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Abstract. In this paper we present a MUIti-STAge predictor-corrector approach, called
MUSTA, for constructing upwind, monotone numerical fluxes to be used in numerical methods
for solving hyperbolic conservation laws. The resulting methods achieve the accuracy of the best
of upwind schemes, while retaining simplicity and generality. The schemes are accurate, robust
and easy to implement and find their best justification when solving very complex systems for
which the solution of the Riemann problem, in the classical sense, is too complex, too costly or
is simply unavailable.

1 Introduction

When solving numerically non-linear systems of hyperbolic conservation laws via finite volume
methods or discontinuous Galerkin finite element methods, there are essentially two approaches
for providing a monotone numerical flux. The simplest approach utilises a symmetric stencil
and does not explicitly make use of wave propagation information in the construction of the
numerical flux. This approach gives rise to centred or symmetric schemes [16], [9], [14], [19],
[41], [29], [18], [31], [1]. A more sophisticated approach utilises wave propagation information
contained in the differential equations to construct the numerical flux. This is done through the
exact or approximate solution of the Riemann problem. Due to the fact that wave propagation
information is used, these methods are called upwind methods or Godunov-type methods [4], [8],
[5], [38], [39], [22]. For up-to-date background on these methods see [17], [7], [15], [30], [36].

Generally, upwind methods are more accurate than centred methods. In fact, the Godunov
first-order upwind method as applied to the model hyperbolic equation is the most accurate of
all monotone first-order methods, in the sense that it has the smallest local truncation error;
the scheme has numerical viscosity that is proportional to the wave speed. This means that the
scheme resolves isolated stationary waves exactly, which is a distinguishing property of this class
of numerical methods. Centred methods, on the other hand, have their largest numerical dissipa-
tion for the slowest waves, the stationary case being the worst situation, leading to large errors in
the form of increasingly spreading of discontinuities as the solution is evolved in time. However,
the better accuracy of upwind methods comes at a cost, the solution of the Riemann problem, a
Cauchy problem for the governing equations with very special initial conditions consisting of two
constant states separated by a discontinuity. The solution of the Riemann problem to be used in
upwind methods may be the exact solution, if available, or an approximate solution. The quality
of the global solution depends quite crucially on the particular Riemann solver user being used.
There are linear and non-linear Riemann solvers available. Linear solvers tend to be simpler
but suffer from a number of shortcomings, two of them being: they need an entropy fix and



they fail near low-density flows. Non-linear Riemann solvers are thus recommended. Then there
are complete and incomplete Riemann solvers. Complete Riemann solvers may be approximate
or exact and the structure of their representation of the solution includes all the wave families
present in the exact solution of the Riemann problem. An incomplete Riemann solver on the
other hand, does not include all wave families. An example of an incomplete Riemann solver
is the popular HLL scheme [10], which only includes two wave families, those corresponding
to the smallest and largest signal velocities and thus for a system of three or more equations
intermediate waves are excluded. This results in unacceptable smearing of these waves, such as
contact waves in the Euler equations of gas dynamics. As a consequence, the performance of
upwind methods with incomplete Riemann solvers for intermediate waves is not superior to that
of centred methods. For the faster waves the performance of upwind methods is very similar to
that of good centred methods, with some advantage for upwind methods. The real difference
in performance between centred and upwind methods is seen in resolving waves associated with
linearly degenerate fields, for which upwind methods give much superior results. Centred or
symmetric methods, although not as accurate as upwind methods, are much simpler to imple-
ment. This is a real asset for a numerical method, particularly for very complicated systems, for
which the wave propagation information required by upwind methods is too difficult, too costly
or simply impossible to obtain. The construction and implementation of centred methods is to
a large extent, independent of the particular details of the system of conservation laws under
consideration. Upwind methods on the other hand, are intimately linked to the particular set
of equations, although the specific information provided by the equations is put to good use by
upwind methods but the penalty is the lack of generality of the numerical method.

What is desirable, is an approach that has the accuracy of upwind methods and the sim-
plicity and generality of centred methods, that is, an approach that applies equally well to any
hyperbolic system. Such an approach would be ideally suited as a framework for developing
numerical methods and software for complex industrial applications, with a long-term view. In
this paper we present an approach that closely approximates the above aspirations. The com-
putation of a numerical flux is carried out via a multi-stage predictor-corrector procedure, using
a simple numerical flux at each stage. The most attractive approach to provide these simplified
fluxes is the centred approach, but very simplified upwind intermediate fluxes are not excluded.
In essence, our multi-stage approach may be regarded as an approximate Riemann solver in
which the predictor stage opens the Riemann fan without making use of precise knowledge of
the structure of the solution of the Riemann problem; in addition, the information extracted
from the opened Riemann fan is precisely the information required for the evaluation of the
intercell numerical flux sought. There is no logic associated with the complex solution-sampling
procedure that is necessary when using an exact Riemann solver. The simpler logic of conven-
tional approximate Riemann solvers when identifying the correct wave pattern is also absent in
our approach. Our method finds its best justification for complex systems of conservation laws
such as those in multi-phase fluid dynamics and magnetohydrodynamics. The flux can then be
used as the building block for constructing schemes of higher order of accuracy following existing
methodologies, such as TVD methods [10], [11], [20], [31]; ENO/WENO methods [13], [12], [26],
[24], [25]; ADER methods [32], [34], [28], [23], [27] and discontinuous Galerkin finite element
methods [2], [3], [37]. We remark that in higher-order schemes the difference in accuracy at
the level of the first-order flux used, although less obvious, does persist, particularly for linearly
degenerate fields and for long-time evolution problems [35].

The rest of this paper is organised as follows. In section 2 we review the Godunov method and
well-known centred fluxes. In section 3 we present our multi-stage predictor-corrector approach.
In section 4 we present some numerical results for the compressible Euler equations. Conclusions



are drawn in section 4.

2 Existing monotone schemes

We are interested in numerical schemes for solving hyperbolic partial differential equations in
conservation-law form

9%Q+ 0. F(Q)=0, (1)

in which Q is the vector of conserved variables and F = F(Q) is the vector fluxes. In the presence
of discontinuous solutions one uses the integral form of (1), which is obtained, for example, by
integrating (1) on a control volume [z, 1,z 1] X [¢",¢"!] in the z-t plane, leading to
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We can construct numerical methods based on the control volume formula (3) by finding
numerical fluxes that are approximations to the time-integral average of the fluxes at the control
volume boundaries, given in (4). The numerical scheme will then evolve in time integral averages
in control volumes. Next we briefly review two classical ways of defining a numerical flux.

2.1 The Riemann problem and the Godunov flux

Godunov’s method [8] defines the numerical flux F, 1 in terms of the solution of the Riemann
problem, which is the initial value problem for (1) subject to the special initial conditions

Q7 if :L‘<.Ii+%,
n .

Q(z,0) = { (5)
Fig. 1 shows the structure of the solution of the Riemann problem in the z-t plane for an m xm
non-linear system. The so so called Riemann fun consists of m + 1 constant states separated by
m wave families, each one associated with the real eigenvalue A*). The similarity solution of
(1), (5) depends of the ratio =/t and is denoted by Q, 1 (z/t). The Godunov intercell numerical
flux is found by first evaluating QH_%(x/t) at z/t = 0, that is along the ¢-axis in Fig. 1, and
then evaluating the physical flux vector F(Q) in (1) at Q,_ 1 (0), namely

Fil =F(Q1(0) - (6)

The exact solution will invariably involve at least one iterative procedure and thus in practice,
whenever possible, one uses approximate Riemann solvers. For a review on Riemann solvers the
reader is referred to [30].
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Figure 1: Structure of the solution of the Riemann problem for an m x m hyperbolic system.

2.2 Centred fluxes

We briefly review intercell numerical fluxes of the centred type to be used directly into the
conservative formula (3). Unlike upwind methods, centred fluxes do not make use of the solution
of the Riemann problem and generally they can be computed explicitly as functions of the initial
data, namely

Fi-l—

= Fi-l—%( i Qi) - (7)
One may interpret centred fluxes as resulting from a low-level approximation to the solution of
the Riemann problem, in which the Riemann fun ¢s not opened to extract the appropriate value

of the solution for flux evaluation.

=

Two classical centred fluxes are the Lax-Friedrichs flux

1Az

1
Fi/ =F1(Q7, Q) = 5[F(Q)) + F(QL)] - 55, [Q — Q] (8)

and the two-step Lax-Wendroff flux
FL F 7L+—
B =FEL, o
Q)7 =5(QF + Q1] — $ALF(QR.) ~F(Q))].-

Another, more recent, centred flux is the FORCE flux [29], [30], [31], [1]. This was derived
from a deterministic interpretation of the staggered-grid version of Glimm’s method [6] and
results in a non-staggered one-step conservative scheme of the form (3) with intercell numerical
flux given by

R(QY) + 2P(Q)F) + Q) - 55 (@ - Q)] . (10)

e

f f
Fz(jrrie Fi(jrr%e(Q?’ Qi) =

1
with Q 12 as in (9). A surprising outcome is that the intercell flux (10) is in fact the arithmetic
2

mean of the Lax-Wendroff flux FL and the Lax-Friedrichs flux FLF More insight is given by

considering the model hyperbohc equatlon (18). Fig. 2 shows a plot containing the family of
three-point schemes that can be written as a convex average of FLF (bottom boundary) and
2

Ffﬁ (top boundary), in which the FORCFE flux (10) corresponds to the value w = 1/2. Larger
2

values of the weight w correspond to schemes with smaller numerical dissipation. The whole



region is subdivided into a bottom region of monotone schemes, for w < w, = ﬁ, and an upper
region of non-monotone schemes, for which w > wy. The line w = %Jrc corresponds precisely
to the Godunov first-order upwind scheme, which is the scheme with the smallest numerical
dissipation and monotone. Here ¢ is the Courant number. Also shown there is the weight for
the Godunov first-order centred method [9], which is linearly stable for 0 < ¢ < 1/2, but is
not monotone in the range 0 < ¢ < % If we were to select an average with constant weight w
(independent of wave propagation information), then the scheme with the smallest numerical
dissipation would be the FORCE scheme. In [1] it is shown that the conservative scheme (3)

with the FORCE flux (10) is convergent for a 2 x 2 non-linear system of conservation laws.
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Figure 2: Family of three-point schemes as convex average of the Lax-Friedrichs (bottom) and
Lax-Wendroff (top) methods.

3 The MUSTA approach

We propose to construct a numerical flux based on a multi-stage predictor-corrector approach.
In the predictor step we propose to use a simple and robust numerical flux to open the Riemann
fun and extract the relevant information for the corrector step, which involves the final intercell
flux evaluation. The expectation is that the resulting flux arising from the opened fun will
be close, in some sense, to the Godunov flux. The motivation behind is to obtain a simple
(possibly centred) numerical flux that is applicable to any system of conservation laws and that
is a good approximation to the best first-order method, namely the first-order upwind method
of Godunov. Given two constant states Qi and Qj',; separated by a discontinuity at z, 1
the Godunov method solves the corresponding Riemann problem (1), (5) to find a solution
Q. 1 (z/t), with the Godunov flux obtained by evaluating the flux function at the solution of
the local Riemann problem at z/t = 0, as given by (6). Generally, the optimal accuracy achieved
by the Godunov method results from opening the Riemann fun, see Fig. 1. On the other hand,
centred methods, do not do this and just use the initial data on the left and right sides of the
initial discontinuity, see (8) for example, to compute a numerical flux.
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Figure 3: Illustration of the multi-stage procedure for a 4 x 4 system.

3.1 Opening the Riemann fan

The task at hand is to compute a numerical flux at the interface z = z, 1 separating control
2

volumes with averages Q7 (left) and Q' (right); see Figs. 1 and 3. Suppose that we open the
Riemann fun by solving the corresponding Riemann problem numerically on a mesh of r cells to
the left of z, 1 and r cells to the right of z; 1 using a given numerical method, probably centred
and monotone. The sought numerical solution is that for large time T'. At every time step [ we
have the discrete sets of values Ql(-l_)rﬂ-,j =1,...,rand Ql(-:zj,j =1,...,r. The initial conditions
for such numerical problem would be Qz('l—)r-l—j =Qj=1,...,r and Qz('—ll—)j =Ql 7 =1,...,r1.
The two vectors of interest at the [-stage are those adjacent to the interface, namely Ql(-l) and
Qgﬂzl. Fig. 3 illustrates the situation for » = 2. The computational domain requires the
application of boundary conditions, which are implemented by adding two extra fictitious or
ghost cells on the left and right of the domain. We apply transmissive boundary conditions so
as to allow the passage of waves emerging from z =z, 1 through the numerical boundaries. If

|Q§l+1)_Q§l)|<e, for j=4,0+1, (11)

where || is a suitable norm and € > 0 is a small tolerance, we stop the time-marching procedure.

The two vectors of interest for the corrector (final) step k are ng) and Qgi)l. In the case of
Godunov’s method one solves the Riemann problem and finds a single value at the interface
T =T In our method we still have two values either side of the interface. It is likely that
these two values are close and in the exact solution for large time these are probably identical.
It can also happen that these two values are separated by one of the waves in the solution of
the Riemann problem, in which case these two vectors will be different. Examples of this second
case arise when the Riemann problem solution contains a stationary discontinuity or a transonic
rarefaction. In our approach the existing discontinuity between ng) and Ql(i)l is resolved in the
corrector step by a simple flux, such as a centred flux that requires two arguments, namely

F(k) = F(k)l (Q(k)v Q(k) ) ’ (12)

i+% Z+§ ? i+1



where F, 1 is any suitably simple numerical flux. The suggested procedure is expected to
produce a numerical flux very close to that of the upwind method of Godunov, the optimal
scheme. This is certainly the case if the interface position is straddled by a constant state or
a rarefaction wave. There is no doubt that the suggested numerical procedure for solving the
Riemann problem and evaluating a numerical flux is very simple and could be widely applicable,
in principle, to any system of conservation laws, complicated or not, and all of this without
making use of any knowledge of the equations, such as its eigenstructure. However, the obvious
objection to the approach, as presented so far, is its computational cost. There are two factors
that determine the cost of the above procedure, namely the mesh used (2r) and the stopping
criterion in (11), or equivalently, the number of stages in the predictor step. We have performed
numerical experiments for large » and k£ and found that the resulting scheme approaches the
result of the Godunov upwind method used in conjunction with the exact Riemann solver. More
importantly, we have also found that even for small values of » and k£ one can obtain solutions
that are sufficiently accurate for the purpose of flux evaluation.

The simplest scheme, and the one we propose for practical use, takes r = 1 and k small.
Defining le) = Q! and Ql(-}r)l = Q7' ; the multi-stage predictor step is
I+1 k) At !
QY = Q" - 2LF!), - F(Q)]
(13)
(+1) _ o0 At O] O]
Qi1 =Qif — A_x[F(QiJrl) - FH%]
The corrector step is of the form (12). Note that we are not restricted to use the same flux in
the predictor and the corrector steps. It is easy to verify that the numerical flux resulting from
the corrector step is consistent if the fluxes employed in both the predictor and corrector steps
are consitent. That is, for Q' = Q',; = Q we have

Fi-i—% = FZ+%(Q?7 ?—1—1) = FH-%(Q,Q) = F(Q) :

The multi-stage predictor step is by no means restricted to conservative-type schemes. Note
that actual flux is that given by (12). The states Ql(-k), Ql(-i)l may be found by other procedures.
For example we may write the governing equations (1) in non-conservative form

AW + A (W)3,Q=0, (14)

where W is a vector of suitably chosen variables; they could also be the conservative variables.
A corresponding multi-stage predictor step is

WD —w _ &AZ(_Z)[WZ(_I) B W(l))]

% % Ax
(15)

141 ! !
Wz('++1):W(') _ALAD

Here WZ(Q , is a suitable intermediate vector; see Toro and Siviglia [35] for possible choices for
2

intermediate vectors arising from non-conservative centred schemes. The coefficient matrices
are

AP =Aaw), Al =Aawl)).



3.2 The 2-stage FORCE? flux

In this section we study the particular scheme in which the FORCE flux (10) is used as the
basic flux in both the predictor step (13) and the corrector step (12). More particularly, we

study a two-stage predictor corrector scheme. Denoting by le) = Q7 and Q7(;-1|-)1 = Q' the
predictor step is

Q= Q" — oRtFIT(Q. Q) ~ F(QM)]

(16)
2 1 orce 1 1
QY = Qi — 0REF(Q1) ~ FIT(QY. Q)]
and the corrector step is
2 orce
F/7e = FUT9(Q, Q) . (17)
2 2

The parameter o determines the size of the time step in the predictor stage and we keep it
as free parameter to enforce monotonicity, for example. We shall determine the useful values
of a by studying the scheme as applied to the model linear advection equation with constant
coefficient A,

Oq+ A0zq =0 (18)
The Godunov upwind flux is
fiﬁ"; = BL(Aq}) + Br(Agi 1)
(19)
Br = 5(1 +sign(c)) , Br = 5(1 - sign(c))
where ¢ = )A—Aj is the Courant, or CFL, number.

As already stated, the first-order upwind scheme of Godunov is the optimal scheme in the
class of first-order monotone schemes. The coefficient of the leading term of the local truncation
error is Cyoq = 3AzA(1 — |¢[). Obviously Cyoq tends to zero as the mesh size Az tends to zero,
but the distinguishing feature is that it is zero when the speed of wave propagation A is zero,
giving upwind schemes the unique property of recognising exactly isolated stationary waves. It
is precisely for this type of waves that any other method will have difficulties with, as is well
known. It is then justified to compare other fluxes with the optimal flux (19).

The Lax-Friedrichs flux is
L = BLOME) + PrAqE)

(20)
B =0 g =G
The FORCE" flux is
FI = BLOG?) + BrAdl)
(21)
c 2 —c 2
BL = (110) , BrR= _(140)
The 2-stage FORCE? flux is
2 2
FIe = 1P ap ai)) = Br(AG?) + BrO)
2 2
Br = 1o {(c+1)2[4 — (ac — 1)?] — (c — 1)*(ac + 1)?} (22)

Br = ﬁ {(c+1)*(ac—1)? = (c = 1)?[4 — (ac + 1)?]}

8



We now determine conditions on the free parameter o in (16), (22) through the model
equation (18). A desirable property for the flux to satisfy is monotonicity. Recall that a flux
fix 1 (qr,qr) is said to be monotone if it is an increasing function of its first argument and a
decreasing function of its second argument, that is

0 0
@fi+%(QL7QR) >0 and @fi_pé(QIMQR) <0. (23)

Clearly the Lax-Friedrichs and FORCE' fluxes are monotone, as 87, > 0 and Bz < 0. For
the FORCE? flux, monotonicity depends on the parameter «, for which we need to satisfy
conditions (23). That is we must satisfy

1

B = 1o {(e+ D4~ (ac— 1) = (= D*(ac+ 1)} > 0 (@)
and 1
Br = Too {(c—i— 1)2(040 — 1)2 —(c— 1)2[4 — (ac+ 1)2]} <0. (25)

Algebraic manipulations of inequality (24) show that a sufficient condition for its satisfaction

isa<a= % The upper bound o, = % is significant, as when a = oy = % and ¢ >0, B, =1

and g = 0, giving the flux for the Godunov first-order scheme (19). A good choice that is
independent of ¢ is @ = 1.

Concerning the second monotonicity condition (25) we first look for the limiting case S = 0.
We obtain a quadratic for a with two solutions, namely

2 —de+1 1
-6 et and oy(c) = —. (26)

)= @1y :

These solutions are displayed in Fig. 4 as functions of the Courant number c¢. Note that
ap(c) < ag4(c) and we search for choices of a satisfying

ap(c) < a < ay(c) . (27)

It is desirable to find solutions for « that are independent of wave propagation information,
that is, independent of c¢. Thus we look for a constant value of «, let us call it «g that is
consistent with monotonicity and with the largest possible value of the Courant number used
to enforce the stability condition of the scheme. From Fig. 4 we see that the line & = a9 must
be tangent to ay(c) at some ¢, with 0 < ¢ < 1, and being above ay(c) satisfies one monotonicity
constraint. However, this line @ = « will intersect the upper bound «g4(c) at some cy, with
0 < ¢y < 1. For ¢ > ¢y monotonicity will be lost. By numerically solving the corresponding
non-linear equations we find that

op = 1.276447 and co = 0.7834249 . (28)

It is found that the line o = o is tangent to oy(c) at ¢ = 0.6217106 and intersects ogy(c) at
the largest possible CFL number consistent with monotonicity at ¢y = 0.7834249. Use of CFL
numbers greater than ¢y means loosing monotonicity, as we exceed the limiting value ay4(c) that
corresponds to the Godunov first-order upwind method. For smooth solutions this will result
in smaller numerical dissipation than for the Godunov method, but for discontinuities it means
producing spurious oscillations.
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Figure 4: Monotonicity condition for coefficient Sr results in monotonicity region in the a-
¢ plane, which lies between the top curve c,, which corresponds to the Godunov’s upwind
scheme, and the bottom curve «.

Numerical experiments for the linear advection equation (18) for discontinuous initial con-
ditions confirm the theoretical findings. We also observe that for Courant numbers ¢y < ¢ <
Cemp ~ 0.95 oscillations are hardly visible and are smoothed out as time evolves. For larger CFL
numbers oscillations are unacceptable. For non-linear systems we find that the scheme can be
used with with practical choices of CFL numbers of about 0.90, which is what is normally used
for schemes with linear stability condition of |c| < 1.

A second way of trying to enforce monotonicity is to first select the optimal value of «,
independent of ¢, that will satisfy condition (24). This value is « = 1. Use of this in the
coefficient g in (25) gives a range of CFL numbers for which Sz > 0 and in which monotonicity
is lost. Fig. 5 shows the behaviour of the coefficients 7, and Sr for a = 1, for Courant numbers
¢, with 0 < ¢ < 1. It is seen that the loss of monotonicity is very slight, the coefficient Sp
is just above 0 for the range of CFL numbers v2 — 1 < ¢ < 1. The maximum of Sr occurs
for ¢ = 0.5773503 and is Brmaee = 0.0188, which is close to zero. This loss of monotonicity
takes place for intermediate wave speeds and dissapears as ¢ tends to 1. Therefore, for practical
computations we recommend using @ = 1 in the FORCE? scheme (13), (12).

We have also calculated the flux error of a given flux fi(-f)% (¢, qf,,) as compared with the
best first-order monotone scheme, the Godunov first-order upwind scheme, namely

By = {0 af) — £ )] (29)
We have considered the case A > 0 and Table 1 shows the results, normalised by A|g}" ; —¢q, |- As

expected, errors are largest as ¢ tends to zero and the least accurate flux is that of Lax-Friedrichs,
with FORCE" giving better results, which are again improved by the 2-stage FORCE? scheme.

10
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Figure 5: Variation of the coefficients 87, and g for the FORCE? for the linear advection
equation, as functions of the CFL number ¢ for a = 1.0.

Flux Error
Lax-Friedrichs %
FORCE! %(1 —c) X 12—70‘3
FORCE? (c+1)2(occf1)2Jr(SC(fll_)j)((Jchrl)z74(071)2 % %

Table 1. Normalised flux errors the Lax-Friedrichs, FORCE"' and FORCE? fluxes as applied
to the linear advection equation with A > 0.

Empirically, we have found that by increasing the number of stages in the predictor step
the accuracy of the scheme tends to that of the model scheme, the Godunov first-order upwind
method.

3.3 Other schemes

The numerical flux in the predictor step (13) does not need be the same as that in the corrector
step (12). For example, one could use the Lax-Friedrichs flux (8) for the predictor (13) and the
FORCE flux (10) in the final flux evaluation. Another possibility is to use the Lax-Wendroff
flux (9) in the predictor and the corrector steps. It is well-known that the Lax-Wendroff flux, if
used as a single-stage scheme, is oscillatory. We have carried out some analysis for the two-stage
Lax-Wendroff scheme as applied to the model equation (18). The corrector 2-stage Lax-Wendroff
type flux is

I = B! + Br(Aafya) (30)
with coefficients given by

Br=31+c)+3(1+c)(1 —ac)ac+ (1 —c)(1 + ac)ac

DN —

Br=1%(1-c)— 1141 - ac)ac— (1 —¢)(1 + ac)ac

N[ —
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In the predictor step we have advanced the solution by a time aAt, where At is a stable time
step for the overall scheme. In the corrector step we have evaluated the Lax-Wendroff flux, as
for a time step At. The free parameter o will be used to enforce monotonicity, for which we
require 87, > 0 and Br < 0. The first condition is met for all values of @ and CFL numbers
¢ in the interval [0,1]. The second condition cannot be met without choosing « as a function
of the CFL number, an undesirable, or unwanted condition, as we would not want to resort to
any form of upwinding, for which we would need information on wave propagation. We note
however that Sr = 0 gives two choices for «, namely

1—4de(fe—1)+1 1+ de(e—1)+1 ‘ (32)

B = 2¢2 » OT = 2¢2

We note that g < 0 for ap = %(aB + ar) = %2‘ All three curves ap, aps and ap cross over
at ¢ = 1/2. For systems this condition could be implemented as follows. Given a range of waves
and corresponding CFL numbers {c;} we could choose a = maxy {ap(ck), ar(ck)}. It seems
as if schemes based on the Lax-Wendroff flux are not useful. This is supported by numerical
experiments, which show that the schemes are oscillatory for the range of smaller CFL numbers.
We have also analysed 2-stage schemes based on other fluxes, such as the Godunov centred
flux, with similarly dissapointing results. However, we believe that there is still room for more
investigations in this area. In the next section we give a detailed algorithm for a successful
multi-stage scheme.

3.4 Algorithm for the k-stage FORCE* scheme

Here we propose a MUSTA-type scheme that can be used in practice. It is based on applying
the FORCFE flux (10) for both the multi-stage predictor (13) and the corrector (12). It is a gen-
eralisation of the 2-stage FORCE? scheme analysed in section 3.2. The scheme has essentially
two stages and is started by setting [ =1, Ql(-l) = Q7 and Ql(-}r)l = Q1. Then we do:

1. Flux evaluation:

F' =7, F", =F@Q"),

1 1 At
Qily = 5lQ7 + Q] - 5 B - FULL Fiy = F(Q]

! 1 ! ! Az ! !
0, = HE0cor o 47 (@) - a)]
2. Open Riemann fan:
1) _ A0 At @ 0 (1) _ A0 At 0

3. Goto step 1

The procedure is stopped at the end of Step 1 if the desired number of stages k has been reached.

From examining the algorithm for the k-stage FORCE* scheme we see that the number of
elementary arithmetic operations needed for evaluation of the intercell numerical flux is roughly
k(3 flux evaluations +11m + 8) — 4m — 2, where k is the number of stages in the predictor and
m is the number of equations. There are no fractional powers involved, unless they are present
at the level of the equation of state, for example, via the flux evaluations in Step 1. For the
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one-dimensional Euler equations (m = 3), a 2-stage scheme requires 68 operations and three
flux evaluations. This is comparable to typical existing approximate Riemann solvers, such as
Roe’s solver [22] or the HLLC solver [33], for example, but much more efficient than the Osher-
Solomon Riemann solver [21]. The advantage of our solver is its simplicity and generality. In
the next section we apply the k-stage FORCE¥ schemes to the Euler equations.

4 Test problems for the Euler equations

To illustrate the performance of one of the methods proposed in this paper we solve the time-
dependent one-dimensional non-linear Euler equations for an ideal gas with v = 1.4. In all cases
we compare the results obtained from the methods presented in this paper with those of the
Godunov first-order upwind method used in conjunction with the exact Riemann solver.

4.1 Test 1: a shock tube problem with sonic flow

We solve the Euler equations in the domain [0, 1], subdivided into a left section [0,0.3) and
a right section [0.3,1]. The initial conditions assign data for density, velocity and pressure
pr, = 1.0, ur, = 3/4, pr, = 1.0 in the left section and pr = 1/8, ugp = 0.0, pr = 0.1 in the
right section. We apply transmissive boundary condition at both ends. The solution includes
a right shock, a right contact discontinuity and a left transonic, or sonic rarefaction. The sonic
point causes difficulties to numerical methods, particularly those based on linearised Riemann
solvers, for which an explicit entropy fiz must be built into the scheme to avoid the computation
of rarefaction shocks. Here we solve the problem using M = 100 cells and a CFL number of
0.9. Figs. 6 to 9 show results obtained from the 4-stage FORCE* scheme, shown by symbols;
the exact solution is shown by the full line. Figs. 10 to 13 show a comparison between the
FORCE?" scheme (full line) and the Godunov scheme (dashed line) used in conjunction with
the exact Riemann solver. The exact solution (full line) is also shown. The FORCE* scheme
gives noticeable better results than the Godunov scheme. This is particularly the case for the
rarefaction wave, especially near the sonic point. To see the effect of increasing the number of
stages in the predictor step, while keeping the mesh size constant (100), in Figs. 14 to 17 we show
the results for FORCEF, with k = 1,2, 3,4, as compared with the exact solution (full line). The
plots clearly show that as the number of stages in the predictor step increases (with fixed mesh),
we approach the reference solution provided by the Godunov scheme. The 3-stage FORCE?
scheme is sufficiently accurate, as compared with the Godunov scheme used in conjunction with
the exact Riemann solver, and is probably a scheme that can be used in practice.

4.2 Test 2: a blast wave problem

To assess the robustness, as well as accuracy, of the FORCE* schemes, we solve the blast wave
problem proposed by Woodward and Colella [40]. The domain consists of a tube of unit length
with three sections, a left section between 0.0 and 0.1, a middle section between 0.1 and 0.9 and
a right section between 0.9 and 1.0. The initial values for density, particle velocity and pressure
are pr, = 1.0, ur, = 0.0, pr, = 1000.0 in the left section; pyr = 1.0, upsr = 0.0, pay = 0.01 in the
middle section and pr = 1.0, ugp = 0.0, pr = 100.0 in the right section. Reflective boundary
conditions are imposed at both ends. The solution of this problem is very complex and involves
multiple wave interaction, as time evolves. For a detailed discussion on the solution see [40]. For
all methods we used a CFL number of 0.9 and a mesh of 3000 cells. Results for density at the
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output time ¢ = 0.038 in the interesting section [%, 0.9] are shown in Figs. 18 to 23. The solution
includes a left contact discontinuity, which is exceeding smeared by all methods, including the
Godunov’s method with the exact Riemann solver. The second feature from the left is a shock
wave, and most methods perform reasonably well for this shock. The first feature from the
right is also a shock wave and the second feature from the right is a contact discontinuity, again
badly smeared by all methods. Fig. 18 shows a comparison between the Lax-Friedrichs scheme
(symbols) and the the reference first-order solution obtained with the Godunov scheme with the
exact Riemann solver. It is known that the Lax-Friedrichs scheme is the most diffusive of all
stable three-point monotone schemes. An improvement is obtained if the (one-stage) FORC E*
flux is used, as illustrated in Fig. 19; all waves are more sharply resolved. Fig. 20 shows the
result from the 2-stage FORCE? scheme. For the left contact, this scheme agrees perfectly
well with the reference solution. This is also the case for the left shock and for the right shock.
There is still as difference for the right contact and extrema. Fig. 21 shows the result from the
3-stage FORCE? scheme. The solution is very close to the reference solution. Fig. 22 shows
the result from the 4-stage FORCE* flux, which agrees very well with the Godunov scheme
with the exact Riemann solver. As a matter of fact, the FORCE* solution is slightly more
accurate than the Godunov solution; this was also observed for Test 1. Finally, the situation is
summarised in Fig. 23, where it is clearly seen how the multistage FORCE* scheme converges
to the optimal first-order solution, as the number of stages is increased, while keeping the mesh
fixed. The Lax-Friedrichs solution is also plotted. As for Test 1, the 3-stage FORCE? scheme
is sufficiently accurate and is probably the scheme to be used for practical computations.

5 Concluding remarks

We have presented a multi-stage predictor-corrector approach to obtain an upwind numerical
flux for use in finite volume and discontinuous Galerkin finite element methods. The imple-
mentations presented here rely on centred fluxes at each stage. It is demonstrated that as the
number of stages is increased we attain comparable accuracy to that of the Godunov method
used in conjunction with the exact Riemann solver. Our schemes are applicable to any system
of conservation laws, regardless of their complexity. The schemes can be appplied to multi-
dimensional problems in the setting of finite volume and discontinuous Galerkin finite element
methods. High-order extensions are also possible following any of the current approaches, such
as TVD methods, ENO/WENO methods, ADER methods and discontinuous Galerkin methods.
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Figure 6: Test 1. Comparison for density between the exact solution (line) and the 4-stage
FORCE" scheme (symbol).
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Figure 7: Test 1. Comparison for velocity between the exact solution (line) and the 4-stage
FORCE" scheme (symbol).
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Figure 8: Test 1. Comparison for pressure between the exact solution (line) and the 4-stage
FORCE" scheme (symbol).

> & N
en 8
5 0
a - 4
) 3 N
p—
< o
(=)
S q
Q °
(== o o
— [0]
(o]

ﬂ° s
1.8 -

0 0.25 0.5 0.75 1

Position

Figure 9: Test 1. Comparison for specific internal energy between the exact solution (line) and
the 4-stage FORCE* scheme (symbol).
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Figure 10: Test 1. Comparison for density between the exact solution (line), the Godunov
method (dashed line) and the 4-stage FORCE* scheme (full line).
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Figure 11: Test 1. Comparison for velocity between the exact solution (line), the Godunov
method (dashed line) and the 4-stage FORCE* scheme (full line).
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Figure 12: Test 1. Comparison for pressure between the exact solution (line), the Godunov
method (dashed line) and the 4-stage FORCE* scheme (full line).
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Figure 13: Test 1. Comparison for specific internal energy between the exact solution (line), the
Godunov method (dashed line) and the 4-stage FORCE* scheme (full line).
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Figure 14: Test 1. Comparison for density between the exact solution (line) and the FORC E*
schemes, k = 1,2,3,4 (lines).
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Figure 15: Test 1. Comparison for velocity between the exact solution (line) and the FORC E*
schemes, k = 1,2,3,4 (lines).
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Figure 16: Test 1. Comparison for pressure between the exact solution (line) and the FORC E*
schemes, k = 1,2,3,4 (lines).
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Figure 17: Test 1. Comparison for specific internal energy between the exact solution (line) and
the FORCE" schemes, k = 1,2, 3,4 (lines).
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Figure 18: Comparison between the Godunov method (full line) and the Lax-Friedrichs scheme
(symbols).
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Figure 19: Comparison between the Godunov method (full line) and the FORCE scheme (sym-
bols).
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Figure 20: Comparison between the Godunov method (full line) and the 2-stage FORCE?
scheme (symbols).
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Figure 21: Comparison between the Godunov method (full line) and the 3-stage FORCE?
scheme (symbols).
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Figure 22: Comparison between the Godunov method (full line) and the 4-stage FORCE*
scheme (symbols).
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Figure 23: Comparison between the Godunov method and other schemes: Lax-Friedrichs, k-
stage FORCEF, for k =1,2,3,4.
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