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Abstract

A conservative modification of the conventional discrete ordinate method for the non-
linear model Boltzmann equation with Shakhov’s collision integral is proposed. The
conservation property for arbitrary Knudsen numbers is achieved by satisfing the discrete
analogues of conservation laws as well as the boundary conditions exactly, up to machine
precision. Additionally, the method ensures the correct approximation of the heat flux.
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1 Introduction

Developing numerical methods for the exact and model Boltzmann kinetic equation rep-
resents a real challenge for the method’s designer. This is due to the nonlinear character
and very high dimension of these equations. For small Knudsen numbers an additional
difficulty arises: the numerical method must be conservative. Conservative methods for
kinetic equations are the methods from which after numerical integration with respect
to molecular velocity on the discrete grid the discrete conservation laws for the mass,
momentum and energy of the gas follow. Nonconservative methods produce non-physical
source terms in the conservation equations of order of O(Kn™'). Therefore, they may not
converge to the proper solution as the Knudsen number is decreased unless the velocity
grid is substantially refined. Due to the highly nonlinear character of the kinetic equation,
both exact and model ones, the conservation property is very difficult to satisfy.

A fully conservative numerical method of discrete ordinates for the exact Boltzmann
equation has been developed in [6]. Since the exact and model collision integrals are quite
different it is not clear how this method can be applied to the model equation.

In this paper we propose a way of constructing conservative methods for the nonlinear
model equation with Shakhov’s collision integral [11, 12], which permits computations
with arbitrarily small Knudsen numbers on a fixed molecular velocity grid. The con-
servation property for arbitrary Knudsen numbers is achieved by satisfying the discrete
analogues of conservation laws as well as the boundary conditions exactly, up to machine
precision. Additionally, the method ensures the correct approximation of the heat flux.

The rest of the paper is organized as follows. In Sections 2 and 3 we review the exact
and model Boltzmann equations. A conventional (non-conservative) discrete ordinate
method is described in Section 4. The notion of conservative methods is discussed in
Section 5. In Sections 6 and 7 we describe the new conservative procedures for evaluation
of macroparameters of the gas and boundary values of the velocity distribution function.
A numerical example is given in Section 8 and conclusions are drawn in Section 9.

2 The exact kinetic equation

For a monatomic gas the Boltzmann kinetic equation for the velocity distribution function

—

f(t,7,€&) in non-dimensional form can be written as follows:
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Here t is time, 7 = (x1, 29, x3) = (x,¥, 2) is spatial coordinate, 5: (&2, &y, €,) — molecular
velocity, J(f,€) is the Boltzmann collision integral, do = bdbde, g = |€ — &|. The
parameter Kn is called the Knudsen number.

The macroparameters of the gas, such as number density n, temperature 7" and vectors

of gas velocity u; and heat flux ¢; are computed as the integrals of the distribution function



over the molecular velocity:
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The collision integral has the fundamental property of conserving mass, momentum
and energy of colliding molecules, which is expressed by the following equations:
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The quantities 1, E, £ are called collision invariants. Multiplying the kinetic equation by
these invariants and integrating with respect to £ we obtain conservation equations [12]
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where ¢ = 1,2,3. In the limit of small Knudsen numbers the application of Chapman-
Enskog procedure to (4) produces the compressible Navier-Stokes equations.

The kinetic equation must be supplied with initial and boundary conditions. The
initial condition for the kinetic equation is set as:
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where quite often fO(F,g) is chosen to be a locally Maxwellian function of the initial
distribution of macroparameters:

= Mo (F)

RO = Gy p( To(v) ) .

The boundary conditions of diffusive reflection of molecules from rigid bodies are
defined as follows. Let 7 be a normal unit vector of the body, and &, = (§,7) be the
component of molecular velocity normal to the body. Then the distribution function of

—

reflected molecules f,,(§) is
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where n,, and T,, are density and temperature of reflected molecules. The second equation
in (7) expresses the condition that there is no mass flux through a rigid body and defines
nyw. The temperature of reflected molecules T, can be defined in two ways. In the
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case of the cold body the temperature is given and equal to the body temperature T5.
Alternatively, for a heat-insulated body T, is found from the condition that the energy
flux through the surface of the body be equal to zero:

| &graé+ [ aefuai=o. ®)

&n<0 &n>0

More precisely, n,, and T, are computed as the solution of system (7),(8):
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3 The nonlinear model kinetic equation

Although considerable progress has been made in developing accurate methods for the
exact Boltzmann equation [1, 2, 6, 10] it is still very costly and difficult to solve on modern
computers. This is mostly because of the five-dimensional collision integral which must be
computed at each point of the space mesh. Moreover, even for spatially one-dimensional
problems all three components of E must be preserved resulting in excessive memory
requirements.

There are two main alternatives to solving the exact kinetic equation. The first is the
Monte-Carlo methods [3, 4]. The version due to Bird is probably the most commonly
used tool for simulating rarefied flows. The second alternative is to develop model kinetic
equations for pseudo-Maxwellian molecules by replacing the exact five-dimensional colli-
sion integral by a model collision integral. Probably the first such model is the so-called
BGK (or Krook) model [5]. A more accurate model, which is a generalization of the BGK
model, is due to Shakhov [11, 12] and is written as follows:

0 0 1 1 ~
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Here f,, is the locally Maxwellian function, Pr is Prandtl number (Pr = 2/3 for a
monatomic gas). We assume summation over repeated greek indexes. The BGK model
can be formally obtained from the Shakhov model by setting Pr = 1.

The model collision integral Q( f,g) contains unknown parameters n, u, 1, ¢. These
parameters are determined by the condition that the model kinetic equation should ap-

proximate the exact Boltzmann kinetic equation in terms of momentum equations, that



is few first momentum equations should coincide for the model and exact kinetic equa-
tions. Since the differential parts of the equations are the same, this is equivalent to the
condition that first few moments of the model and exact collision integrals coincide.

For the Shakhov model we have the following eight conditions to determine the un-
knowns:

[e@7(1.8dE = [p@Qr.OdE, w& =1, & & & (11)

We note that the first five equations in (11) coincide with (4). Integrating with respect
to & and taking into account that for pseudo-Maxwellian molecules [12]

[ &84 = ~Svi (12)

we obtain the conventional expressions (2). Therefore, the unknown parameters in the
model collision integral are in fact macroparameters of the gas.

The last three equations in (11) ensure that application of the Chapman-Enskog pro-
cedure to the model equation yields correct values of viscosity and heat conductivity
coefficients for small Knudsen numbers Kn. This property constitutes a major advantage
of the Shakhov’s model over the BGK model for which the wrong Prandtl number is
obtained.

4 Discrete ordinate method

A standard approach to solve the model kinetic equation with given boundary and initial
conditions is the so-called discrete ordinate method. In this method the exact integration
with respect to molecular velocity E over all velocity space is replaced by an approximate
numerical integration over a finite domain using a discrete set of points in E space. Let

Erim be a node in (&4, &y,&.) grid, fum = [T, &um), fam = (67, Eum). Then the
kinetic equation (1) is replaced by a system of equations for fg,:

O frim 3 frim 1
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For the given value &lm each of equations (13) can be solved using any modern advection
scheme. For example, a semi-discrete scheme can be written as

afk:lm
ot

where D), is a conservative numerical approximation to the gradient operator:
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Here i,, i, and i, are spatial indexes. Usually, a high order monotone method, such as a
TVD method [14] or WENO method [9] is used to compute Dy. Time discretization in
(14) can be carried out either in a time splitting manner or by means of a Runge-Kutta
method.

Conventionally, macroparameters are evaluated as discrete sums:

n= Z Aptm feim,  nil = Z Aklmg;clmfk:lmy E = Z Agim (gklm)ka:lm7

klm klm klm
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klm

(16)

and so on. Here Ay, are weights of the integration rule.
The boundary conditions are treated in a similar way. The numerical integration yields

> (&) smEiim frimCrim

1 kim.€, <0 ~1/2
T, = - - . e = 2V271 (T,) > (&) wim SuimCrim)
2 > &ufdé klm, €, <0

klm, &, <0

(17)
where Cy;,, are weights of the integration rule at the boundary.
Usually, a high order integration rules, such as Simpson or Gauss rules, are employed
in the molecular velocity space.
The outlined framework of the discrete ordinate method has been used quite often
recently, e.g. [15, 13], with good results.

5 The conservation property

Now we come to a very important property of numerical methods — the conservation
property. Following [1, 2] we call the numerical method conservative if two conditions
are satisfied. Firstly, the summation of (14) with weights 1, Eptms &, using the given
integration rule of the method produces the discrete analogues of conservation laws (4).
Secondly, discrete analogs of (7), (8) hold.

When a conservative advection scheme is used in (14) the first condition essentially
means that 1, E,dm and &2, are collision invariants of the discrete collision integral Qi :

v L

K V Akim OkimQiim = 0 for @ =1, &, Erim- (18)
klm 1

The second condition leads to the following equations:

> EDrm(fw)kmCrm + Y. (& )kimfeimCrim = 0,

klm, £n >0 klm, £, <0
(19)
S (Ekimaim fo)kimCrim + Y (&) kimEim frimCrim = 0.
ki, €, >0 klm, €, <0

Conservative methods do not produce non-physical sources of mass, momentum and
energy and therefore in the limit of small Knudsen numbers (continuous flow regime) the
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kinetic solution approaches the solution of Navier-Stokes equations away from boundaries.
Basically, such methods mimic the conservation property of the collision integral (3) on
any discrete molecular velocity grid. On the contrary, as will be shown below, for non-
conservative methods very fine meshes in 5 space are needed to keep the conservation
error small when the Knudsen number decreases.

In addition to the conservation property, given the locally Maxwellian distribution fq,
one would also like the numerical integration with respect to 5 to reproduce the initial
values of macroparameters, namely ng(z), do(x), To(z), Go(x) = 0. This is sometimes
called compatibility with the initial distribution of macroparameters [2].

It is obvious that a conventional discrete ordinate method, given by (14), (16), (17) is
not conservative and is not compatible with the initial data. The numerical integration of
(14) with respect to € leads to conservation equations with the vector of numerical source
terms given by

1
L e
5= oV S & (From — Jrim) Ak, (20)
0 im £,
52 klm
or i .
1 1
L & e B
5= o S & Frim Akim —/ & | [Hdg |. (21)
kim | ¢, £,
L 62 klm 52 -

Essentially, the conservation error arises from the fact that expressions (16),(17) can
be regarded as produced by performing exact integration for f* and f, and numerical
integration for f in (2), (7), (8). Assuming that Ay, gives an r** order integration rule
and A¢ is the cell size in 5 mesh, the expression for A can be written as

5] ~ %Const v (AE) (22)
From (22) it is obvious that 6 — oo as Kn — 0 unless the velocity grid is refined. In the
case of small Knudsen numbers § can be very large. In practical calculations one cannot
afford a fine mesh for 5 due to excessive memory requirements. As a result, computing
flows with Kn < 1072 becomes difficult.

Given the distribution function f the macroparameters are computed with an error,
proportional to (A&)". This explains why the numerical method is not compatible with
the initial data. Although the error is small, due to the present of the large numerical

Rn
A similar conservation error occurs at the boundary; however, it does not depend

source term of order of - (A£)", it grows rapidly with time.

directly on the Knudsen number.



Conservation of the method can be restored by using some kind of a correction proce-
dure at each time step. Such procedures were developed in [2, 8]. Although good results
were obtained for Kn = 1072 the correction procedure appears to be artificial and it is
not clear how well it will work for long time evolution problems for many time steps. For
the exact Boltzmann equation a fully conservative method was proposed in [6]; however,
it has not yet been applied to the model equation.

In the next section we present a new and very simple procedure for making the nu-
merical method conservative.

6 Restoring conservation away from the boundary

For the Shakhov model the macroparameters of the gas can be defined not as integrals
(2) but rather as solutions of approximation equations (11). As was seen in the previous
section, the source of conservation errors is the fact that exact integration is applied
to f*, whereas numerical integration is used for the distribution function f producing
expressions (16). The error would not occur if instead of using (16) we used equations
(11) themselves in the discrete form.

More precisely, we require that the following discrete analogues of (11) hold for each
t, T

> Avim (i — fum) = 0,

kim
> At Erim (fY = [lem = 0, i=1,2,3
kim
23
> Avim i (FT = Piim = 0, (23)
klm
ZAkzlm (gz)klm glzlm (f+ - f)k:lm = _gqu 1= 17 27 3

klm

Eqgs. (23) represent a nonlinear system of eight equations for eight unknowns n, @, T', §.
Note that first five equations are exactly conditions (18) for the method to be conservative
away from the boundary. Morever, the last three equations ensure the correct transition
to the continuous flow regime as Kn — 0. For the BGK model, the model collision integral
Q( f,g) does not contain the values of ¢ and thus it is enough to use only the first five
equations in (23).

We use the Newton iteration method to solve system (23). Let n be an iteration
number. The Newton iterations are then written as

K(W™! —Ww™) = B, (24)

where W is the vector of unknown macroparameters and B is the vector of errors:
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K is the Jacobian matrix:
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The iteration process requires an initial guess. This is provided by the conventional
expressions (16). Usually, it is enough to do two or three iterations since the Newton
process converges very quickly.

For the BGK model f* = f,, and the derivatives of f* have a very simple form:

oft 1. aft  206—uw)
on nf+’ ou; T I
_ 2 2 2 2 2 . \2
(& —w)® + (& —u—2)" + (£ — up)®
f+:fm:ﬁexp<_ . Y T > )

For the Shakhov’s model these derivatives are more complicated. However, one can use
some special software, such as the MAPLE package, to obtain the corresponding expres-
sions.

In the case of the spatially two- and one-dimensional flows system (23) becomes smaller
as the number of the unknown macroparameters decreases.

7 Restoring conservation at the boundary

A similar procedure can be used while treating boundary conditions. The density and
temperature of reflected molecules should be computed as a solution of system (19). Let
us introduce the following notation:

Si= > (&) wmSeimCrim (28)
kim, £, <0

Sa= Y (&E)kumSeimChims - (29)
kim, &, <0

We note that S;, S; do not depend on the unknown parameters n,,, Ty,.
When the temperature of reflected molecules T, is given (cold body), the expression
for the density n,, is especially simple:

(7TTw)3/2 Sl
Z <€n €Xp (_52/Tw)>klm Cklm‘

klm, £ >0

(30)

Ny = Ny (L) = —

For the heat-insulated body we have to solve system (19). Using (30) we eliminate n,,
from the equations. Then for the distribution function of reflected molecules f,, we obtain
the following expression:

= S £
() = — exp | ——|. 3
S S Y 2 5) e (1) oy

klm, £ >0
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Inserting the above expression for f, into the second equation in ( 19) we arrive at the
following equation for the temperature of reflected molecules Ty,

2
y Zg: 0(£n)klm <_51£2 + 82>klm exp <—%> Cklm = 0. (32)
m,En > w

This equation can be easily solved using a standard Newton iteration algorithm. The
initial guess is again provided by the conventional expressions (17). Having found T,, we
evaluate n,, from (30).

8 Numerical example

Consider the uniform distribution of macroparameters with n =5, u = 2, v = w = 0,
T =1, ¢ =0. Then the Jacobian matrix (26) has size 3 x 3. For the sake of simplicity
we use the BGK model. Let us also take Kn = 1071% and v = n. In this case the solution
is f = f,» and macroparameters are equal to the initial values.

The integration with respect to 5 is performed in the boundaded domain |¢;| < 6 with
A& = 0.6 (20 grid points for each component of 5) Let us use the simplest first order
integration rule so that Ay, = 1.

Let us do iterations (24). All calculations will be made with double precision. The
initial approximation is

n(©) = 4.99999999892187,

1) = 1.99999999897941,

7O = 0.999999996908553.

It is obvious that the so-obtained values of density, mean velocity and temperature are
very close to the exact one. However the vector b is very large.

b(1) = —53.9064900402261,
b(2) = —362.959800787625,
b(3) = —2476.36555555463
The first iteration gives
n = 5.0000000000000,
u™ = 2.0000000000000,
T = 1.0000000000000,

and b(1) = b(2) = b(3) = 0.000000000000000.

We observe that the conservative algorithm of calculating macroparameters is not
only exact for uniform flow but also ensures exact conservation for an arbitrary Knudsen
number.
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9 Conclusions

A fully conservative modification of the discrete ordinate method for the nonlinear model
kinetic equation has been presented. Conservation is achieved by a new way of evaluating
macroparameters of the gas and the boundary values of the velocity distribution function.
Conservation laws are satisfied for an arbitrary Knudsen number on a fixed molecular
velocity grid. Additionally, the correct evaluation of the heat flux is ensured in the limit
of small Knudsen numbers.
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