ON HIGHER-ORDER VISCOSITY APPROXIMATIONS
OF ONE-DIMENSIONAL CONSERVATION LAWS

VICTOR A. GALAKTIONOV

ABSTRACT. We consider some aspects of vanishing viscosity (¢ — 0%) approximations
of entropy solutions of the classical conservation law
Uy +uty; =0
via solutions u. (z,t) of the higher-order semilinear parabolic equation
U + un, = e(—=1)"TtD*™y, D, =9/dx, with integer m > 2.

We show that unlike the classical case m = 1 (Burgers’ equation), direct higher-order
approximations of known entropy conditions and inequalities are not possible and conver-
gence u. — u needs extra delicate asymptotic analysis of formation of shock layers. The
approximation and stability properties in two main Riemann’s problems with initial data
S+ (x) = Fsigna (the shock and rarefaction wave) are studied. Parabolic approximations
are illustrated for other odd-order equations including the third-order one

uy — (Wl ) g = —EUzgez, € — 0.

1. Introduction: classical results on entropy solutions and extensions to
higher-order approximations

Extended Burgers’ equation and other approximating models. We study the
questions occurring in higher-order approximations (the wvanishing viscosity method) of
scalar conservation laws and other odd-order equations. Our main example is the classical
hyperbolic equation

(1.1) w+uu, =0 in Q=R xRy, u(r,0)=uy(zr) in R,

with a bounded measurable initial data ug. This equation originated from gas-dynamics
played a key role in the general theory of discontinuous entropy solutions of conservation
laws developed in the 1950’s. We study the approximation of entropy solutions via the
higher-order parabolic equations. This leads to extended Burgers’ equation

(1.2) uy + uu, = e(=1)"D?™y (D, = 3/0x), wu(x,0) = u.(x),

where m > 2 is integer, with a positive parameter ¢ — 0%. The second-order (m = 1)
vanishing viscosity method had the crucial importance for the viscosity-entropy theory.
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Several aspects of the fourth-order approximations (m = 2) occurring in mechanical and
physical applications and, in particular, in the stability theory of finite-difference schemes
were attracted significant interest and have been studied in the literature. We present
related references below. On the other hand, there exists a huge literature in gas and
aerodynamics on the influence of viscosity and heat conduction processes on the structure
of shocks in compressed flows. This leads to complicated higher-order nonlinear systems.
We refer to famous books [43].

Concerning other types of regularization of (1.1), for third-order regularizing operators
leading, in particular, to the Korteweg-de Vries equation

(13) Up + UUy = EUgga,

approximation of entropy solutions with shocks are known to be impossible, see general
conclusions of [9] concerning ODEs and detailed PDE analysis in [29]; see also Lax’s
survey [27]. The exceptional case is a small dispersion perturbation of Burgers’ equation

(1.4) U + Uy = EUgy + 0(8) Uz,

where for §(s) = 0(?) as ¢ — 0 the solutions converge to entropy ones of (1.1), see [39],
[30] and more references in [23].

Higher-order semilinear parabolic equations occur in several areas of applications and

their qualitative mathematical theory is the important popular subject; see book [38]. In
general, the questions of 2m-th order approximation of lower odd-order evolution equa-
tions are related to the problem of smooth regularization of semigroups of discontinuous
solutions and construction of discontinuous extended semigroups occurring in the study
of singularity formation phenomena in PDEs.
Plan and outline of results. We continue Introduction with a survey where necessary
classical local (pointwise) and nonlocal entropy conditions are presented. In Section 2
we show that, unlike the classical second-order case m = 1, for m > 2 the regularized
solutions {u.(x,t)} of (1.2), in principle, do not approximate as ¢ — 0 known local
entropy conditions for solutions wu(z,t) of (1.1). We show that this happens due to the
discontinuity of total variation of u.(x,t) at ¢ = 0 in approximating of entropy shocks.
For m > 2, there exists a wvariation deficiency dV,, measured via the wiscosity shock
profile having finite total variation. It turns out that dV,, = 0 for m = 1 only, which
actually made it possible to approximate local entropy inequalities in the classical theory.
Concerning nonlocal Kruzhkov-Lax’s entropy inequality, our conclusion is also negative
in the sense that it cannot be obtained in the limit ¢ — 0 without detailed analysis of
generic formation of singular shock layers.

In Section 3 we demonstrate that higher-order parabolic approximations correctly
describe entropy solutions of Riemann’s problems for (1.1) with initial data St(z) =
Fsigna, the shock and rarefaction wave respectively. We prove that S_(x) is a proper
solution, i.e., is obtained by higher-order approximations, while S, (z) is not. The gen-
eral question on 2m-th order approximation of arbitrary entropy solutions generates the
two key asymptotic (large-time behaviour) problems for the corresponding rescaled 2m-th

order parabolic equations:
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(I) asymptotic stability of the viscosity shock profile (Section 4), and
(IT) asymptotic stability of the rarefaction profile (Section 5).

It is known that existence of a measure-valued solution (in the sense of Young measures)
u = lim u. along a subsequence is guaranteed by a single L>-estimate on the family {u.}
to (1.2) [12] (or by an LP-estimate [39]). Nevertheless, in view of the principal difficulties
revealed in Section 2, convergence to unique entropy solutions for sufficiently arbitrary wug
remains a hard open problem.

As a new example, in Section 6 we consider parabolic approximations of other odd-order
equations including the third-order PDE

(1.5) U — (Ul ) e = —EUgpre-

A theory of suitable “entropy” solutions for (1.5) with & = 0 is not known, and therefore
we will apply the approximating approach in studying of shock-waves S (x) based on the
concept, of proper solutions.

Several approximation conclusions of this paper are negative not in the sense that
higher-order parabolic approximations (1.2) or (1.5) are unsatisfactory (actually, we es-
tablish that they are good for key Riemann’s problems or in a class of piece-wise smooth
solutions), but in the sense that the mathematical analysis needs more involved ideas
and techniques of higher level of complexity. Actually, our main goal is to establish that
unlike the lower-order case m = 1, even in a reasonably simple model (1.2) with m > 2
or in more general equations like (1.5), convergence of {u.} as ¢ — 0 towards entropy
solutions needs an extra delicate asymptotic analysis of corresponding singularity forma-
tion phenomena (shock layers), and this is an unavoidable difficulty. In this and other
related approximation problems connected with a general extended semigroup theory, the
questions of existence (uniqueness) and asymptotic behaviour of limit proper solutions
cannot be studied separately and are indivisible.

1.1. Entropy conditions and entropy solutions. It is known from the 1950’s that the
Cauchy problem for general single conservation laws admits a unique entropy solution.
We refer to first complete results by O.A. Oleinik who introduced entropy conditions in
1D and proved existence and uniqueness results (see survey [35]) and by S.N. Kruzhkov
[26] who developed a general non-local theory of entropy solutions in RY. In the general
case, one of Oleinik’s local entropy condition has the form ([35], p. 106)

w(xy,t) — u(wg, t)

1.6
(1.6) pr—

< K(xq1,29,t) forall xy,20 € R, t >0,

where K is a continuous function for £ > 0. Oleinik’s local condition E (Entropy) intro-
duced in [36], for the model equation (1.1) with convex function ¢(u) = fu? takes the
form of well-known nonincrease of entropy from gas dynamics

(1.7) w(at t) <wu(z,t) in Q,

with strict inequality on lines of discontinuity, [35], p. 101.
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Kruzhkov’s entropy condition on solution u € L*°(Q) [26] is the nonlocal inequality
1
(1.8) lu — k| + §[sign(u —E)(u? = k%], <0 in D'(Q) forany k € R.

Oleinik’s and Kruzhkov’s approaches coincide in the 1D geometry.

It was known beginning with the first rigorous results by E. Hopf [21] (previous ones
were due to .M. Burgers [6]) that entropy solutions can be obtained by the vanishing
viscosity method, i.e., as the limit

(1.9) us(x,t) = u(x,t) as e—0
of a sequence of classical solutions {u.} of the Cauchy problem for Burgers’ equation
(1.10) Up + Uy, = EUyy

with the same initial data. The convergence in (1.9) takes place in L'(R) for ¢ > 0 and
is pointwise at any point of continuity of u(x,t). Approximations of the initial data can
be included, where

(1.11) u(2,0) = uge(x) > ug as —0 in L.

See the comparison theorem in [26], and [35] for survey of results on general 1D hyperbolic
equations. We refer to well known J. Smoller’s book [40] and more recent book by C.
Dafermos [11] and A. Bressan [4] for more detailed information.

The following consequence of the parabolic approximation is of principle importance for
the theory. Let E'(u) be a monotone C'-approximation of the sign-function sign(u — k)
with a fixed k € R, i.e., F(u) is an approximation of |u — k|. Multiplying equation (1.10)
by E'(u)x with a nonnegative test function y € C3(Q) and integrating over Q yields

//(E( )Xt + F(u)xz)dxdt
(1.12) = —e//E” (u,)*ydxdt —i—e// W) Xazdxdt = Jy(g),

where F'(u f uwE'(u)du. The first integral on the right hand side in non-positive, while
the second one is of order O(e) on uniformly bounded regularized solutions u.. Therefore,
passing to the limit ¢ — 0 yields that the limit solution obtained by (1.9) satisfies the
nonlocal Kruzhkov-Lax entropy inequality (see [25] for hyperbolic equations and [28] for
systems)

(1.13) E(u);+ F(u), <0 in D(Q).

For single conservation laws in RY, (1.13) being true for any convex C*-function F :
R — R, gives an equivalent to (1.8) definition of unique entropy solutions, see [25], [26],

. 241 and [2]. Note that this is related to a parabolic version of Kato’s inequality [22]:
1f u, f € LL.(Q), then (see [5], p. 75)

(1.14) u—Au=f in D'(Q) = |ul— Alu] < f in D'(Q).
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1.2. ODE-admissible approximations in the sense of I.M. Gel’fand. It was well
understood in the theory of entropy solutions that a crucial principle is the correct de-
scription of propagation of shock-waves, which are discontinuous travelling waves (TWs)
satisfying (1.1) in the weak sense,

(1.15) u(z,t) = S(n), n=x— A,

where A is the TW speed and S(n) is a step function. Using obvious scaling and transla-
tional invariance of the equation, we set A = 0. Assuming that the discontinuity is located
at x = 0, by the Rankine-Hugoniot condition

(1.16) A= S[5(07) +5(07)]

this corresponds to two initial functions with the following entropy solutions of (1.1)
(Riemann’s problems):

(1.17) S_(z) = —sign(zr) = wu(x,t)=S_(x) for t >0, and
(1.18) Sy(z) =sign(x) = wuy(w,t) ={S;(v) for || >t¢, a/t for |x| <t}

The first discontinuous TW S_(x) (called standing shock-wave in gas-dynamics) is the
entropy one. The shock-wave solution S, (x) is not entropy and the continuous for ¢t > 0
solution wu, (z,t) in (1.18) (the rarefaction wave) describes collapse of this initial singu-
larity.

Consider now a higher-order approximation of the conservation law where the regu-
larizing sequence {u.} is given by the Cauchy problem for the 2m-th order uniformly
parabolic equations (1.2) of arbitrary order 2m > 4. Note that (1.2) is invariant under a
two-parametric group of scalings and translations, so that if u(z,t) is a solution, then

(1.19) Tapu(z,t) = " Hu(Bx + 7" at, 37"t) — a

is also a solution for any constants a, 3 € R.

The approximating operator on the right-hand side of (1.2) is called admissible (or ODE-
admissible to be distinguished from the PDE-one to be introduced later on) if equation
(1.2) admits a TW approximating the entropy one S_(z) as ¢ — 0 in a reasonable
topology. The concept of admissible approximations was introduced by I.M. Gel’'fand in
[20] and was developed on the basis of TW-solutions of hyperbolic equations and systems,
see Sect. 2 and 8 therein.

In view of invariance (1.19) we again put A = 0. From (1.2) we then obtain the ODE
for the wviscosity shock profile (VSP) f_ corresponding to the entropy shock-wave S_(z).
It is a sufficiently smooth stationary solution of (1.2)

(1.20) us(z) = f-(y), y==/e" a=1/2m—1),
where f_ solves the following ODE problem:
(1.21) (—1)™LFem Z fp i R, f(—o0) =1, f(+00) = —1.
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The family of solutions (1.20) describes formation of the singular shock layer as e — 0 in
the ODE. For m = 1, (1.21) is solved explicitly to give the unique (up to translations)
monotone decreasing VSP

(1.22) J-(y) = (1= e)/(1+ ) = tanh(y/2).

The VSP f_ is known to exist for any m > 2, see [8], [24] and [34]. For the fourth-order
approximation m = 2 it is unique [32] and is stable in a weighted Sobolev space [15].

Thus, the higher-order approximations (1.2) for any m > 1 are admissible in this ODE
(TW) sense.

2. On striking differences in approximations for m =1 and m > 1

2.1. Well-posedness of higher-order approximations. The problem of 2m-th order
approximations of first-order PDEs seems was less studied in the literature. Higher-order
parabolic equations of the type (1.2) are well-posed and admit unique smooth classical
solutions local in time [14], [16]. For m = 1, global existence and the uniform bound
|u(z,t)] < sup |ug| follow from the Maximum Principle. Such global existence results for
higher-order semilinear parabolic equations with lower-order nonlinear perturbations are
known in classes of sufficiently small initial data, see [1], [10], [13], [18], though for the
quadratic nonlinearity in (1.2) such applications are not straightforward. For m = 2,
global existence is established in [15] via stability analysis of the VSP (i.e., for initial data
sufficiently close to f_).

Let us show that for any m > 2 solutions of (1.2) are global in time and cannot blow-up
in the L>*-norm. We consider the Cauchy problem (1.2) with initial data satisfying

(2.1) ugs| < €, luoell2 < C,

where C' > 0 denotes different constants possibly depending on . By approximation
of L? initial data via compactly supported one, we may assume that solutions have fast
exponential decay as x — oo. Multiplying equation (1.2) by u and integrating over R

gives 14|u(t)||3 = —= [ |Dul* < 0, whence the first uniform bound on the solution

(2.2) lu(t)]|2 < JJugellz < C for all t > 0.

Proposition 2.1. Let m > 2 and (2.1) hold. For a fized ¢ > 0, the solution u.(x,t) of
(1.2) is bounded in R x [0,T] for any T > 0.

Proof. Consider the fundamental solution of the linear operator 9/t + =(—1)™D?™,
(2.3) be(z,t) = (1)~ 2" F(a/ (1) V2m),

with the exponentially decaying rescaled kernel F', see [14] and applications to global
existence in [13]. Writing down wu, = (u?), in the equivalent integral equation

(2.4) u(t) = be(t) * upe — %/0 bo(t — s) % (u®),(s)ds,
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using the Holder inequality in the first term and integrating by parts in the last one yields
1 t
)] < sup e | F1 + 5 [ sup bt = 5)| ()3 ls < L1+ T
0o =z

where we have used the estimate |b.,(x,t)| = (st)"Y™|f'(z/(ct)/?>™)| < Ct=V/™. O

Despite of such global existence result, in the limit ¢ — 0 higher-order singular per-
turbed problems (1.2) lead to a number of differences and difficulties which do not occur
for m = 1. In fact, in the second-order approximation like (1.10) and various extensions
(including some parabolic systems as approximations of hyperbolic ones), key results on
entropy solutions are proved by using order-preserving, comparison and some other prop-
erties inherited from the Maximum Principle, nonexistent for any m > 1.

2.2. Non-monotonicity of the VSP and variation deficiency. We now describe a
crucial non-monotonicity property of the VSP for m > 2 directly prohibiting parabolic
approximations of local entropy conditions. Denote by Var f_ the total variation of f_(y)
on R. We introduce the variation deficiency dV,, of f_ as follows.

Proposition 2.2. For any m > 2, the VSP f_ given by (1.21) has bounded variation
satisfying

(2.5) Var f- > 2 =VarS_. = dV,, = Var f_ — VarS_ > 0.

Proof. As y — oo, the linearized ODE (1.21) has the form (—1)™*'f?™ = —f' 5o
that the exponential decaying behaviour is determined by functions f(y) ~ e*¥ with the
characteristic equation (—1)""1y?m~1 = —1, see [7]. One can see that for any m > 2,
solutions are oscillating at y = 400, i.e., the characteristic number g with the maximal
Re 1 < 0 is such that Im g # 0. This implies boundedness of the total variation and (2.5).
O

The variation deficiency (2.5) shows that a finite discontinuity of variation occurs for
e = 0" at shocks of entropy solutions (though one needs the asymptotic stability of
the VSP to show that, see Section 4). Note that dV}, vanishes for the second-order
approximation m = 1 only and actually, this lies in the heart of parabolic approximations
of local entropy inequalities in the classical theory. We will show that for m > 2 this is
not possible.

Figure 1 shows a typical character of non-monotonicity of the VSP’s, which can be asso-
ciated with typical oscillating and sign-changing properties of the fundamental solutions of
higher-order parabolic operators, [14]. Next, we begin with explaining the straightforward
consequences of Proposition 2.2 prohibiting approximation of local entropy conditions.
A relation to order deficiency. Here we observe a phenomenon similar to the order
deficiency D, = [ |F| [18] measuring the “degree” of violation of order-preserving prop-
erties of semigroups induced by higher-order parabolic operators 9/9t + (—A)™ (being
order-preserving for m = 1 only where F' > 0 and hence D, = 1). We show the order
deficiency is responsible for the finite increase of total variation in the higher-order linear

parabolic flows.
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Viscosity Shock Profiles, m=1,2,3,4
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FIGUurE 1. VSPs for m = 1,2, 3, 4. Total variation of f_ increases with m.

Proposition 2.3. Let m > 2 and u(x,t) satisfy the Cauchy problem
uy =e(—1)""D¥u  in R xRy, u(x,0) =ug(z) in R.
Then (i) the following estimate holds:

(2.6) Var{u(t)} < D,Var{ug} for t >0, with the constant D, = / |F| > 1.

(ii) The estimate is sharp.

Proof. (i) It follows from the convolution u(t) = b.(t) * ug (2.3) that Var{u(t)} =
[Nz, t)|da < (t)=Y2m [ [|F(z/(et)Y?™)| |ugp(x — 2)|dadz < D,Var{ug}. (ii) For initial
data ug(z) = {1, x < 0; 0, 2 > 0}, the solution u(z,t) = fmo/otl/gm F(z)dz satisfies (2.6),
Var{u(t)} = D,, with the equality sign. O

The main difficulty in higher-order parabolic approximations seems not the compactness
of {u.} and using Helly’s theorem for functions of bounded variation; cf. its systematic
applications in [35] for m = 1. It is crucial that the convergence u. — u to the entropy
solutions assumes extra delicate, hard asymptotic analysis, and, moreover, it cannot be
avoided in estimating of the total variation of solutions to (1.2).

2.3. Regularized solutions do not satisfy Oleinik’s upper gradient bound. In

the second-order approximation (1.10), it is known that for general hyperbolic equations,
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it is sufficient to choose K (x,t) = C'/t in the entropy inequality (1.6), see [35], p. 145.
This follows from the Maximum Principle for (1.10) since the derivative w = u., satisfies
the parabolic equation

(2.7) Wy = EWgp — UW, — W2

admitting the explicit solution
(2.8) w,(t) =1/t for t >0, w,(0")=+o0.

Therefore, as a straightforward consequence, by comparison of solutions to (2.7) one
obtains the following upper gradient bound for arbitrary initial data (including both shocks
up = S+ (x) where for S, translations in time are performed):

(2.9) U < 1/t in Q.

This makes it possible to get in the limit (1.9) the entropy solutions satisfying (1.6).
Let now m > 1 in (1.2). Then similarly we get for w = u., the equation

(2.10) w, = e(—1)"" D w — vw, — w?

admitting the same explicit solution (2.8) though the Maximum Principle does not apply
and (2.9) does not follow. Anyway, the negative quadratic term —w? on the right-hand
side of (2.10) stays the same and suggests to assume that K (x,t) = C/t with some C' > 1
possibly depending, in view of (1.6), on u(x,t). Just in case, we write down such a
suggestion in the general form: for e &~ 0T,

(2.11) Uep < K(2,t) uniformly in @,

assuming that K is bounded for ¢ > 0. We now easily prove that this is not the case, and
hence uniform estimates (2.9) or (2.11) are associated with the Maximum Principle for
the second-order PDEs like (1.10) only.

Proposition 2.4. For m > 2, (i) (2.11) does not hold with any function K(x,t) uni-
formly bounded in x € R for t > 0, and (i) the same is true for the discrete relation
(1.6).

Proof. (i) For approximation (1.20) as ¢ — 0,

(212)  w(x)=f(y) = S_(z) in L'(R) and a.e., y=uz/% a=1/(2m—1),
(2.11) implies that for any fixed ¢ > 0,

(2.13) fr(y) <™ 'K(x,t) =0 as ¢ — 0,

whence f’ (y) < 0 contradicting Proposition 2.2. (ii) Let, for definiteness, f_(y) is oscil-
lating as y — —oo. Taking the family (1.20) and using the fact that

(2.14) do = f-(y1) — f-(y2) >0 for some ys < y; <O,

we have [u.(x1) — us(x2)]/(x1 — x2) = 0o/ (Y1 — Y2)e® — +00 as € — 0, i.e., (1.6) does not
holds on the family {u.} approximating the entropy shock-wave S_. O
Obviously, there is no way to improve such a “bad” property of higher-order approxima-

tions, for instance, by neglecting the uniformity of (1.6), i.e., assuming that w. satisfies
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(1.6) for any |r; — a2] > C(e) — 0 with C(g) > ¢* as ¢ — 0 (so that at ¢ = 0%
we arrive at (1.6)). Indeed, taking as above x5 = yc®, where y < 0 is the point of
the absolute maximum of f_(y), and z; ~ x5 — C(g), we still obtain the divergence
[us(x1) — us(x2)]/ (21 — 22) > 60/2C () — +00 as € — 0.

In the given TW-approximation of S_(z), the approximating sequence satisfies

(2.15) SUp, Uee(x,t) = +00 as € = 0

and, moreover, we will introduce a strong evidence of the fact that (2.15) is a generic
property of higher-order approximation of any entropy shocks. Therefore, any family {u. }
converging to a discontinuous entropy solution cannot approximate the entropy condition
(1.6) in the sense of (2.11), which is directed to delete shocks S, from the entropy class.
On the other hand, if K(x,t) is not bounded for ¢ > 0, e.g., K(x,t) = C/|x| (this leads
to a reasonable estimate of w.,), then estimate (1.6) does not exclude the non-entropy
solution S, (z) either.

2.4. Regularized solutions do not approximate Oleinik’s condition E. It follows
from (2.14) that for arbitrarily small e > 0, there exists the point T = (y; + y2)e®/2 and
h = (y2 — y1)e*/2 such that for a constant dy > 0, there holds

(2.16) (T + h,t) > u (T — h,t) + 09, where h = 0O(e").

In this sense, due to non-monotonicity of the VSP, subset of regularized solutions {u.}
do not approximate the condition E (1.7) as ¢ — 0.

As a next corollary of Proposition 2.2, bounded variation of w.(z,t) in x for t > 0
(and hence suitable compactness of the family {u.}) cannot be proved via local entropy
conditions (1.6) or (1.7). For m = 1, this is a classical approach for 1D problems, see appli-
cations of the theory of functions with bounded variation and Helly’s theorem throughout
Sections 2 - 4 in [35]. One can expect that u. has uniformly bounded variation as ¢ — 0,
but this cannot be established in such a straightforward way as for m = 1.

It seems that for establishing of compactness of {u.} for m > 2 for equations in 1D, the
analysis in the class BV(RY) of functions of bounded variations (see Chapt. 16 in [40]
and [4]) or estimates for compactness in L'(R") [26] can be useful, which are powerful
tools in solving hyperbolic equations in RY. Though it is worth mentioning that both
approaches are based on the Maximum Principle ideas. For instance, main estimates in
[26], pp. 232-237 use comparison barrier techniques and do not extend to higher-order
equations.

The only case, where (2.13) does not lead to a contradiction, is m = 1, when the
VSP (1.22) is monotone, a property to be associated with the Maximum Principle for
the second-order ODE (1.21). In the last section we introduce higher-order models with
monotone VSP’s, which is important for their asymptotic stability.

2.5. Direct approximation of nonlocal entropy inequality is impossible: “prob-
lem e2-e4”. Let us finally show that special “geometry” of the VSP affects also parabolic
approximations of the nonlocal entropy inequality (1.13), though not in such a direct way

as the local ones above.
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The derivation of the entropy inequality (1.13) from (1.12) is associated with the Max-
imum Principle for the second-order parabolic equations. One can see that (1.12) cannot
be obtained in such a way if m > 1. For instance, let m = 2. Multiplying (1.2) by E’(u)x
and integrating by parts yields the following right-hand side in (1.12):

(2.17) Jo(e) = —¢ / / {E”(u)(um)2 - %E””(u)(ux)‘*] xdadt

te / / EE"'(U)(UI)?’XJC+2E"(u)(ur)2xm—E(U)Xmm] drdt.

Consider the first integral in (2.17) depending on y only, while the second one contains
x-derivatives of y which hence may be assumed to vanish on any open subset inside
supp . We observe here two terms, the first positive one with £” > 0 and the second one
depending on E"" which can have any sign (actually, if F(u) is sufficiently close to |u — k|
then £ changes sign). We will show below that multiplicative, interpolation inequalities
comparing the two terms do not help for coefficients given by sufficiently arbitrary smooth
convex F(u). Taking into account the above rescaled variable y = 2 /2'/3 (assuming shock
to be put at # = 0), we have that both terms in the integral are of the same order O(c=4/3),
i.e., even this precise structure of the singular shock layer is not enough to guarantee the
necessary sign. Therefore, in order to get the entropy condition (1.13) directly, firstly, it
is necessary to discuss the following problem e2-e4: s there a sufficiently wide subset of
smooth functions E(u) satisfying

(2.18) E'"(u)>0 and E"™(u)<0 in R?

Obviously, such non-trivial bounded E’s do not exist (E”(u) is sufficiently smooth, non-
negative, concave in R, hence E” = const). More involved “e2-e4-e6-...” unsolvable prob-
lems occur for m = 3,4,.... This expresses the fact that Kato’s inequality (1.14) (or
multiplication by sign) does not admit extension to higher-order operators dt/9+ (—A)™.
Interpolation inequalities do not guarantee the sign. Consider the first integral
given in (2.17) with y = 1,

<219) P2 = —/EH(UII)QCZSC + %/Eml(Uw)Ald[L‘ = —P21 + %PQQ,

assuming that sufficiently smooth solutions u = u.(z,t) have fast (exponential) decay as
x — 00. Let us estimate the second positive term via a simple integration by parts

P22 — /E”"(uw)?’ux _ _/uE(5)(ux)4_S/UE////(UUC)ZU:C:C’

and using the Holder inequality (recall that E(u) is convex)

/ (B + uE®)(u,)* < 3 / (VB t ) (") (1))

(2-20) <3 ( / E"(umf) - ( / (uE’”’)2<ux>4/E”> 1/2-
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In order to derive a suitable comparison of the two terms on the right-hand side of (2.19),
we first impose the following conditions on functions E'(u):

(2.21)  E"(u) +uE® (u) > CLE"(u), (uE""(u))?/E"(u) < CoE"(u), u € R,
where C} and Cy are some positive constants. Then (2.20) implies

(2.22) / E" (u,)* < Cs / E"(uy,)?, with C3 =9C,/C7,

and hence by (2.19)

(2.23) P, < (3C,/C? —1) /E”(ug,;g,;)2 <0 if CF > 30,

The second condition in (2.21) assumes that E””(u) > 0 in R, which is not true for E(u) ~
sign u. Replacing E" by |E""| on the right-hand sides of (2.21) (or other optimizations)
does not extend the resulting estimate like (2.23) to the necessary sufficiently wide class
of functions E(u). For the typical power functions

(2.24) E'(u) = |[ul*u, k>1,
(2.19) reads
(2.25) Py = —(2k+1) / (11 + § (2% — 1)k(2k +1) / 25 2(01,)1.

Integrating by parts and using the Holder inequality as in (2.20) yields

[Pt < ot [

2
and we arrive at the following estimate (cf. (2.23)):
(2.26) P, < C*/IUIQ’WM)Q?

where C, = (1 + 4k)(2k +1)/(2k — 1) > 0 for all £ > 1/2. Thus, we cannot get the
necessary sign P, < 0 on particular functions (2.24) for large k. In fact, this shows that
the Nash-Moser technique for second-order parabolic equations (see [42], p. 344) do not
apply to the fourth-order operators with m = 2 and to other higher-order ones. Indeed,
the iterative nature of the technique with the eventual limit £ — oo assumes certain
order-preserving properties via the Maximum Principle (available for m = 1 only), so
that the inequality C, < 0 for all large £ cannot be achieved in principle via optimization
of constants in the interpolation and embedding inequalities.
Problem of sign of D?*"~'y on lines of discontinuity. Let us reveal another “con-
tradiction” related to the entropy condition (1.8). According to [26] it suffices to check
(1.13) for the sign functions F(u) = sign(u — k) only for all £ € R. This means that, for,
say, k = 0, one can take smooth convex approximations of sign’s E,(u) € Cg™(R) with
supp E,, C {|u| <1/n} and then
(2.27) E'(u) — 26(u) as n — oo

12



in the sense of bounded measures. Assume that (1.9) holds and, for simplicity, for a fixed
t>0,u(x,t)=S_(x)+0(1) as & — 0. We then assume that u.(z,t) has a unique isolated
transversal zero at x = x¢(t) so that u..(x(t),t) < 0. We then can use a simpler form of
(2.17) with E = E,, for n > 1. Namely, assuming that y = 1 for z = 1, taking integrating
in x only and integrating by parts just once yields

(2.28) I, = —e/ugmmE;(ug)dx = 5/u€me;{(u€)u€xdx,

and hence by passing to the limit n — oo and using (2.27), one obtains that
(2.29) lim, Iy = —2¢ Ueppr(20(t), 1).

In view of the entropy condition (1.8), which we want to obtain from (2.29), we arrive at
the new non-trivial “contradictory” problem on the third derivative: why for ¢ ~ 0% on
isolated zero curves (or on k-level curves with any k € (—1,1))

(2.30) —26Uepar(0(t), 1) <O if ucp(xo(t),t) <07

The opposite inequality is assumed to be valid if u.,(zo(t),t) > 0. Note that in view of
known properties of entropy solutions, we do not expect the derivative to vanish, i.e.,

(2.31) lim, [—2¢ Uegaa(20(t), )] < 0.

Similar construction is performed for the 2m-th order equation (1.2) and instead of (2.30)
leads to the condition on the sign of the derivative D?™~ 1y,

(2.32) 2e(—=1)" D2ty (wo(t),1) <0 if u,(wo(t), ) < 0.

It follows that the second-order case m = 1 is the only one for which (2.32) is tautological.
Related problem of total variation. A problem similar to (2.32) occurs in estimating
the total variation of u(-, ) via equation (1.2). Differentiating (1.2) in x, setting v = u,,
multiplying by sign v and integrating over R yield that Var{u(t)} = [ |u,|dz satisfies

(2.33) Var{u(t)} =e(—1)"* /Dimv signvdr = ¢ Z(—l)m“J’kDf,m_lvﬁ’z = eJn(u),
keZ

where {I = (a,by)} is the countable subset of maximal open intervals on which signv =
signu, = (—1)* (note that u = u.(x,t) is analytic in a for ¢ > 0, [16]). For m = 1, (2.33)
leads to the nonincrease of the total variation since, v, = u,, has the necessary sign at
the end points of I}, (extremum points of u(zx,t)), i.e.,

Ti(u) = (=1)Fug,|% <o.

For m > 1, the analysis of the right-hand side of (2.33) is not that straightforward.

In Section 4 we present an evidence that all three problems on signs in (2.17), (2.32)
and partially in (2.33) are directly related to a hard asymptotic problem on the behaviour
of u.(x,t) as ¢ — 0 on the curves of discontinuity. For m > 2, derivation of entropy
criteria (1.13) or (1.8) via (1.2) cannot be done without knowing the precise asymptotic

shape of e-approximations of shocks layers.
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3. Parabolic approximation of shock-waves Sy ()

3.1. Proper and improper solutions. We now begin our analysis of the admissibility
of higher-order approximations in the PDE sense. We consider the Cauchy problem
(1.2) and introduce the following definition where we use a standard concept of weak
(generalized) solutions of conservation laws, see [35] and [40], Chapt. 15.

Definition 3.1. We say that a weak solution w(z,t) of the conservation law (1.1) is
proper iff there exists a bounded sequence of initial data {ug.} — up in L' as ¢ — 0 such
that the subset of classical solutions {u.(x,t)} of the parabolic problems (1.2) satisfies

(3.1) ue(x,t) — u(x,t) in L' for any ¢ > 0.

u(x,t) is an smproper solution if it is not proper.

In other words, proper solutions u(zx,t) are only those which can be obtained by 2m-th
order parabolic approximation (1.2). This means admissibility of approximation relative
to the given solution u. The L'-topology in the definition is associated with the classical
entropy theory based on second-order approximations. In the higher-order case, in such
a topology we can establish some particular results, while for more general consideration
we will use other topologies dictated by the methods. For generality and convenience,
the definition includes “approximation” of initial data. Indeed, once convergence (3.1) is
established for fixed data wg,, u., — u, as ¢ — 0, convergence u., — u relative to both
e,n follows for arbitrary L!-approximation of data ug, — ug as n — oo by the triangle
inequality

(3.2) [[ten(t) = u(®)]ly < Jluen(t) = w1 + [lun(t) = u(@)]]1,

since u, — u in view of comparison theorems for entropy solutions, [35], [26].

The concept of proper solutions plays an important role in the theory of nonlinear
singular parabolic equations creating finite-time singularities like blow-up, extinction or
quenching, where regular approximations (truncation of nonlinearities) make it possible to
construct a unique, maximal or minimal, extensions of solutions beyond singularity time;
see [19] and earlier references therein. Another area where approximation approaches
are important is nonlinear evolution equations with singular initial data, e.g, with mea-
sures as initial conditions. Then weak solutions can cease to exist, see first remarkable
results in [5]. In this cases approximation of singular data is of principal importance
and sometimes approximation of equations is not necessary. Such extended semigroups
constructed by approximation can be essentially discontinuous in any weak sense or in
the sense of measures, and therefore many other concepts of solutions (demanding more
detailed information on solutions properties) often do not apply. On the other hand, pos-
itive approximation of nonnegative initial data, ue.(x) = uo(z) + ¢, in constructing weak
solutions u = lim u. of degenerate filtration equations u; = (¢(u, x)),, is rather folklore
after the seminal paper [37].

Of course, proper solutions concept is not necessary for the conservation laws where
the classical entropy solution theory applies. It will be used below simply to test the

concept and identify specific asymptotic properties to be treated later on. For a class of
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higher-order problems including (1.5) to be studied in Section 6, where the entropy theory
is not available, the concept of approximation plays a key role.

Indeed, for the hyperbolic equation (1.1), it is important to prove that the solutions are
proper iff they are entropy, though this is a hard problem. We begin with simple results
concerning the canonical shock-waves Sy (z). Since these are odd functions, in view of the
symmetry of equations (1.1) and (1.2) under the reflections x +— —x, u +— —u, without
loss of generality, we consider odd approximations u.(z,t) in @y = R, x R, satisfying

(3.3) D*u(0,t) =0 for t>0, k=0,2,..2m.
We perform scaling in (1.2)
(3.4) us(x,t) = Uy, 1), y=ux/c* 17=1t/% with exponent o =1/(2m — 1)

establishing as ¢ — 0 a “parabolic zoom” for weak solutions of the conservation law in a
shrinking neighbourhood of any point (zg, tg) in the {x, t}-plane (by replacing ©x — = —
and t — t —to in (3.4)). Therefore, it is of crucial importance to describe the character
of “smeared” shocks created by parabolic approximations.

Scaling (3.4) deletes the small parameter ¢ from the equation so that U solves the
uniformly parabolic equation

<35> UT + UUy = (_1>m+1D§mU7 U(y7 0) = U05<y) = u05<y5a)'

Global solvability follows from Proposition 2.1. Setting u = ¢(x) +w in (1.2), where ¢(x)
satisfying ¢(4+00) = F1 is a suitable smooth function, we obtain a perturbed equation for
w = w(x,t),
w, = e(—=1)""D*w — pw, — dw +(—=1)"T1 D2,
Multiplying by w and integrating over R, one obtains that ||w(#)||s < C' on any bounded
interval [0,7]. Using kernel estimates of the linear operator with smooth bounded coeffi-
cients on the right-hand side (see e.g. [41], p. 190), as in the proof of Proposition 2.1 we
show that u.(z,t) is bounded and exists as the classical solution on any subset R x [0, T7].
By (3.4) the same holds for U.(y,7) on R x [0, Te™].
For any m > 1 equation (3.5) has the explicit linear solution

(3.6) Uly,7) =y/7 ((x,t) =2/t) in Q,

which occurs in the entropy rarefaction solution (1.18). Later on, the asymptotic stability
of this rarefaction profile will be of crucial importance in our analysis. The next two
conclusions are elementary.

Proposition 3.1. The entropy shock wave S_(x) is proper.

Proof. Let f be a solution of (1.21). Then, since the convergence f_(y) — +1 as y — Foo
given by the ODE (1.21) is exponential [7], there holds

(3.7) u(x) = f_(x/e*) = S_(x) ase—=0

in L', pointwise and uniformly on {|y| > ¢} with any ¢ > 0. O
On the other hand, it is easy to see that the VSP f. corresponding to the non-entropy

solution S, (x) does not exist.
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Proposition 3.2. The problem for f,,
(3.8) (=)™ THfem = 7 in R, f(—o00) = —1, f(+00) =1,
does not have a solution.

Proof. Integrating the equation yields (—1)™*! f®m=1 = 1(f> — 1) Multiplying by f’
and integrating over R, we get the contradiction [(f(™)? = —2/3. O

Nonexistence of f, is of a general nature and holds for various types of quasilinear di-
vergent parabolic approximations. For instance, if instead of (1.2) we consider a parabolic
regularization via the quasilinear p-Laplacian operator (gradient-dependent diffusivity co-
efficients are natural in regularization of conservation laws, see [20])

(3.9) Uy + U, = 5(—1)m+1DZ‘(|D?u|p_2DZ‘u), p>1,

then the corresponding “non-entropy” VSP u. = fi(y), y = x/e*, a=1/(mp—1),is a
weak solution of the ODE

(3.10) (=) PRy e = f L f(=o0) = <1, f(+o0) = 1.

Integrating once yields (—1)™Ft(|fm)p=2fm))m=1) = L1(f2 — 1) and multiplying by f’
and integrating over R leads to the same contradiction [ |f™|P = —2/3. It seems that
no reasonable divergent elliptic operators in the left-hand side of (3.10) can produce a
connection —1 — 1 in the corresponding ODE. For such approximation operators, this
can be done only by taking negative parameters ¢ < 0 (then f, becomes f_) creating
ill-posed parabolic equations backward in time.

Nonexistence of the VSP does not imply that S, (x) is not proper, i.e., cannot be
obtained by parabolic approximations. In this sense, the case m = 1 is exceptional since
the proof is straightforward by comparison with the exact solution (3.6). Indeed, if wu. is
an approximation, then u.(z,t) < x/t in Q. Hence, u.(x,t) cannot stabilize to S, (x) as
e —=0.

For m > 1, where the semigroup induced by equation (3.5) is not order-preserving, we
cannot use comparison and the result is based on a Lyapunov-type analysis to prove

Proposition 3.3. S, (x) is improper solution.

Proof. Without loss of generality we assume that U.(z,t) — 1 as y — oo sufficiently fast
(e.g., exponentially, which happens if Uy.(y) = 1 for y > 1, following from the exponential
decay of the fundamental solution of the parabolic operator [14]), and integrations below
make sense. Multiplying equation (3.5) by U and integrating over R yields a Lyapunov
function monotone decreasing on evolution orbits,

d 1d o 1 o 1
3.11 —oU)(1) = =— U? —1)dy| = —= — DyUdy < —=.
By e =y | [T na] =5 - [Topur <
Therefore, ®(U)(1) < —7/3 + ®(Uy.) for 7 > 0. Using the rescaled variables given in
(3.4), we have that for any t > 0,

(3.12) /[uﬁ(:g,t) —1)dx < —2t/3 + 2®(uq. ).
16



Passing to the limit ¢ — 0 and using that u. — S, in L' (then ®(uy.) — 0), we obtain
a contradiction in inequality (3.12). The analysis applies to the Cauchy problem in @
without the anti-symmetry conditions (3.3). O

4. Stability of the VSP and entropy inequalities

In this section we deal the first asymptotic problem. In view of negative conclusions
of Section 2, we claim that, in general, the convergence (3.1) to entropy solutions cannot
be proved without deep understanding of the corresponding asymptotic problems. The
approximation problem for m > 2 is thus an example, where the existence of a solutions
(as the limit of {u.}) cannot be separated from the corresponding parabolic asymptotic
theory. As usual in scaling techniques, due to variables (3.4), the limit ¢ — 0 for u.(x,t)
in a natural sense is equivalent to 7 — oo for U(y, 7).

4.1. On generic formation of the shock layer: stability of the VSP. We now
discuss conditions under which the VSP satisfying (1.21) describes the generic formation
of the shock layer in the convergence (3.1) to the entropy shock S_(x). This means that
f is the asymptotically stable stationary solution of the rescaled equation (3.5) and we
perform the standard linearization by setting

(4.1) Uly,7) = f(y) + Y(y,7), where Y solves
(4.2) Y: =Ns,, Y + D(Y)  with Ny, = (=1)"*'D2" — fD,,

D(Y) =YY, being the quadratic perturbation. By the principle of the linearized stability
(see e.g. [31], Chapt. 9), one needs to study the spectral problem

(43) Nle/) = )‘wv

where by the classical ODE theory [7], ¢(y) is assumed to have exponential decay as
ly| = oco. Multiplying equation (4.3) by ¢ in L?*(R) and the conjugated one by v yields

(1.4) Re[[6l = ™1 + 5 [ PPy

We thus observe another “bad” consequence of the VSP f(y) being non-monotone: if
f'(y) changes sign, then (4.4) does not directly imply the necessary stability condition

(4.5) ReA <0 for A € og(Nay,),

unlike the only case m = 1, where f’ < 0 by (1.22) and (4.5) follows from (4.4). Never-
theless, since f(y) must be “effectively” decreasing as a heteroclinic connection 1 — —1,
one can expect that (4.5) remains true for such f(y). This is proved in [33] for m = 2 (the
proof is partially computational), and, as a consequence, operator N, was shown [15] to
be sectorial with the spectrum satisfying (m = 2)

(4.6) 0(Nay,) C {Re X < —k}  with a constant & > 0.

in the weighted Sobolev space HJ(R) with the exponential weight p(y) = cosh(yuy), where

i > 0 is a small constant. This guarantees the exponential decay of the semigroup
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|eN>mT]], < Ce ™ in the space of linear maps L£(Hj, H?), and hence the exponential
stability of the VSP.

It is natural to expect that such stability results are true for arbitrary m > 2. Namely,
the eigenvalue problem (4.3) for the ODE operator Ny, in the weighted space L2(R.) of
odd functions satisfying (3.3) with the dense domain H."(R), satisfies (4.5) and (4.6).
Nevertheless, even a computational proof, which can be done for m = 3 and 4 by rather
standard codes, is expected to get more and more involved with m increased. Once
(4.5) is proved, the theory of sectorial operators [16], [31] and interpolation inequalities
apply to guarantee the exponential stability of VSP’s. In its turn this will imply that
entropy conditions from Introduction cannot be approximated in the viscosity sense for
any initial data and the variation deficiency (2.5) scaled according to (1.19) for moving
shocks actually describes locally the “jump” of variation at & = 0.

4.2. ODE problem “e2-e4” and non-local entropy inequalities. Let us discuss the
problem on 2m-th order parabolic approximations of general entropy solutions. It consists
of two parts.

Test on the entropy inequality. We begin with the relation between the stability
of the VSP and the entropy inequality (1.13). The main assumption is as follows: the
VSP is asymptotically and globally stable in a suitable weighted space. Note that the
global stability (i.e., for any arbitrarily large initial data with given behaviour at infinity)
assumes the uniqueness of the VSP, which is an open problem for m > 3 for (1.21) and
other types of quasilinear approximations.

Under the assumption on the global asymptotic stability of the VSP, we return to the
entropy inequality (1.13) and show that problem e2-e4 occurring in higher-order approx-
imations can be now solved as an ODE-problem. We discuss the case m = 2 (the same
analysis applies to any m > 2). Let u(x,t) be a weak solution of the conservation law
constructed by convergence (3.1) via approximation (1.2). We assume that u belongs to
the class K of piece-wise smooth functions, so that there exists a finite number of smooth
discontinuity curves {x = x;(t)} on the {x,t}-plane. This is a usual setting for conser-
vation laws [35], but such a theory cannot be global in time. It is global for piece-wise
constant initial data leading to piece-wise linear simple waves as in Glimm’s difference
scheme for hyperbolic systems, see [40], Chapt. 19.

As we have seen, the derivation of inequality (1.13) via (2.17) demands special features
of approximations of discontinuities. Consider first an isolated entropy shock of u(x,t).
We then need to scale VSP according to (1.19) in oder to include moving discontinuities,
so that the profile f_ with the jump [[_, 1], [_ > [,, can change with time, I; = I1(t),
which is not essential for our further formal analysis. By translations and scalings (1.19),
the shock can be assumed to be located at (0,0) with the jump [1,—1], i.e., u(z,0) =
S_(x)+o0(1) for x &~ 0. Using scaling (3.4), in view of the above stability properties of the
VSP, we assume by the translational invariance, that near the entropy shock at x = ()

(4.7) ue(x,t) = f-((= —1;;0@))/51/3) +o(1).



By the parabolic theory for (3.5), equality (4.7) also holds for any spatial derivative of ..
This is the main assumption which, in the general case, remains a hard open problem.

We now pass to the limit in the integral terms (2.17) by using the asymptotic expansion
(4.7). Supposing that x(x — x¢(t),t) is supported in a small neighbourhood of a discon-
tinuity curve x = x¢(t) for t > 6 > 0 and substituting v = u. from (4.7) into (2.17), by
change x — 2¢(t) = y='/3, one obtains the expression

@8) k)= [N = GBI N gt + o),

where o(1) includes both the second term in (2.17) of the higher order O(c'/3) and the
error of approximation in (4.7). Since x(yz'/3,t) — x(0,t) as £ — 0 uniformly on compact
subsets in y, we thus observe the same problem e2-e4 but now formulated for VSP’s
f = f_, ie., for solutions of the ODE (1.21), on which two terms in the first integral in
(2.17) are not independent. We solve the ODE problem e2-e4 multiplying — ) = ff' by
E'(f) and integrating by parts,

(149) - [ I = SE Gy = g = F(=1) = ()

Since E(u) is a smooth convex approximation of |u — k| [26], [2], there holds
1

1
(4.10) —Ap = / zE'(z)dz = E(1) + E(-1) — / E(z)dz > 0.
-1 -1

Therefore, we obtain the required entropy inequality (1.13) by passing to the limit ¢ — 0
in the integral term (4.8). Roughly speaking, it follows that if (i) the approximation
is ODE-admissible, i.e., there exists the VSP f_ and (ii) f_ is globally asymptotically
stable, then locally, close to discontinuity curves, this parabolic approximation gives the
right inequality sign in (1.13).

We now show that problem “u,.,” (2.30) is also of the purely asymptotic nature.
Indeed, if (4.7) holds for the derivatives, then (2.29) yields

(4.11) ligm [—2¢ Uepue(0(t), )] = =2f"(0) = —1,

which follows from the ODE (1.21) integrating over (—oo,0). The derivation of (2.32) is
quite the same.

Concerning the total variation problem in (2.33), we note that on the VSP u = f_(y),
y = x/*, where by the ODE (1.21), f@®™ = (—1)™*!f f' there holds

Tu(fo) =72 Y () fl e = 0

because by construction f’ = 0 at the end points of each interval Ij, = (a,br). On the
other hand, since the exponent of ¢, 1 — 2ma = —1/(2m — 1) < 0, the boundedness of
total variation via (2.33) needs a sharp estimate of convergence in (4.7) as € — 0 in order
to guarantee, at least, the boundedness of .J,,(u) (not the non-negativity as for m = 1).

Test on non-entropy solutions. Next, we arrive at the second important test on higher-

order parabolic approximations showing that non-entropy shocks of the type S, (z) can
19



be ruled out. This is shown by the same Lyapunov-type construction as in the proof
of Proposition 3.3. Assume by scaling that such a non-entropy isolated shock occurs as
(0,0), i.e., u.(x,07) ~ Sy (x) for x ~ 0. We postulate (though this is not straightforward)
that on any subset where u(x,t) is sufficiently smooth we observe the uniform convergence
u. — u with derivatives. Multiplying equation (1.2) by u and integrating over sufficiently
small interval (—d,d) chosen so that u(44,¢) and hence u.(+£d,t) are sufficiently smooth
for all t & 0, we have
1d [°
2dt J_s
where O(g) includes non-integral terms e(—1)**1D2m=ky_Dky_|° s for k = 0,1,...,m — 1
obtained via integration by parts. Therefore, u.(x,t) cannot stabilize to S, (x) as t — 0~
and ¢ — 0, since this assumes the increase of this Lyapunov function. Such non-entropy
shocks cannot appear evolutionary, which is well known for ¢ = 0, [40], p. 262, and (4.12)
shows that higher-order parabolic approximations improve this irreversibility property.
In simple configurations, for v € K with finite number of isolated shocks, this shows
that 2m-th order parabolic approximations can create entropy shocks only completing an
important part of the analysis.

For arbitrary bounded measurable functions ug one can perform approximation wug, via
piece-wise constant functions to get that the corresponding entropy solution w, € K (see
Glimm’s approach, [40], Chapt. 19). Formally, this makes it possible to study separately
the approximation of each of a finite number of shocks in order to prove that u., — u,
as ¢ — 0. Next, we apply (3.2) to get convergence u., — u as {¢ = 0, n — 0o} to the
unique entropy solution. The main open problem in this approximation analysis is thus
the proof of global asymptotic stability in the form (4.7) (or a weaker perturbed equality)
in a wider functional setting which includes initial data Up. ¢ H.™ in (3.5). This can
make extra perturbations of (4.7), but, nevertheless, is expected not to affect the nonlocal
entropy inequalities.

1 o 1
(4.12) (1~ 1) < ~ (D) - 5/ D2+ O(e) < 3,
—5

5. Asymptotic stability of the rarefaction profile

We now consider the second asymptotic problem (not of less importance) of the stability
of the rarefaction wave occurring for initial data Uy(y) = Sy (y) in the Cauchy problem
(3.5). It is convenient to introduce new self-similar rescaled variables

(5.1) U= 1+7)"Cm=D2mg ¢ —y/1+71)*" s=In(1+7):R; — Ry.
Then the rescaled solution 6 = 6(&, s) solves the autonomous equation

(5.2) 0 = (—1)" "' DZ"0 — 00; + 11 0:E + (2m — L)pb, = 1/2m,

with the same initial data. Equation (5.2) has the explicit stationary solution

(5.3) 6(¢€)=¢ in R.

Obviously, (5.1) shows that it is precisely solution (3.6), so that we refer to (5.3) as to

the rarefaction profile (RP) defined in R. We prove that the RP is asymptotically stable.
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The linearization 6§ = ¢ + Y yields the perturbed equation

d
(5.4) Y, =AY —YY; with A= (-1)""'D{™ — (2m — 1),&“% —nl.
Setting & = cn with ¢*™ = 1/(2m — 1) gives A = (2m — 1)B* — 51, where the linear
elliptic operator in RY B* = —(—=A,)™ — pun -V, is known to have discrete spectrum

o(B*) = {=1/2m,l = 0,1,2,...} [13]. The second-order case m = 1 is exceptional,
where B* = - V- (p*V) with the weight p*(y) = e~/ is self-adjoint in L2 (RY) with
the domain D(B*) = H.(R") and a discrete spectrum. The eigenfunctions form an
orthonormal basis in L2, (R") and the classical Hilbert-Schmidt theory applies [3].

We describe the spectral properties of the linearized operator in (5.4) which is not self-
adjoint for m > 1. We consider A in the weighted space LZ* (R4) of odd functions with
the exponentially decaying weight function

(5.5) pry)=e ™ >0, B=2m/(2m-1),
where a > 0 is a sufficiently small constant. There holds [13].

Lemma 5.1. A : H"(Ry) — L>.(Ry) is a bounded linear operator with the discrete
spectrum

(5.6) o(A)={N=—-[1+02m—1I]/2m, | =1,3,5,...},
and the eigenfunction subset {¢;(&)} (I-th order polynomials) is complete in Li* (Ry).

For m =1, these are well-known properties of the separable Hermite polynomials gen-
erated by a self-adjoint Sturm-Liouville problem [3]. In view of the principle of linearized
stability [31] we have that the RP is asymptotically stable in L2, (R.) and moreover, since
the real spectrum is uniformly bounded from the imaginary axis, we have the exponential
convergence of the order O(e™*) = O(77!) as 7 — oo. Since weight (5.5) is exponentially
decaying at infinity, the stability conclusion is true for a wide class of initial data.

Thus, the rarefaction solution (3.6) exhibits the exponential asymptotic stability for
parabolic approximations of any order. This explains once more why the non-entropy
shocks of type S, cannot occur in the evolution, cf. Proposition 3.3. For the Cauchy
problem (3.5) with bounded initial data Up. ~ S, the unbounded stable RP (5.3) also
plays a role, but the convergence as ¢ — 0 is again a hard asymptotic problem which
includes a delicate matching-type analysis.

Note that the linear operator B* occurs in the study of blow-up solutions of a completely
different reaction-diffusion equation u; = —(—=A)™u + |u[? in RY x R, p > 1, see [17].
The analysis of its global solutions in the supercritical Fujita range p > 1+ 2m/N [13] is
based on spectral properties of the adjoint operator B = —(—=A,)™ + pun -V, + uN 1.

6. On other higher-order models and parabolic approximations

6.1. Preliminary properties of odd-order models. In this section we extend the
analysis to the odd-order equations with discontinuous solutions

(6.1) ue + (=)™ D> 2 (yu,) =0 in Q, u(z,0) =up(x) in R,
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where m > 2. For m = 1 we get the conservation law (1.1). Equation (6.1) can be written
in a form of conservation law in H?~?™

(=D2) a4+ (0), = 0.
In the class K of piece-wise smooth functions, for a smooth simple closed curve I' C @

intersecting the discontinuity lines of u(z, ) at a finite number of points, there holds
1
(6.2) /[(—Di)l_mudx - §u2dt] = 0.
r

(6.1) is a higher-order equation (the third-order one for m = 2), and it is difficult to solve
it by a method of characteristics. A suitable notion of entropy solutions is unknown.
Nevertheless, as an odd-order equation in divergence form, (6.1) inherits several typical
discontinuity properties of weak solutions which are defined in a usual way in the sense
of distributions. Let us describe some preliminary properties of such solutions.

(i) Rankine-Hugoniot condition and shock-waves S, (x). For a piece-wise smooth
solution, considering integral (6.2) taken around a contour I's in a neighbourhood of a
smooth discontinuity curve on the {x,t}-plane (see [35], p. 98) yields the corresponding
Rankine-Hugoniot condition of the speed of propagation of shocks

(6.3) A= (=)D (w?)]/2[u),

where [-] denotes the jump across I'. Hence, Si(z) are the simplest (stationary) shock-
waves to be studied first. Of course, there exist a variety of other discontinuous TWs with
more complicated spatial shapes. Since a symmetry group like (1.19) is not available, Sy
do not describe all types of generic propagation of discontinuities though can explain some
of their crucial features.

(ii) Rarefaction wave corresponding to initial data S, (x). We are going to show
that exactly as for m = 1, S, () is not a proper solution and hence one needs to describe
the proper one u,(x,t) corresponding to initial data ug = Sy (x) in (6.1). It has the
self-similar form

(6.4) wp (e, t) = 0(8), €=a/t, a=1/(m—1),
where the odd rarefaction profile § satisfies the ODE
(6.5) (—1)™(00)m2 4 afe =0, € € (—a,a); Aa)=1, 0'(a) =...=0%"2(a) =0,

where a > 0 is the unknown position of the rescaled interface. The boundary conditions
in (6.5) are dictated by (6.3). For m = 1, this first-order ODE is easily solved to give
the RP 0(¢) = &, a = 1, given in (1.18). For m = 2, (6.5) is a third-order equation
3(0%)" + 20'¢ = 0, which is invariant under a group of scalings. Simple explicit solutions
are not available except § = —£?/60 which is not a connection —1 — 1. The change of
variables ( =1In¢&, 0 = e3¢ ((), P(p) = ¢’ reduces it to a complicated second-order ODE
for P, which can be studied to guarantee existence of a suitable RP. In general, for large

m, problem (6.5) is to be analyzed numerically.
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(iii) 2m-th order parabolic approximation. A natural 2m-th order regularization of
(6.1) is

(6.6) U + (—1)m_1D§m_2(uux) = 5(—1)m+1D§mu, u(x,0) = ug(x),

where ug. — ug as £ — 07 in a suitable topology. The well-posedness of such approxi-
mations in the sense of Proposition 2.1 becomes much more delicate problem not studied
here. The corresponding rescalings are u(x,t) = U(y,7), y = v/, 7 = t/e*™~ 1 where

(6.7) U, + (-1)"'D2"2(UU,) = (-1)""' D>"U.

(iv) Monotone viscosity shock profile. The VSP corresponding to the proper (see
below) shock-wave S_(z) has the form f_(y), y = x/e, satisfying f*m = 1(f2)@m=1,
f(£o00) = F1, ie., f' = 3(f* — 1). Hence the unique VSP has the form (1.22). Indeed,
as we have seen, the monotonicity of the VSP is an essential positive feature of this
higher-order model.

6.2. Proper and improper shock-waves. Similar to Section 3, we say that u(z,t) is
a proper solution of the Cauchy problem (6.1) if there exists a sequence of initial data
up. — o such that the solutions of parabolic problems (6.6) satisfies (3.1) (at least in
H~™). Our main goal is to study the evolution properties of the shock-waves S (z).

Proposition 6.1. (i) S_(x) is a proper solution, and (ii) Si(x) is an improper one.

Proof. (i) We have that convergence (3.7) with the VSP (1.22) holds a.e. (ii) The VSP
f+ corresponding to S, (x), i.e., a solution of the ODE satisfying f(d+o00) = £1, does not
exist. Consider equation (6.7) in @4 = Ry x R, with conditions (3.3). Assuming that
up- () — 1 as x — oo exponentially fast, and that the same holds for solutions u.(x,t), we
apply to equation (6.7) operator (—d?/dy?)!~™ naturally defined via integrating equation
2m — 2 times and integrate again over (i, oc). Next, multiplying by U — 1 in L?, we arrive
at a Lyapunov function (cf. (3.11))
2
= _% _/ (U,)? < —%.
0

(6.8) %% Ooo [(%)W (U —1)

Integrating and rescaling this identity, similarly to the proof of Proposition 3.3, we have
that u. cannot converge to Sy ase — 0. U

6.3. On stability of the VSP for m = 2 and the shock layer. Let us show that for
m = 2 the monotonicity of the VSP (1.22) guarantees the necessary condition (4.5) of its
stability. The linearization (4.1) yields the quadratically perturbed equation (4.2) with
the linear operator

(6.9) NY = YW 4 (fv)".

Solving the eigenvalue problem (4.3) in a space of exponentially decaying functions (hence
from L?) and setting 1 = ¢, we arrive at the eigenvalue equation —¢*) + f¢" = Ao,
¢ € H*. Multiplying this equation by ¢"” in L? and the conjugate one by ¢”, after

integration by parts one obtains Re A [ [¢/|* = — ['[¢"|* + 1 [ f'|¢"[*. It follows that in
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suitable classes of even or odd functions, (4.5) holds. By the interpolation inequalities,
this implies that (6.9) is a sectorial operator in a weighted L*-space (see [15]) and the
exponential stability of the VSP follows. This means that convergence (3.7) describes the
generic formation of the shock layers in fourth-order parabolic approximations of such
shock-waves as weak solutions of the third-order equation (6.1).

Stability of the RP (6.4) is a harder open problem.

6.4. On higher-order approximations. Equation (6.1) admits various parabolic ap-
proximations of different orders. Consider its (2m+2)-th order approximation

6.10 w + (—1 m71D2m72 uw) = e(—1 mD2m+2u
(6.10) ¢+ (—1)" D2 . 22y,
with rescaled variables u(z,t) = U(y,7), y = /'3, 7 = t/c?"=D/3 where U solves
(6.11) Ur + (1) D™ 2(UU,) = (<1 D20

Then the VSP f(y) for the shock wave S_(x) is the same as for extended Burger’s equation
(1.2) with m = 2 and is uniquely determined by the ODE problem (1.21). The stability
analysis is based on the results from [33] and [15]. The characterization of shock-waves,
Proposition 6.1, remains unchanged.

6.5. On a quasilinear approximation. As a final example, we show that quasilinear
approximations can keep the main features of parabolic regularization. Consider the
following approximation of (6.1) via the p-Laplacian operator as in (3.9):

(6.12) e+ (=17 DY (uug) = e (1) DY (IDMuPTEDY), p> 1,

where u.(x,t) = U.(y,7), y = x/e*, 7 = /"D and a = 1/[1 + m(p — 2)]. Let
m = 2. Then the entropy VSP f_ satisfies the ODE ff' = |f"|P=2f" with f(£o0) = F1
(one can see that the non-entropy VSP f, does not exist). For y > 0, we have f < 0,
f'<0and f” >0, and setting —f' = R > 0 yields f” = RR; = (—f)/®-VRY -1 _1f
p € (1,3/2], integrating once yields that a solution satisfying R(—1) = 0 does not exist,
i.e., approximation (6.12) in not admissible. For p > 3/2, from the equation

613)  R=f = aolt ~ (PO gy = (2 — 3) plr- V),
one obtains the unique VSP f = f_(y) from the quadrature

—=f
(6.14) / [1 — 2/ =D==D/Cr=3) g — oy, 5 > 0.
0

Hence, for p € (3/2,2], f-(y) is strictly monotone decreasing in R and is a C'*° function
as in the linear case p = 2. For p > 2 it has finite regularity at the interface, where
f-(yo) = =1 at yo = [(p —1)/aop]B((p —1)/(2p — 3), (p — 1)/p), B being Euler’s Beta
function. Though, for p > 2, the VSP is strictly decreasing on Iy = (—yo, 4o), the stabil-
ity analysis and other related questions on such approximations become more involved.
Indeed, linearization (4.1) leads to a singular ODE operator Ny, on I in equation (4.2).
The functional setting becomes more complicated (the weight function p is expected to be
unbounded at the singular end-points y = +7,) and a delicate matching procedure extend-

ing the stability analysis beyond interval [, should be performed. This kind of quasilinear
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approximations are not well-posed (e.g., uniqueness of solutions is not well understood in
general) though keeps some typical features of semilinear parabolic approximations.
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