of the model
on a uniform mesh.

3.2 The space H{V C H(div; Q)
Another space of interest is 'H%i", which is an internal approximation of H (div; Q).
Every element of this space is written as

B"(z) =) B yj(z), (30)
!

where the functions w? are appropriate basis functions. For a given face f, the
associated function has an outgoing normal flux across f equal the surface area of
f and vanishing on the others faces.



Depending on the orientation of the normal to the faces, three families of basis
functions can be distinguished. Each face is labelled by the coordinates of its
centre. To a face with normal +& corresponds a point of type (xi,xj+%,zk+%).
The associated basis functions are then

. h h

f=faceinz — Pp=1y, 1,0,
. h h

f=faceiny — =iy 1 (31)
. h h

f=faceinz — Pp=1pi1 0,

with () @) (=)

,J+2,k+;(w>:¢x ($)¢y ( ) Uy ( ) &

Y1 ees (@) =6 () w}:jgz) wi_’ig (@) § (32)
)= o0 (2) w7, (@) v, () 2.

The basis function associated to face f is supported by the two cubes whose one of
the faces is f .

Z+27.7+27k(w

3.2.1 The curl operator from H‘fl‘“l into H',jli"
In our context, an important property of the space Hﬂi" is that
VX : Hz‘“l — Hgi"
that is to say the curl of an edge function is a face function (with zero divergence).
Thus if the vector potential A is discretized by edge elements in H§"! then the

approximate magnetic induction computed from the curl of A will be discretized in
HSV. To see this, let us compute

(Vo (By ) @ =V x (62, (@) 6 ) 07 (2) )

- d (2) . - d¢(y) ;
= 62,00 0) ()~ 0, () T ) o) 2

dy
and so
vV x (" _ Yirdarik — Yirdaobk
o) (By); -
Vit djhti = Vitrdjh—1
(Az)k

In the same way, we get

T« (¢h ) _ Ykt~ Pistied

ij+3.k (A2);

R (34)

i+35,5+5.k Z*—,]Jrz,k?

(A.’L‘)z ’

and
T T I
X\ Pijkri) = )

35
CVigrieed = Vij-iaed (35)

(Ay), ’



Thus, if Ay, € Hﬁ“rl, we have V X Ay € Hgi". In particular we see that the contri-
bution of the vector potential to By, is in H{V and so is associated with faces in
the mesh.

3.3 The space H,,

The last space we will consider is Hj,, the set of piecewise constant functions whose
restriction to any cube of the mesh is constant. Elements in this space will be
referred to as cube functions. The basis functions are the functions that are 1 on a
particular cube and 0 elsewhere. If each cube is labelled by the coordinates of its
centre, we have

X g er (@) = 65 @) 0, () 0, (2) (36)

The space Hj, will be used to discretized the physical parameters of the model, i.e.
the conductivity o(x) (in this paper the permeability u is assumed constant since
the LLG equation effectively implies a non constant ). In particular We assume

h
(@) = 3 Tir g bibrd Xigg e g hes (@) (37)
i’j7k

Furthermore, the space (Hj)? will be used for approximating each component of
the magnetic moment:

M(t) = Mp(t) € Hp x Hp X Hp (38)
and
Mp(z,t) = ZMc(t) Xe(T) (39)
where M, € R3 or equivalently
Mp(z,t) = ZMH%,N%,H%@) Xi+§,j+%,k+%(w)- (40)
i,j,k

3.3.1 The div operator from ’Hgi" into Hp
A useful property of the space 'H%i" is that
Ve HEY O H,

that is to say the divergence of a face function is a cube function. Indeed, it is
straightforward to obtain

Ve (W giey) @ = V- (6@ 0, )02, (2) 2)

(z) ()
d¢(x) 1’bi+l - ﬂ’i,;
= @l ), () = G LW e, )
and so
Xiedg+d ks — Xitd j+dk+d
h T 7] b 7] b
V- (Wligary) = TR )
3
In the same way, it is readily seen that
Xi+dlj—L k+1 = Xi+dj+1 k+l
V. ( h ) _ 2 2 2 2 2 2
"Pz+%u,k+% (Ay);
Xi+l i+4 k—1 — Xi«l»l i+1 k+1
h J+3, J+3,
V- (¢i+%,j+%,k> = 2 2 (2Az)]C 2 2 2



4 The semi-discretized problem

The semi-discretized eddy-current problem is obtained by discretizing only in space
using X = H$"' N X in place of X in the eddy current variational formulation.
The standard finite element discretization of (19) is thus to find Ap(t) € X}, such
that

oA 1
/Qaa—th-¢th+/Q;(VxAh)-(Vxgbh)dV

= —/ UﬁAs,h - @pdV — / My, -V X ¢y, dV. (42)
o Ot Q

for all ¢), € X, and A, p, € Hﬁurl is an approximation to As. This, however, is not
the discrete formulation we wish to use.

In order to derive a finite difference scheme we replace the integrals in this
system by a quadrature rule to obtain a mass-lumped system. The advantage of
using a quadrature rule in place of exact integration to define the discrete problem is
that, if it is appropriately chosen, it further sparsifies the matrices without altering
the precision of the method. We choose the quadrature rule in such a way the
basic eddy current equations corresponds to the Yee scheme on a uniform grid. In
particular, we choose

N B Vol(c)
IRCELEFSCUEIED SRS D B ADRNC

TCit Lt g el veV(e)

where V(c) are the 8 vertices of cube c and f|  denotes the restriction of function f
to the cube ¢ (this allows us to deal with discontinuous functions either).
Another, more explicit, formula is

]{lﬂm)dv = Z(Ax)i+% (Ay)j+% (Az)k+% (R W W (44)
ik
with
fi+%,j+%,k+5 =
( f@ijr) + f@iv15k) + F(@iv1e1.6) + F(@0j11001)+ (45)
F@igrrw) + f(@ijrs1) + fF@ipr 1) + F(@ir1r1ke1) )

| =

(we ought to have written flecr i1t (z....) instead of f(x_)!). It is known that
itgdtg bty

this formula is exact for functions whose restriction to each cube of the mesh is
piecewise linear.

An additional complication is that we wish to approximate M by a discrete field
M, € (Hp)3. We are then faced with the problem of defining AM, which is needed
for the discrete effective magnetic field Hegp, € (Hp)2. We use a mixed method
approach equivalent to a block centered finite difference scheme when the mesh is
uniform. Suppose 1 € (H(div;Q))3 (so it is a matrix and each column of the matrix
is in H(div; Q)) then we denote by V-1 the vector obtained by taking the divergence
of each column of 1 so if 1 = (¥ |1h5|1h3) we have V-1p = (V- 1p |V -1h5|V - 1h5)T.
Suppose v is the 3 x 3 matrix of gradients of M so that

v =VM = (VM;|VM,|VMs)

then if v is smooth enough, we know that AM =V - v.
Our discrete Laplacian is based on these formulae using a variational characteri-
zation as follows. Using the fact that the appropriate boundary condition for M on



Oferro is OM /Ov = 0 we see that an appropriate space for v is (Ho(div; Qferro))?
where
Hy(div; Qferro) = {v € H(div; Qerro) | v - ¥ =0 on 0Qferro} -

Thus v € (Ho(div; Qperro))? satisfies (using integration by parts)

-

for any € € (Ho(div; Qferro))® where the dot product is column wise and produces a
vector! The above variational formulation allows us to introduce an auxiliary vector
representing V - M and hence obtain AM even for discontinuous fields.

One final operator is needed to complete the specification of the semi-discrete
system. We define the (L?(£2))? orthogonal projection P, onto Hj by

(v-g—VM-g)dvz/ (v-€+M-(V-€)dV.  (46)

ferro Qferro

P MY — 13

In practice this just means that if wj € 'H%i" then Phwy, is the piecewise constant
vector computed by avergaing wy, to the centroid of each element. This is a local
operation.

The semi-discrete eddy current—LLG variational problem can be obtained by
replacing the integrals in (42) and (46) by the quadrature formula discussed earlier in
this section. Let Y}, = (H‘;‘Li" N Ho(div; Qferro))s. The vector potential Ay (t) € Xp,
auxiliary variable vj,(t) € Y, and magnetisation M (t) € H; satisfy

0 1
][U—Ah - dV + ][—(V x Ap) - (V x ¢p,) dV, (47)
o Ot QM
0
= —fO'_As,h'¢th_th'vx¢hd‘/,
o Ot Q
Br = pmoMi™ -V x (Ay + I(Dasn) (48)
f('vh-d)h L My (V) dV =0, (49)
Q
1 2 2k
Hegn = —P,Bh+ i v —P(My), (50)
o o Ho
0
th -.;-‘th = 'YfHeﬁ‘7h X Mh~£th
Q Q
My, oMy,
o —— x —— - &, dV, 51
fﬂ S o (51)

for all ¢, € Xy, for all ), € Y}, and for all £, € H;. In these equations M; =
M,-M gf,‘{ free and M. gf,‘{ free ¢ HIV s an approximation to Mg ™ that we shall
detail shortly. In addition As p = I(t)as,n is an approximation to A, again detailed
shortly.

Let E; denote the set of edges of the mesh that are not on the boundary surfaces
having z > 0. Since {¢,}ecr, is a basis for the discretization space X}, problem
(47) is equivalent to finding Ay, € X}, such that

0A}, 1
Qaw-qbedV—l-]{];(VxAh)-(Vx¢e)dV (52)

0
- —][U—As,h CpodV — ][Mh (V% ¢,)dV,
o Ot Q
for all e € Ej. Remembering that

Ah(w’t): Z Ae’(t)¢e’(w)7

e'cEr



we obtain the system,

> foegoav G > f (9500 (Vx 6V Au(t) =

e'eby e'eby

ffaﬁAs,h-d)edvfth-(vxqbe)dV
o Ot Q

for all e € E;. Gathering, at each time ¢, the values of the potential vector at each
degree of freedom into a vector ff(t), a system of ordinary differential equations is
obtained so that

h dA

M
7 dt

+ K"A = —FM@). (53)

5 Assembly Process

Because we use a lumped finite element description and a non-uniform grid it is
convenient to assemble the various finite difference matrices element by element.
Here we give the resulting formulae.

5.1 The “pseudo-mass” matrix in H{"!

The “pseudo-mass” matrix® is defined by

(m8)_ = fo@t@)- g av (54)

The advantage of the quadrature rule (44)-(45) is that it allows us to obtain a
diagonal matrix. We get

(Mg)e e = (mg)e 5676/ (55)
where the diagonal term is given by
h
(m5) 1415 Z > (@A Ay)jrg (Bo)erp Oird g krzs  (56)
61 =+1 Ea= =+1

for an edge in the x direction. In the same way we have

h _
(m")id+%7k n Z_Ll 21 z+51 )j+% (Az)k+% Tit 5 1+ 2 £57)
61 E2
h
(ma)i,j,m% - 1 Z Z (Do)t (Ay)jrp (Bodery Oir st i1 ,544(58)

g1=+1es=+1

for the directions y and z

5.2 The “mass” matrix in H$"

The “mass” matrix is defined by

1

M :f—zphsc-«ph,mdv 59

( "'10)f,f' o V1) V5 (@) (59)

The quadrature rule (44)-(45) again allows us to obtain also a diagonal matrix. We
get

M" = (m" ) opp 60

( ﬁ)f,f' (mi)f nf (60)

HO

1We call it pseudo because o can vanish in some place



where the diagonal term is given by

1 1
h ) _
m =< Ag)irer (Ay)iv: (A2)prr — 61
( m ij+5.k+3 26;1( Jit ) ( y)J+z( Dt 2 10 (61)
for a face perpendicular to the z direction. For the other directions, we get
(mh ) =S (@i By (A~
1 — _ x )i+l S f1 z 1i—),
Bo i+%7jak+% 2 e1=+1 Tz vt s o
(m" ) = Y A (A (A —.
/i hatik 2o * Ho
5.3 Curl matrix
We define matrix C? through
V X ¢ (x Z Ch (). (62)

Here, we have used C’},e instead of C}; ¢ to recover the usual notations of finite
differences. According to paragraph 3.2.1, we have

h - € .
Clorsarsmnwrian = @By % (63)
63
h _ € N
C( 2,] k+5 ), (z+%,j,k) - = (AZ)]C, E—il,
h _ € _
C(i,j+%,k+%), (hj+ik) = B2 e ==+l1,
h € (64)
C(2+2,J+2,kl (hg+3,k) = —(ALE)Z-’ € ==l1,
and .
h _ _
Clitsiktd), Giktd) = Ba) e ==+1, |
(65
h _ € _
C (i’j+%’k+%)7 (7;7.7-7k+%) o B (Ay)] ' °T :l:l
5.4 The “stiffness” matrix
The “stiffness” matrix is the symmetric matrix K given by
1
Ky =V %90 (V x 90 dV. (66)
Q Ho

Using (62), we get the formulas

h
Ke e’ = fs_zuo Z fl ,a¢fl : Z Cf2,6,¢f2 (w> dV

1

chfl, f2,6' ][ 'l/)fl 1/Jf2<:13)dv

fi fa
S ch (M) cf,
7 If

HO

where the last equality holds because the mass matrix is diagonal. It is then found
that -
"= (") Mt (67)
HO

(superscript T' denotes transpose).



5.5 The right hand side
The right hand side of (53) can be split into two terms

FL(t) = FE™(t) + FLsi(t), (68)
with
Fhm) = ]é/\/lh(m,t) (V% ¢,)()dV.
(69)
Fhst(t) = % ch(:c)Asyh(m,t) ¢, (x)dV.

where, as mentioned before, the fields M and A are approximated in ('Hh)3 and
H‘fl‘“l respectively. Th following two paragraphs are devoted to the assembly of
those two terms.

5.5.1 The term associated with the magnetic moment

This term uses a new coupling array E" which is an array of vectors. It is readily
seen that

Fhom(p) = ]{2 M. ) - ;Cf,e () du

or, see (39), )
Fg7m<t) = Zcf,e Z <Ec,f - Me(t)) (70)
! c

where M, = M|, and we have introduced a coupling sparse array Z" whose non
zero vectorial elements are

= =

S+ 5.0+ 5.k 5), (05 k+E) T (Ax)its (AY)j4y (A2)pys, €= +1

[1]

(b skt haktd) = 5 B0y (AY)jrg (B2)yy, e=+1 (T1)

e [ |8

[1]

43+ b k5t i k) = 5 (B2)ips (AY)jp1 (A2)kes, € = 1.

Thus, we have
T .
Fhm(p) = (C’h) 2h - M (t) (72)

after suitably interpreting the term E - My (t) using (70).

5.5.2 The right hand side associated with the potential A,

Here, we show how to approximate As. We assume that the source potential is
created by a coil surrounding the heterogeneous part of the medium. More precisely,
let Coil denote some piecewise smooth curve of the space, I(t) some current flowing
across the coil; we define A4(x,t) as

As(x,t) = I(t) as(x).
where a,(x) is the solution of the static problem

{ V x (V X as) = —po ficon in Q,

as xv=>0 on 0f).



Here jicoy is the vectorial distribution given by
< fcoits [ >p,p= f(y) - ds(y).
Coil
If the boundary of Q is far enough from the coil, we get

as(x) = as(x) = @/ ds(y) .

4T Jeou | — Y

One way to approximate A, according to (26) consists in defining,
Asn(z,t) = 1(t) asn(@),

where a, p, is the approximation of the static field a, that provides identical circu-
lations along every edges of the mesh. We get

asp(@) = (as)e b (@), (74)

where the summation runs over the edges, and

(e = gy fLostr-am =g [([ G0 ) st a

(le| is the length of edge e).
To go further, we assume that the coil is approximated by segments

CO’LZ = U CS, Cs = [As’ BS]’
in which case, we get
ds(x (y)
as)e I(e, [As, Bs]) Te , (76
~ i X[ R e e e B A, 09
7. is a unit tangential vector, while 7 is the scalar quantity

dx - 7'31 dy - 7s,
Tlon,s2) -yl

Now, it is easy to summarise. If we gather the components of as p, i,e. the (as)’s,
into a vector dg, we obtain simply

dI(t)

Fh,st
€ ( ) d

Mha, (77)

5.6 Solving the static initial problem

We now need to show how to compute an approximation to M giv free  This will
complete our discussion of the eddy-current/LLG algorithm.

5.6.1 The discrete variational formulation

Let My, € Hh be a given initial magnetisation field. We consider the problem of
computing Mg’ giviree ¢ v and Qp € My, such that

fMO,h cap,dV = fdefree by, dV + fv Py, QndV,
Q Q
(78)
0

f V- MGG gV,
Q



for all ¥, € Hd“’ and for all &, € Hp,.

To understand how this variational formulation constructs an appropriate dis-
crete Mg d“’ free note that the second equation above implies that V - My d"’ free .
Then let us take P, =V x ¢, where ¢, is an arbitrary test function in X h- Since
V- (V x ¢;,) =0, we get

fMOh VX dV = fMd‘V“ee V X ¢, dV.

5.6.2 The matrix form of (78)
We now introduce the matrices necessary for solving (78).

e The mass matrix for face functions

(Mi‘)ﬁf, = fﬂw; -l dv

where f and f’ denote some face index. Thanks to the numerical quadrature
this matrix is diagonal and we have computed it’s entries in Section 5.2.

e The divergence matrix for face functions

(Divh) - f XV -l av
e, f’ Q
where ¢ denotes some cube and f’ some face.

e The coupling array between face functions and vectorial cube functions

Hh
fC' ]['l/’f Xc

Note that each element of II* is a vector and the action of this “matrix” is
as defined in (70).

To write (78) as a matrix equation we next introduce the vectors of degrees of
freedom Q = (Qc)e, cube, Mo = (Mo.c)e, cube, and Mgiviree = (M&‘}’free)f, face Which
are defined via the representations

:ZQcXc(w)a MOh Z]\/-[OCXC

dlv free E ]\/ dlv free )

The system (78) can then be written as
oo T
I~ . M, = Mill M((]ilvfree + (Divh) Q,
0 _ DthMginree,

T
where (Divh) is the transpose of Div". This may be rewritten as

Mélivfree — (M}ll)_l ﬁh . Mg - (Mh)_l (Dth)TCj7

—

Div" (M}) ™ " - 8y ) = Div" (M*) (Divh)T a,



where we recall that M/ is diagonal so it can be inverted easily. Introducing a new

variable M ,flace, this is is equivalent to
- —1 = -
5rcc = (Mf)  II" - M,
-1 T -
Div" (M%) (Div") Q = Divh i,

—

L . _ T
M(()ilv free _ Méace _ (M’ll) ! (Divh) Q.

(79)

Thus we see that it suffices to solve the middle equation of (79) to compute J\Z/(‘j“" free
which is equivalent to solving Poisson’s equation. We next summarise how to com-

pute the various matrices.

5.6.3 Assembly of the system

We have already seen in Section 5.2 how to compute M?. The matrix of vectors

II" is sparse. The only non zero elements are

- 1
Hh) — SAzip Ay, 1Az 1 @, e = +1
1 k4L
( CRRS WS INCIT W WS S NP A CAR
(ﬁh) LAty Agsre Az 1y — £1
= AT  1AY; e AZp 1 Y, €=
(g kt 1) (43,545 k) 20 T2 T e T ke
— 1
Hh) = -Az, ;Ay- ;Aszréé e==1
( (15430, G+ 35+ k45 20 h2T 27
and, it is readily found that
Az, 1
face _ it+3 — A
(Mg )i,j+%,k+% T Az + Az Mo, (i1 5+3.k+3) " 2
2 2
A.CL‘Z»_% = .
+Aﬂci+1 + Az, 1 Mo, i-1j+1k42) " T
2 2
Ay- 1
face _ Jjt+3 — A
(Mg L+%J$+% T Ay + Ay 1ALLQ+%J+%w+%) Y
2 2
Ay- 1
J—3 W ~
o My i1 i 11y G
Ayjpr + Ay, O0TDImak)
AZ~ 1
face _ i+3 ¥ 2
(Mg L+%J+§k - AzHJ-FZZ;T_N%@+%J+%*+? c
1 _1
Azk7% . .

My i1 01 1y * 2
0,(i+%.5+%.k—3
Azgy +Az_y = O0FI+E—3)

2

Having computed Méace we need to compute Div" explicitly. Obviously Div"

matrix sparse. The non zero elements are

Divh) =—cAy. 1Az, 1, e =%1
( (i+5.5+3 k+3),Go+ 5 h+3) AERRE

(Divh) = Az 1Ax; 1, e ==1
(i+3,5+5,k+3),(6,5+ 3 k+3) 2 2

Dth) =—cAx; 1Ay 1, e==%1
( i+ 354 3 k+5), g+ 3 k4 ) R

is a



and, in particular

(Div"azge) =
EENAR NI
face
ij+%Azk+% (MO
face
Az 1 ATy (M

f:
A:EZ-JF%ijJr% (Moace

(Mface)

)i+%,j+1,k+ i (Méace
(Méace

)i+lﬁj+%7k+2 i+ 3kt
)it skt s
)z‘+%,j+%,k+1 )i+§,j+§,k
In order to solve the Poisson problem in (78) we need to form the matrix
h h vty (Dieh )
A" = Div (M ) (DIV )
If we use the previous formulae with the definition of Div", we get

(AhQ)z‘+%,j+%,k+% -

AYjy 1 D2y (A%PJFMC <Qz§ +ihrd ~ Qurdjr ket

(Q +3.dt5.ktg T 1—§7J+2,k+%>>

AacHl +Am
+AZp 1 ATy (Ay]+3 +Ay]+1 Qitdj+dh+s — Qitdj+ih+d
(Q it — Qipl -1 k+l)
ij+1 +ij +3.0+5 k43 50— 5.k+3
+Awi+%AyJ+% (AZIH_J —|—A2k+1 (Q tadtakty T z+2’3+2’k+%>

A2k+1 +Azk < ’L+2,]+27k+2 2+2,]+2,k: % )
H . . h -1 . h T
The final matrix operation needed is (M ) (DIV ) Q Let

Mgurlfree — (:’_\/‘[h)_1 (Divh>* Q

A simple composition of the formulae shows that

-2
curl free _ .
(Mg Jigtiked = Az, 1+ Azy 1 (Qz‘+%,j+%,k+% Qi—%,j+%,k+§)
2 2
—2
curl free _ B
(M Jitd ikt = Ay;1 + Ay, 1 (Qz‘+%,j+é,k+é Qi+é,j—é,k+é)
2 -2
-2
curl free _ _
(M Jird itk = Azpi1 + Az (Q”%J*%*k*% Q”%’J‘r%’k*%)
2 )

This is just a finite difference formulation of the Laplacian suitable for non-uniform
grids and consistent with the other components of the algorithm. The resulting finite
difference equations can be solved by a SSOR preconditioned conjugate gradient
scheme (although more efficient possibilities exist).



Bxi,_in,kn
aemmme — e

Dual grid --------

P 7 By ik A H
0 ot T oo < By H
Main grid 5 Bx, oo Yiel,j, k.T
Ay, . i A !
Yisjoker Bz; B%{ﬂ - Bzi?l,h!
; rd

AXijkn SBXij L By, .
i+, ]

Azlv.ivk AZHI,_i,k

Yirl,jk
AXx

Ljk

Figure 3: One pair cells of the nonuniform grid G and dual grid G

5.7 Comments on the spatial discretization

Once we have completed the assembly procedure we see that the “pseudo mass
matrix” M i,l and the curl-curl matrix K are exactly what would be obtained by
applying the Finite Integration Technique (see [22] and [6]) to the eddy current
model. In this case the arrangement of unknowns is shown in Fig. 3. The right
hand side corresponding to the magnetisation is novel, and, as we shall see, allows
us to prove an energy conservation result for the semi-discrete scheme.

5.8 Conservation results for the semi-discrete problem

We can now show that (6) holds for the semi-discrete scheme. Choosing &, = M},
on one element ¢ and vanishing on all remaining elements shows that

oM,
ot

where we have used the fact that M, is constant on ¢. Thus

-Mp=0o0nc

|[Mp| =|Moyp| for all elements c, (80)

where M, € H% is the discrete initial magnetisation distribution.

The continuous energy balance can also be derived for the semi-discrete system
using essentially the same steps. This is possible due to the special choice of spaces
for the two fields and the choice of the definition for Heg n. As in our derivation of
the continuous result, we shall assume that I = 0. Choosing ¢;, = Ap+ = 0A/0t
in (47) we obtain

fo‘Ahﬂg . Ahﬂg dV = ][,ulo . (1/Mo)v X Ah,t dV.
Q Q

where Hj, = M‘Oifzfree — My, — (1/p0)V x Ay since I = 0. Expanding the right
hand side we obtain

FoAns- Anav = by Huedv = § poHy- My av
Q Q Q

where we have used the fact that OM ‘Oifzfree /0t = 0. Now using the definition of
the effective field

fUAh,t . Ah’thJrf,U,lo -Hy, dV
Q Q

2k 2a
= _fMOHeﬂ‘yh -Mh,th— ][,uo (—P(Mh) - —V -vh) -Mh,th.
Q Q Ho Ho



But using the LLG equation, and noting that Heg 1 € H% and so can be used as a
test function in the discrete LLG equation (51) we obtain

M
][uoﬂeﬁ,h My dV = ][a,uo (Heﬂ,h X —h> - My, dV
Q o | M 3|

Moo 2
]€27|Mh|| .

In obtaining this equality we have also used the discrete LLG equation (51) with
the test function My, ;.
In addition, using the definition of vy, in (49),

2k 2 d
]Luo <_P(Mh) -2y vh> “MpdV = — <]qu|P(Mh)|2 + a|vhl2> dv.

Q Ho Ho dt \ Jq
Thus we have proved the following energy equality:

Theorem 2 Suppose I = 0. Then any semi-discrete solution of the the eddy-
current LLG equations (47)-(51) satisfies

4
dat Jo

_ _][ HOY | My dV. (81)
h

1
(grolEa 4 PP +alonl?) v+ f ol av
Q

5.9 Time-stepping

The semi-discrete scheme discussed so far needs to be discretized in time. Let At be
the size of time step, let A" denoted the unknown degrees of freedom of the vector
potential on the edges of the mesh grids at time ¢, = nAt. In the same way let AZ}
denote the vector potential due to the applied field on the edges of the mesh grids
at time t,, and let M ?H/ 2 denote the magnetisation M, at the centre of element
c of the mesh at time ,, /9 = (n + 1/2)At, and let Mj, denote a vector of these
vectors.

Using the Crank-Nicholson scheme on equation (53) we obtain (using also the
decomposition for K, in (67)) the fully discrete eddy-current equations

Antl _ pAn An+1 + An
M ch Tyt oh
oA o 2

where B is the array mapping the values of magnetisation at the centres of grids
to the faces of grids.

At t,y3/0 = (n + 3/2)At, the magnetisation is determined by the following
equation obtained using the Crank-Nicholson method except for the exchange con-
tribution in Heg o which is lagged to t,,41/2:

n+3/2 n+1/2 n+3/2 n+1/2
Mc+/ _Mc+/ Mc+/ +Mc+/

1
A = yHggc X 5 (83)
a Mn+3/2 + Mn+1/2 Mn+3/2 . Mn+1/2
A 2 X Al

Recall (50) so that

1 2a 2k
Hege=—PFPy.Bp+ —V-vp|lc. ——P(M.,) (84)
2] Ho Ho



Rectangular Parallelepiped Ferro

Figure 4: Rectangular parallelepiped ferromagnet. No coil is present and the bound-
ary condition (17) is used on all surfaces of the outer cube.

where P, . represents the operator averaging the face values of By, to the centroid of
cell c¢. This leap-frog type scheme has the advantage of conserving the norm of the
magnetisation even at the fully discrete level (the electromagnetic energy equality
has not been derived for the fully discrete scheme yet). Suppose A™ and MnH1/2
are known, (82) is used to calculate A"*! at t,.1. By (84), we have H, ;Lf;r 1. Finally,

(83) is used to obtain M73/2 at tn43/2 for each cell c.

6 Numerical Results

Here we present a few examples of solutions of the eddy current LLG system. One
difficulty is to obtain realistic test problems to verify the code. In these examples
the eddy current problem is solved at each time step using the SSOR preconditioned
conjugate gradient scheme from the NAG library (see also [6]).

6.1 Steady State of a Single Ferromagnet

Test problem 1 has a single rectangular ferromagnet occupying the parallelepiped
(dimensions in pm):

[—0.5,0.5] x [—0.5,0.5] x [0.3,0.7]
inside the computational domain (shown in Fig. 5):
[1.0,1.0] x [~1.0,1.0] x [0.0,1.0]

The domain is decomposed to 20 x 20 x 10 cells. The initial magnetisation is set
to 8.0 x 10°A/m pointing along 2. There is no applied field and the exchange
field is zero, so a = 0.0J/m, k = 0.0J/m>, a = 1.2434, At = 5.0 x 107125, v =
2.21 x 10° and Ah = 1.0 x 10~"m. The boundary condition (17) is enforced on all
the boundaries of the computational domain.

While running the code, the magnetic induction B is recorded at different time
steps. Fig. 5 is a quiver plot of B on the plane x3 = 0.5 um. The system finally
approaches a plausible steady state as we expect. We have no exact solution to
verify this, however.

We have also investigated the effect of changing the damping parameter o on
the field. For example, in Fig. 6 we show the magnitude if the magnetic induction
|B| at the centre of the cube for various choices of «. As expected, increasing «
results in a less oscillatory solution.
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Figure 5: Magnetic Field on plane z = 0.5 ym at different time step. This plane cuts
through the center of the ferromagnet (in the figure titles, T' denotes the number of
time steps for the given results).

Figure 6: Magnitude of the magnetic induction as a function of time at center of
the ferromagnet at different times as the system goes to the steady state. Different
« give a different evolution of |B| since increasing « increases the damping in the
LLG equation.



Two Rectangular Parallelepiped Ferro

Figure 7: Two rectangular parallelepiped ferromagnets used to test the implemen-
tation of the ground plane boundary condition (7).

6.2 Steady State of Two Ferromagnets

Our second test problem is used to test the implementation of the ground plane
boundary condition (7). We use two ferromagnets occupying Qferro given (in pm)
by

[—0.5,0.5] x [—0.5,0.5] x [0.2,0.7]

and
[-0.5,0.5] x [-0.5,0.5] x [—0.2, —0.7]

inside the computational domain 2 given by (see Fig. 7):
[1.0,1.0] x [~1.0,1.0] x [~1.0, 1.0].

The domain is decomposed to 20 x 20 x 20 cells. The initial magnetisation is
set to point along & in one ferromagnet and the —& direction in another. The
boundary condition (17) is applied on the boundary of the entire computational
domain. There is no applied field. and the exchange field is zero, so a = 0.0J/m,
k=0.0J/m3, o =1.2434, At = 5.0x 10725, v = 2.21 x 10° and Ah ~ 1.0 x 10~ "m.
The magnetic induction is plotted at different time steps in the same way as for
test problem 1. The system approaches a steady state after some time and this is
shown in Fig. 8 (compared to Fig. 5, the influence of the two ferromagnets in the
magnetisation is obvious).

This case can be used to verify the code for the infinite permeability condition
(7) at z = 0. A second numerical test is performed by computing using only the
upper half of the domain in Fig. 7 with the infinite permeability condition at z = 0.
As we expect, the magnetic field in Fig. 9 is the same as in the upper half in Fig.
8. the numerical results are identical and verify that the boundary condition (7) is
correctly implemented at s = 0.

6.3 Some results for the Seagate Modal

The academic Seagate perpendicular head model contains a complex ferromagnet
consisting of three parallelepipeds (see Fig.10). They are given by (in um) by

[1.0,2.0] x [—0.05,0.05] x [0.0,1.0],
[—1.1,2.0] x [~0.05,0.05] x [0.5,1.0],

and
[-1.1,—1.0] x [-0.05,0.05] x [0.0,0.5].
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Figure 8: Magnetic induction on plane x = 0 at different times for the pair of
ferromagnets shown in Fig. 7. Since the initial condition for M is anti-parallel, the
solution reflects this asymmetry.
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Figure 9: Magnetic induction on plane x = 0 at different time steps for the single
ferromagnet with the ground plane at z = 0 active (corresponding to the upper half
of the pair of ferromagnets in Fig. 7). Because the boundary condition (7) imposes
an antisymmetry condition on the solution, the solution for this problem is identical
to the solution in the upper half of the two magnet problem shown in Fig. 8.



Figure 10: Academic Seagate model showing the distribution of mesh points (ver-
tices of the cubes) on the ferromagnet and on the ground plane. A three turn coil
is also shown.

The computational domain is
[-1.502,2.726.0] x [—0.3048,0.3173] x [—0.04,1.029]

A three turn coil is also shown (this does not follow the mesh lines).

The initial magnetisation is set to point in the positive z direction, and there is
no initial applied field due to the coils. The domain is decomposed into 60 x 30 x 55
nonuniform cells as shown in Fig. 1. The grid cells around the writing tip are
about one tenth of the grid size away from the tip. We choose a = 1.3 x 10~!1.J/m,
k=0.0J/m3 a=1, At =1x10"'2s, v = 2.21 x 10° and Ah ~ 1.0 x 10~8m. The
infinite permeability condition is enforced on the ground plane z = 0.

At time t = 0 the current in the coil rises and creates an applied field. Fig.11
shows a plot of magnetic induction along 2 on the plane z = 0 under the writing
head at t = 6 x 107125 (after 6 timesteps). The design of the yoke is such that the
magnetic induction under the tip is much higher than under the larger part of the
yoke.

o Magnetic Induction under the write head

Figure 11: Magnetic induction on the ground plane plane under the write head at
time t = 6 x 107 12s.
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Figure 12: Variation of magnetic induction at the center of the tip against time
(solid line). This delays behind the rise of the current in the coil shown as a dashed
line.

When the current is turned on, the coil around the ferromagnet generates a
magnetic field. The magnetic induction will react to this field. Fig.12 shows the
maximum magnetic induction on a plane under the write head and the coil current
at different time steps. The magnetic induction lags behind the input current and
the lag time is of particular interest for engineers. The lag time is roughly a quarter
of nanosecond in this simulation

Figure 13 shows details of the magnetic induction on the mid plane of the writer
and some details of the field at the pole tip. Considerable non-uniformity can be
seen in the field as the writer is activated.

7 Conclusion

We have presented a model of the perpendicular disc write head that includes
eddy current and micromagnetic influences. This is discretized by a simple finite
difference method that is adapted to conserve energy. In future we intend to prove
convergence of this scheme and verify the method further. In particular the influence
of the eddy currents on the field at the pole tip needs to be quantified to verify that
eddy current effects are important in the writer.

Perhaps the biggest difficulty with the code is that the eddy current solver is
slow due to difficulties in solving the matrix problem resulting from the eddy current
discretization. A more advanced multigrid strategy is now under consideration.
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