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Abstract

In this paper, a semidiscrete finite element Galerkin method for the equations of mo-
tion arising in the two dimensional Oldroyd model of viscoelastic fluids with zero forcing
function is analysed. Some new a priori bounds for the exact solutions are derived under
realistically assumed conditions on the data. Moreover, the longtime behaviour of the so-
lution is established. By introducing Stokes-Volterra projection, optimal error bounds for
the velocity in L>°(L?) as well as in L°°(H')-norms and for the pressure in L°°(L?)-norm
are derived which are valid uniformly in time ¢ > 0.
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1. Introduction. The motion of an incompressible fluid in a bounded domain € in R? is
described by the following system of partial differential equations:

0
a—ltl—i-u-Vu—Va—i-Vp:F(x,t), xe, t>0,

V-u=0, xeQ,t>0,

with appropriate initial and boundary conditions. Here, 0 = (o) denotes the stress tensor
with tro = 0, u represents the velocity vector, p is the pressure of the fluid and F is the external
force. The defining relation between the stress tensor ¢ and the tensor of deformation velocities
D = (Dji) = (Wiz, + uyy,), called the equation of state or sometimes the rheological equation
establishes the type of fluids under consideration. For example, when o = 2vD (using Newton’s
law) with v the kinematic coefficient of viscosity, we obtain Newton’s model of incompressible
viscous fluid and the corresponding system is widely known as the Navier-Stokes equations.
This has been a basic model for describing the flow at moderate velocities of the majority of the
incompressible viscous fluids encountered in practice. However, models (of viscoelastic fluids)
have been proposed in the mid-twentieth century which take into account the prehistory of the
flow and are not subject to the Newtonian flow. One such model, proposed by J. G. Oldroyd
(ref. [22]) is called Oldroyd model. In this case, the defining relation has a special form like

5} 4,0
(1+ )\E)U =2v(l+ kv E)D’
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where \, v, k are positive constants with (v — kA™!) > 0. Now the equation of motion arising
from the Oldroyd’s model gives rise to the following integro-differential equation :
Ju

t
(1.1) E—i—u-Vu—uAu—/ B(t — 1)Au(z,7)dr + Vp = f(z,t), 2 €Q, t >0,
0

and incompressibility condition

(1.2) V-u=0, z€Q,t>0,

with initial and boundary conditions

(1.3) u(z,0) =up inQ, u=0, ondQ, t>0.

Here, Q is a bounded domain in two dimensional Euclidean space R? with boundary 052,
g =2kA"! > 0 and the kernel 3(t) = vy exp(—dt), where v = 2A~1 (v — kA7) and § = A~!. For
details of the physical background and its mathematical modelling, we refer to [13], [22] and
[23].

Throughout this paper, we assume that the nonhomogeneous term f = 0. In fact, assuming
conservative force, the function f can be absorbed in the pressure term.

Based on the analysis of Ladyzenskaya [15] for the solvability of the Navier Stokes equa-
tions, Oskolkov [23] proved the global existence of unique ‘almost’ classical solution in finite
time interval for the initial and boundary value problem (1.1)—(1.3). The invesigations on
solvability were further continued by the co-workers of Oskolkov, see [14] and Agranovich and
Sobolevskii [1] under various sufficient conditions. In these articles, the regularity results are
proved under the assumption of some nonlocal compatibility conditions on the data at ¢ = 0,
which are either hard to verify or difficult to meet in practice. In the present paper, we have
obtain some new a prior: bounds for the solution under realistically assumed conditions on
the data. In the Oldroyd fluid, the stresses after instantaneous cessation of the motion decay
like exp(—A~!t), while the velocities of the flow after instantaneous removal of the stresses
die out like exp(—+~1#). Therefore, it is of interest to discuss the behaviour of the solution
as t — oo. Recently, Sobolevskii [24] discussed the long time behaviour of the solution under
some stabilizing conditions on the nonhomogeneous forcing function using a combination of
energy arguments and semigroup theoretic approach. When the forcing function is zero, we
have derived, in Sections 2, the exponential decay properties for the exact solution using only
energy arguments.

For the earlier results on the numerical approximations to the solutions of the problem
(1.1)—(1.3), we refer to [2] and [5]. Akhmatov and Oskolkov [2] discussed stable finite differ-
ence schemes for approximating the solutions of (1.1)—(1.3) without any order of convergence.
Cannon et al. [5] proposed a modified nonlinear Galerkin scheme for a periodic problem using
spectral Galerkin procedure and established the rates of convergence keeping time variable
continuous.

The approach of the present article is influenced by the earlier results of Heywood and Ran-
nacher [9]. In [9], the semidiscrete error estimates were derived without making assumptions
about the solution regularity that would depend on the nonlocal compatibility conditions on
the data at ¢ = 0. Because of the exponential growth of the error constants with respect to
time, the error estimates are virtually meaningless for large values of . Subsequently, assum-
ing stability of the exact solution, Heywood and Rannacher [10]-[11] proved that the error in
the discrete approximation would remain small uniformly in time as ¢ — oco. For higher order
elements, optimal semidiscrete error estimates were derived in [11]. Finally, the completely



discrete scheme was obtained using Crank-Nicolson method in time and a priori error bounds
were extended uniformly in time for approximation of an exponentially stable solution, see
[12].

There is hardly any literature devoted to the analysis of the finite element Galerkin methods
for the problem (1.1)—(1.3), and hence, the present investigation is a step towards achieving
this objective. Therefore, in this paper, we address ourselves to the finite element Galerkin
approximations to the system of equations (1.1)—(1.3) under realistically assumed regularity
conditions on the exact solution. It is to be noted that the system (1.1)—(1.3) can be thought of
an integral perturbation of the Navier Stokes equations. Therefore, we would like to investigate
‘how far the results on finite element analysis for the Navier-Stokes equations (ref. [9]-[12])
can be carried over to the present case’. More precisely, our emphasis is to bringout the role
played by the integral term.

The main results of the present article consist of

(i) proving new regularity results for the solution which are valid for all time ¢ > 0 with
out nonlocal compatibility conditions and establishing the exponential decay property
for the exact solution.

(ii) the derivation of a priori error estimates for the linearized problem which are uniformly
bounded for all time ¢ by using duality arguments.

(iii) an introduction of Stokes-Volterra projection.

(iv) obtaining optimal error estimates for the semidiscrete Galerkin approximations to the
velocity in L (L?)-norm and to the pressure in L*(L?)-norm.

For the proof of (i), we have made use of exponential weights for the derivation of the
new regularity results for large enough time, while for the behaviour of the solutions at ¢t = 0,
we have applied the weight 7%(¢) = min(1,¢). These weights also become crucial in the proof
of (ii). Compared to the Navier-Stokes equations, there are difficulties in introducing these
weights in the analysis of the present problem due to the presence of the integral term. We
note that the smoothing property proved via energy argument in [21] is useful for deriving
the regularity results for the present problem without nonlocal compatibility assumptions on
the data at ¢ = 0. In order to derive optimal error estimates for the velocity in (iv), we first
split the error by using a Galerkin approximation to a linearised Oldroyd model and then
introduce a Stokes-Volterra projection. While it is possible to avoid Stokes-Volterra projection
by appealing to Stokes projection alone, but its introduction makes analysis simpler. For the
major part of this article, special care has been taken (see, Lemmas 4.1-4.3 and 5.3-5.4) to
avoid the use of standard Gronwall’s Lemma. We note that in the context of Navier-Stokes
equations, Okamoto [19] has derived similar convergence analysis using semigroup theoretic
arguments.

The remaining part of this paper is organised as follows. While in Section 2, we discuss
a priori bounds for the exact solutions, in Section 3, we describe the semidiscrete Galerkin
approximations. Section 4 is devoted to the optimal error estimates for the velocity. In Section
5, we derive the optimal error estimate for the pressure. Finally, we coclude the paper with a
summary and possible extensions in Section 6.

2. Preliminaries and A Priori Bounds. For our subsequent use, we denote by boldface
letters the R2- valued function space such as

H = [Hy (), L*=[L*(Q)]* and H™=[H™(Q)P,



where H™(2) is the standard Hilbert Sobolev space of order m. Note that H} is equipped
with a norm

2 1/2 9 1/2
Vvl = [ > (8vi,05v:) = <Z(V’0i,vw)) :
i,j=1 i=1
Further, we introduce some more function spaces which are well suited for our problem:
J = {¢€H}:V-¢=0)
J={pecl?:V-¢ = 0 in Q,¢ -n|sg =0 holds weakly},
where n is the outward normal to the boundary 9Q and ¢ - n|gq = 0 should be understood
in the sense of trace in H~/2(dQ), see [25]. Let H™/R be the quotient space consisting of
equivalence classes of elements of H™ differing by constants, with norm ||p|| gm /g = [|p + ¢||m-

For any Banach space X, let LP(0,T; X) denote the space of measurable X- valued functions
¢ on (0,T) such that

T
/ lp(t)|Bdt < 00 if 1< p < oo,
0

and for p = oo
ess sup ||o(t)||lx < oo if p=oc.
0<t<T

Further, let P be the orthogonal projection of L? onto J.
Through out this paper, we make the following assumptions, which will be used for our
subsequent analysis.

(A1). For g € L2, let the unique pair of solutions {v € Jy,q € L?/R} for the steady state
Stokes problem

_AV+Vq:g7
V-v=0 in Q, v]|pa=0

satisfy the following regularity result

(2.1) Ivllz + llallzr/r < Cligll-

Setting
~A=-PA:J;NnH2CI—=>J

as the Stokes operator, the condition (A1) implies

vl < C|Av| VYvedynH2
IVIZ < ATHIVVI? Yy edy, V)P < ATHIAY)? v e 3 N H?,

where \; is the least positive eigenvalue of the Stokes operator —A.

(A2). The initial velocity ug(z) satisfies for some constants M;, and Mo

(l) uy € J; with ||u0||1 < My,
(ii) up € H2NJ; with |ugllz < M.
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Before going into the details, let us introduce the weak formulation of (1.1)-(1.3). Find a
pair of functions {u(t),p(t)} € H! x L?, t > 0, such that

(0, ) + H(V0,V6) + (V) + [ (¢~ 6)(Vu(s), Vo) ds
(2.2) = (nV-¢) VoecH;
(V-u,x) = 0 vyelL’

Equivalently, find u(.,t) € J; such that

(2.3) (ug, @) + p(Vu,Vep) + (u-Vu,¢) + /Ot B(t — s)(Vu(s),Ve¢)ds =0
VopedJy, t>0.

Now, we derive some regularity results for the solutions {u,p} that are required to prove the
optimal error estimates in the later sections.

For our subsequent analysis, we use the positive property ( see, [18] for a definition) of the
kernel 3 associated with the integral operator in (1.1). This can be seen as a consequence of
the following lemma. For a proof, we refer the reader to Sobolevskii ([24], p.1601), McLean
and Thomeé [18].

Lemma 2.1 For arbitrary o > 0, t* > 0 and ¢ € L?(0,t*), the following positive definite
property holds

/ot* (/ot exp [—a(t — 5)]¢(s) ds) (t) dt > 0.

In order to deal with the integral term, from time to time, we appeal to the following
Lemma.

Lemma 2.2 Let g € L'(0,t*) and ¢ € L?(0,t*) for some t* > 0. Then the following estimate

holds
(/0 ([ sts —rsorar) ds)m < (/0 |g<s>|ds) (/0

With change of variable and change of integrals, it is easy to check the validity of the above
result.
Below, we discuss some a priori bounds for the solution u of (2.3).

*

1/2
|6(s)I? d8> :

Lemma 2.3 Let 0 < a < min (4, \1p1), and let the assumption (A2) hold. Then, the solution
u of (2.3) satisfies

t
a, _ -
[l +(a = et [ e Tulr)Far < e ul?, >0
Proof. Setting (t) = e*u(t) for some o > 0, we rewrite (2.3) as

(g, ) — a(, @) + e (@ Vi, ¢) + u(V, Vo) + /0 t Bt — m)e*=(Vi(r), V) dr
(2.4) = 0 Vo¢el;.



Choose ¢ = 1 in (2.4). Since (- Vi, @) = 0 and || < A} Val?, the following estimate
holds :

d t
(25) Al + 20— )Vl +2 [ (e - e (Va(r), Va(o)dr <o
1 0
After integrating with respect to time, the third term on the left hand side of (2.5) becomes

nonnegative, provided § > « > 0 and the second term on the left hand side is also nonnegative
if a < Ajp. With 0 < @ < min (§, A\ ), we complete the rest of the proof. O

Lemma 2.4 Let 0 < o < min(§, \1p) and let the assumption (A2) hold. then there is a
positive constant K = K (4, u,7, A\1, M1) such that for all ¢ > 0

t -
Vu@®)|? +e72 [ 22T Au(r)||? dr < Ke 2°t t> 0.
| ;
0
Proof. Using the Stokes operator A, we rewrite (2.4) as

(i, @) — a(@t, ) — u(Bit §) - / Bt = m)e7) (Ba(r), @) dr
(2.6) = —e (a-Va,e).
With ¢ = —Ad in (2.6), we note that
o ld,
(i, Ad) = 52|V,
Thus,
d . t o
SIVal® + 2ulAa)® +2 [ Bt - 1)et (Ba(r), Aa) dr
0
= —20(i1, At) 4+ 2¢7 (i - Vi, Aa).

On integration with respect to time and using Lemma 2.1 with definition of 3, it follows for
0 < a < min (0, A1) that

t t -
IVa@* + 20 [ [Aa)|Pdr < Vol =20 [ (4, Aw)dr
0
(2.7) + 2/ 9T (@ Vi, Aa)dr = |[Vue|? + I + L.

To estimate |I;|, we apply Cauchy-Schwarz inequality and Poincaré inequality. With ab <
iaQ + §b2, a,b >0, e >0, we obtain from Lemma 2.3

t o
< COwame [ IVa@)|Pdr+e [ |Aa()|dr
0 0

IN

o
Clap A 9)luol? +¢ [ [Aa(r)|dr.
To estimate of Is term in (2.7), we note that repeated use of Hélder’s inequality yields

(@ Vi, Ad)| < [0l pao) [ VallsgllAal.



By Sobolev inequality, see Temam [25],

I$llzs@) < ClllIZ[V]Z, ¢ € H'(Q),

and hence,

t ~
Bl <C [ e ol |val|Aa) o

An appeal to the Young’s inequality ab < + = ebq ,a,b>0,¢t>0and % + =~ =1 with Lemma

2.3 yields

p/q

t o
|I2| < C(e)/ e o7 || Val* d7'+6/ |Aaldr.
0 0

Altogether, we have from (2.7)
t t
IVa(e)I2 +20n =) [ I1Aa(]?dr < Clayh, Ol Vol +C(e) [ el T dr.
With € = £, apply Gronwall’s inequality to obtain
t t
VGO + 1 [ I1Aa(r)|Fdr < Clay )| VuolPexp {C(w) [ e 42| VaPdr).
Using Lemma 2.3, we bound the
¢ —4 112 A 112 2 t ~ (2 4
e el valar < fuol [ Vel dr < Clul,

and hence, the result follows. This completes the rest of the proof. O
Remark 2.1 The a priori bounds of the above two Lemmas are useful for proving existence
of global strong solutions to (1.1)—(1.3) by using the Faedo-Galerkin method, see Temam [25],
Ladyzhenskaya [15] for similar analysis in case of Navier Stokes equation. Since the existence
analysis is a routine one, we refrain from discussing this for (1.1)—(1.3), see Pani [20].

Theorem 2.1 Let the assumptions (A1) and (A2) hold. Then, there is a constant K =
K(My, Ma, A1, p,6,7) such that for 0 < o < min(d, A\; ) the following estimates hold:

t
(2.8) a3 + lue@)* + o)l +/O e*|luy|[f ds < Ke >, ¢ > 0.

Proof. Set ¢ = e2**u; in (2.3) and rewrite it as

at

elu? = —ot({ . Vi, etuy)

p(An, e®tuy) — e
4 / B(t — 5)et=5) (Ai(s), e uy) ds.

Using both Sobolev imbedding Theorem and Sobolev inequality, the second term on the right
hand side can be evaluated as

—ot (@ . Vi, e“tuy )|

IN

el s [Vl palle™ u|

C(e) (luolPe~ || val|* + [|Ad][?) + ee®|lu|2.

le

IN



For the remaining two terms, we apply Cauchy-Schwarz inequality with Young’s inequality. A
use of Lemma 2.4 yields

(-39 [ @ ua)lPds < e [ [ NAats)ds + [ e vac) ds
(2.9) + Clu,e) /0 Y /O " B(s — 1)) || Ad(r)|| dr)? ds

For last term on the right hand side of (2.9), we use the definition of 3, Holder’s inequality
and Lemma 2.2 to find that

1= [ 8o = mee D Aagr) | dr? as
= [ / (=) Ra(r) ) d
2 [([ et an [ 5e*<‘**“>“*>||Aﬁ<f)||2d¢>ds
—(0—a)(s—T) - 2
< (5_(%)/0 /0 ¢ |Aa(r)|? dr ds.

Using change of variables, we obtain

IA

~O=)7 Ad(s — 7)||2 dr ds.

Now, changing the order of integration, we arrive at

v b6 R 2
I < (5_a)/0 e —a>T(/ 1Ad(s — 7)|2 ds) dr

2

t t
< e ) e[ 1Ba(s) P ds)ar
o
? [ I1Bas))? s
0

Altogether with e = %, we obtain using Lemma 2.4

(2.10)

IN

IN

¢ ¢ _ ¢
(2.11) / 62"‘s||ut||2 ds C(a,d,7) [/ ezc"s||Au||2 ds + / e2°‘s||Vu||4 ds]
0 0 0

< C(a, 0,7, M).

On differentiating the equation (2.6) (with o = 0) with respect to time, we obtain
~ . t ~
(2.12)  uy — pAus — B(0)Au — / Bi(t — s)Au(s)ds = —(u; - Vu+u - Vuy).
0

Using again the form of 3, we have (;(t — s) = —Bs(t — s). Integration by parts in time now
yields

t - t -
- / Bi(t — s)Au(s)ds = / By(t — s)Au(s) ds
0 0
- - t -
= B(0)Au(t) — B(t)Aug — /0 B(t — s)Aug(s) ds.

8



Thus, forming an inner product between (2.12) and 2

as

uy, we rewrite the resulting equation

1d

t
S (@ ul?) = el + pe | Vu? + / e (-9 (Ve Vettuy) ds

—ozt( at

= fye_(‘s_a)t(Auo,eatut)—e ey - Va + i - Ve*uy, e*uy).

Observe that (- Ve*uy, e**uy) = 0. Integrate with respect to time the resulting equation and
use Lemma 2.1 to obtain

t t
(213) e ugl? + 2 / 27 [Vuy(s) |2 ds < [ (0)|* +2a [ € us(s)]*ds
+ 2/ (e**uy - Vu, e ut)ds+2fy||Au0||/ —(0-a)s || @y, || ds.

For the third term on the right hand side of (2.13), use of Sobolev imbedding Theorem and
Sobolev inequality now yields

t
2/ e (e - Vi, e wy)| ds < O) sup [[Vu(s) ||/ €2 |u ||2d8+,u/ €205 Vg |2 ds.
0 0<s<

Substituting the above inequality in (2.13), it now follows that
t
P+ g [ V()2 ds
t
< Ol a ) [0 + Aol + [ e (o) P ds]

Note that [Jus(0)|| < C(||Aug|| + ||fol]). Using (2.11), we find that

t

(2.14) Jlue|* + Mefm/ e[ Vuy(s)[|* ds < C(8, ax, p, Mp)e™ >
0

To estimate ||Au(t)||, choose ¢ = —Ait in (2.6) and rewrite as

(2.15) pldal? < e*lugll|Aa] + e (a- Va, Aq)

t _ -
+ / Bt — 5)e* =) | Aa(s)||| Aa(t)] ds.
0
The first two terms on the right hand side of (2.15) are bounded by
< C(e) [l + e |2 Vaa|*] + 2| Aul?.
Using Holder’s inequality the third term on the right hand side of (2.15) is bounded by
t -
Clabe) [ Aa(s)|? ds + el Aa*

With € = /61, multiply both sides by e~2**. Then apply Lemma 2.3 and (2.14) to obtain

. o
[Aa]* < C(Jluoll2) + C(%a,&u)fo |Aa(s)||? ds.
A use of Lemma 2.4 yields
[Au(®)|® < K(v,a,8, Ma)e >

From (A1), we have ||v|s < ||Av|| and thus, using the equation (1.1) we obtain the desired
estimate for the pressure term. This completes the rest of the proof. O



Theorem 2.2 Under the assumptions of the Theorem 2.1 , there is a positive constant K such
that the pair of solutions {u,p} satisfies the following estimates for 0 < oo < min (6, Ap):

(2.16) () ||lwg]|2 < Ke 22, >0,

where 7*(t) = min(t,1). Moreover,
t
(2.17) [ o) B+l + B ) ds < K, 2>,

where o(t) = 7*(t)e?*.

Proof. For the first estimate (2.16), form an L2-innerproduct between (2.12) and —o(t)Auy to
obtain

d ~ L 1
(2.18) (a(®)[Vuel?) + w(t)llAutll2=—w(t)(Au,Aut)Jr§at||Vut||2

2dt
S / it — s)(Au(s), Aug) ds + o(t) (ug - Vi, Auy)
= [1+I(;+13+I4.

For I, we obtain in a standard way

~ € ~
(2.19) 1] < Cle,Ma®)|Aul® + o Au*.

Since oy = 17e?? + 2a7*e2™ with 7%, 7} < 1, we find that
(2.20) L] < C(a)e® || Vuy||%.

Using the Sobolev imbedding theorem, the Sobolev inequality and Young’s inequality, the
nonlinear term in I is bounded by

€ ~
(2.21) L < CQo®)|Vul*(IVullAu] + [[Vul*) + o ()] Auy*

~ € ~
< Clsup | Aul?)o(t)[Va|* + So(t)] Aw

For I3, we have with 3;(t — s) = —38(t — s),

2 t

el (6-a)(t-9) || A 21 €Al
1] < g7 ([ e |Aa(s)]ds)* + Sot) | A,

and hence, integrating with respect to time and using the estimate (2.10) for the I term, we
obtain

t ~2 e [t S
(2.22) /O|13|ds < @HE/O o(s)[| A2 ds

t B t -
< C’(fy,é,a,e)/ e2as||Au(s)||2ds+§/ o(s)||Aug(s)| ds.
0 0

Multiply (2.18) by 2 and integrate with respect to time. Substitute (2.19)—(2.22) in the result-
ing equation. With e = u/3, we find that

t -
(2.23) d®|Vul? + p /0 o ()| Aug||? ds

- t -
< C(lBuol®) [ e (I Tul? + |Au(s)|?) ds.

10



From the assumption (A1)-(A2) and Theorem 2.1, we complete the proof of (2.16) and the
first estimate of (2.17).

Now, form an inner product between (2.12) and o(t)uy. Then proceed, similarly, as in the
estimate of (2.11) to obtain

t t - ~ t -
| o@lual? ds < Cr,a,8) [ el Au|? ds+ Clsup |Au(®)l) | ofs)]Aul ds,
0 0 t>0 0

and the required estimate for uy; now follows.

The estimate of Auy can be obtained in a similar way as in the estimate of u; leading to a
bound for Au. Again for the pressure, we differentiate the equation (1.1) with respect to time
and with f = 0 and use a priori bounds for uy and Aw; to complete the rest of the proof. O

In the next section, we shall also use the a priori bounds of the following unsteady Stokes-
Volterra problem:

t
(2.24) Vi — pAv + Vp — / B(t — s)Av(s)ds = g, zE€Qt>0
0
(2.25) Vv = 0, z€Q,t>0
(2.26) V]i=o = 0, v]aq = 0.

With appropriate modification of the arguments leading to the estimates of Theorem 2.2, we
easily derive the following estimates.

Corollary 2.1 For 0 < a < min (8, u)1), and g € L?(0,00;L?), the following estimate holds

t )\2 t
/O TV + [IVe(DI® + IpllFn g} dr < C (m) /0 e**|g(s)[|? ds.

Proof. Note that
(V,¢) = (v, 9) = (A, ¢) = [ Bt —7)e* "D (A¥(r), ¢) dT = (&, 9)-
As in (2.6), choose ¢ = —Av and obtain

d, . SR b ) (t—s) s R < 1 .
SITVE 4+ (1= aXTIAT? + 2 [ e G- (B(s), Av)ds < —— g
dt 0 H— aA]

Integrating with respect to time, the third term on the left hand side becomes nonnegative for
0 < a < min (4, uA1), and hence,

t B by t
LTV + (u— o) [ e Av(s)|Fds < == [t g(s)|2 ds.

BAL —
Proceed exactly as in the proof of theorem 2.2 to complete the rest of the proof. O
3. Semidiscrete Galerkin Approximations. From now on, we denote h with

0 < h < 1 by areal positive discretization parameter tending to zero. Let Hy and Lp, 0 < h < 1
be two family of finite dimensional subspaces of H} and L2, respectively, approximating velocity
vector and the pressure. Assume that the following approximation properties are satisfied for
the spaces Hy, and Ly:

11



(By) For each w € Hy N H? and ¢ € H'/R there exist approximations izv € Hp and
Jnq € Ly, such that

Iw —inwl| + hl|V(w — ipw)|| < Koh*[wll2,  la = jndllzz/r < Kohllgllm/g-
Further, suppose that the following inverse hypothesis holds for wy € Hy
VWl < EKoh™*[[wal|.
For defining the Galerkin approximations, set for v, w, ¢ € Hj},

a(v,$) = (Vv,V¢)

and

v, w, 8) = (v T, ) — 5(v- Vb, w).

Note that the operator b(-, -, ) preserves the antisymmetric properties of the original nonlinear
term that is
b(Vh, Why Wp) =0 Vvi, Wy € Hp.

The discrete analogue of the weak formulation (2.2) now reads as: Find u(t) € Hy and
pr(t) € Ly, such that uy(0) = ugp and for ¢ > 0

(upt, Pp) + pa(up, @p) +  b(up, up, @p) — (Pr, V- @p)
t
(3.1) = = [ Bt =s)a(un(s).g)ds ¥ € Hy,
(V-up,xn) = 0 VYxu € Ly

where ug, € Hy, is a suitable approximation of ug € Jj.
In order to consider a discrete space analogous to J;, we impose the discrete incompress-
ibility condition on Hjy and call it as J,. Thus, we define J;, as

Jn={vn €Hp: (Xn, Va-vp) =0 Vxp € Lp}.

Note that the space J; is not a subspace of J;. With J; as above, we now introduce the
Galerkin formulation : Find uy(t) € Jp, such that u,(0) = ugp, and for t > 0

t
(unss 80) + paun )+ [ Bt = )a(u(s), ) ds
(3.2) = —b(up,up, @) Vo, € Jp.
Since Jp is finite dimensional, the problem (3.2) leads to a system of nonlinear integro-
differential equations. A use of Picard’s theorem now yields existence of a unique local so-
lution in an interval [0,t*), for some ¢* > 0. For continuation of solution beyond ¢*, we need

to establish an L>°(L2) bound for the approximate solution uy. Setting ¢, = uy in (3.2), we
obtain as in (2.5)

d t
Sl + 20 Vun +2 [ B(t = s)a(un(s), un(®)) ds = 0.
On integration with respect to the temporal variable ¢ and using the positive property of the
kernel 3, we find that
[un(®)[* < C(p)lluonl®> < C vt >0,

12



provided |lugy|| < Cllug|| . This is indeed true, which we shall see later on. This shows the
global existence of the Galerkin approximation uy for all ¢ > 0.

Once, we compute uy(t) € Jp, the approximation py(t) € Ly to the pressure p(t) can be
found out by solving the following system :

(P, V- @) = (ung, dp) + pa(un, ¢p) + /Otﬂ(t — s)a(u(s), @) ds
(33) + b(uha Up, ¢h) - (f7 ¢h) v¢h € Hy.

For the solvability of the above system (3.3), we note that the right hand side defines a linear
functional £ on Hy, i.e., ¢, — €(¢p). By construction £(¢;,) = 0 for all ¢ € Jp. It is now easy
to check that this condition implies existence of p, € Ly, see [7]. Uniqueness is obtained on
the quotient space Ly /Ny, where

Nn ={an € Ly : (gn, V- @) = 0,V € Hp}.

The norm on Ly, /Nh is given by
= inf .
||Qh||L2/Nh XheNthh + Xall

For continuous dependence of the discrete pressure py(t) € Lp/Njp on the discrete velocity
up(t) € Jp, we assume the following discrete inf-sup (LBB) condition for the finite dimensional
spaces Hj, and Ly:

(B2) For every g € Ly, there exist a non-trivial function ¢, € Hj and a positive constant K
such that

[(gn, Vi - @) = Kol [V lllignll L2 /n, -

As a consequence of conditions (B1)—(B2), we have the following properties of the L? projec-
tion Py : L2 — Jy. For a proof, see [7],[9]. For ¢ € Jj, we note that

(3.4) ¢ — Prdp|l + AV Pl < Ch[V ],

and for ¢ € J; N H?

(3.5) 16 — Pugpll + hl|V (¢ — Prp)ll < Ch?||Ad|.

We may define the discrete operator Ay : Hy — Hp, through the bilinear form a(-,-) as
(3.6) a(Vh, @p) = (—ArVh, @)  Vvi, ¢y € Hy.

Set the discrete analogue of the Stokes operator A = PA as Ay, = Py Ay,

With a use of Sobolev imbedding Theorem with Sobolev inequality and the L2-projection,
it is a routine calculation to to derive the following estimates: Let (A1),(B1) and (B2) be
satisfied. Then, there exists a positive constant C' such that

(3.7) b(v, ¢, )| + [b(¢, v, &) < C|VV |2 Av|Y2| V| €],

for veJ; NH? and ¢, ¢ in Hy, and

(3.8) b(én, €, X)| < CIIV LI Anedpl*2IIVEN IIxl
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for ¢y, € Jp and &, x € Hy,.

We conclude this section by citing some examples of the subspaces Hy, and Ly, satisfying the
assumptions (B1) and (B2). Let © be a convex polygon in IR?. Let {73} be a family of finite
decomposition of the domain €2 into 2-simplexes K with diameter hx. Let h = maxge7; hi.
Further, assume that this family of triangulations is regular and satisfies the quasi-uniformity
condition, see Ciarlet [6]. For any nonnegative integer r, let P,(K) denote the space of all
polynomials of degree less than or equal to r. Now, we present two examples of the finite
dimensional spaces, which satisfy the assumptions B; and Bs.

Example 3.1. (Bercovier-Pironneau [3])
Hy, = {on € (C'(0)?NHj: vk € (P(K))? VK € Tpo}
Ly = {gn € (COQ)N € L*(Q) : gl € Pi(K) VK € Ta},
where T}, /5 is obtained by dividing each triangle of 7, in four triangles.

Example 3.2. (Girault-Raviart [7])

H, = {v,e€(C'(Q)NH]: vp|x € (Po(K))? VK € Ty}
Ly = {qn € L*(Q) : qu|x € Po(K) VK € Ty}

For other conforming finite element spaces, we refer to Girault-Raviart [7] and Brezzi-Fortin

[4].
4. Error Estimates for the Velocity. Since Jj, is not a subspace of J;, the weak
solution u satisfies

(e 80) + pa(us )+ [ Bt~ )a(u(s), 64) ds = ~b(w u,6)
(4.1) + (p,V-¢,) Vo eI

In this section, we discuss optimal error estimates for the error e = u — uy. Below, we
first dissociate the nonlinearity by introducing an intermediate solution vj. Let v, be a finite
element Galerkin approximation to a linearized Oldroyd equation satisfisfying

t
(Vhis#) + ma(va,n)+ [ B(t = s)a(va(s), dy) ds
(42) — b(wug) VHe T,
Now, we split the error e as
e=u—u,=(u—vy)+(vp—up) =€+

Note that £ is the error committed by approximating a linearized Oldroyd equation and n
represents the error due to the presence of non-linearity in the equation.

Below, we derive some estimates for £. Subtracting (4.2) from (4.1), we write the equation
in £ as

4)  (€ndn) = paled) + [ A= alels) 6y ds = (.9 1) 1 € i
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Lemma 4.1 Let vi(t) € Jp be a solution of (4.2) with initial condition v (0) = Pyug. Then,
& satisfies

t t .
| eerlg@)? dr < ent [" s (|Auls)| + |Vpl)ds, ¢ > 0.
0 0
Proof. Using & = ¢, rewrite (4.3) as

48 CEedw ol s tpaEd) + [ G- o), ¢y dr
= (B, V- &), ®n € Jh

Choosing ¢, = Py€ in (4.4), we arrive at

SIER + (u=axOIVER + [ B - e NaE(r), &) ar
(45) = ét’ u-— Phu) + :U’a(é, u-— Phu) - a(é?“ - Phu)

+ fﬁt—f (=7 (8(r), 4 — Ppit) dr + (5, V - Paf).

We use approximation property (B1) with discrete incompressibility condition and Hg-stability
of the L?-projection P}, to obtain

|,V - Pr)| = |(p — jnb, V - Paé)| < Ch|[ V||| VE],

and R o
la(§, 0 — P,0)| < Ch||VE]|||Adl|.

With (¢,, 0 — Ppi) = %%Hﬁ — Py1)|%, we first integrate (4.5) with respect to time. Then an
application of Lemma 2.1 yields

@17+ 20 ax™) [ IVEE)ds < 0) - PP ~ [u(0) ~ Pruo)]?
(46) + O [[(IBaE)IP + 1V5() Py ds + e [ IV ds
([ s —1)e®C || VE(r) dr ) | An(s)]| ds
+0n [ ([ 8= et v ar) | Aats) ds

Using Holder’s inequality, we estimate the last term I; on the right hand side of (4.6) as

I < Ch ( [ ([ sts = meseweear) ds> - ([ 18 ds)l/z.

We now recall the estimates of the I-term in Theorem 2.1 and use the definition of 8 to bound

it by

t R t
e [IV&@IF dr+Cte,,o,0m® [ [1Aas)|? s
0 0

I

IN

IN
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Setting € = (u — @A })/2 in (4.6) and using Theorem 2.1, it follows that

A1

2
an  [eeveras <o () [ QB + 9l ds

1 — O

To estimate L2-error, we use the following duality argument: For fixed h > 0 and t > 0, let
w(r) € J1, ¢(7) € L?/R be the unique solution of the backward problem

(4.8) {wT+,qu+thﬁ(s—T)Aw(s)ds—Vq:62‘”5, 0<7<t,
' w(t) = 0.
With a change of variable ¢ — t — 7, set w*(7) = w(¢t — 7). Then w*(7) satisfies the for-

ward linear unsteady Stokes Volterra problem (2.24)—(2.26) in section 2. Thus, we obtain the
following a priori estimate

tfom' /\1 2 as
@9) [ e awl o w4 [ValPyr < 0 () [ el ds,
0 pAL — & 0

For some similar arguments, see Pani and Sinha [21] and Larsson et al. [16].
Form L2-innerproduct between (4.8) and £ to find that

PN = (€,wr) — al6,w) — [ Bls ~ Tale(s), w)ds + (0,7 &)

With ¢ replaced by 7 and ¢, = P,w in (4.3), we obtain using weak form of (4.8)

eoT|g? = i(ﬁ’w) — (&,,w — Pyw) — pa(€,w — Pyw) — (p, V - Pyw)

dr
(4.10) + (¢, V-€)+ [/BT—S (s), Paw) ds—/ﬁs—r Ja(&(s),w)]| .

We rewrite the last term on the right hand side of (4.10),i.e., the integral terms as

t T
— [ Bls=ma€(s)w = Paw)ds + [ B(r = s)a(€(s), Puw) ds
(4.11) / B(s — 1)a(&(s), Prw) ds.
From the definition of Py, the second term on the right hand side of (4.10) becomes

i(gaw - PhW) - (ll - Phu7WT)‘

(4.12) (7w — Paw) =

Using weak discrete incompressibility condition for the fourth and fifth terms on the right hand
side of (4.10), we arrive at

(4.13) —(p, V- Pyw) = —(p— jp, V- Pow) = (p — jap, V - (W — Pyw)),
and
(4.14) (¢, V&) =(q—3jng,V-§).

16



Substitute (4.11)—(4.14) in (4.10) and integrate with respect to 7 from 0 to ¢. Note that the
last two terms in (4.11) cancel each other using change of variables. Thus, we now arrive at

/ CETe(n)Pdr < (€(8), Paw(t)) — (£(0), Paw(0)) + / (18— Padfle e w, |

~ t
IVE][[ fle™* (w — PhW)II) dr + Ch/0 (IVall le™*"V(w — Pyw)]

_|_

(4.15) + e7||Vql| [VE]|) dr
t pt .
+ [ Bls = eIl e (w ~ Pyw)] ds dr.
0 Jr
The first two terms on the right hand side of (4.15) become zero because of w(t) = 0 and

wp(0) = Ppug. For the last term on the right hand side of (4.15), we again appeal to the
estimates of I in Theorem 2.1. Now a use of young’s inequality yields

t t
| emlemiar < e [ e (| aw]® + e + [ Vgl?) dr
0 0
t t -
+ 0t (1 [ VeI ar + bt [ (Vpl + | Buf?)dr ).
0 0

2
Using the regularity result (4.9), we choose € so that (1 — Ce (/Ml a) ) = % We then apply

Theorem 2.1 with estimate (4.7) to complete the rest of the proof. O
For optimal error estimates of £ in L>°(L?) and L®°(H')-norms, we again introduce the
following auxiliary projection Vpu : [0, 00) — J} satisfying

(4.16)pa(u — Vyu, @) + /Otﬁ(t — s)a(u(s) — Vyu(s), @) ds = (p,V - ¢p,) Voo, € Iy

and call it as Stokes-Volterra projection. The form of the above projection is motivated by
Ritz-Volterra projection, see Lin et al. [17] for parabolic integro-differential equations and
by the elliptic projection introduced by Wheeler [26] for parabolic initial and boundary value
problems.

With Vi, u defined as above, we now decompose & as

§:=(u—Vou)+ (Vhu—vp) =(+8.
First of all, we derive optimal error bounds for the error ¢.

Lemma 4.2 Assume that the assumptions (A1), (B1) and (B2) are satisfied. Then there is
a positive constant C' such that

[(u=Vaw)@)|* + R|IV(u—Vau)(®)]? < Ch* [IIAHII2 + [ Vpl?
t -
+ e—2at/ e2a3(”Au”2+ ||Vp||2)d8] < Kh46_2at.
0

Moreover, the error in the time derivative satisfies

I(w = Vaw)@)II* + B*[V(u—Vau)e(t)|* < O

> (u 55 AW + 155 Vpu?)

J=

t -
+ et [ ees(|AulP + | VpIP) ds]
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Proof. With ¢ = u — Vyu, rewrite (4.16) as
@) pal&dn) + [ 6= e IalEls), B ds = (Y §) by € In
Choose ¢, = Py in (4.17) and use discrete incompressibility condition to obtain
(418)  ulIV¢I? + /Ot Bt — 5)e**a({(s),{) ds = pa({, 0 - Pra)

[ Bl e aE )0 Pui)ds + (5 i, T Pad).

Integrate (4.18) with respect to time and use the positivity property for 8(t — s)e*(t=%) ag
0 < a < 6. Applying H}-stability of L2 projection P, estimate (3.4) with approximation
property (B1) and Young’s inequality, we arrive at

[Iveras < cursan | [ (136l + 1956)I?) s

(4.19) + (‘S_T“)%/Ot (/0 B(s — 7)e2t=9) | V¢ ()] df)z ds + e/ot IVE(s)|2 ds.

For the second term, i.e., the double integral term on the right handside of (4.19), we bound
it following Theorem 2.1 by

t ~
<e [ IV ds.
With € = 1/4, we altogether obtain from (4.19)

(4.20) [1veipas < cn [ (18P + 1956)17) ds].

From (4.18), we now easily derive

A - t A
IVEI2 < C(w)h? (| Aal® + [1V5]2) + C(,7, 6, @) / IV¢(s)] ds.
Using (4.20) and Theorem 2.2, we, therefore, obtain
(4.21) IVCI2 < Clu,v,6,0))k? [ Aul + [V

to
e [RaEI? + V()| ds| < Khe >,
0

For L? estimate, we recall the Aubin-Nitsche duality argument. Let {w,q} be a pair of unique
solution of the following steady state Stokes system:

(4.22) —uAw+Vq = ¢ in Q,
(4.23) V.w = 0 in Q
(4.24) wlgo = 0

From assumption (A1), the above pair satisfies the following regularity result

Iwll2 + llgll 1 /r < ClICI-
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Form L2- inner product between (4.22) and ¢. Now use of (4.17) with ¢, replaced by Pyw
yields

IEHI> = pa(l,w = Puw) = (V- C,q) + (= juh, V - (Paw — w))
(4.25) + / B(t — 5)e*t=%)a(¢(s), w — Pyw) ds—/0 B(t — 5)e*t=9)q(¢(s), w) ds.

For deriving (4.25), we have used (4.23)-(4.24). Rewrite the second term on the right hand
side of (4.25) as

(4.26) —(V-¢q) = —(V~(&—Phﬁ'),q)—(V;Ph&,q—th)
= (&— Py, Vq) — (V- PuC,q — jna),

and using (4.22), the last term on the right hand side of (4.25) is now written as

- [ B -9 a@o wids = = [ ple = e, —pw(o)
- /ﬁt—s “=)({(s), Vg - &) ds
(4.27) = 2 [ B eIl C0)as

0
= L[t 9t Lo a)as
Substituting (4.26)—(4.27) in (4.25), we find that
€12+ % [ Ble = s)elt(E(s), £(0) ds = palGw — Pow)
+ / B(t — )e™=Ia(E(s), w — Pyw) ds + (& — Pyit, Vg)

(4.28) — (V- PuC,q—jng) + (b — jup, V - (Paw — w))
T /Bt—s 2t (&~ Pyit, V) — (V - Pad(s), a — jna)] ds.

Integrating (4.28) from 0 to ¢, apply Holder’s inequality and use Lemmas 2.1-2.2. Finally,
apply the approximation property with estimates for the L2-projection and employ regularity
result to obtain

t t
g 2 4 A 2 N 2
(4.29) | 1@l ds < cnt [ (1Aa(s)]? + |V4(s)|7) ds
From (4.28), it is easy to note that
N - t, .
ICOIF < Clurba) 1 (1Bal? + 951 + [ (IBa@) + [Va(s)I2) ds)
+ w2 (1ve + [ 19eeds)] + 0 [ 1617 ds

From (4.20)—(4.21) and (4.29), we obtain the desired estimate for ||¢||.
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For the time derivative, differentiate (4.16) with respect to ¢ to find that

(4.30) pa(Cy @p) + B(0)alC(t), ) + /Ot Be(t — s)a(C(s), ¢p) ds
= (o, V) V¢, € Jp.

With SBi(t — s) = —68(t — s), choose ¢}, = €29 P, ¢, and proceed as in the case of the estimate
of ||[V((t)|| to obtain

etV |2 = ua(eatct,ea%ut—zﬂhun)—§a<&,Ph(eatct>>

(4.31) + 4 /0 t B(t — 8)e* ) a(¢(s), Pa(e®t¢,)) ds + (epy — jn(e®tpy), V - Py(e2¢,)).

Again using H}-stability of P, and approximation properties in (4.31), we arrive at

(4.32) IV(e*¢, ()P < Ch%e 2‘”2 (||atj Au)||2+||8t]Vpll2)

+ o [ (| BalP + |9pIP) ds

This completes the proof of the estimate ||V {,]||.

Finally, for the estimation of ¢, in L2-norm, we again appeal to the Aubin-Nitsche duality
argument. In (4.22), consider e®*{, in stead of C and now form L2-innerproduct with e*¢, to
obtain

(4.33) 1%l = pa(e® ¢y, w — Paw) — (eV - ¢y, q) + pa(e®'Cy, Paw).

From (4.30) with ¢, = e®P,w, it now follows in a similar manner as in the L2-estimate of ¢
that

le*Coll* = pa(e'Cy, w — Paw) + (% (uy — Pruy), V) — (V- Pu(e ¢y, e (J)
+ (e (pe — jnpe), V - (Paw — w)) — B(0)a(C, Paw — w) + B(0)(¢, —Aw)

+ 9 / tﬁ(t — 8)et=9)q(¢(s), Pow — w) ds — / tﬁ(t — 5)e®t=9)(¢(s), —Aw) ds.
0 0

Using Cauchy-Schwarz inequality, properties of P, and regularity condition, we arrive at
~ t ~
eGP < Ol an? (IS + e = apo)* + [ 9E° + [ 7¢I ds )
~ t ~
@s o+ 0 (e gl + 127 + [ 18P ds).

On substituting (4.21), (4.29), (4.32) and the estimates of ¢ with approximation properties in
(4.34), we obtain the required result for ¢, in LZ-norm. This completes the rest of the
proof. O
Now we are in a position to estimate € in L°°(L2) and L°(H})-norms.
Since & = ¢ + 0 and the estimates of ¢ are known from the Lemma 4.2, it is sufficient to
estimate 6. From (4.3) and (4.16), the equation in @ becomes

O 60) + a0, 6) + [ Bt~ 5)a0(s), 9y ds
(4.35) = —(CtxPn) Yy € In.
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Note that for the estimation of ||{;]| in (4.35), it is essential to introduce o(t) term so that
we can avoid nonlocal compatibility conditions. However, a direct use of o(t) as in Heywood
and Rannacher [9] leads to an application of Gronwall’s Lemma and this is mainly due to the
presence of the integral term in (4.35). As in Pani and Sinha [21], we first introduce

¢
= / 0(s)ds
0
and derive an improved estimate for

t -
/ | V8(s)|2 ds.
0

This, in turn, helps us to introduce o(t) and hence, we can estimate 6 without using Gronwall’s
Lemma.

Lemma 4.3 There is a positive constant K such that € satisfies for t > 0 the following
estimate

2, 12 2 2 1€ 1 s (A2 2
IEDI” +RIVERP < Cr* | —— /0 e (| Aul® + | Vp|?) ds
t -~
o7 o) (1wl + |VpilP) ds] < Knte e,
Proof. With = 2 0(s) ds, we integrate (4.35) with respect to time from 0 to ¢ to obtain

@) ol + [ [ B naO), ¢, drds
= —(C @p) + (uo — Pouo, @p), & € I

Since Py is the L2- projection, the last term on the right hand side vanishes. For the third
term on the left hand side of (4.36), use 6(7) as 6, and intergrate by parts with respect to 7.
Since B;(s — 7) = —fBs(s — 7), we now arrive at

//ﬂs_T (7), p) drds = //ﬁ"”_T 0.(7), ¢p) dr ds
= / B(0)a(8(s), dp) ds — /t /Os Br(s — 7)a(6(), ¢p) dr ds

= [ ([ ot~ rrat@(r), ) dr ) ds
= [ 8t~ 1al@(r), sp) dr

Thus, the equation (4.36) becomes

(4.37) (8, 61) + na(d,¢,) + / B(t — 7)a(B(r), ¢y) dr ds

= —(¢,Pn); bn€In

Choose ¢, = €%*0 in (4.37) and obtain
1d at || 9 at || o 0
(438) 52 (N0IP) — a8 + ue*||VE|P?

+ /tﬂ(t—r)ea(t_r)a(emé(r) et 0) dr = —(C,e™0).
0
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On integrating (4.38) with respect to ¢, we use [|0]|? < )\%HV@H2 and positivity property to
find that

20t 19 ()12 o sasiod 2 1 TR
OO+ (u— ) [ IV s < s [ ds

(4.39) < Cwt /O g2es (||Au(s)||2 + ||Vp(s)||2) ds
Now, choosing ¢, = o(t)@ in (4.36), it now follows that
S (o@I8?) + no®IVEI? = —o(1)(¢,,0)
(4.40) +-%mummﬁ—dw/%m—rmwuxmdr
0
< 0'2(t) ||2 ¢ ||0 t) 2 t tﬂ t 0 0)d
S O +ax)(ll—d)A (t —7)a(6(r),0)dr.

To estimate the third term say I; on the right hand side of (4.40), use again the form 0(7) = 0,
and then integrate by parts with respect to 7. With 3.(¢t — 7) = §3(t — 7), we now obtain

I = —’ya(t)a(é(t), 0(t)) + do(t) /Ot B(t — T)a(é(r), 0(t))dr.

Here, we have also used (;(t — s) = §3(t — s). On integration of |I;| with respect to ¢, we find
that

t t . ¢ s - 2
| ins)ds < Cub) [/ 98| Pds + [ a(s) ([ 8ts = DIvO) a7 ) ds]
0 0 0
+ "/ 5)|V6(s)|? ds,
and hence, using Lemma 2.2, we now obtain
t
[0 ds < Gus) [ |vaes)as + 5 [ ots)v0() ds.

0

On integrating (4.40) with respect to time and substituting the above estimate in the resulting
equation, it follows that

A0 + [ oIvOPas < [ T ds

205
+ o[ aeeids [ Muve( R

< [ 2o |ct||2ds+/ €17 +11¢11%) d ]

+ c/ €295 | V0(s)||2 ds.
0

1o 0(s), we use Lemmas 4.1-4.2, the estimate (4.29) and (4.39), to obtain
2 W st [t 2 All2 2
(4.41) oI <= che [ e (Aul? +9p1?) ds
t ~
+ Cio(0) [ ()(s) (1Bw]?® + [Vpl) ds
0
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For 0 < ¢t < 1, we use Theorem 2.1 to bound the first term on the right hand side of (4.41)
and for the second term, we note that using Theorem 2.2

VAN

t _ t -
o0 [ 7)) (1Bul? + |Vpl*) ds < e [Cao(s) (A + [ Tpl?) ds

t _
< e [ ofs) (IBu|? + | Vpil?) ds < Ke 2t

When t > 1, 7*(¢t) = 1 and we use Lemma 2.4 and Theorem 2.2. Thus, we obtain
10(2)]|? < Khte 2t

Use of triange inequality with Lemma 4.2 completes the rest of the proof. O
Below, we discuss the main theorem of this section.

Theorem 4.1 Let Q be a convex polygon, and let the assumptions (A1l)—(A2) and (B1)—
(B2) be satisfied. Further, let the discrete initial velocity ugy € Jp, satisfy

l[ug — ugnll < Ch?|Juglla.

Then, there exists a positive constant K which depends on §,7v, A1, M1, and Ms such that for
all time t > 0, the following estimate holds:

1(w = up) (@) + AV (u — up)(®)]| < Kh?e™e".

Proof. Since e =u —up, = (u—vp) + (vp —up) = € + 1 and the estimate of € is known from
Lemma 4.3, it is enough to estimate ||n||. From (3.2) and (4.2), the equation in  becomes

t
(nta ¢h) + Na(n, ¢h) + A /B(t - 5)‘1(’7(3), ¢h) ds = b(uhauha ¢h) - b(uaua ¢h)7 ¢h € Jh-

Choose ¢, = €2*'n to obtain

1d, . o o t a(t—s o -~ a o
(4.42) gallnll2 — allfll® + pVal? +/O Bt — s)e*a(q(s), 7(s)) ds = e Ap(i)),
where
An(dp) = b(up, up, @) — b(u,u, ¢y).
Note that

e Ap (7)) = —e U [b(&, Vi, ) + b(, €, 7).

Using Holder’s inequality, discrete Sobolev inequality

pnllLe < ClIVeyll, ¢ € Hy

and estimate (3.7), we obtain
e[ An(@)] < ClelIVAll([valle + [VVallLa) + CIVul /| Al VA&

As in Heywood and Rannacher [9], using inverse hypothesis and approximation properties, it
is easy to check that

Vit + [IVvalpe < CIVul'/?[|Au|l'/? + KR'/2.
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Since e = £ + n, we arrive at

! An(@) < (ClIVullY2(|Au| + KRV2)(IEN] + 191D VAl
1 X 5 . .
(4.43) < ;(CHVUIIHAUII + KR)(IE]7 + 1al1*) + %HV??II2
1 ~ R N n Kih .
< ;(CHVUII||AUl||||77||2 + K& + (7 * )\—11)||V77||2-

Here, K; depends on K and the constant in the Poincaré inequality. Substitute (4.43) in (4.42)
to find that

a u  2Kih

d
444)— AP+ (20— — -5 -
( )dtllnll+<u N2 N

JIvale + 2 [ 8- e atits), ate) ds
0

C _ .
< SlIvaliiaul 71> + K [1€]1*.

Choose hg > 0 so that for 0 < h < hg, (4 — 251%) > 0. Since A\jp > a, we have (2u — x5

A1
%) > 0. On integrating (4.44) with respect to time from 0 to ¢ and using positivity of the

integral operator, we obtain

t t t -
91+ [ 1971 ds < CUm©)IF + | 1&1ds] +C ) [ Ivull|Aullla]? ds
Note that
[n(0)[| = [[Pruo — won| < [|Pauo — uol| + [[ug — uonll < Ch?|lugll2-

Using Lemma 4.1, an application of Gronwall’s Lemma yields
t t ~

(4.45) JalP + [ Vil ds < Kitesp [ [l dulas].
0 0

Now the integral term on the right hand side of (4.45) is bounded using Lemma 2.4 and
Theorem 2.1. Hence, we obtain

t
(4.46) Im|l” + e*ht/ |V#||? ds < Kh'e 2.
0
Since m € Jp, we use inverse hypothesis to obtain an estimate for [|[Vnl||. A use of triangle
inequality with Lemma 4.3 completes the rest of the proof. O
5. Error Estimate for the Pressure. In this section, we derive optimal error

estimates for the Galerkin approximation p; of the pressure p. The main theorem of this
section is as follows.

Theorem 5.1 Let the hypotheses of Theorem 4.1 hold. Then, there exists a constant K =
K(u,d,7v, A1, M1, Ms) such that for all t >0

h
[(p — pr)()llL2/N,, < K(T*)1/2e

—at

24



Below, we prove this theorem with the help of a series of Lemmas.
From (B2), we note that

(p — DPh, V- ¢h)
IVl

Since the estimate of the first term on the right hand side of (5.1) follows from the approxi-
mation property, it is sufficient to estimate the second term.
From (3.3) and (4.1), we find that

6116 = ) Ol 5, < Cllo = apliam, + Cup | € H/{0) .

(0= 0V - 60) = (e 4) + e, 84) + [ Bt = s)ale(s), 6, ds — A(n), ¥, € H,
where
—An(ép) = b(u,u, @p) — b(up, up, ¢p) = —be, e, @) +b(u, e, ¢) + b(e, u, gy).
Using Holder’s inequality, Sobolev inequality and the boundedness of
lells < C Vel <C
from Theorem 4.1, the following eatimate
[An(pn)l < C(A+ [lel[La)[VelllVayl < Cl[Vell[[Veyll.

Thus,

t
(p—pn, V- ) < [C|||et|||1;h + pllVell + /O Bt = s)[Ve(s)| ds + CIIVGII] IVl

where

<g7¢h>
—1 :sup{i, € Hy, 0}.
|||g|||| 1;h ||V¢h|| Py, hy On F

Altogether, we obtain the following result.

Lemma 5.1 The semi-discrete Galerkin approzimation py of the pressure satisfies for allt > 0

62 e - Ol < [lledl-un+ 196l + [ 5t = s)IVe(s)]ds].

From Theorem 4.1, the estimate ||Ve|| is known. Therefore, we need to estimate |||es|||_1;p
in (5.2) in order to complete the proof of Theorem 5.1. Since,

leelll-1n < clled],

we now concentrate on deriving a bound for |le|.
Note that from Theorem 4.1, the discrete velocity uy satisfies

IVus(t)| < K, for t> 0.

Now, we obtain some a prior: bounds for the discrete solution uy, for our subsequent use. Using
the definition of the discrete Stokes operator Ay, see (3.6), we proceed along the lines of proof
of Theorem 2.2 to derive the following bounds for uy,.
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Lemma 5.2 The semi-discrete Galerkin approximation uy for the wvelocity satisfies for all
t>0

~ t
(5.3 [Bnun()IF + O + [ e [V dr < .

Although, it is possible to obtain exponential decay property for the discrete velocity up
following the lines of proof of Lemmas 2.3-2.4 and Theorems 2.1-2.2, we need only boundedness
property for our subsequent use.

Lemma 5.3 The error e = u — uy, in the velocity satisfies for all t > 0
¢

(5.4) / 2|y |2 ds < KR,
0

Proof. For the estimate (5.4), we first split the integral on left for ¢ > h? as:

t h2 t
(5.5) /6208||et||2ds _ / e2°‘5||et||2ds+/ €25, |2 ds
0 0 h2
= L+ .

Note that using estimate (5.3), we obtain below a bound for I
I < Ch2e*™ (|[ug|® + une|?) < KA2.

Thus, it is enough to estimate I on the right hand side of (5.5). Using Stokes-Volterra
projection Vpu of u with p = Vyu — up, we write

e:=u—u,=p+¢(.

Now, the equation in p becomes
t
(56) (pt7 ¢h) + N’a(p7 ¢h) + /0 /B(t - s)a(p(s), ¢h) ds = (Ct) ¢h) + Ah(¢h)7 ¢h € Jh7

where

An(@p) = b(up, up, @) — b(u,u, @) = b(e, e, dp,) — b(e,u, ¢p,) — b(u, e, ¢y,).

Note that using definition of b(-, -, -), bounds for u and (3.7), we obtain

(5.7) [b(e, u, ¢p)| + [b(u, e, pp)| < C[[Velll|py]|-

Further, using Holder’s inequality and discrete Sobolev inequality

[pnllLa < ClIV I, dn € Ha,

it now follows from the inverse hypothesis that
(5.8) lb(e,e, dn)| < CllellualVell[Veull < Ch7tlellLel Vel [l

Choose ¢, = p; in (5.6), and obtain
d t
6:9) 2ol + g IVplP = =2 [ Bt = 9)alpls) p.) ds + 2(C0 ) + 28n(p0).
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Using B:(t — s) = —08(t — s), we find that
G0y 2 [ - salple)p)ds = 25 ([ 8- 9alp(s),p)ds)

+ 26 /Ot B(t — s)a(p(s), p)ds = —A(t).

Substituting (5.10) in (5.9), multiply the resulting equation by e?*!. Integrate with respect to
time from A2 to t and obtain

t 2 t ~
2 [ lps)lPds + neVp()]* = e [Vp(h)F + 2ap [ VA ds

t t t
(5.11) 4 /h P A(s) ds + 2 /h (G py) ds + 2 /h A (py)(s) ds.

For the integral term involving A, we first write it using integration by parts as

h2

[Le=aiyas = =2 [ Bt —m)etDa(pr),p)dr +2 [ B0~ )t Dalp(r), ) dr
h 0 0

+ 25(2a - 6) /h t /0 " B(s — )T a(p(r), pls)) dr ds.

Thus using Lemma 2.2, we find that

2

[Lemawas < 2 [ 1vpolR i+ LvaniE + L [" vaPar
b2 = u(@@—-a) o 2 (6 —a) o

2 t
12 p(R2)|2 + (5 + 1 / p(s)|2
(5.12) + Va9l +((5_a)2+ ) |, IVA(s)lI”ds
t
< COuba) [ 1962 ds + [Vp)P + S IvaP
From (5.7)-(5.8), we obtain
- 1

(5.13) 20n(py) < C(L+R72([Vel")|[Ve|” + Sl

using Cauchy-Schwarz inequality, we find for the fourth term on the right hand side of (5.11)
that

1
(5.14) 2(Ce, pe) < 201C1° + §||Pt||2-

Substituting (5.12)—(5.14) in (5.11), and using Theorem 4.1, we obtain

t t
[ elps)Pds + Eevpl? < C,d,0) (2 max Vo) + [ Vi) ds)
h2 2 0<t<h? 0

t t
(5.15) + 0/2 620‘3||Ve||2ds+/ze2o‘s||gt(s)||2ds.
h h

Since p = e — ¢, we use estimate (4.20) to bound the first and second term on the right hand
side of (5.15) as

t
< KPP p2 4 gtk gup ||Ve(s)||2+cf €205 Ve|® ds.
0<s<h? 0
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Note that using e = £ + n with estimates (4.7) and (4.46), we obtain

t t t
[eiverzas <o ([(Ivéras+ [ IvalPas) < k.
0 0 0

Similarly, we estimate the second term on the right hand side of (5.15). For the third term on
the right hand side of (5.15), we use Lemma 4.2 and Theorem 2.2 to arrive at

Gs) [ lePds =h [ el s <h? [ oto)lc? ds < KN
Altogether, we now obtain
(.17 [ ool ds + 519 plo))? < K2
For Iy, an application of triangle inequality with estimate (5.17) yields
L= /ht €29%[e, 1% ds < Kh?.

On combining the estimates of I; and I in (5.5), we complete the rest of the proof. O

Lemma 5.4 The error e = u — uy, in approximating the velocity satisfies for all t > 0

h
(T*)l/Q

e—at,

lle:(8)]] < K

where 7" = min (¢, 1).

Proof. From (3.3) and (4.1), we write the equation in e as

(o0, 0n) + ale, @) + [ Bt~ 9)a(els) @) ds = An(n) + (0,7 - @), B € Hi,

On differentiating with respect to time, we obtain

(5.18) (ew, dp) + paley, ¢) = —pB(0)ale, ¢p) — /Ot Bi(t — s)a(e(s), ¢p) ds
+ Ane(Pn) + (pt, V- &),

where
Ani(bp) = (b(ung, up, @p) — b(ug, u, @)) + (b(up, unt, ) — b(u, ug, dp)) .

Choosing ¢, = Pe; in (5.18), we now make use of the Hj stability property of L?—projection
Py,. To estimate Api(Pret), we apply Sobolev inequality along with its discrete version and
(3.7)—(3.8) to obtain

|b(etv u, Phet)| + |b(u’ ebphut)l < K”etH”vetHa

and
|b(un, e, Pret)| + [b(e, unt, Prer)| < C[[Ve||[|[ Ve[| Vap|.

Hence,
[Ant(Prer)| < (Kllegll + Cl[Vun[[Vel)) [[Ve|.
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In order to estimate (pg, V - Pret), a use of the discrete incompressible condition yields

|(pt, V - Pret)| = [(pt — Japt, V - Pret)| < llpe — jnpelll| Ve

Now we apply standard kickback argument to absorb ||Ve;|| term. Altogether, we find that
d 2 2 d 2 2 2 2
Dled? +ulVed? < L pu,— Pyl + Ol (19 e — Prs) | + 1Vl + 1 — nel?)

t 2
(5.19) + ) ([ 8= 9 Ve(s)lds) + Klledl? + Cl[ Tund Vel

Multiply (5.19) by o(t), where o(t) = 7*(t)e?* and integrate the resulting inequalities with

respect to time. From Lemma 5.3, it follows that o(t)||e;(t)||?> — 0 as t — 0. Thus, we derive
o@lled? + u [ o()IVedl?ds < o)~ PP +C [ e ds
5200+ ) [ o) (I90u — Bl + Vel + lpe — inpil?) ds

+ c/ (3) | Vune||? [[Vell? ds + c/ (eas /0 B(s — )| Ve ()] dT)2 ds.

Using Theorem 4.1 and the estimate (5.3), the last two terms on the right hand side of (5.20)
are bounded by

INA

t t
Csup Vel ([ ()| Vuy|[*ds) + C [ e 6=t e|
0.¢) 0 0

IA

KhQ([Ota(s)HVuhtHQ ds) + Kh?.
Apply approximation property for j, and estimate (3.4) for Py to obtain
oOlled? < ORIVl +0 [ e ds + n? [ ots) (1Aud? + [Vpl?) ds
b KR (/Ota(s)||Vuht||2ds) + KR,

By Lemma 5.2-5.3 and Theorem 2.2, we find that

o(t)lled® < KR,

and this completes the rest of the proof. O
Proof of Theorem 5.1. Using Lemma 5.4 with approximation property for j,, we now
complete the error estimate for the pressure. O
6. Conclusion. In this article, We have derived optimal error estimates for the

velocity in L®(L?) as we as in L™ (H")-norms and for the pressure in L>(L?)-norm which are
valid uniformly for all £ > 0. It is not difficult to extend these results for 3-D problem with
smallness assumption on the initial data. Moreover, as in Heywood and Rannacher [9], we can
use nonconforming elements to derive the results of this paper. Since the estimates are quite
cumbersom and do not differ much in their analysis from [9], we refrain from presenting them
here.
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After the completion of this paper, we came across an article by He et al. [8] and found
that they derived local optimal error estimates for the velocity in L°°(H')-norm and for the
pressure in L*°(L?)-norm for the problem (1.1)—(1.3) with ug € Jy, f € L*(0,00;L?) and
(7*)1/2f, € L°(0, 00; L2). We note that they obtained nonoptimal error estimate for the ve-
locity in L®°(L?2). However, when f = 0, it is possible to establish, using the present analysis,
optimal error estimates for the velocity in L>°(L2) as we as in L®(H!)-norms and for the
pressure in L>°(L?)-norm with ug € J;. The possible changes that we have to make are in
the proof of Theorem 2.1 for computing the estimates of ||u¢||? by introducing o(t) in stead of
et and the places where we have used o(t) replacing them by oy (t) = 7*o(t). Similar changes
should be done throughout the paper to completing the proof.
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