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ELEMENT METHOD IN THREE DIMENSIONS IN THE
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Abstract

We introduce the Jacobi-weighted Besov and Sobolev spaces in the
three-dimensional setting and analyze the approximability of func-
tions in the framework of these spaces, particularly, the functions
reflecting the vertex-singularity, the edge singularity and vertex-edge
singularity. These spaces and corresponding approximation properties
lead to the optimal convergence of the p-version of the finite element
method for elliptical problems on polyhedral domains.

1. INTRODUCTION

Since the late 1970s, the p-version of the finite element method(FEM),
which increases the degree of polynomials on a fixed mesh to obtain higher
accurate, has been widely used in engineering computations. There are sev-
eral commercial and research codes based on the p (or h-p) versions of the
finite element method, for example, MSC/PROBE, FIESTA, MECHAN-
ICA, PHLEX, STRESSCHECK, and STRIPE.

In 1980 it was shown that the p-version of FEM in two dimensions
converges at least as fast as the traditional h-version with quasi-uniform
meshes, and that it converges twice as fast as the h-version of FEM if the
solution has singularity of r”7-type. Since then significant progress for the
p-version in one and two dimensions has been made in the past two decades.
The estimation of the upper bound of approximation error in finite element
solutions of the p-version in two dimensions were analyzed in [5, 6], and
a detailed analysis of the p-version in one dimension is available in [10].
Very recently, the author and his collaborator have further developed the
approximation theory of the p-version of FEM in the framework of Jacobi-
weighted Besov and Sobolev spaces, This framework is applicable in one,
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two and three dimensions. In this mathematical framework, the lower and
upper bounds of approximation error for the p-version of FEM for problems
in polygonal domains were proved, and the optimal rate of convergence
was mathematically established in the first time in the literature of the
p-version of FEM. Meanwhile, the research in this direction was carried in
the spectral methods where the general Jacobi approximation with non-
symmetric and varying weights was studied in [13, 14, 15, 16] and was
applied to singular differential equations with degenerate coefficients. Also,
this new framework has been applied to the p-version of the boundary
element method(BEM)[12], which leads to the optimal convergence of the
p-version of BEM in the energy norms for problems with singularity in two
dimensions.

In contrast to the p-version in one and two dimensions, the p-version
of FEM in three dimensions is much less developed, and actually has not
been fully addressed. Lacking of effective mathematical tool and theory
in 1980’s and 1990’s, few decent results and analysis are available in the
literatures. An upper bound of error in approximation of the p-version in
three dimensions was given in [8, 9] without proof, and this upper bound
seems not optimal. In this paper, we analyze precisely the convergence of
the p-version in three dimensions in the framework of the Jacobi-weighted
Besov and Sobolev spaces, and further develop the approximation theory
of FEM, in particular, in three dimensional setting.

The scope of the paper is as follows. In Section 2 we introduce the
Jacobi-weighted Besov spaces B*#(Q) and Sobolev spaces H*?(Q) with
Q = (—1,1)3, and derive error estimation of the Jacobi projections in
the Jacobi-weighted Sobolev norms. In Section 3 we analyze the approx-
imability of singular functions of the p?-type with v > 0 in terms of the
space B*P(Q),8 = (—1/3,—1/3,—1/3). The approximability of singular
functions of the r?-type with o > 0 in terms of the space B*#(Q),8 =
(=1/2,—1/2,P3) with arbitrary 53 > —1 and the approximability of sin-
gular functions of the pYsin?¢-type with v,0 > 0 in terms of the space
B*#(Q),8 = (=1/2,-1/2,0) are analyzed in next two sections. In Sec-
tion 6 we apply the approximation results in previous sections to the FEM
solution of the p-version in three dimensions to achieve the optimal con-
vergence. Some concluding remarks are given in the last section on the
effectiveness of the Sobolev space H?, the Besov space B*, and the Jacobi-
weighted Sobolev space H*# and Besov space B*# for the analysis of the
h-version and the p-version of the finite element method.

2. JACOBI-WEIGHTED BESOV AND SOBOLEV SPACES
Let Q = I? = (—=1,1)3, and let

(2.1) wa’ﬁ(zc) = H(l _ x?)ai"’ﬁi



be a weight function with integer «; > 0 and real number 8; > —1, which is
refereed to as Jacobi weight. Obviously, the Jacobi polynomials and their
derivatives are orthogonal with the weight w, 5(z).

The Jacobi-weighted Sobolev space H*(Q) with integer k is defined
as a closure of C*° functions in the norm with the Jacobi weight

k
(2:2) llpesgy = > /Q DU w, () da

|a|=0

where D% = U140 o3, O = (a1, a9,a3), |a] = a1 + as + a3, and § =
(B1, B2, B3). By |U|Hk,ﬁ(Q) we denote the semi-norm,

|l frr6 Q) = Z /Q|D0‘u|2 w, g(z) dz.

la[=k

Let B;:qﬁ (Q) be the interpolation spaces defined by the K-method
(2@, 5" (@),
a

where 0 <0 < 1,1 <g<o0,8s=(1—-0)+ 0k, ¢ and k are integers, ¢ < k,
and

o dt\1/q
— —q0 g <
@30 g = ([ CPIEE0IE) <0<
2.3b U|| 1z, = su tfoKt,u
(2.30) g ) = sup ¢~ K00
where
(2.4) K(t,u) = u:ngfrw (”’U”HZ,B(Q) + t”’lUHHk,B(Q)).

In particular, we are interested in the cases ¢ = 2 and ¢ = oo. We shall
write for s > 0 and ¢ = 2

HY(Q) = B35(Q) = (H"(Q), H(Q))

0,2

with 0 < @ < 1 and s = (1 — 0)¢ + Ok. This space is called the Jacobi-
weighted Sobolev space with fractional order if s is not an integer. It
has been proved that B‘;’g(Q) = H™PA(Q) if s is an integer m in two
dimensions|1], it can be proved analogously in three dimensions.

For ¢ = oo, we shall write

BY(Q) = B (Q) = (HY(Q). B ()

0,00



which is refereed as the Jacobi-weighted Besov spaces. It is an exact inter-
polation space according to [7].

We next study the approximation properties for functions in the Jacobi-
weighted Sobolev spaces. Let P,((Q) be set of all polynomials of (separate)
degree < p. For u € H%P ¢ > 0, we have the Jacobi-Fourier expansion in

H"(Q)

u(z) = Z CijkPz’(w17,31)Pj(552752)Pk($3aﬁ3)-
i,5,k=0

Then
p
up(z)(z) = Z CijkIji(mlw@l)IDj(xQMBQ)Pk(vaﬁEE)

4,J,k=0
is the projection of u(z) on P,(Q). Actually uy(z) is the projection of u(z)
on P,(Q) in H*?(Q) for all 0 < £ < k, and
|Up|?{l,B(Q) + |u — Upﬁ{l,B(Q) = |u|iﬂ,ﬂ(Q)-
This is a very important and special property of the Jacobi projection. For

the Jacobi projection we have the following approximation property.

Theorem 2.1 Let u € H*P(Q) with integer k > 1, B; > —1,i = 1,2,
and u, be its H 0.5(Q)-projection onto P,(Q). Then we have for integer
I<Ek<p+1

(2.5) [u =yl geag) < Cp™ " [ulgrsq)-

Proof: The proof for one and two dimensions can be carried here for three
dimensions, we will not give the details of the proof, instead refer to [1, 11].

By a standard argument of interpolation spaces, we are able to general-
ize Theorem 2.1 to an approximation theorem for functions in the Jacobi-
weighted Besov spaces B*?(Q).

Theorem 2.2 Let u € B*#(Q), s > 0 with B; > —1,i=1,2, and let u, be
the Jacobi projection of u on P,(Q) with p +1 > s. Then for any integer
£ < s there holds

(2.6) s = wpllires@y < €~ flull ey

with constant C independent of p.

3. APPROXIMABILITY OF SINGULAR FUNCTION OF p?’-TYPE

Let Q = (—1,1)3, and let (p,0, ¢) be the spherical coordinates with re-
spect to the vertex (—1, —1, —1) and the vertical line L = {z = (x1, 22, z3) |



@1 = w3 = —Lag € (—00,00)} with p = {3, jes(ai + 1)}/2 6 =

€ [0,7/2], and ¢ = arct € [0,m/2].
{(z, + 1)+ (zo + 1)2}1/2 [0,7/2], and ¢ = arctan st 1 [0, /2]
Consider the singular function with v > 0

u(z) = p” x(p) ©(0, ¢)

where x(p) and ®(0, ¢) are C*° functions such that for 0 < pg < 1 and
0<ko<m/2

arctan

x(p) =1 for0<p<po/2, x(p)=0 forp> po,
and
®(0,¢) =1 for (0,¢) € Spny, D(0,0) =0 for (6,¢) & S,

Hereafter, S,,, denotes a subset of the intersection of the unit sphere and
@ such that the angles between the radial A; — z and the z;-axis is larger
than kg € (0,7/4). Obviously, u has a support Ry = R x, C Q,

Ry = Rpo,lio = {il? €Q | 0<p< 907(97¢) € SKo}?

as shown in Fig. 3.1.

Fig. 3.1 Cubic Domain @ and sub region R, .,

Theorem 3.1 Forany 3; > —1,1 <i < 3,u € B%#(Q) and v € H* #(Q)
with s =2v+ 3+ 2321 B; and € > 0, arbitrary.

Proof Let u = u; + ug with w3 = x4(p) u and ugy = (1 — x;(p))u. Then
u; € H%3(Q), and

(3.1) ||U1||H0,B(Q) < Cs 3+ Bi



It is easy to see that up € H*(Q), for any k > 2+ 2y, and
(32) luz | s () < CEHH+E B

Selecting § = ¢#, we have for t € (0,1)

29434321 B;
k

K(t,u) < COTBTEL A2 45 H2) < o %
and for ¢ > 1, there holds

K(t,u) < Cllullgos(g)-

2y +3+ 30 B

Letting 6 =
etting -

, we have

supt ? K(t,u) < C
t>0

which implies that u € (H*?(Q), H*(Q)), .. = B*P(Q) with s = 0k =
2y +3+ 30 B

Ifo = 2 — e with € > 0, arbitrary, then
1 o dt
| etk <c
0 t
which implies u € (H*?(Q), H*(Q)), , = H*%%(Q). O

We have the following theorem on the approximability of the singular
function of p?-type.

Theorem 3.2 There exists ¢(z) € P,(Q) such that

(3.3) lu = Pllz2) < CP~ ) Jlull prrras )

with 5 = (0,0,0). Also, there exists ¢(z) € Py(Q) such that

(3.4) v = @llat(ryy < Cllu = @llm (@) < Cp~@+2) llull 2v+2.8 (@)

with 8 = (—1/3,—1/3,—1/3).

Proof: By Theorem 3.1 u € B%%(Q) with s = 2y + 3 and 8 = (0,0,0).
Due to Theorem 2.2, there exists a polynomial ¢ € P,(Q) such that

lu=vllr2qQ) = llu — Yl gosg) < C p~ lull g21+3.6 (q)-



with 8 = (0,0,0). For f = (—1/3,—1/3,—1/3), by Theorem 3.1 u €
B*#(Q) with s = 2y+2 and due to Theorem 2.2, there exists ¢(z) € P,(Q)
such that for £ =0,1

(3.5) lu = ¢lreaig) < C o~ @2 ull porias ).

For a with |a| = 1 and for € Ry, there exist two constants C and Cy
such that

(3.6) ci< ] @+z)* /3 <
1<4i<3

Then, we have for || =1

2 2
fRO Do‘(u—go)‘ dx < CfRo ‘Da(u—go)‘ H1§i§3(1+$i)ai_l/3 dx
2
< CfRO ‘Da(u - 90)‘ ngigg(l - $12)ai71/3d$
which together with (3.5) and (3.6) leads to (3.4). O

4. APPROXIMABILITY OF SINGULAR FUNCTION OF r°-TYPE

Let ¢ = (—1,1)3 and let (r, ¢, z3) be the cylindrical coordinates with
respect to the vertex (-1,-1,-1) and the vertical line L = {x = (x1,x2,z3) |
z) = zy = —1,23 € (—00,00)}, with 7 = {37, (z; + 1)>}/2 and ¢ =

1
2t 1 € [0,27). Consider the singular function with o > 0

arctan
T+

u(z) =17 x(r) ®(¢) ¥(z3).
Here x(r), ¥(z3) and ®(¢) are C*° functions such that for 0 < ry < 1,
x(r)=1 for0<r<ry/2, x(r)=0 forr > ry;

and for 0 < ¢g < 7/4

B(g) =1 for ¢ € (200,7/2 — 2¢0), B(¢) =0 for ¢ & (o, 7/2 — ho);
and for 0 < zp < 1/2

U(z3) =1 for z3 € (—1+ 220,1 — 22p), ®(z3) =0 for |z3| > 1 — 2.
Obviously, u(z) has a support Ry = Ryy,40,20 C @,

Ry={z€Q|0<r<ro,do <P <m/2—o,—1+2 <23 <1-— 21},

as shown in Fig. 4.1.



XJ
(d
1
1
' 1
1
PN
s
[} PR3 T
i“ __’,/L:'"
|I X
"
1
1 :I (o) 1 X
N
N
Ry 1!
|
N
N
PN R A
o 7 Y
R \
Tt !
Z, 4,"’/ Ny,

*
B

Fig. 4.1 Cubic Domain @ and sub region R, 4, -,

The characterization and approximability of singular functions of r?-
type in Q = (—1,1)? are similar to those of singular functions of r7-type in
Q' = (—1,1)2. For the proof of following theorems, we refer to [1, 11].

Theorem 4.1 For § = (f1, 5, 3) with 5; > —1,1 <i < 3,u € B*#(Q)
and u € H*~#(Q) with s = 20 + 2 + 8 + 2 and € > 0, arbitrary.

Theorem 4.2 There exists 1(z) € P,(Q) such that

lu = Pll2iq) < Cp~27 ||ull prrszs g

with 81 = 2 = 0 and 3 > —1, arbitrary. Also, there exists p(z) € P,(Q),
s.t.

lu =@l (ryy < Cllu— @l < Cp™% [[ullprezs g
with 81 = 83 = —1/2 and (3 > —1, arbitrary.

5. APPROXIMABILITY OF SINGULAR FUNCTION OF p?sin?¢-TYPE

Let Q = (—1,1)3, and let (p, 0, ¢) be the spherical coordinates with re-
spect to the vertex (—1, —1, —1) and the vertical line L = {z = (z1,x2,x3) |

w1 = m9 = —lmy € (—o0,00)} with p = {30 {(i + 1)*}/2, 0 =
$3+1 N x2+1
arctan e 1+ T I € [0,7/2], and ¢ = arctan P € [0,7/2].

Consider the singular function wih real v, o > 0,

u(z) = p7 sin”0 x(p) D(¢) ¥(0)

where x(p) and ®(¢) are C* cut-off functions defined in Section 3 and 4
with 0 < pg < 1 and 0 < ¢ < 7/2, respectively, and ¥(0) is a C'*° function



such that for 0 < 6y < w/4
¥@)=1 for0<0<7/2—-20p, ¥(@) =0 forf>mn/2—06.
Obviously, u has a support Ry = R 60,40, C @,
Ry={z€Q[0<p<py,¢€(do,m/2—o),0 € (0,7/2—6p)},

as shown in Fig. 5.1.
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Fig. 5.1 Cubic Domain @ and sub region R, 4, g,

For the singular function of p?sin?¢-type, the following theorem pre-
cisely characterizes the singularity in terms of the Jacobi-weighted spaces.

Theorem 5.1 For any § with 3; > —1,1 < i < 3, u € B*%(Q) and
u € H=9P(Q) with s = 2min{o,y + (1 + f3)/2} + 2+ .7, B; and € > 0,
arbitrary.

Proof Letting r = {z? + 23}/2, we write

u(z) = p= 77 x(p) B($) ¥(0).
By ¢s(r) we denote a C* function such that ¢s(r) = 1 for r < ¢ and
¢s(r) = 0 for r > 26 with 0 < 0 < po/2. Let uy = ¢5(r)u and up =
(1 — ¢5(r))u. Thus it can be shown that

(51) ||u1 ”%[O,B(Q) S 0(527+3+E?=1 /31 _|_ 620'4*24’2?:1 /31)

and for k > 2max{o,v+ (1 +(3)/2} +2 + Z?:l Bi

3 ) _ 2 .
(5.2) ||U2||?qk,ﬁ(Q) < O(6H3FHE0m Bi g §2042- k4300, By
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The derivation of the estimations (5.1) and (5.2) is quite technical and long,
we refer to [11] for the details. (5.1) and (5.2) lead to

K(t,u) < Cllutllgosqy +t lluzllgr.s ()
< oomin{r+(1483)/ 20014500, Bi/2(1 4 ¢ §K/2),
Selecting § = t2/*, we have for 0 < ¢t < 1
K(t,u) < O smin{y+(1+083)/2,0}+1+37_, Bi/2
For ¢t > 1, it always holds
K () < Clluslos o)

2min{y + (1 + 83)/2,0} +2+ 32 6
k

Choosing 0 = , we have

sup t Y K(t,u) < C
0<t<1
which implies that u € (H*?(Q), H*(Q)), .. = B*/(Q) with s = 0k =

2min{y+ (1 +F3)/2,0} +2+Z@2:1 Bi
2min{y + (1 + B3)/2, a}+2+23 Bi—e  s—

Ifo = = = kewithe>0,
arbitrary, then
/ 0K (L u)PY < C
which implies u € (H%*(Q), H**(Q)),, = H*~%%(Q). O

A combination of Theorem 5.1 and Theorem 2.3 leads to the approx-
imability of the singular function of p”sin’¢-type.

Theorem 5.2 There exists 1(z) € P,(Q) such that
(5.3) lu =l L2y < Cp_(Qmin{m’Y+1/2}+2) [l 2 min{o o +1/2142,8(Q)

with 8 = (0,0,0). Furthermore, there exists ¢(z) € Py(Q) such that

(5.4) _

lu=@l 11 (Re) < Cllu—@ll 1.8y < Cp ™M T2 ||u|| g ingor 4121418 )
with B = (=1/2, —1/2,0).

Proof By Theorem 5.1 v € B2min{7+1/2,0}342.6 with g = (0,0,0), and by
Theorem 2.2, there exists ¢)(z) € P,(Q) such that

lu = llz2q) < Cp~ Gminteyt1/21+2) l[ull g min{o,+1/2}+2,6(Q)-
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Also due to Theorem 5.1 and Theorem 2.2, u € B2min{y+1/2.03+1.8 with
B =(-1/2,-1/2,0), and there exists p(z) € P,(Q) such that £ =0,1

—(2min{o

(5.5)  |u—9lgesg) < Cp AFL/2H1=0} [ull g2 mintr+1/2.0141,8()-

Note that for © € Ry = Ry, 6,4, and |a| = 1, there are two constants C
and Cy such that

C1 < (14 21) V21 + 39)°2 V2 (1 + 25)* < Cs.

This implies that for |o| =1

2 2
Jin, [P =) do <€ fp [0 = )] TELA1+ )20+ 2 do
2
< Cfy, [P =) TIL (= a2 /201 — ad)evd
< Clu—o¢lgsg)-
which together with (5.5) leads to (5.4). O

6. OPTIMAL CONVERGENCE OF THE pVERSION
FOR PROBLEMS ON POLYHEDRAL DOMAINS

Consider a Neumann boundary value problem in a polyhedral domain
—Au+u =f in €,
(6:1) { g—z =g on 0f2.

where Q is a polyhedron shown in Fig. 6.1 with vertices A,,,m € M =
{1,2,..., M}, (open)faces I';,i € J = {1,2,...,J} and edges A;; which is
the intersection of the faces F; and Fj.

An
Fig. 6.1 A polyhedral domain 2

In a neighborhood O,, of vertex A, shown in Fig 6.2, u(z) has an
asymptotic expansion :

6
u = > P L0, §) xm (p) + o
i>1, 0<yll<k—3/2
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where (p, 0, ¢) are spheric coordinates with the origin located at the vertex

A, CIJ%](H, ¢) and x (p) are C™ functions, and ug € H*(O,,) is the smooth

part of u, and 'y%H] > ’yr[,i@] > 0.

Fig. 6.2 A neighborhood O,, of vertex A,

In a neighborhood U;; of edge A;; shown in Fig 6.3, u(x) has an asymp-
totic expansion :

1] !
u = > r7i Xij(T)‘I’EJJ(ﬁb) U(z3) +uo
1>1, 0<oll<k-1

where (r,¢,x3) are cylindrical coordinates with respect to the edge A},
Xij (1) <I>[l](gz5) and ¥ (z3) are O functions, and ug € H*(U;;) is the smooth

g
part of u, and JZ[;H] > az[;] > 0.

1t A
8/2
=

i

4
A

X

1

Fig. 6.3 A neighborhood U;; of edge A;;
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In a neighborhood Vp, ;; of vertex-edge A, — A;; shown in Fig 6.4, u(z)
has an asymptotic expansion :

(5] ol
LD BRSO Zt21,m[§]<k—1/2 51077 0xm () Pm,ij ($) Yrm,ij(6)

m

[
+ 2121,0<7£f}§k73/2 prr (1)7[1;(97 $)xm(p) + uo

where (p, 0, ¢) are spheric coordinates with respect to the vertex-edge A, —
Az’j, Xm (p), q)m,ij(¢)7 \I/m,z'j (9) and (137[5»1 (9, ¢5) are C'°° functions, and Uy €
H*(Vy,45) is the smooth part of w.

X3

I

9, g

A|2 X2
3
o~
Lo
VS,G(AI,AI,Z)
A

Fig. 6.4 A neighborhood V,, ;; of vertex-edge A,, — A;;

Theorem 6.1 Let u be the solution of the problem with f € H¥2(9)
and g € HF3/2(T), k > max{2,2y + 1} and let u, € SP(%A),p >k — 1
be the finite element solution. Then

(6.2) lu = upll () < Cp*"

where 1 = min,, ;; min{%[,i] +1/2, al[}]}, and the constant C is independent
of p.

Proof Let s be a union of all singular neighborhoods, including the
neighborhood of vertex, edges and vertex-edges, and let Q¢ = 2\ Q. Since
f e H2(Q) and g € H*3/2(T"), u € H*(Qy). Let A be a partition of €,
SP(Q, A) be the spaces of piecewise and continuous polynomials of degree
p associated with A. A Patch )y is a union of elements sharing a common
vertex Ty of the partition A,

Q= U Qj-
TFQy

A piecewise linear function ¢y(x) is associated with each vertex T, such
that ¢¢(x) = 1 for £ = Ty and ¢y(x) = 0 at the vertices other than Tj.
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Therefore ¢p(z),1 < ¢ < L forms a partition of unity,

> dulz) =1

1<t<L

We next to analyze the approximation error of in each patch located in
different regions of (2.

(a) If Q, contains no vertices and no edges,Qy C y. An affine mapping
M, maps Qg onto Qo C @ = (—1,1)3, mapped function @ is extended to Q
with compact support Qo = (—b,b)® with b € (0,1), and @ € H*(Q) with
k > 14 2min{o,v + 1/2}. There exists ¢y € P,_1(Q) such that

(6.3) G — el (qq) < Cp~ k=D

Let ¢, be a mapping back polynomial, then

lu = el < Il — Gellarge) < cp~ k=D,

(b) If Q¢ contains a vertex A,, but no edge, Q; C Om. An affine mapping
M,y maps @y onto Ry C Q = (—1,1)3, mapped function % is extended

to @ with support Ry = R; Sng” By Theorem 3.1-3.2 & € B*#(Q) with

s = 2—1—277[711] and = (—1/3 —1/3,—1/3). There exists ¢ € P,_1(Q) such
that

L _ o)
% — Gell i (ryy < Cp (+270)

Let ¢y € P,—1(Q¢) be a mapping back polynomial, then

~ ~ _ [1]

(c) If Q¢ contains no vertex but an edge A;;, Q; C U;j. An affine mapping
M, maps Q onto Ry C Q = (—1,1)3, mapped function % is extended to
@ with support By = R; 5 - . By Theorem 4.1-4.2 @ € B*8(Q) withs =
1+202[;] and f = (—1/2,—1/2,83) with B3 > —1, arbitrary, and there exists
¢¢ € Pp—1(Q) such that

Sl

1% — @ell g1 (rg) < Cp~ 2%
Let ¢; € P,_1(Q¢)be a mapping back polynomial, then

L ol
(6.5) v = el (g, < Clla— Gellar(ryy < Cp 2%

(d) If Q¢ contains a vertex A, and an edge A;j, Q¢ C Vp 5. An affine map-
ping M; maps Q onto Ry C Q = (—1,1)3, mapped function % is extended
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0,00,60° and 4 € B¥#(Q) with s = 1+ Qmin{’)’r[rlL] +
1/2,01[}]} and = (—1/2,-1/2,0), and there exists ¢y € P,_1(Q) such that

to () with support R/3

in{7} 1
”ﬂ’ - ¢£HH1(RO) < Cp72mm{’7m +1/2’Uz’j }

Let ¢¢ € P,_1(Q¢) be a mapping back polynomial, then

o o min( L] )
(6.6) lu = @l gy < Clli — Gellm(ry) < Cp~2™HmH1/205),

Let ¢, = Zle wede € SP(Q,A), and

L
v = @pllr o) < C’Z lw — @ell i1 (Q,)-
=1

which together with (6.3)-(6.6) yields (6.2). O

Remark 6.1 The convergence rate in (6.1) is optimal because the lower
bound of the error in FE solutiopn of the p-version has been proved in [11],
i.e. there is constant C; independent of p,

(6.7) [t — upl| 1) > Crp™"

For the proof of the estimation (6.7) we refer to [11].

Remark 6.2 The optimal convergence is proved for the Neumann bound-
ary value problem (6.1), the arguments can be carried for Dirichlet and
mixed boundary value problems as well with necessary adjustment on the
boundary. Such an adjustment is not trivial, we refer to [11].

7. CONCLUDING REMARKS

The optimal convergence of the FE solution of the p-version for elliptic
problems in polyhedral domains has been established in The Theorem 6.1
and Remark 6.1-6.2. The approximability of singular functions in three
dimensions proved in the framework of the Jacobi-weighted Besov spaces
is the key of the proof of Theorem 6.1. It was impossible to prove the
best approximation without this framework in the past two decades. The
Jacobi-weighted Besov spaces are the most appropriate function spaces to
characterize the singualrities in the solution caused by the non-smoothness
of the domains, which lead to the best estimation of the lower and upper
bounds in approximation error for the p-version of FEM in one, two, as
well as three dimensions. Table 7.1-7.2 indicate how severely the error
estimations are affected in different mathematical frames for the h— and
p-version of FEM.

The results and analysis in this paper and [11] can be generalized to
the p-version of the BEM and the spectral method in three dimensions, and
the optimal convergence can be proved in this mathematical framework.
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Table 7.1. The value of £ and s in Sobolev,
Besov and Jacobi-weighted Besov spaces for functions of

pY, 17, plsin? p-type

Space | H"(Q) H*(Q) BQ) | H*(Q) | B**(Q)

P 13/2+ ] | 3/24+v—€|3/2+7 | 2+2y—€| 242y

r? 1+ o] l1+0—c¢ 140 [1420—€¢| 1420

pYsin?0 | 14 [A 1+X—e I+ [ 14+22—€| 142X

where A = min{y + 1/2,0},[y] is the largest integer < .

Table 7.2. Accuracy of approximation of the h- and p-version
to singular functions of p?,r7%, p7sin’ ¢-type
based on Sobolev, Besov and Jacobi-weighted Besov spaces

h version p version
Space | H*(Q) | B*(Q) H*(Q) B Q) | B*P(Q)
o RU2Hr—¢ | p1/247+1/2 | = (1/247=€) | p=(1+1/2) | p—(27+1)
o po—c he p=(=9) p=° 2
oY sin?0 A€ o) p= (A9 p p2

where A = min{y + 1/2,0}.
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