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Abstract

In the framework of the Jacobi-weighted Besov spaces, we analyzed the lower and upper
bounds of errors in the h-p version of boundary element solutions on quasiuniform meshes
for ellitpic problems on polygons. Both lower bound and upper bound are optimal in & and
p, and they are of the same order. The optimal convergence of the h-p version of boundary
element method with quasiuniform meshes is proved, which includes the optimal rates for h
version with quasiuniform meshes and the p version with quasiuniform degrees as two special
cases.

Key words: h-p version with quasiuniform meshes, boundary element method, optimal rate
of convergence.
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1 Introduction

In this paper we prove asymptotically exact upper and lower bounds for the approximation
error of the h-p version of the boundary element method (BEM) with quasiuniform meshes
in two dimensions. More precisely, we analyze elliptic problems on polygonal domains whose
solutions exhibit typical corner singularities. Our analysis is done within the framework of the
Jacobi-weighted Besov spaces which already proved being the appropriate tool to obtain optimal
estimates for the p-version of the BEM for this type of problems, see [15]. Here we incorporate
the mesh dependence into the analysis and provide optimal estimates for any combination of
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mesh size and polynomial degree, for the case of quasiuniform meshes and uniform polynomial
degrees.

The p-version of the Galerkin method (finite elements for differential equations and boundary
elements for boundary integral equations) uses a fixed mesh and improves the approximation
of the solution by considering piecewise polynomial functions of increasing degrees. The h-
version is based on mesh refinement and piecewise polynomials of low, fixed degrees. The h-p
version combines mesh refinement with increase of degrees. Let us recall the main theoretical
achievements for the h-p version since its beginning. For details specific to the p-version we refer
to [15].

A thorough analysis of the p and h-p versions started with the series of publications by
Gui and Babuska [10, 11, 12], for the finite element method(FEM) in one dimension. They
considered the approximation of typical singularities 7, and proved optimal upper and lower
bounds of error in the finite element solutions in H' and L? norms. Problems in two dimen-
sions and their approximations by the h-p version of the FEM with quasiuniform meshes are
analyzed by Babuska and Suri [6] after improving the approximation results of the p-version
of FEM [7]. They gave an upper bound of error in FE approximation for elliptic problem
with singularities |z|” log” |z| (|| = r is the distance to the origin), which is actually of order
O(h™"p~*logv(p/h)). This upper bound is optimal for non-integer v, and it can be sharper for
integer v and v > 0. The argument was brought to the h-p version of the BEM with quasiuni-
form meshes by Stephan and Suri after introducing the p version of BEM [18], but the estimate
on the upper bound of error in the BE solution, measured in H/? norm, is not as sharp as in
the FE solution, and a rate of O(h~Yp~27t¢), e > 0, arbitrary was claimed for v = 0 in [19].
Since then, no further improvment on the upper bound for the BEM has been seen. Meanwhile,
the lower bounds of the error in the hA-p FE and BE solutions for elliptic problems with the
singularities of |z|Y log” |z|-type has not been addressed up to now. Consequently, the optimal
convergence of the h-p version of BEM as well as FEM has not been mathematically established.

The h-p version with quasiuniform meshes is, from methodlogy and approximation theory,
the p version on scaled meshes. The approach of the p version gives the p-dependence in the
approximation errors, and a proper scaling argument will reveal fully the information of the h-
dependence. Hence, the analysis for the best approximation of the h-p version with quasiuniform
meshes is not feasible unless the optimal convergence of the p version is established. Fortunately,
the best a-priori error estimation for the p version has been recently established, we are now
ready to persue the best a-priori error estimation for the h-p version. In the last few years, with
a series of papers by Babuska and Guo [2, 3, 4, 5], a new analysis of the p-version has started
in the framework of the Jacobi-weighted Besov spaces. The approximation theory of the FEM
in two dimensions in this new mathematical framework is systematically developtd in these
papers, which demonstrates that Jacobi-weighted Besov space is the most appropriate tool to
obtain optimal upper and lower bounds when dealing with singular solutions on polygons. This
framework have been generalized to the p version of FEM in three dimenions [13] and the p and
h-p version of the BEM. In [15] we showed that the Jacobi-weighted Besov spaces serve equally
well for the analysis of polynomial approximations of singular functions in the spaces HY/2 and



H~12 the energy spaces of hypersingular and weakly singular integral operators, respectively.
In this paper we will further generalize the results and methodology to the h-p version with
quasiuniform meshes. The generalization for singular problems without logarithmic terms can
be easily done by a simple scaling argument, but the generalization for those with logarithmic
terms are not trivial, in particular, for the lower bounds of the approximation error of the Jacobi
projection.

The h-p version of the FEM and BEM with quasiuniform meshesis quite different from
the ones with geometric meshes, in the methodology and approximation theory. We will not
elaborate numerious progresses on the h-p version of the FEM and BEM with geometric meshes
in the past two decades.

The rest of the paper is organoized as the follows. In Section 2 we shall present the Jacobi-
weighted Besov and Sobolev spaces and recall results on the p version of the BEM, which we have
derived in [15] and will be used later. In Section 3, we carry asymptotic error analysis for the
Jacobi projection of singular function 7 log” & on P,(J;), where P,(J) is a set of polynomials of
degree p on a scaled interval J, = (0, h),y > 0 and integer v > 0. In Section 4, the approximation
results to these singular functions are applied to the h-p version BE solution on quasiuniform
meshes for elliptic problems on polygonal domains, which leads to the optimal lower and upper
bounds of approxiamtion error in the h-p version BE solution with quasiuniform meshes, and
proves the optimal convergence. In the last section, we will make some conclusing remarks.

2 Jacobi-weighted Besov spaces and preliminary results

In the following I denotes the interval (—1,1). Let > 0 be an integer and 3 > —1 a real
number. We introduce a weight function with parameters a and 8 by

Wap() = (1 - a?)*t?
and define the spaces H*B(I) for integers k > 0 as the closure of C* functions with respect to
the weighted norm

1/2

k 1/2 k
o = (32 [P Waster i) = (32 [P0 a9 as)
a=0 a=0

The semi-norm involving only the highest derivative u(¥) is denoted by | HEB(I)-

For real s > 0 the space H*P(I) is defined by interpolation: Let [ and k be two integers with
Il <kands=(1-0)l+ 0k for 6 € (0,1). Then

HB(I) = (H"(I), H*B(I))g.

)

with norm

el ey = (/Om (t0K ¢, u)” %1/2 (2.1)



for
K(t,u) = inf (|[o]lguary + tlwlges ) (2:2)

u=v+w

The spaces H*P(I) are referred to as Jacobi-weighted Sobolev spaces. Interpolating differently
we obtain the so-called Jacobi-weighted Besov spaces,

B*A(I) = (HY(I), H*(I))g.0

’

with norm
lull gs.s(ry = supt *K(t,u)
t>0

where the functor K (¢, u) is defined in (2.2). For analyze the best approximability of the singular
function of z” log” xz-type, we need to introduce the modified Jacobi-weighted Besov spaces,

BSA(I) = BSA(I).

By(I) = (H"(I), H*P(I)) 00,0

with norm
tfe

s = SUp ——— K (¢,
Il ) = 598 T Tiog a4 )

For v = 0 we also write
B3P (I) = BSA(I).

The definitions of the above Jacobi-weghted spaces in one dimension are quoted directly from
[15]. It is worth indicating that the spaces H*#(I) and B*P(I) are exact interpolation spaces
and that the spaces BS#(I) with v > 0 are not exact, but only uniform. For the substantial
difference between two types of interpolation spaces we refer to [8] and [2].

_In the boundary element analysis, the approximation errors are measured in the norms of
HY2(I) and HY2(I),

Hl/z(I) = (LZ(I)’Hl(I))l/z,z’ ﬁ1/2(1) = (L2(I)7H&(I))1/2,2-

H'/2(I) is the energy space for hypersingular operators, H~Y/2(I) and H~'/2(I) are the dual
spaces of H'/2(I) and H/2(I), in which one analyzes the error for weakly singular opera-
tors, Hence, it is essential to explore the relation between these spaces and the corresponding
Chebyshev-weighted spaces, which is special Jacob-weighted Besov spaces with 3 = —1/2. To
this end, we introduce the space

Hy V(1) = {u € HY V(1) | u(£1) = 0},
and the interpolation space

A0 (0 )
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with norm analogously to (2.1) for

K(t,u) = inf e (”v”HO’—l/Q(I) + t||w||H17—1/2(1)) :
u=v4w,veH%~1/2(I),weH,’ /(I)

The folowing two propositions indicate the equavilence between the usual Sobolev spaces and
the Chebyshev-weighted spaces.

Proposition 2.1 [15, Theorem 2.2]
H1/2,71/2(I) ~ H1/2(I), I"{l/2,71/2(I) ~ gl/Z(I),
i.e. there exist constants ci, ca > 0 such that
cullull vz < llullgrre—12gy < eallull gz (2.3)

and
Cl||“||f11/2(1) < ||U||1§r1/2,—1/2(1) < 02||“||1f11/2(1)~ (24)

Let us consider a function @(§) = u(cos &) with cosine expansion

(o9}
() = Z ay, cos(k§). (2.5)
k=0
This leads to the Chebyshev expansion of u € H%1/2(I),
(o0}
u(z) = Y. (o) (26)
k=0
with Ty (z) = cos(karccos z). By Corollary 2.1 in [15] there holds
||U||§11/2(1) = ||U||§11/2,—1/2(1) = Z a%(l + k2)1/2‘ (2.7)
k=0

Finally let us recall the technical and approximation results for singular functions of the type
u(z) = 27 log”(z)x(z), =z€J:=(0,1), (2.8)

with v > 0 and integer v > 0. Here, x € C*°(J) with x(z) =1 for 0 < z < §p/2 and x(z) =0
for §p < & < 1 where §y < 1 is a positive constant
In the case v = 0 we have the following Chebyshev expansion of u.
Proposition 2.2 [15, Lemma 5.1] For the function u(z) = (14z)" withy > 0, let Y72 ar (V)T
be its Chebyshev expansion. Then there holds for k > 0
v+l

ax(7) = ZT(1/2)T( + 1/2)20- ;)(7+k(-z ) e

and for non-integer ~y

ax (] ~ k2114 0(1) (k= 00).



In the case v > 0 we have the following Chebyshev expansion.

Proposition 2.3 [15, Lemma 5.1] For the function u(x) = (1+xz)7 log”(1+z) withy > 0,v > 0
let 720 bi(v)Tk be its Chebyshev expansion of the function (1+x)Y. Then there holds for k > 0

by = aé”)(v)Tk

()

where a;,’ () denotes the v-th derivative of ar(7y) with respect to gamma. For non-integer v,
bk ()] ~ k~* " log” k(1 + O(log ™! k).
and for integer v >0 and v > 1
k()] ~ k=2~ log? 1 k(1 + O(log " k).

One of the main results of [15] are the following optimal upper and lower bounds for poly-
nomial approximation of singular functions.

Proposition 2.4 (i)Let u be given by (2.8). Then, for p > 0, there exists a polynomial v of
degree p such that

[|lu — 1/)”1}1/2(J) <Cp™.

(ii)Let v = (1 + )Y log”(1 + x) with v > 0,v > 0. Then, there exists a polynomial ¢ of degree p
such that

lo = @llgas2(5) = e~ (1 + logp)”".
Here, the positive constants C and c are independent of p, and v* = v if v is non-integer or
v=0 and v* =v —1 if v is integer and v > 1.

Proof. For the existence of a polynomial ¢ satisfying the upper bound see Theorem 4.4 in [15].
The lower bound for the approximation of v is given by [15, Theorem 5.2]. O

3 Asymptotic error analysis for Jacobi projection of singular
functions of 27 log” x on a scaled interval

Let
u=2z"1og"xz, x € J,=(0,h)

with real v > 0, and interger v > 0, and let P,(J;) be a set of polynomials of degree < p on Jp,
let upp denote its Jacobi projection on P,(J,) with the weight 3 = —1/2, which is called the
Chebyshev projection as well. Then we have asymptotics of the approximation error of Jacobi
projections.



Theorem 3.1 Let u = 27, and let upyp be its Chebychev projection on Py(Jy). Then for non-
integer v > 0
lu = unpllg/ary = (R/2)P™ (3.1)

Hereafter = means equavilence with constant independent of h and p.

Proof. Introducing a linear mapping

1 h
p= 200 e 1) (3:2)
we define a function 4(§) = u (%) = (h/2)7(1 4+ €)7. Due to Proposition 2.2, 4(£) has a

Chebyshev expansion
o0

a(€) = D ex(v)Tk(€)

k=0

with ci(v) = (h/2)Yag(7y), where the coefficients ay(7) is given in (2.9), and
1
ek (M| ~ (h/2)7E7 11+ 0()) - (k= 00).

Therefore,
0

u=2"=Y a() (e 1)
k=0

is the Jacobi expansion of u(x) on Jj, and

p
2
Unp = D cr(1)Ti(3 2 — 1)
k=0

is the Chebychev projection of u(x) on P,(Jp). Note that

h, . . .
Hu_uh,p ip/zuh) = §”u_uh,p”%2(—1,1) + |u_uh,p %{1/2(_1,1)

h 2 - 2

= 5 2 laMPF+ X le(Pk

k=p+1 k=p+1

= > ()P, (33)

k=p+1
and (3.1) follows immediately. O



Theorem 3.2 Let u = x7 log” x with integer v > 1, and let upp be its Chebychev projection on
P,(Jy). Then for non-integer v > 0

_ y 2p
lu = unpllgarzg,) = (h/2)"p~*" log 5 (3.4)

and for integer v > 0 and v > 0
~ — vV— 2p
[ = wnpllirag,) = (h/2)p* log ™ =, (3.5)

Proof. By the mapping (3.2), we have a function on I = (—1,1)

L+E), o (148, h(1+E)
2 2 2

(1+9)

u€) = u )” log”

73 (2 Yo (/2 log™ (1 + €)

= 1

By Proposition (2.2 )

= (er()) T (§)

((h/2)7ak( ) Ti(8)-

where c; = (h/2)ya(y) is the coefficients of Chebyshev expansion of the function ul(¢) =

(%)7, and ay is given (2.9). Let
L),

ab(e) = ;

(

for 0 < ¢ < wv. First we consider the case v = 1 There holds

)?

" < g

ul(ﬁ)—zd7 ((h/2)7ar(7)) Ti(£)

By (2.9) the numbers a; can be written like

1) = (-1 ¥ Con) -y s (> )
with
~ v+l
Co(v) = —TA/2P(y +1/20v(y = 1) -...- (v = K7).



Here, k* is the maximum integer less than or equal to 7. For k >+, Cy does not depend on k,
and Cy # 0 for non-integer ~.

We obtain
(_1)kk*% (h/2)ar(y)) = (h/2)" (log(h/?)é’o(’y)% + é(l)(’)’)%
2o Dk=y) A, Th—-9'(y+k+1)
—00(7)m —Go(y) L(y+k+1)2 )
Using ( )
I'k + « a—
T g = P (1+0(/k)  (k— oo),

see [1, formula 6.1.46], and the relation I'(z) = ['(z) (log z + O(z7 1)) for z > 1 (see [1, formula
6.3.1 and 6.3.18], we obtain

(“1F L (h/2) ar(y)) = (B/2)" (log(2/R)Co(m)k~~" (14 O(k™)))
— CoE (14 0(k™Y) + 2Co()k 2" log(k) (14 O(k ™))
= (h/2) k271 (Coly) log(2/h) — Cy(v) +2Co(y) log(k) ) (1 + O(k™))

—2v—1 [ A 2k A1 -1
= (h/2)k™ (Co("/) log (=) - Com) (1+0k™). (3.6)
For non-integer v, there holds
~ 2k -, ~ 2k? 4 2k? 2k?
Co(v) log(T) — Co(7) = Co(y) log(T) (1 +O(log™* T)) , (T — 00),
which together with (3.6) yields
2 2
(1% L (a4 (9)) = —(h/2) k2o (7) log () (1 +0(log™ %) RENER S
dvy h h
The Chebyshev projection of @?(¢) on P,(I),
L
Up(6) = . ((h/2)7ax(v)) Tk (§)
k=0
satisfies
o] d 2
@ — Ypl3pse gy = —((h/2)ay) | k
1~ Yplgizr k:%l(dv k)
o0 2 2\ 2
= BT Y ko () (1 +0(log™! %))
k=p+1



which leads to the assertion (3.4) for v = 1.
In general, for integer v > 1 and non-integer v > 0, we have

2

v A —2y—1 v 2k 1 2k2
((h/2)7ak(v)) = (=1)"Co(7)(h/2)"k™""""log"(—~) (1+0(10g T))' (3.8)

ki 4"

(1

For the details of the induction, we refer to [14]. Therefore, the Chebyshev projection of @?(¢)
on Pp(I), denoted again by ¢,(§),

p dv
bp =D = ((h/2)7ak(v)) Tu(§)-
imo
has the asympotic error estimation
h 2 - d’ ?
=il * X (G (/2Taw) &
k=p+1

52 2 ty—1 2w 2K 2k ’
= Ce(R/2)™ >0 k7 og™ (= )<1+0(10g A ))
k=p+1

which tends to zero uniformly with respect to « for v > 9 > 0. Therefore,

_ah2. = S~ 4 ¥ 2. _
o) = W~ 1 = 3 5 (W2 e Tl )
and its Jacobi projection on Pp,(J)
S 2
= Y- 4 (h/200)) Tu(3o - ).
k=0

Then, due to the relation (3.3), the assortion (3.4) in general follows easily.
Note that C(y) =0 and C’(y) # 0 for integer v > 0. We have instead of (3.7)

CDFF A al) = G
= Co(h/2 k1 (14 0(k™)) (3.9)

which leads to the assertion (3.5) for » = 1. In general for integer v > 0 and v > 1, we have,
instead of (3.8)

k—k* d’ ¥ v Al v 1.—2y—1 v—1 2k* -1 2k*
(-1) dv ((h/2)7ar(y)) = (=1)"Co(v)(h/2)"k log (T) 1+ O(log T)
(3.10)
which gives the assertion (3.5) in general for integer v and v > 1. For the details of the induction,
we refere to [14] O

10



4 Optimal rate of convergence of the h-p version with quasiuni-
form meshes

In this section we demonstrate how the optimal approximation results obtained in the previous
section lead to optimal a priori upper and lower error estimates for the h-p version of the BEM
with quasiuniform meshes. We follow the presentation in [15, Section 6] where we analyzed the
p-version.

For a polygonal domain Q with boundary I we study the h-p Galerkin approximation of the
integral equations

Vip = (%I+K)f onT, (@.1)
Wo = (%I —K')g onT. (4.2)

The operators V, K are the single layer and double layer potential operators and K', W are
obtained by taking the normal derivatives of V' and K, respectively. The equation (4.1) models
the Dirichlet problem for the Laplacian with Dirichlet datum f on I' and unknown function
1, the normal derivative of the solution of the Dirichlet problem. The integral equation (4.2)
with hypersingular operator W is the corresponding equation for the Neumann problem, with
unknown function v being the trace on I' of the solution.

It is also well-known that there exist a unique solution ¢» € H~/2(T") of (4.1) if the conformal
radius of T" is less than one (which can be obtained by a scaling). The operator W has a kernel
which consists of constant functions. In the space

HYA(T) = {w € Hl/Q(I‘);/Fwds = 0}

(4.2) is uniquely solvable.

In order to study the convergence of the h-p version of the boundary element method for solv-
ing (4.1) and (4.2) we recall some regularity results. In the following we consider for simplicity
piecewise analytic given data (f for (4.1) and g for (4.2)).

Let us denote the vertices of Q by t; (1 < j < J, tj41 = t1) and let IV be the open
edge connecting ¢; and ¢;11. The internal angle at ¢; is w;. We consider a partition of unity
(X1,---,XxJ) where x; is the restriction of a C§°(R?) function to T' such that x; = 1lin a
neighborhood of the vertex ¢; and supp(x;) C IV"1 U {t;} UTY (I ='7). In this way we may
write any function ¢ on I' like

J
0= (-, 01)X;
i=1
where a pair (¢, ¢, ) corresponds to ¢ on IV"1 U {t;} UTY with
o- =¢lps-1 and ¢y =@l

Then we have the following regularity result.

11



Proposition 4.1 [17] Let aj;, := ka’f—] (integer k > 1, j = 1,...,J) and, for t > 1/2, let n be
an integer with n+1 > “L(t —1/2) > n.

(i)If f is a piecewise analytic function, then there exists a function vy with 1g|p; € HH(TV)
such that, for the solution v of (4.1), there holds

J n
=3 > ((%ir)-, (¥x)+) x5 + Yo-

J=lk=1
Here
(Yjr)+(x) = clr— ifjlo‘j’”_1 (ajk is not an integer),
(Yin)+(z) = ci|lz —t;]%% 1+ co|z — t;|%* Llog |z —tj| (ax is an integer).

(i3) If g is a piecewise analytic function, then there exists a function vy with volp; € HY(TV)
such that, for the solution v of (4.2), there holds

n

J
= Z vjk: vjk: )Xj + vo.

Here
(vjr)+(x) = clz —1tj|%* (o is not an integer),
(vjr)+(x) = ci]|r —t;]%* + ol — tj|%* log e —t;| (o x s an integer).

The constants ¢, ¢y and ce above are generic.

Now we define and analyze the h-p Galerkin method for the approximate solution of (4.1) and
(4.2). To this end we introduce piecewise polynomial spaces. Let I' be decomposed into straight
line pieces I'j, j = 1,...,n such that the corners of the polygon I' coincide with endpoints of
some elements. We assume that the length h of the longest element is bounded by a constant
times the length of the smallest element. This is the so-called quasiuniformity of the mesh
Ty :={ly,...,T} (the number of elements n is proportional to h~1). For a given integer p > 0
we define

Sll%,p(r) ={v € CO(F)§ vlr, € Pp(Ty),5 =1,...,n}
and
Sgp—l(l-‘) = {v; U|F]- € P,1(ly),j=1,...,n}.

Here, P,(I';) denotes the set of polynomials on I'; (with respect to the arc length) up to degree
p. There holds Sh,p( ) C HY2(I') and Sh,p_l( ) € H~Y2(T"). However, the condition of integral
mean zero is not satisfied by the functions in S,ap(F). This condition can be incorporated by a
Lagrangian multiplier, see, e.g., [9]. The h-p Galerkin schemes then are as follows.

12



For a given mesh I';, and p > 0, find ¢y, € Sg,p(f‘) satisfying

1
Vnp, @12y = (51 + K)f, )2y Vo€ Shp(D), (4.3)

and, for p > 1, find vy, € S,lhp(I‘) and a real number a satisfying

1
(Wopp,w)p2ry + (w,a)2ry = <(§I — K')g,w)p2ry Yw € S} ,(I), (4.4)

(Vhp, D2y = 0.

Before analyzing the convergence of the Galerkin schemes let us present sharp approximations
results in H for smooth and singular functions over one edge J = I'V by piecewise polynomials
of Spp(J) = Shp(T)s-

Proposition 4.2 [19, Theorem 3.1] Let r > % and p > 1. Then for v € H"(J) there exists
Vpp € Shp(J) such that

[0 = onpll g1/2( 5y < B2~V (1 4+ Logp) 2 0]| e (-
Here, p = min{r,p + 1} and the constant ¢ > 0 is independent of h, p and v, but depends on r.
Now let us consider the approximation of a singular function of the type
u(z) = 27 log”(z)x(z), =z€J:=(0,1), (4.5)

(v > 0 and integer v > 0). Here, x € C*°(J) with x(z) =1 for 0 < z < 6y/2 and x(z) = 0 for
dp < x < 1 where §y < 1 is a positive constant.

Theorem 4.1 Let u be given by (4.5) with non-integer v. Then, there exists up, € Spp(J) with
p > 2v —1/2 such that

Ju = unpllrzgry < € W72 (14 10g"(2) ). (4.6)
where the constant C is independent of h and p. If v is an integer, there holds
- Yo—27 v—1,P
Ju = unpllgoragry < € W97 (14 1og" 1 (B) ). (4.7)
Proof. We adapt the proof of the optimal estimates for the p-version from [15] by incorporating

a proper scaling argument. Let us assume without loss of generality that all the elements are of
the same size h and h < d9/2. We represent the singular function u like u = uy + ug with

ui(x) = u(z)x(z/h), uz(z) =u(z) (1 - x(z/h)).

13



For simplicity we have taken the same cut-off function x as in the representation of u in (4.5).
There holds supp(ui) C Iy = [0, h]. Defining v; (&) := ui(h€) we obtain

0(6) = w(ROX(E) = M log (REX(E) = o™ 3 . ) log"(h)log" *(¢)x(¢)
k=0

for ¢ € J =(0,1), x(&) =1 for £ € (0,1/2), and x(§) = Ofor ¢ > 1. By Proposition 2.4 there
exists, for [ =0, ...,v, a polynomial 1/){4)({) € P,(J) satisfying for noin-integer vy > 0

€108 E)T(E) — ¥ p(€) | 2 < O (1 + log)' (49)
Letting
wr€) =013 ( ¥ ) logH (Rt (@)
we have the estimate .
T O kzuo( Y Y logH (W)Y /20
< ’”kio( i )logk(%)llﬁ“’ log” *(€)X(&) — 1, ()l /2y

v

y v kL -2y (v—h)
h kzﬂ( o )C(k)logh (-)p™(1 + log p)

< cowp (1+1080))’

IN

Let ¢(x) = 11(z/h). Due to the scalability of the H'/?-norm (see, e.g., [19, Lemma 3.1]),
there holds

Jua(e) = 9172 = [91€) = (@) rary < COMTp2 (14 10g<§>)” (4.9)

h

Due to Proposition 4.2, the function uy € C*°(J) with support in [5, 1] can be approximated

by a piecewise polynomial 15 € Sp,(J) satisfying
lug = W2l gua( sy < Clr)R* " 2p~ =12 (1 4 logp)' 2 |ugll e (), 7> 1/2
with g = min{r,p 4+ 1}. It is trivial that
C(r)h+Y% " log" (1), r>~+1/2

luzllmr () < C’log”“/z(%), r=y41/2
C, r<y+1/2
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which implies for r» > v +1/2
1
s — sl 2 gy < OOV log? (1Y (1 4 Logp)/2 (4.10)

Extending v; by 0 onto J and defining upy, := 11 + 12, combination of (4.9) and (4.10) gives
for any r >y +1/2
lu = wnpll g1y < € (Il = 1l gasogry) + lluz = ol o)

< Cmax {h7p727, C(r) p—+7p=(r=1/2) } (1 + 10g(%)>

< (Cmax {h7p_27, max {C(’f‘) Rp=(r=1/2) () ppHrti=rp=(r=1/2) }} (1 + log”(%)> .

Since p > 2y — 1/2, selecting an integer r € (2 + 1/2,p + 1], we have
max {h7p_27, max {C’(r) h7p_(’°_1/2), C(r) hp+7+1_’°p_(’°_1/2) }} < C(y)hp.

which leads immediately to (4.6).
If v is an interger, we introduce a linear mapping x = h% before separating the function
into smooth and singular parts. Let

v—1
a(€) = u(h€) = h7¢" log” (h€) = K¢ log" h+ > ( Z ) log" h log" *¢.
k=0

Note that the first term h7¢Y log” h is a polynomial of degree 7 in P,(J) with p > 2y —1/2, for
which there is no approximation error. Then we separate the function @(§) — h7¢7 log” h into
smooth and singular parts by a cut-off function x(¢), and apply the approximation result of
Proposition 2.4 with integer y for each term h7¢7 log® h log” % ¢x(€),0 < k < v — 1 as before.
We have (4.7) in stead of (4.6).

|

Now we are ready to give a sharp upper bound for the approximation error concerning the
hypersingular integral equation on polygonal domains.

Theorem 4.2 Let v be the exact solution of (4.2) with piecewise analytic g, and let vy p be the
BE approzimation defined by (4.4) with p > 2w /w* —1/2. There holds

”'U _ ’Uh,p”gl/Z(F) § Chw/w*p_mr/w*. (4.11)

Here, w* = max{wj; j =1,...,J} and the constant C does not depend on h and p.
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Proof. The Galerkin scheme (4.4) converges quasioptimally in H'/2(I') x R [9]. Therefore, we
only need to find an element w € S,ip(F) such that |jv — w”ﬁl/Z(r) satisfies the bound stated

by the theorem. We will define this approximation piecewise on the edges I'V by functions
w! € Spp(IY) := Shp(I)|ps- .
By Proposition 4.1(ii), on I'V we can represent the solution v of (4.2) like

v =01 + Uy (4.12)

where vy contains the singularities at the corner ¢; and vy contains the singularities at #;1.
More precisely, we can find a representation

v1 = v11 + V12 + V10 (4.13)
with vig € H**(IV), 81 = 37/w; +1/2 — € (¢ > 0) and singularities
on(e) = eule — |7 + ezle — 1] log |z — t]x;,

1112(.%') = Cl3|:L‘ — tj|27r/ijj + 014|-T - tj|27r/wj log |:L‘ — tj|Xj-

The constant ¢;o vanishes for non-integer oj;1 = m/wj, and ci4 vanishes for non-integer ajo =
27 /wj. x; is the C* cut-off function. Accordingly, for vs in (4.12) we find a representation

Vg = V21 + V22 1+ V0
with vgg € H*2(IV), s2 = 37 /wj41 + 1/2 — € (¢ > 0) and singularities
o1 () = car|w — 41|t N1 + canlw — i€ log |z — ti 1] Xja1,

v2a(z) 1= eoslT — i1 [P X1 + eaalw — tja | log | — | X1

By Theorem 4.1 there exist wy1, w1z € Sp,(IY) with p > 27/w; — 1/2 such that
”'011 — w11||ﬁ1/2(n-) < Chﬂ/wjp72”/“’j’ (4.14)

”1)12 — w12”1€11/2(1"j) < Chzw/wjp_47r/wj . (415)

Note that cj2 in the representation of vy is non-zero only for integer m/ wj, and Theorem 4.1
tell us that the logarithmic term does not appear in estimate (4.14) and (4.15).

For the smooth remainder v1g of v; we find by Proposition 4.2 a piecewise polynomial wig €
Shp(T7) which satisfies

llvio — w10||ﬁ1/z(pj) < ch#T12pm T2 (1 + logp)t/?

where ¢ = min{s;,p + 1}. Noting that s; = 37/w; +1/2 — € > 27 /w; + 1/2 for € < w/w;, e.g.
e=1ir/wj, and p+ 1> 27 /w; + 1/2, we have

lv10 = wioll g1/ ray < eh*™p™ 87/ (14 Logp)!/? < ch®m/s p2m/es (4.16)
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Analogously for v we find piecewise polynomials wo, was € Sh,p(Fj ) with
21 — warll graj2 iy < ch™/@it1p=2m /@it not complete !! (4.17)
lvae — w22||f11/2(rj) < ch?™/@it1p=4m/@i1 not complete ! (4.18)
Also, there exists wag € S, ,(I7) such that
20 — wag | sz gy < ch2T/Wit1pT /@i 4.19
HY/2(17)
The approximation w’ € S,lz’p(l"j ) of v on I'V is constructed by the pieces defined above:
wj = w11 + W12 + Wig + Wo1 + Wa2 + Wag.
Combining (4.14)-(4.19) we obtain
' 2 2
o —wllgresy < D02 vy — wijll gy
(T7) (T7)
i=1 j=0
< max{R™VipT3 /@i i = j i+ 1}

Now, proceeding in the same way an all the edges I'V of I", we define w := w’ on IV and conclude
that there holds

J

1/2
o —wllga/2qy < ¢ (Z lv — wj||fq1/2(n-)) < emax{h™/ip ¥/ i =1, J}
j=1

which proves the theorem. O

Now we analyze a lower bound for the error of the Galerkin approximation of the hypersin-
gular integral equation (4.2).

Theorem 4.3 Let v be the exact solution of (4.2) with piecewise analytic g, and let vy p be the
BE approxzimation defined by (4.4) with p > 27 /w* —1/2. Suppose that the strongest singularity
|z — to|™ @0 or |& — tj,|"/?io log |& — tj,| occurs at some vertex tj, of Q with wj, = w* =
max{w;; j =1,...,J}. Then there holds

||’U _ vh,p”ﬁ[l/?(r) Z chﬂ/w*p_Qﬂ/w* (420)
with ¢ > 0 independent of h and p.

Proof. We may assume that jo = 1,w; = w* and that I'f = J, = (0,h) is the corner element
connected to the vertex ¢; located at z = 0. There holds

l[v— vh,p”ﬁl/Z(r) & v - vh,p”Hl/?(F) > |l —vnp HY/2(TY):

17



By Proposition 4.1, v = vy + v + v on I'l with
vi(z) = 1™/t 4 cog™/@ log z,

ve(z) = 3™/t + cy2®™ /1 log z,

and
vo(r) € HY(T1) Vit =3m/wy +1/2 — .

Here, € > 0 is arbitrary, co and ¢4 are not zero on if 7/w; and 27 /w; are integers, respectively.
Note that in Proposition 4.1 the singular functions vi; and wvis are associated with cut-off
functions, but v; and vy are plain singular functions. However, both representations differ
only by C'*°-perturbations which become a part of vg. Now we assume that the assertion of
the theorem does not hold. Therefore, there exists a piecewise polynomial w € S;(Fh) and a
function é(p) such that

lv — ’Uh’p”_Hl/Z(Fi) < v = vnpllgre@y < ep 2 /“18(p, k), &(p,h) = 0 (p — oo, or h — 0).
(4.21)
By Theorems 4.1, there exists a polynomial ws of degree p such that

||’l)2 - w2||H1/2(Fi) < ch27r/w1p—47r/w1.

Moreover, by a standard approximation argument, there exists a polynomial wg of degree p such
that
||'UO - wOHHl/z(Fi) < Ch”_l/zp_<t_1/2)(1 + logp)l/Q,

where p = min{¢,p + 1}. Noting that p+1 > 27 /w; +1/2 and t = %7‘(‘/(4)1 +1/2 for e = %W/Wl’
there holds 5
”'UO - wO”Hl/?(I‘}) < ch2“/w1p*(§“/w1)(1 + logp)l/z,

Therefore, combining the last two estimates and the assumption (4.21) we obtain

lo1 = (Vnp — w2 — wO)”Hl/z(ri) < - ”h,p”Hl/z(r}) + vz — w2||H1/2(1“i) + [lvo — wO”Hl/?(Fi)

< chw/w1p727r/w1 (6(1)’ h) + hn/w1p72ﬂ'/w1 + hﬂ'/wlpf%ﬂ'/au)

Note that in either case m/w; is an integer or not, by Theorems 3.2

lor = (vn,p — w2 — wo)llgra/apty = llor = Moallgayag, ) 2 K91 p 20/

where ITv; is the Chebyshev projection of v; on Pp(Jj), which leads to a contradiction. Thus
we complete the proof. O
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Corollary 4.1 Let v be the exact solution of (4.2) with piecewise analytic g, and let v, be
the BE approzimation defined by (4.4) with p > 2w /w* — 1/2. Suppose that the most severe
singularity |z — tj,|™/“io or |x — t,|"/“0 log |z — tj,| occurs at some vertex tj, of Q with wj, =
w* =max{w;; j =1,...,J}. Then there holds the optimal error estimate

™/ p 2 <l — | ey < CHT p27/e (4.22)
with C > 0 and ¢ > 0 independent of h and p.

Making use of the approximation results for the hypersingular integral equation we prove
analogous results for the weakly singular integral equation (4.1).

Theorem 4.4 Let ¢ be the exzact solution of (4.1) with piecewise analytic f, and let ¢y, be the
BE approzimation defined by (4.3) with p > 2w /w* —1/2. Suppose that the strongest singularity
|z — tj,|™“i0Y or |z — t;,|™/“io " log & — tjy| occurs at some vertex tj, of Q with w;, = w* =
max{w;; j =1,...,J}. Then there holds

Chw/w*p_Zﬂ/w* S ”¢ N ¢p||g—1/2(p) S Chﬂ/w*p_Zﬂ/w*‘ (4‘23)
with C' > 0 and ¢ > 0 independent of h and p.

Proof. We apply the results of Theorems 4.2 and 4.3 by considering antiderivatives of 1,
which have singularities like the solution v of (4.2). This technique has been used previously by
Stephan and Suri [18] and in our paper on the p-version [15].

First we prove the upper bound for || — tp || f-1/2(r)- By the quasi-optimality of the

Galerkin scheme (4.3) we only need to define an element ¢ € Sg,p(f‘) such that ||t — @[l g-1/2py
satisfies the upper bound stated by the theorem.
We consider an edge IV which we identify with interval J = (0,a), a = |[V|. We define

u(e) = [ “W-d)tdt (zeJ) (4.24)

where ¢ = éf(;l (t) dt. Then u vanishes at the endpoints of J and u € H'/2(J). By Proposi-
tion 4.1(i) and standard calculation

x -
ule) = [(@- D)0 d
= 112 + c192%1 log(z) + c132%7% + ¢142%9? log(z)
+  colr — a|¥Hht + egalz — al* 1 log |z — al

+ coslr — a|MH? + eyl — a2 log |z — af + uo()

with oj; = im/w; and a function uy € H*(J), s = min{37/w; + 1/2,37/w;ji1 +1/2} —€, € > 0.
As in the proof of Theorem 4.2, e.g. by using Theorem 4.1, there exists a piecewise polynomial
w? € Spp11(J) such that (now writing IV instead of J)

[lw — ij[f[l/Z(I‘j) < Chw/w;p_%/w; (4.25)
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with w} = max{wj,w;+1}. By [19, Lemma 3.4] differentiation is a mapping
HY2(7) — B Y2().

Therefore, defining ¢/ = (w?)' + v € Sp, ,(I'¥) (differentiation with respect to the arc length) we
obtain

9 — ¢j||ﬁ—1/2(rj) <cllu— wj||f11/2(rj)-

Estimate (4.25) gives the needed approximation result on an edge I'V. We define a piecewise
polynomial ¢ € Sp, ,(I') by piecing together the local constructions ¢ and the stated upper
bound for ||y — ¢||f1—1/2(1“) follows. O

5 Concluding Remarks

Based on the analysis of the optimal convergence for the p version of the BEM in the framework
of the Jacobi-weighted Besov and Sobolev spaces, we prove, by incorporating a properly designed
scaling argument, the optimal rate of convergence of the h-p with quasiuniform meshes for the
hypersingular and weakly singular integral equation on polygonal domains where singlarity of
|z|7-type and |z|” log |z|-type occur. The results include the the h and p versions of the BEM as
two special cases. For fixed h, it coincides with the optimal convergence of the p version of the
BEM][15], and for fixed p, it gives the optimal convergence of the h version. Also it is parallel
to the results of the h-p version of the FEM with quasiuniform meshes [14].

The concepts, methods and techniques in analysis can be generalized to the three dimensional
problems, but such a generalization will be substantial, and will be feasible only when the analysis
for optimal convergence of the p version of the BEM in three dimensions is available, which,
unfortunately, is an open problem now.
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