Uniqueness and error analysis for Hamilton—Jacobi equations
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Abstract: We consider the Hamilton—Jacobi equation of eikonal type
H(Vu) = f(z), zef,

where H is convex and f is allowed to be discontinuous. Under a suitable assumption on f we prove
a comparison principle for viscosity sub- and supersolutions in the sense of Ishii. Furthermore, we
develop an error analysis for a class of finite difference schemes, which are monotone, consistent and
satisfy a suitable stability condition.
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1 Introduction

Let 2 C R™ be a bounded domain with a Lipschitz boundary 02. We consider the Hamilton—
Jacobi equation

H(Vu) = f(z) z€Q (1.1)
u(z) = ¢(z) z €09,

where f and ¢ are given functions. The equation (1.1) occurs in a variety of applications

including geometrical optics, computer vision and etching. In order to motivate the link to

propagating fronts, let us suppose for a moment that such a front at time ¢ can be described

as the t-level set of an auxiliary function u : Q — R, i.e. I'(t) = {z € Q|u(z) = t}. Then,

formally, a unit normal v to I'(¢) and the corresponding normal velocity V are given by
Vu(x)

1
uzw, V:W, z e I'(t).

If in addition, u solves (1.1), f is positive and H is homogeneous of degree one, then

1 1 H(Vu(x)) 1
Vu(z)]  [Vu(z)]  f(z) f(z)
i.e. the front moves with a normal velocity which depends on the properties of the underlying
space and the orientation of the front. Furthermore, we can interpret u(z) as the first arrival
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time at the point x of a front which was the zero level set of u at the beginning of the evolu-
tion.

It is often desirable to consider situations, in which the function f is allowed to be discontin-
uous, e.g. in geometrical optics, when light propagates through a layered medium.Thus, we
shall be concerned both with the well-posedness of (1.1), (1.2) in the case that f is discontin-
uous and with the convergence of numerical algorithms which approximate the corresponding
solution.

Various ways of defining a solution of (1.1), (1.2) for discontinuous f have been suggested.
First, Ishii [7] extended the concept of viscosity solution introduced in [5] to the discontinuous
case by taking suitable upper and lower semicontinuous envelopes of f (see §2 below). Using
this notion of solution, Soravia [12] studies a class of Hamilton-Jacobi equations in a control-
theoretic framework and gives necessary and sufficient conditions for uniqueness of solutions
of boundary value problems. In [9], Newcomb & Su introduce a concept of solution which is
based on the optical length function L(z,y) (see §2 below) and which they term Monge solu-
tion. For lower semicontinuous f they prove a comparison principle as well as existence and
uniqueness for the Dirichlet problem. Recently, a further definition of solution was suggested
in [4] by Camilli & Siconolfi for Hamilton-Jacobi equations of the form H(z, Du) = 0. They
introduce a generalized notion of viscosity solution, which allows measurable dependence of
H on z. In the case of the eikonal equation, i.e. H(p) = |p|, this definition involves the
measure—theoretic notion of an approximate limit for a subsolution and an essential limit for
a supersolution and hence is not symmetric. Comparison and uniqueness results are provided.
Problem (1.1), (1.2) also occurs in shape-from-shading. In this case, the right hand side f is
related to the light intensity which can be discontinuous. In [13], Tourin establishes a compar-
ison result for equations of the form H(z, Du) = 0, in which H is allowed to be discontinuous
along a smooth surface. For the shape—from—shading problem, Rouy & Tourin [11] present
a consistent and monotone scheme along with numerical calculations. A related problem is
studied in [10], where the unique solution is obtained as the limit of sequences which arise
from a suitable regularisation of the intensity function.

Our work is based on Ishii’s definition of solution, which we shall recall at the beginning of
§2. In order to obtain uniqueness for the solution of (1.1), (1.2) an assumption on f is needed:
this condition (see (2.5) below) can be seen as a generalisation of a condition, which appears
in [13] and it amounts to a one-sided continuity constraint along a fixed direction at each
point in Q. Under this assumption we are able to prove a comparison result in Theorem 2.3.
In §3 we analyze a class of numerical schemes, which approximate the solution of (1.1), (1.2).
Denoting by h the gridsize we obtain an order O(v/h) for finite difference schemes, which are
monotone, consistent and satisfy a suitable stability condition. In §4 we present examples of
schemes which satisfy the above requirements, while §5 contains numerical tests.

2 Existence and Uniqueness

Let us start by defining a viscosity solution of (1.1), (1.2). As already mentined above, we
use a concept which was introduced by Ishii in [7] and which is based on upper and lower
semicontinuous envelopes. For a given function v : 2 — R let

v'(x) = limsup{o(y)|y € By(z) N2}
vie(z) = }g% inf{v(y) |y € By(xz) N Q}.

Definition 2.1. A function v € C%(€) is called a viscosity subsolution (supersolution) of
(1.1) if for each ¢ € C°(92): if v — ( has a local maximum (minimum) at a point zy € 2, then

H(V{(z0)) < f*(z0) (= f(20))-



A viscosity solution of (1.1), (1.2) then is a function u € C°(Q2) which is both a viscosity
sub—and supersolution and which satisfies u(z) = ¢(z) for all z € 9Q.
We shall assume that H : R" — R satisfies:

H(0) =0 and H(p) > 0 for all p € R" \ {0}. (2.1)
H is convex .

H(p) — o0 as |p| — oo.

Concerning the right hand side we make the assumption that f : £ — R is Borel measurable
and that there exist 0 < m < M < oo such that

m < f(x) <M Vz € (. (2.4)

Furthermore, we assume that for every z € Q there exist e, > 0 and n, € S"~! so that for
ally € Q,7 > 0 and all d € S"~! with |d — n,| < €, we have

fly+rd) —fly) <w(ly—z|+7), (2.5)

where w : [0,00) — [0,00) is a continuous, nondecreasing function with w(0) = 0. Clearly,
(2.5) holds at all points z, at which f is continuous, but it also allows for certain types of
discontinuous behaviour as shown by the following

Exafnple: Supposq that a surface I' splits 2 into two subdomains €7 and 29, that f|Q1 €
Co (), Jios € C°(23) and that

lim  f(y) < lim f(y) for all z € T
Y=,y Y=,y

In addition, assume that the following uniform cone property holds: for every z € I' there
exists a neighborhood U, and a cone C, (which is congruent to a fixed given cone Cj) such
that y € U, N Q implies that y + C; C Q. Then (2.5) holds with n = n, given by the
direction of the cone C,.

To see this, observe that the cone condition prevents a situation where y € Q;,y + rd € Qo,
which would lead to a violation of (2.5) (cf. [13], where I' is assumed to be smooth).

One can also consider e.g. a two—dimensional domain €2, where three curves of discontinuity
meet at a triple junction.

It is not difficult to verify that (2.5) implies

[y +rd) — fuly) <w(ly—z|+7) (2.6)

forally € Q,r > 0and d € S" L, |d — ng| < e,. o
In order to describe our assumptions on ¢ let us define L : 2 x Q — R by

1
L(z,y) := inf{/o N(f*(v(#)),7' (1) dt | v € WH((0,1); Q) with 7(0) =z, v(1) = y},

where
N(r,¢) :=sup{—(¢,p) | H(p) =}
We then suppose the following compatibility condition for the boundary data,

¢(z) — Ppy) < L(z,y) Va,y € 0. (2.7)



Theorem 2.2. Under the above assumptions on f and ¢ there exists a viscosity solution

u € CO(Q) of (1.1), (1.2).

Proof. We regularize f using the sup—convolution, i.e.
1
fe(w) :=sup{f(y) =~z —y’}, >0
yeN €

Clearly, fc is continuous and satisfies f*(z) < fc(z) for all x € Q. In view of (2.7) and the
monotonicity of N in the first variable we deduce that

¢($) - ¢(y) < LE(xvy) Vm??/ € 897

where

1
Le(z,y) = inf{/o N(fe(y(),7' (1) dt | v € WH((0,1); Q) with v(0) =z, (1) = y}.
Therefore, the problem

H(Vu®) = fdx) z€Q
u () = o¢lx) €09,

has a unique viscosity solution ¢, which is given by the formula
w'(a) = inf (L) + 9l0):
It is not difficult to verify that
[ullcor @y < C(M, ) uniformly in € > 0.
Thus, there exists a sequence (e )ren With € N\, 0,k — oo and u € C%'(Q) such that
u* = u, k— oo uniformly in . (2.8)

Clearly, u = ¢ on 9€2. We claim that v is a viscosity solution in the sense of Definition 2.1.
Let ¢ € C*°(Q2) and suppose that u — ¢ has a local maximum at z¢ € €. In view of (2.8) there
exist xzy €  such that zp — zg, k — oo and u®* — ( has a local maximum at xj. Then

H(V((zr)) < fe(Tr), (2.9)
and taking into account (2.4) we obtain
1
feo (k) = sup  {f(y) — —|zx — y[*} <sup{f (W) |ly — zo| < |zk — m0| + V' Mey},
|2k —y|<vMej, €k

which implies by passing to the limit in (2.9)

On the other hand, if u — ¢ has a local minimum at xg, there exist Z; €  with T, — z¢,k —
00, such that u* — ¢ has a local minimum at Z. Thus,

Since f, is lower semicontinuous, we deduce that
H(V((z0)) = fi(zo)-
In conclusion, u is a viscosity solution of (1.1), (1.2). 1

Uniqueness of the viscosity solution is a consequence of the following comparison result.



Theorem 2.3. Suppose that u € C°() is a subsolution of (1.1),v € C%(Q) is a supersolution
of (1.1) and that at least one of the functions belongs to COY Q). If u <v on 0Q then u < v
in §2.

Proof. Let us assume that v € C%(Q). We shall use the approach presented in [8] (see also
[13]). Fix 0 € (0,1) and define ug(x) := Ou(z). Next, choose zy € € such that

up(wn) = v(zo) = max (ug @) = v(z)) = p, (2.10)

and suppose that p > 0. Upon replacing u,v by u + k,v + k, we may assume that v > 0 in
Q, so that ug < u in Q. In particular, uy < v on 92, which implies that o € Q. Let € = ¢,
and n = ng, € S"! be the quantities which appear in (2.5) and define for A > 0, L > 1 the
function ® : O x Q — R by

1
D(z,y) :==ug(x) —v(y) — LA |z —y — Xn |2 — |z — x0|2.
Let (z),9)) € Q x Q be such that

O(zy,yn) = max _D(z,y). (2.11)

Since zg — n € Q for large A, the relation ®(zx,y\) > ®(zo,zo — $n) implies together with
(2.10)

1 1
LAz —yx — X”|2 + |2y — 20]” < ug(mn) — v(yn) — ug(wo) + v(zo — Xn)
1
= (up(zx) —v(21)) = (up(20) = v(z0)) +v(zx) = v(yx) = v(20) +v(z0 — 31)
. . 1
< lip(v)|zy —ya| + hp(v)x
1 1
< lip(v)|zy —yx — vn| + 2lip(v) 7,
A A
and therefore . .
LAz) —yx — Xn|2 + |zy — x| < C(lip(v))x, (2.12)
so that
Ty, Yx — To, as A — oo (2.13)
1 C €
Ay —yr— —n| (2.14)

< =
A - \/f<2+€

provided that L is sufficiently large. Next, (2.11) implies that u — #¢ has a local maximum

1
at x where ((z) = 9(yx) + LA |z — y\ — N |> 4 |z — xo|?. Therefore,

H(%(ﬂ)\ (Tx —yr — %n) +2($A—$0))> < f(za), (2.15)
and similarly, .
H (2L (17— ya = $1)) = £ (). (2.16)
Combining (2.15) and (2.16) and using (2.1), (2.2) we obtain
f(yr) §9H<$2L/\ (Ix—yx—in» (2.17)
< 0<H<% 2L\ (z) —yr — %n)) - H(%(ZLA (xx —yn — %n) +2(x) — Io))>> +0f*(zy).



Note that H is locally Lipschitz continuous (since it is convex) so that we may deduce from
(2.14)

|H<%2L)\ (zx —yr— %n)) —H(%(ZLA(IA—yA— %n)+2(m>\—xo))>>| < Clzx — ol

Inserting this inequality into (2.17) we arrive at

(1= 0)f(yr) < Clax — xo| +0(f(z2) — fx(yn))- (2.18)

In order to treat the second term we write ) = y) + rad) with

n+ wy 1 1
d =, = — , == >\ < - - 3 >-
N e T In4+wx|, wx TA—Yr
Now, (2.14) implies
2wl 3t
|d>\—n|§1_| Sl— — =€ (2.19)
w>‘| 2+e€

so that (2.6) yields

JH(ma) = felyn) = 5 (yn +rady) — fe(yn) < w(lyx — 20| +1720).

If we insert this estimate into (2.18) and recall (2.4) the result is
m(l - 9) < Cll’)\ — :E()| +w(|y)\ - l’ol + ’f‘)\).

Sending A oo yields m(1 —6) < 0 in view of (2.13), which is a contradiction. Thus, uy < v
for all # < 1 and sending 6 1 finally yields the result. |

3 Numerical scheme and error analysis

Numerical schemes for Hamilton-Jacobi equations have been developed and analyzed by
interpreting the corresponding viscosity solution as the value function of an optimal control
problem and by using the dynamic programming principle. We refer to Appendix A, written
by M. Falcone, in [1] for a description of basic results together with a comprehensive list of
references. The abovementioned approach in general requires f to be Lipschitz—continuous,
so that it cannot be applied to our situation.

Error estimates for finite difference approximations of the Cauchy problem u; + H(Vu) =0
have been obtained in [6]. The idea is to adapt the corresponding uniqueness proof and this
is also the approach which we shall pursue in this work. However, a closer inspection of the
proof of Theorem 2.3 shows, that it is not obvious how to use the argument in order to control
the difference between the viscosity solution u and an approximation U. Therefore we recall
a different approach to prove uniqueness, namely to apply the Kruzkov transform.

We shall start from a class of finite difference schemes, which are monotone and consistent
and which satisfy a suitable stability condition. The condition on f that we shall impose is
slightly stronger than (2.5) but still allows discontinuities of f of the type described in the
example following (2.5).

In order to keep the presentation simple we shall from now on assume that = II7_, (0, b;).
Let h > 0 be such that there exist N; € N with b; = N;h, ¢ = 1, ...,n and define

Qp = ZZL N, 09y := ZZ N o9, Qh = Oy U 0Qy,



where 7} = {zq = (hay,...,han)| a; € Z,i = 1,...,n}. We shall approximate the viscosity
solution u by a grid function U : Q, — R, Uy = U(z,), @ = (a1,...,ap) € Z". For z, €
Qpn, ke {l,....,n} let
Uy — Uy U -U.

o - o ek7 D/JcrUa — a-l—e;;l o
be the usual backward and forward difference quotients. The numerical scheme now reads:
find U : Q5 — R such that

D, U, :=

Hn(D{ Uy Df Uy, ... D Ua, DU = f(za) Ta € Q (3.1)
Uso = ¢(za) xo € 0,

where Hy : R?" = R, (p1,q1, ., Pn,qn) — Hn(P1,q1, .., Pn, qn) is the numerical Hamiltonian.
It is convenient to also introduce Fy : R?*T! — R, a = (ag, a1, a2, ..., a2n_1,a2,) = Fy(a) as

Fn(a) := Hy(ag — a1,a2 — ag, ..., o — Gan—1,G2n — Go)- (3.3)

In what follows we shall assume that Hpy is locally Lipschitz continuous and has the following
properties:
a) Consistency:

HN(p17p17 7pn7pn) = H(pb 7pn) for a’llp = (p17 7pn) € R" (34)
b) Monotonicity:

ap +— Fpy(a) is increasing (3.5
ar +— Fn(a) is decreasing for k =1, ..., 2n. (3.6)

c) Stability: there exists a function Z : ), — R, which satisfies

HN(DY Zoy D Zgy ... D; Zoy DY 7o) > f(7a) Ta € Q (3.7)
Za (:b(xa) To € 0L,
|D];Zoz|7 |D]—:Zoz| < R, To € Oy,

where R is independent of h.

We shall examine some examples of choices of Hy in §4.

Remark 3.1. Note that the function Z which appears in c¢) above satisfies

Za 2 Pmin = min ¢(x)v To € Qh- (310)
€N

To see this, let Zg = min, .q Z, and assume that x5 € Q. Then, (2.4), (3.7), (3.6) and
(2.1) would imply

m < f(zg) < Hy(Dy Zg,D{ Zg, ..., D, Zs, D;f Zs)

- F (@ Zp—er Zpter ZB—en Zpten
h> h 7 h 77 h 7 h
= Hy(0,...,0) = H(0) =0,

Zy Zg Zg Zg Z
)SFN(#7777777776)

a contradiction. Thus, 23 € 02, and (3.10) follows.

Next, let us prove an auxiliary result which yields a kind of diagonal coercivity for the
numerical Hamiltonian.



Lemma 3.2. For (ay,as,...,az,_1,a2,) € R?" there holds
tlggo Fy(t,ay,az,...,a2,1,a2,) = 00.

Proof. Using the defintion of Fy along with (3.4)-(3.6) we obtain for ¢ > r :=
max(al, a9,y ..., A2n—1, GQR) that

Fy(t,a1,a9,...,a9n-1,09,) > Fn(t,ryr,..,ryr) =Hy(t—r,r —1t,..,t —r,r—1)
= Fyn(t—r0,0,..,0,0) > Fxy(t —r,0,2(t — r),...,0,2(¢t — 1))
= Hy(t-rt—r,nt—rt—r)=H{—r1,....,t—7)
— o0 as t — oo,

which proves the Lemma. |

Lemma 3.3. There exists a solution U of (3.1), (3.2), which satisfies ¢min < Uy < Zg for
all T, € Q.

Proof. We consider the following iteration: let U? := Z and given U* : Q) — R, let

t Us_
UEH = inf{t| Fy (7, —5,

Uc]xf—l—el Ug—e Ug—f—e
. L >
e e ) > f(na)} 2a €D
Uc]vH—l = $(Ta) Ta € .
We claim that the sequence (U*)jcp is well-defined and that
bmin <UF <UF 1<z for all k € N. (3.11)

To see this, assume that (3.11) holds for all 1 < j < k and consider for z, € Q)

t Ué?_el U§+el Ugfen U§+en
U(t) = FN(E? n hTT n h )7 teR.

Clearly, n is continuous and increasing. Lemma 3.2 implies that n(t) — oo as t — oo so that
Uk+1 is well-defined. Since U* > ¢pnin by our induction hypothesis, (3.6), (3.4) and (2.1)
yield

(:bmin Uc]xf—el Uc]xf—l—el Ug—e Ug—f—e (:bmin (:bmin
. = n )<
77(¢mm) FN( B h BT h h )_FN( h U TR )
= H(0)=0< f(za), (3.12)
which implies that Ut > ¢pin. Also, as UF < UK~ (3.6) yields
Uk = FN(UT‘];? UC]'C,;“ 7 U%l*el - U‘%e", UC]”C;@")
L (L U VR UEL VR
= N h ) h ’ h PERES) L 9 L
> f(za)

by the definition of U¥. Thus U¥*! < U. Using similar arguments and recalling (3.10) we
infer that (3.11) holds for k£ = 1, so that we finally obtain (3.11) for all k& € N. Note also that

U£+1 Ug—el Ug-l—el U(l){jfe U(l){cll»e
n n) = f(za), Ta € Q, kEN. 1
h 7 h 7 h 7 7 h 7 h ) f(:l’. ) x e h e (3 3)

Fn(
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From (3.11) we infer that U*¥ — U, for all z, € Q) as k — oo. Clearly, U, = ¢(z4) for
ZTo € 0. Passing to the limit & — oo in (3.13) and using the continuity of Fy finally
implies that U satisfies (3.1). The bounds on U follow from (3.11). 1

Our aim is to prove an error bound between a discrete solution U and the viscosity solution
u. To do so, we need to strengthen (2.5) in that we assume that there exist e > 0, K > 0
such that for all z €  there is a direction n = n, € S*~! with

fly+rd) — fly) < Kr VyeQ, ly—z|<e Vde S |d—n|<e Vr>0. (3.14)

Theorem 3.4. Let u be the viscosity solution of (1.1), (1.2) and U a solution of (3.1), (3.2),
which satisfies pmin < U < Z. Then there exists a constant C, which is independent of h such
that

max |u(zq) — U(za)| < CVh.

xath
Proof. As mentioned above we introduce the Kruzkov transform of u and U, i.e. 4 : QO —
R,U : 2 — R which are defined by

u(x) == —e @) 2 eQ, Uy:i=—eVo 2, €.

Clearly, @(z) = —e~?(®), z € 9Q and one verifies (cf. [5]) that @ is a viscosity supersolution
of

)i — aH(—%Vﬂ) —0

in the sense that if { € C*°(Q2) and @ — ¢ has a local minimum at a point zg € €2, then

1

fe(zo)(zo) — ﬂ(fUO)H(—m

V((z0)) > 0. (3.15)

Note also that

H(e,rp) o= fa)r —rH(~1p),  (5,r,p) € xR\ {0} x R,
satisfies in view of (2.4) and the convexity of H (cf. [5])

H 1 1 1
O (wrp) = () ~ H(~1p) + (DH(~p),~7p) > [@) >m (310
uniformly in (z,r,p).
Next, let 25 € Q, be such that

li(z5) — Ug| = max |i(za) — Ua|
maeﬂh

and assume that U > @(x5), the case i(zg) > Uy being treated in a similar way.
Let us first consider the situation when

(xg)i < vVh  or (zg)i > by — Vh  for some i € {1,...,n}. (3.17)

In the first case, let x5, = (Bih, ..., Bi—1h,0,Bit1h, ..., Byh) € 02 and Zo = —e %=, Since
u(zg,) = —e?@80) = Zﬂo we deduce with the help of (3.9)

Us —i(zg) = (Up—tilzg,))+ (lzg) —i(zp) < (Zs — Zg,) + ((wg,) — (zp))
< (C(R) +1ip(@))|zs — 25,| < (C(R) + lip(a)) Vh.

9



Arguing in a similar way if (z5); > b; — vV/h we conclude that

max |i(zq) — Uy| = U — i(zg) < CVh, (3.18)
ZL'ath

if (3.17) holds. Now we consider the case
Vh < (z5); < bi—Vh fori=1,..,n. (3.19)

Let € > 0, K > 0, n = ng, be the quantities appearing in (3.14) and define ® :  x Q, - R
by
Ly
Vh
where Li,Ls > 0 are constants that do not depend on h and which will be chosen later.
There exists (zp,2q,) € Q x Q, such that

D(z,zq) 1= U, — u(z) |To — 2 — \/En|2 — Lg\/mxa — xﬂ|2,

O(zp,20,) = max  D(z,zq).
(2,20)EQXQ

In view of (3.19) we have that z5 — vhn € Q and therefore
(I)(ilfh,fliah) > (I)(:Eﬂ - \/ETL,ZEIB)
or equivalently

s L s
Ug, —u(xp) — \/—;_z|$ah —xp —Vhnl? - Lg\/l_z|xah — x5 > Us — ai(zp — Vhn).  (3.20)

This implies

Ly
ﬁkcah —xp — \/ﬁn|2 + L2\/ﬁ|xah - :135|2
< ﬁ(xﬂ—\/ﬁn)—ﬁ(xh)—l-ﬁah—ﬁﬁ
< i(ay) — W) + (Uay — (oay)) — (05 — lzg)) + alwg — Vhn) — alzy)
< 1ip(@) |#a;, — | + Vhlip(a)
< lip(@) |24, — 1 — Vhn| + 2Vh1lip(a)
L s Vh.. o
< — —xp—Vh —1 2vhl
< G o Vhn® + 57lip(@)? + 2VAlip(a),
and therefore,
1 ) 1., 4. e \2
Cl2g, — Th — < = = .
h|xah zp —Vhn? < L%hp(u) +L1hp(u) <(2+e> (3.21)
1 2
a2 < N R TIN 2 .
|Za), — " < 2L1L2hp(U) +L2hp(U) <€, (3.22)

provided that Ly, Lo are sufficiently large.
Let us first consider the case that (zp,zq,) € Q x Q. We infer from (3.15) that

1 2L

Felen)iiton) — o) H (=5~

(e = 21— Vn)) > 0. (3.23)

10



In order to derive a corresponding relation for the discrete solution, we consider the inequality
O(zp, xa,) > P(xh, z4) for all z, € 2, which translates into

. . Ly
Uo < Uy, + ﬁ(k’?a —zp, —Vhnl? - | T, —n — \/ﬁn|2>
+L2\/E(|$a - x5|2 — |%a), — $ﬂ|2)
= :V,. (3.24)
Note first, that
- 204 3
DV, = ﬁ(ma — 2, — Vhn, er) + 2L2\/E(xa — Tg,ep) — LiVh — Loh?
2Ly

D,jf/a = (xa —Tp — \/ﬁn, ek) + 2L2\/ﬁ(xa —xzg, ek) + L1\/E+ LQh%

Vh
and therefore by (3.21)

- - . 2L
|D; V|, | Dy Vay, | < C, |DEV,, — T}i(xah —ap —Vhn,er)| <COVh, k=1,.,n
(3.25)
uniformly in h. Recalling that U < Z we also deduce from (3.8) and (3.9) that
Vah = Uah = _e_Uah S _e_Zah S _Ev (326)
where ¢ > 0 depends on ¢ and R. Furthermore, (3.25) implies
~ 1
Vayter < —56 for h sufficiently small. (3.27)
Thus we can define V,, := — log( —Va), for a = ay, ap + e, and the mean value theorem yields
DiVa, =e & Dy Va,, DiVa=eSDjVy, k=1,..n, (3.28)
where &, lies between V,, V¢, and f,j lies between V, V¢, . In particular,
-1 -1 2
et < maX(eV“hiek,eVah) = max (= ,=—) <= (3.29)
Vah:l:ek Vah c

by (3.27). Thus, (3.28), (3.25), (3.21), (3.26) together with the fact that ¢nin < U < Z imply

1 2L
DV, | <C, k=1,..,n and|- =2
Ua, Vh

(¥a, —zn — Vhn)| < C. (3.30)
Next, we deduce from (3.24) that

Ua, =Va,,» Ua <Vy,a=ap e, k=1,..n,
so that the monotonicity property (3.6) and (3.1) imply

f(za,) = Hn(D{Ua,,D{Uqs,,....D; Uy, ,D}U,,)
> HN(DyVa,:D{ Va,, s Dy Vi, Dy V).
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Multiplying the above inequality by Uah < 0, using (3.4) along with (3.30) and the local
Lipschitz continuity of Hy we infer

1 20,
flzq )U ~ U, H (aca —Ih—\/ﬁn)
h h ( Uah\/ﬁ h )
< Uy (BN (D5 Vg, D Vg o0 Dy Vg Dy Ve, ) = (-2 g - Vin)))
UOéh \/H
1 2L
< C niax |DiVah+Uah\/%(xah—xh—\/ﬁn,ekﬂ
< C max (eék|Di‘~/ —E(zc -z —\/ﬁne)|
= TR\ Ik Ve = T s = »Ck
HefE |22 g, — 1 = Vi) )
< CVh+Ch. (3.31)

Note that the last estimate is a consequence of (3.25) and (3.29). If we combine (3.23) with
(3.31) and use the definition of H we obtain

ﬁI(mah, [70%, %(wah — Ty — ﬂn)) - ﬁ(mah,ﬁ(xh), %(mah —xp — \/Eﬂ))
< OVh4e @) (f(z4,) — fulan)).

Note first that

o L

Ua, —a(zp) = @(zp,2a,) + \/—%|xah -z — \/En|2 + LQ\/E|$ah - x5|2
> O(zg,25) = Ug —u(zg) — LiVh.

Thus, in view of (3.16)

m(Us — a(zg)) < e ) (f(z0,) — fulan)) + CVh. (3.32)
Let us write 2, = xp + rpdp, with
n + wp, 1
d et _, = \/E —|— s = —_— —_ —_ \/E .
h P Th |n 4+ wp|, wp \/E(xah Th n)

Note that (3.22) implies that |z,, — 23| < € (3.21) and a similar argument as in (2.19) yield
|dp, — n| < e, so that (3.14) gives

f(@ay) = folzn) < [ (@n 4+ radp) — fu(zn) < Krp < CV. (3.33)
Combining (3.32) and (3.33) finally yields

max |i(zq) — Uy| = U — i(zg) < CVh. (3.34)

Ta €EQp
It remains to consider the case when z,, € Q) or z), € . If 2o, € 08y, it follows from
(3.20), the fact that a(z,, ) = Uy, and (3.21)
(g — Vhn) = i(zp) + A(za,) — lzp)
lip(a) (VA + [z, — oal)
lip() (2f+ |Ta, —xn — \/ﬁn|)
Cvh.

Up — i(zp)

IN N

ININ

12



Let us finally assume that x;, € 99. Since @(zp) = ¢(x4) = Zy, and U < Z we obtain

Us —i(zg) < Uay, —ilen) +ilzg — Vhn) —(zp)
< Z(wa,) — Zay) + ilws — Vin) — ilay)
< ¢vh
similarly as above. Transforming back to u and U implies the desired error bound. |

4 Examples of numerical Hamiltonians

Let us consider some examples of numerical Hamiltonians Hpy. In order to simplify matters
we restrict ourselves to the case of two space dimensions and a domain €2 of the form Q =
(0, bl) X (O,bg) with bg < bl.

4.1 Viscous regularisation

Suppose that H is globally Lipschitz—continuous with Lipschitz constant L. We define Hy :
R* = R by

p1+aq p2+Q2)

2
L
HN(plthP%QQ)::_EZ(Qk_pk)‘i'H( 5 ' 9

k=1

Clearly, (3.4) is satisfied; in order to verify monotonicity we evaluate Fx according to (3.3),
which gives

2

L
Fy(ao,a1,...,aq) = 2Lag — bY ;(G2k1 + agy) + H(

ag — aq a4—a3)
2 2 ’

from which (3.5) and (3.6) follow in view of the Lipschitz continuity of H. It remains to
show the existence of a function Z, which satisfies (3.7)—(3.9). To this purpose we consider
d(z) := dist(z,09Q),x = (z1, z2). It is not difficult to see that

1 in ) ={z€Q0<2zy<by, 0 <z <min(by — x9,72)}
d( ) by — in92:{$69|0§$2§b2,b1Zl’lZmaX(bl—l'Q,bl—bQ"‘fEQ)}
€T =
T9 inQ={zreQ0<z <b,0< 1z §min($1,b72,b1—x1)}

by —xz9 InQy= {:l? S Q|0 <z1 <by, by > 19> max(bz — 1, %2,5[71 + by — bl)}

In view of (2.7) and a suitable extension we may assume that ¢ is defined as a Lipschitz
continuous function on © with Lipschitz constant L.

Define Z : Q; — R by Z, := ¢o + pd(zs), where ¢ = ¢(z4) and p is independent of h.
Clearly, Z satisfies (3.8) as well as (3.9) with R = Ly + p. We claim that (3.7) holds provided
that p is sufficiently large and verify this for a point x4 = (14, Z24) € Q1 With 29, < b2

2.
Case 1: 294 — % < 210 < T9q. We then have

_ _ X — T
Dy Zy = Dia+p, D;LZa=Df¢a+w

Tla — T2a + h _
W =220t W 5 bt 2, DfZe=Digu.

< Df¢a+ 2,
2 (4.1)

DyZo = Dyda+?

13



so that

Hy(Dy Zo,Df Zo, Dy Zo, DS Z,)
2

L _ DY Z,+ Dy Z, DfZ,+ D, Z
= _§k§1:(D:Za_DkZa)+H( ! a2 -2 =2 a2 2 a)
2
L L L L
> 2N (Dfda—Dida) + =L > —20Ly+L > 2 (4.2)
2 £ 2 2 4
> M > f(za) (4.3)

in view of (2.4) provided that p is sufficiently large.
Case 2 114 < Z9q — % We now have

DiZo = Di¢atp  Dida+5 <D Za<Di¢a+p

- B - 0 R B (4.4)
D2¢a < DQZa§D2¢a+§7 DQZa:D2¢aa
so that
Hy(Dy Zo, Df Zo, Dy Zo, DS Z,)
2 _ _
L DfZ,+D7Z, DIZ,+ D;Z
+ — 1 1 2 2
> =5 2 (Dida = Dig) + H(ZE e SR 2
DfZ,+D;7Z, DfZ,+ D5 Z
> —2LLs+ H(— a; == =2 a; R (4.5)
Since N N
D; Zo+DfZy _ 3 Dy ¢po+ Di o _ 3 1
> L2 Tl s Zy—Ly> =
2 =Pt 2 =3P =3p

provided that p > 4Ly, we deduce from (4.5), (2.3) and (2.4) that
HN (DY Zo, DY Zay Dy Za, Dy Za) > M > f(24),

provided that p is large enough. Other points can be treated in a similar way.

4.2 Godunov Hamiltonian

In [2] the following formula was derived from the solution of the Riemann problem:

HN(p17 q1,P2, qQ) = ethEI[pl,ql]ethEI[pz,qz]H(é.? 77)7

where

mingepy, ,if p<gq

Xleerp,g) = el

maXeelqp] »iLp>q.
We leave it to the reader to check the conditions (3.4), (3.5) and (3.6). We use the same
function Z as in the case of viscous regularisation to verify (3.7)—(3.9). Again we examine
the situation at a point o = (Z14, T2q) € Q1 With 29, < %‘2.
Case 1: 194 — % < Z1q < Toq. Since (4.1) implies that D Z, > p — Ly, Df'Za < Lg+ 5 we
have D{" Z, < Dy Z, for p > 4L,. Thus,

- + —~ A
Hy (D1 Zo, DY Zo, Dy Zq, D, Za) = gE[D;rHZlSﬁ);ZQ]ethGI[DZ—ZQ,D;’Za]H(ga77)

p
> ethej[D;ZmD;rza]H(ian) > M > f(za)

14



for large p.
Case 2 214 < T2q — %. Now by (4.4), Dy Zy > p— Ly, D Zo > & — Ly, so that £ > & — L,
for all £ between D Z, and DfZa. This again implies that

HN(Dy Zo, DY Zo, Dy Zo, DS Zp) > f(za)
if p is sufficiently large. Other points can be treated analogously.

As a special case one obtains for the eikonal equation H(p) = |p| the scheme

Hy(p1,q1,p2,q2) = \/(max(va —q7))? + (max(p3, —¢5))?, (4.6)

where p™ = max(p,0) and p~ = min(p,0). This scheme was examined in [11] in the context
of the shape—from—shading and convergence of approximations was proved with the help of
a result of Barles & Souganidis [3]. In a recent paper, Zhao [15] shows O(h)-convergence for
this scheme provided that f = 1.

5 Nwumerical results

In this section we present some results of numerical calculations for (1.1), (1.2) with H(p) =
Ip|. As a first test example, let 2 := (—1,1) x (0,2) and f : © — R be defined by f(z1,z2) :=
Lz <0, f(0,22) := 2, f(z1,32) := 5,21 > 0. It is not difficult to see that f satisfies (3.14)
and one verifies that

%$2 I ZO
( )= _V3 1 1 < <0
u(x1,x2) : 5 L1+ 522 7AF2 S %1 S
T2 T < —%xz

is a viscosity solution of [Vu| = f in the sense of Definition 2.1. Furthermore, let ¢ := ujgq.
Since H is globally Lipschitz—continuous with constant 1, the numerical scheme induced by
viscous regularisation reads: find U : €, — R such that

1
_§ (Ua+61 + Ua—61 + Ua+62 + Ua—ez - 4Ua)

1
+§\/(Ua+el - Uoz—el)2 + (Ua—i-ez - Ua—eg)z = hf(xa) To € Qp
U, = ¢($a) Ty € OQy,.
The system of equations was solved with the help of Newton’s method and we calculated

Eygrp = max |u(zs) — Uyl
T €82,
in(En,/Bn, )
in(ha/h1)
of h. We then used the numerical Hamiltonian (4.6) to approximate the viscosity solution.
Observing that

together with the experimental order of convergence eoc = for various choices

1 .
max((D,;Ua)+, —D,;"Ua)_) = E(Ua — mln(Ua,ek,Ua+ek))+,

for k = 1,...,n, the discrete problem reads: find U : ; — R such that

ol

2
(Z((Ua—min(Ua,ek,UMek))*)?) = hf(za) Ta€ (5.1)

k=1
U, = ¢($a) To € OQy,. (5.2)
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The discrete solution was calculated with the help of the Fast Sweeping Method (see e.g. [15]
for a description) and the corresponding errors Ergj and eoc’s are shown in Table 1 together
with the results from the method of viscous regularisation. Figure 1 shows various level lines
of the solution.

h Evgp eoc Ersp eoc
1/10 | 1.24348e-1 - 5.59016e-2 -
1/20 | 7.22984e-2 | 0.78 | 2.79508e-2 | 1.00
1/40 | 4.08509e-2 | 0.82 | 1.39754e-2 | 1.00
1/80 | 2.26691e-2 | 0.85 | 6.98771e-3 | 1.00

1/160 | 1.24385e-2 | 0.87 | 3.49386e-3 | 1.00

Table 1: Absolute error in maximum norm and experimental order of convergence for for the
first test problem.

08F - /

06— """""

0.4 [

0.2

Figure 1: Level lines of the solution from the first test problem.

We observe linear convergence in h for the method (5.1), (5.2), which suggests that it might
be possible to generalize the result in [15] for f = 1 to nonconstant or even discontinuous
right hand sides.

In our second example we consider = (—1,1)%, ¢ = 0 and

and 29 > 21 —

27 (:El_%)Q—’_:E%S 2

f@r,m2) =9 3, (z1—3)*+23 <

oo~ ool

andx2<x1—%

1, otherwise.
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Note that in this case discontinuities of f occur both along curved lines and along a straight
line which is not aligned with the grid. Furthermore, the three regions, in which f takes
different values, meet at the triple points (%, i), (i,—%). It is not difficult to check that
f satisfies (3.14). The numerical solutions were again calculated with the help of viscous
regularisation and (5.1), (5.2). In the absence of an exact solution we compared the discrete
solutions for various grid sizes with an approximation Uy on a fine grid (h = 1/640). The

results are displayed in Table 2, while Figure 2 shows some level curves of the solution.

h Evgp eoc Ersp eoc
1/10 | 9.07922¢-2 - 1.10429e-1 -
1/20 | 1.29179e-1 | -0.51 | 1.28365e-1 | -0.22
1/40 | 1.04327e-1 | 0.31 | 8.68148e-2 | 0.56
1/80 | 7.35184e-2 | 0.50 | 5.00901e-2 | 0.79
1/160 | 4.33351e-2 | 0.76 | 2.65873e-2 | 0.91

Table 2: Absolute error in maximum norm and experimental order of convergence for the
second test problem.

06

(O ! REREEEEEN EEREREE :

Figure 2: Level lines of the solution from the second test problem.
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