NEGATIVE CORRELATION OF EDGE EVENTS ON UNIFORM SPANNING
FORESTS

PROF. GEOFFREY GRIMMETT, STEPHAN WINKLER

CONTENTS
1. Introduction 1
2. Statement of the Conjecture 1
3. Algorithm 2
3.1. Overview 2
3.2. Explicit computation of KXy (G) 3
3.3. Indexing parameter classes (G, X,Y) 3
3.4. Canonical labels 4
3.5. Sufficient condition for K~ (D) = KX,(D’) 5
3.6. Enumerating and verifying conjecture instances (G, e, f) 7
3.7. Recursive formula for KX (D) 8
4. Implementation 9
4.1. Overview 9
4.2. Classes and data structures 9
4.3. Implementing our algorithm 11
4.4. Results and statistics 12

5. Conclusion 12

NEGATIVE CORRELATION OF EDGE EVENTS ON UNIFORM SPANNING FORESTS 1
1. INTRODUCTION

Positive and negative association, or dependence, are fundamental properties enjoyed by broad families
of events. While the former may be readily established by checking the so-called FKG lattice property,
no such universal tool exists to prove negative association. Even ad-hoc arguments tailored to specific
settings have proved elusive.

One well-known exception is negative association of certain increasing edge events on uniform spanning
trees (UST). The ingenious proof exploits connections to the theory of electrical networks, invoking the
Raleigh-principle. Unfortunately, it does not easily extend to more general settings.

We obtain two natural extensions of the sample space of UST by dismissing either one of the two defining
properties of trees: acyclic or connected subgraphs give rise to the uniform spanning forest (USF) or
uniform connected subgraph (UCG) measures, respectively.

This computational study addresses the conjecture that, for any fixed graph G, the presence of two distinct
edges in a forest F' is negatively associated, if F is drawn uniformly at random from the set of forests
contained in G.

We present an algorithm, implementation and numerical results that establish the result for all graphs G
on up to 8 vertices. Extrapolating certain distributional statistics suggests that counterexamples for G of
higher order, should they exist, are probably sporadic.

2. STATEMENT OF THE CONJECTURE

We begin by recapitulating some common graph-theoretic jargonthat will be used throughout this paper,
and give a precise statement of the conjecture under investigation.

G = (V, E) denotes an undirected graph with vertexr set V- = V(G) and edge set E = E(G) C {e = (v,w) :
v#we V} |V]is called order, and |G| := |E| is called size of G. If the vertex set V is understood,
it is sometimes convenient to identify G with its edge set, writing E = (V, E). Let G(V') be the set of
undirected graphs with vertex set V. If the vertices are labelled in the natural way V = [n] := {1,...,n},
we shall write G = G([n]). The particular graph with all edges present is called complete, and denoted K.

For convenience, we write set unions and differences as X +Y := XUY and X —Y := X\ Y, respectively.
Similarly, we define X + 2z := X + {z}. Given graphs F,G € G(V) with edge sets D, E, we write G =+ F
and G N F for the graphs with edge sets £ + D and E N D, respectively. We say that F' is a subgraph of
G,or F C G, if D C E. G(V) is partially ordered by C, with the empty and complete graphs on V as
smallest and largest element, respectively.

We may construct a bijection between graphs G € G and N-tuples w of binary digits, where N = (g)
each co-ordinate w(e) of w indicates the presence or absence of the corresponding edge e in G. G is thus
identified with the boolean lattice = 2. We shall write G(w) for the graph encoded by w.

A probability measure on € is a non-negative function p satisfying »° .o pu(w) = 1. We say that p is
negatively associated if [fgdu < [fdu [gdp for bounded increasing functions f, g depending on disjoint
sets of edges.

In this study, we restrict ourselves to a specific choice of u, f and g. Fix any graph G € G and consider
the set F(G) C G of spanning forests contained in G. We denote its cardinality by K(G) = |F(G)| and
define the Uniform Spanning Forest USF(G) with probability measure p = P,

K(G)™' if F(w) € F(G)
Plw) = { 0 otherwise

In other words, F' ~ USF(G) is a random spanning forest contained in G, chosen uniformly in that
P(T=7) = K(G)~'. Finally, we consider f(w) = liccp(u)} and g(w) = l{sep(w); for distinct edges

2 PROF. GEOFFREY GRIMMETT, STEPHAN WINKLER

e, f € E. These functions are obviously bounded, increasing, and depend on disjoint sets of edges {e},
{f}. We can now state our conjecture that P is negatively associated for this particular choice of f,g.

Conjecture 2.1. For every graph G € G, if F ~USF(G) and e # f € E, then

(2.1) P(e, f € F) < P(e € F)P(f € F).

Since € is finite, computing these probabilities amounts to counting the combinatorial quantities involved.
For this purpose, we introduce some notation. Given any graph G € G and disjoint edge sets X,Y
contained in E, we define FXy(G) to denote the set of spanning forests F C G containing X and disjoint
from Y; formally FXy(G) = {F € F(G) : X C F,Y N F = 0}. Let KXy (G) = |F¥Xy(G)| denote its
cardinality.

The edge sets X and Y will be referred to as constraints. For brevity, if either X or Y is empty, it is
omitted from the index: Fly = Fy, FXy = FX and FYy = F. Singleton sets are denoted by their
elements, without enclosing set brackets: F {e}{ 7y = F¢y etc. The same conventions apply to K v (@).
Inequality 2.1 now takes the form

KoTHG)K(G) < K°(G)K[(G)

Notice that K = K¢ + K.. Hence K¢ = K{ef} K¢ and, similarly, K, = Kf, + K¢ sy. Substituting
these expressions, we obtain

(2.2) KNG K. 11(G) < K°4(G)K' o(G)

This is the form that we will take as starting point of our analysis. We define the standard constraints
Xi = {e, f},0,e, f and Yy := {e, f} — X, for k = 1,2,3,4, respectively. Writing Ky = K~*y, (G),
inequality 2.2 condenses to K1 Ko < K3Kjy4.

3. ALGORITHM

3.1. Overview. The difficulty of verifying inequality 2.2 numerically is due to the nesting of computations
separately believed NP-hard. Naively, it is required

(1) to enumerate all possible graphs G of target order n,
(2) to consider, for each G, all pairs of distinct edges e # f € E, and finally
(3) to compute, for each choice of G, e and f, the values of K}, appearing in equation 2.2.

Of course, this direct approach is not viable for reasons of complexity: first, there are 2V = 0(2"2)
subgraphs G of K, to consider. Second, a graph of size s will allow O((;)) distinct choices of edges e # f.
Third, K} is not easy to obtain: an elementary strategy involves examining all subgraphs F' of G with
X C Fand Y, N F =0, a total of 21G1=1¥sl=I1Xkl op 0(2"2), candidates. For each F', we must determine
if it is indeed acyclic, another non-trivial task: examining one edge at a time until a cycle is discovered or
F exhausted requires O(|F|) = O(n?) operations on average.

Nesting algorithms of (super-)exponential complexity results in unacceptable run-times: our rough analysis
shows that a naive algorithm will require O(n222"") operations, or O(10'%) for n as small as 4. In the
following sections, we present methods that will extend the scope of computational verification up to

n = 8, permitting non-trivial quantitative and qualitative deductions for even larger graphs.

Section 3.2 presents an ad-hoc counting algorithm to compute KXy (G) for a given set of parameters
(G, X,Y): it starts from the smallest forest in G that satisfies constraints X, Y and enumerates its possible
extensions.

NEGATIVE CORRELATION OF EDGE EVENTS ON UNIFORM SPANNING FORESTS 3

Sections 3.3 - 3.5 address the crucial problem of reducing the number of explicit evaluations of KXy (G)
required. We develop and prove a new method to index classes of parameters (G, X,Y) with common
value KXy (G), exploiting invariance under certain isomorphisms.

This is heavily used in section 3.6, which describes an economical way of enumerating distinct instances
(G,e, f) of conjecture 2.1: We fix the only two non-isomorphic choices of e, f (connected or not) ahead
of time and examine the hierarchy of graphs G sandwiched between {e, f} and K, ’bottom-up’, skipping
instances identified as equivalent to earlier ones.

Finally, in section 3.7, we develop a formula expressing K~ (D) as a sum over values KX '(D’) for larger
sets of constraints X’ and smaller graphs D’, which are cheaper to compute and may even be available
from earlier computations.

3.2. Explicit computation of KXy (G). In order to compute K~y (G), we have to enumerate the
set FXy(G) of forests F C G containing X and disjoined from Y. We shall refer to these forests as
valid. We make two preliminary observations regarding the sets of constraints X and Y. (1) We may
assume that X is itself acyclic, otherwise KXy (G) is trivially zero. (2) Y may be subsumed into G, since
KXy (G) = KX(D) with D :=G - Y.

The partial order C on G suggests two natural starting points: a minimal or (if any exists) a maximal
valid forest F'. The former is just the graph with edge set X, whereas the latter is more elusive and not
necessarily unique: it would have to be constructed by dropping edges from D until no cycles remain,
a rather unpleasant stopping condition algorithmically. We shall therefore proceed 'bottom-up’, starting
from X.

Our strategy is to enumerate all valid forests F' of the same size before proceeding to the next layer in the
hierarchy of graphs sandwiched between X and D. Let Fs := {F € FX(D) : |F| = s} denote the layer of
valid forests of size s for s = | X|,...,|D|. Clearly {F;} forms a partition of F~ (D).

The construction of the layers F; is best described inductively: We start from Fx| = {X}. Having
found Fs, we construct Fs41 by considering every F € F4(X) in turn. The forest F' can be thought of as
(vertex- and edge-)disjoint union of connected components C;, noting that isolated vertices form singleton
components. We seek to enlarge F' by one edge without forming a cycle. Every such augmentation arises
by merging two distinct components (whereas adding an edge to a component must form a cycle). Thus,
from every pair of components C; # C; of F, we obtain new elements F’ of F,11(X) by adding an edge
joining C to C;. Formally,

Fixg = 1X}
Fsy1. = {FHe:F=|],;Ci€Fs and e = (v;,v;) with v; € V(Cy),v; € V(Cj),i # j eI}

Remark: This definition hides the fact that a given element of F,11 may be arrived at in various ways
from different elements on the layer below. Correct book-keeping, which involves storing forests as sets of
components and detecting duplicates, is somewhat subtle to implement, as discussed in Chapter 3.

As soon as the highest layer s = |D| is reached, we may read off

D]
K¥(G)=EKX(D)= Y |7

s=|X]|

3.3. Indexing parameter classes (G, X,Y). Verifying inequality 2.2 for some graph G and choice of
edges e # f € E requires the four values Ky, k € [4]. Unfortunately, the above brute-force algorithm to
compute K~y (G) becomes highly time-consuming for large graphs G' and small sets of constraints X, Y,
as the the layers Fs(X) grow fast in n and s. It is therefore crucial for good performance to avoid this
explicit computation as often as possible.

4 PROF. GEOFFREY GRIMMETT, STEPHAN WINKLER

Our strategy is to devise some function ¢ that indexes equivalence classes of parameters (G, X,Y) with
common value of KXy (G). Let this value be K, for all parameters with index i(G, X,Y) = t. Obviously,
one explicit computation of K, suffices; the obtained value may be buffered in a database and retrieved
to give KXy (G) for all parameters (G, X,Y) with same index ¢.

To optimize performance, we seek to minimize the range of indices ¢. Ideally, i(G,X,Y) = i(G', X', Y")
if and only if KXy (G) = KX'y/(GQ"). Such a function i being impossible to compute, however, we have
to allow i to assume more than one value on parameters classes with common value of K~y (G). A good
compromise is achieved by an easy-to-compute i with sufficiently small index space.

Our construction of such an index i relies on the following key claim (to be stated precisely and proved in
section 3.5): Setting D) := G) —Y (), a sufficient condition for K~ (D) and KX (D') to be equal is that

(K1) D and D’ have similar structure,
(K2) X and X’ as well as D — X and D’ — X’ have similar structure, respectively, and
(K3) X and D — X are composed in a way similar to X’ and D’ — X"

Conditions (K1) and (K2) are motivated by the fact that the number of spanning forests of D containing
X depends on the structures of both D, X and D — X (see figures 7?7 and ??). However, the first two
conditions are not sufficient, as illustrated by the graphs in figure ??. It is intuitively clear that (K3) closes
the gap, but non-trivial to decide precisely how it should to be enforced: for example, it is insufficient to
ensure that X and D coincide in the same number of vertices as X’ and D’, even when all vertex degrees
match (see counterexample ?7).

Section 3.4 develops the language required to precisely formulate the conditions (K1) - (K3). Section 3.5
gives the correct interpretation of (K3) and contains a proof of the above claim. As a corollary, we shall
finally define i(G, X,Y") to be the triple (D', X', D’ — X') for suitably defined canonical isomorphs of D,
X and D — X.

3.4. Canonical labels. The following definitions and conventions are based on McKay (?7).

3.4.1. Partitions. A partition m = (V1,...,V;) of a set V is a sequence of disjoint non-empty subsets of V
whose union is V' The set of all partitions of V' will be denoted by II(V'). If V is the vertex set of a graph
G = (V,E) and w € II(V), then the pair (G,) is termed partitioned graph.

The components V; of a partition 7 are called its cells. Note that the order of the cells is significant, but
the order of the vertices within each cell is not. A singleton, or trivial, cell is a cell V; = {v} with a single
element v, which is said to be fized by w. If every cell of 7 is trivial, then 7 is a discrete partition. On
the other hand, if 7 contains only one cell V3 =V, then 7 is called unit parition.

Any partition 7 may be identified with a vertex-colouring ¢ : V' — [k] by assigning colour ¢ to all vertices
in cell V; of 7. In this alternative language, cells are also called colour classes.

3.4.2. Permutation groups. Let v be a permutation of a set V. The image of v € V under v will be
denoted v”. Similarly, if U C V then UY = {uY : w € U}. If 7 = (V4,...,V,) € II(V) is a partition of V,
we set 77 = {V{,...,VJ}. If G = (V,E) is a graph, then G € G(V) is the graph with vertices v and
w? adjacent if and only if v and w are adjacent in G, i.e. E(GY) = {(vV,w?): (v,w) € E}.

Two partitions 71 and m2 of V' are called compatible if there exists a permutation v of V' such that mo = 7.
In other words, m; and o contain cells of the same size, with the same frequency, and in the same order.

Two graphs G1, G € G(V) are called isomorphic if there exists a permutation -y of V' (called isomorphism)
such that Go = G7. We denote this by G1 ~ Ga; it is easy to check that ~ defines an equivalence relation
on G(V). If the graphs G; carry partitions 7;, we say that there is a partition-preserving isomorphism -y
from G to Go if Go = G] and mo = 7]

The automorphism group Aut(G,r) of a partitioned graph (G,) is the set of all permutations « such
that G = G and 77 = 7. Since the order of cells in partitions is significant, the last condition means that
v fixes the cells in 7 setwise. If 7 is the unit partition, we obtain the full automorphism group of G.

NEGATIVE CORRELATION OF EDGE EVENTS ON UNIFORM SPANNING FORESTS 5

3.4.3. Canonical labelling map C. A canonical labelling map is a function C : G(V) x II(V) — G(V') such
that, for any graph G, partition 7 of V', and permutation v of V', we have

(C1) C(G,m)~G,
(C2) C(G7,n7")=C(G,n), and
(C3) IfC(G,7") =C(G,n), then 77 = 7° for some § € Aut(Q).

Remarks: Properties (C1) - (C3) do not define C uniquely, but suffice for our purposes. We will later
work with an arbitrary but fixed choice of C. If 7 is the unit partition, 7 = (V'), we may abbreviate
C(G) :=C(G,(V)). The main use of a canonical label is to solve certain graph isomorphism problems, as
shown by the following theorem:

Theorem 3.1. (McKay 1981)

Let G1,G2 € G(V) be graphs, 1,72 € II(V) compatible partitions and v a permutation of V. Then
C(G1,m) = C(Ga,ma) if and only if there is a partition-preserving isomorphism from Gy to Ga.

Proof. Since 7y, w2 are compatible, we may write 7, =: m and 7y = w7 for some permutation vy of V.

«: Assume that there exists a permutation & of V such that G = G§ and 77 = 7%. Substituting, we have
C(Ga, 1) = C(GS,7°) = C(Gy,) by property (C2).

= Suppose conversely that C(G1,7) = C(G2,77). By (Cl), G2 = Gf for some permutation 3 of V.
Therefore, C(Ga,77) = C(G?,77) = C(G1,7%), by (C2). Hence C(Gy,7) = C(G1, 75). By (3) there
is some v € Aut(Gy) such that 778" = 7, and so 7 = 7°%. But « € Aut(Gy), and so Gy = G~ = G*P.
This shows that § = a3 exists as desired. O

Remark: In the language of vertex-colourings, Theorem 3.1 says that if two graphs G; and G5 are coloured
with the same number of vertices of each colour, then if C(G1,m1) = C(G2, m2), there is a colour-preserving
isomorphism from G to G2 (here, m1 and 7o are the colourings, with the colours in the same order in
each).

3.5. Sufficient condition for KX(D) = KX'(D’). We are now in the position to precisely formulate and
prove the result sketched in section 3.3 and, as a corollary, obtain the desired index function 7. Resuming
our earlier notation, we require a rather rigid criterion for the composition of X,D — X and X', D’ — X’
to guarantee that KX (D) = K~X'(D’). This is obtained by constructing a certain vertex-colouring of D
and D’ and using the canonical labelling map C from section 3.4.

To begin with, let C(D) be the canonically-labelled isomorph of D (with unit partition), such that C(D) =
D? for some permutation § of V.

Given two edge sets A, B C E, we define the interface Z(A, B) to be the set of vertices incident with edges
in both A and B, i.e. Z(A,B) :={v e V : (v,a) € A, (v,b) € B}. Elements of Z(A, B) are called interface
vertices. Thus Z(X, D — X)) represents the interface of the complementary subgraphs X and D — X of D.

We wish to ’fix’ this interface whilst allowing portions supported by vertices ’inside’ X and D — X to
vary up to isomorphism. For this purpose, we colour each vertex v € Z(X, D — X) with its label in the
canonical isomorph of D, namely v°. This induces a coloring ¢ : V' — {0,...,n} of the vertex set of D:
each vertex v takes colour v if v € Z(X, D — X) and 0 (black) otherwise.

The colouring c¢ translates into a partition of V' by setting V; = {v € V : ¢(v) = i}. Observe that each
V; is either empty or a singleton cell, except perhaps the set Vj of black vertices. Dropping all empty
cells and relabelling the others in the same order, we obtain the partition 7 = 7(X, D — X, §) of the form
Vo, {c1},.-.,{ck}), where k = |Z(X, D — X)|.

Theorem 3.2. A sufficient condition for KX (D) = KX'(D') is that

(K1) C(D)=C(D),
(K2) C(X,r)=C(X',7'), and
(K3) C(D—X,r)=C(D — X' 7).

6 PROF. GEOFFREY GRIMMETT, STEPHAN WINKLER

Before we embark on the proof of this result, we require the following

Lemma 3.3. If conditions (K1) - (K3) of Theorem 3.2 hold, then the partitions = and 7’ are compatible.

Proof. By construction, m and 7’ are compatible if the sets of black or, equivalently, interface vertices have
the same cardinalities. Therefore, it is enough to show that |Z(X, D — X)| = |Z(X’, D’ — X')|, i.e. edges
of X and D — X coincide on the same number of vertices as those of X’ and D’ — X".

We require some more graph-theoretic vocabulary: Let I'g(v) := {w € V : (v,w) € E} the set of
neighbours of a vertex v € V, and define dg(v) = |I'g(v)| the degree of v. Define the degree sequence
d¢ = (dg(v) : v € V) with degrees listed in increasing order.

Let r, s and t denote the degree sequences dp, dx and dp_x, respectively. At every vertex v € V,
we have dp(v) = dx(v) + dp_x(v). Equivalently, there exist permutations «, 8 of [n] such that for all
i € [n]l,r; = s; +t, with j =%k = iB. Thus, the i-th smallest degree of D corresponds to the unique
pair (s;,tg).

A vertex v lies in the interface Z(X, D — X) if and only if both summands dx (v) and dp_ x (v) are nonzero,
i.e. the corresponding pair (s,t) has s,t # 0. Let a,b and ¢ denote the number of leading zeros in the
degree sequences r, s and t, respectively. Notice that for ¢ € [a], we have r; =0 = s; = ¢ = 0, so there
are precisely a pairs (0,0). This shows that b + ¢ — 2a zeros are paired with non-zero partners, leaving
n—a— (b4 ¢ —2a) pairs (s,t) with s,t # 0. Hence |Z(X,D — X)|=n+a—-b—c.

Finally, by assumption (K1) and using property (C1) of the canonical label C, we have D ~ C(D) =
C(D') ~ D', hence dp = dp:. By (K2), (K3), analogous statements hold for X() and D) — X©)| so that
we obtain the same values a, b, ¢ for both primed and unprimed edge sets. O

Proof of Theorem 3.2. Assume that conditions (K1) - (K3) hold. To show that KX (D) = KX (D), it is
enough to construct a bijection ¢ : FX (D) «— FX' (D).

By Lemma 3.3, 7 and 7’ are compatible, so we may apply Theorem 3.1 to (G, m;) = (X, 7)) and
(DY) — X (). This shows that there exist permutations p,o of V such that

X' = X° = xP

D-X = (D-X)° = x°
Let m = (Vo,{c1},...,{ck}). Then 7? = 7 implies ¢/ = ¢7 for i € [k]. This shows that p and o agree on
the interface Z(X, D — X)) (*).
We claim that a bijection ¢ : FX(D) < FX'(D') is given by F = X + A — F' = X* 4+ A°. This claim is
easily verified as follows: ¢ is well-defined by (x); F’ contains X’ = X?; F' is acyclic (X', A" are separately

acyclic as images of acyclic X, A, and jointly acyclic due to (x)); and ¢ is bijective with inverse obtained
by substituting p~!, o1 for p, o, respectively. O

As a direct consequence of Theorem 3.2, we obtain the following easy-to-compute and efficient index
function (G, X,Y).

Corollary 3.4. Let (G, X,Y) be an instance of conjecture 2.1, D =G =Y and 7 =n(X,D — X,0). Let
i be given by the triple

(G, X,Y)=(C(D),C(X,n),C(D — X,)).
Then KXy (G) is equal to K, for all (G,X,Y) with common index i(G,X,Y) = ¢.

We make an important remark regarding efficiency: In the above construction of the partition 7 =
(X, D — X,9), it is not relevant for the validity of Theorem 3.2 to colour each vertex v € Z(X,D — X)
precisely with its label in the canonical isomorph of D, namely v°. In principle, we could have chosen
arbitrary distinct colours, thus removing the dependence of 7 on 4.

NEGATIVE CORRELATION OF EDGE EVENTS ON UNIFORM SPANNING FORESTS 7

However, these colours determine the order in which interface vertices appear as singleton cells in the
induced partition 7. This order is in turn significant for the canonical label C. By consistently choosing
the colour v® we maintain the same order across the whole class of isomorphs of D. This guarantees that 4
subdivides the space of parameters (G, X,Y") into possibly large classes with common index i(G, X,Y) =
and, hence, the number of evaluations of KXy (G) required.

One drawback of the partition 7 depending on ¢§ is that we have to recompute all components of i
whenever a new graph D is considered and the corresponding ¢ affects 7, even when X or D — X have
not changed themselves. Whether performance is improved overall will therefore depend essentially on
the fast evaluation of C (see Chapter 3).

3.6. Enumerating and verifying conjecture instances (G, e, f). In order to verify Conjecture 2.1
numerically for graphs of order n, we have to enumerate and verify inequality 2.2 for all possible choices
of G C K,, and e # f € E. We call such a choice conjecture instance (G, e, f).

As seen in section 3.1, the number of conjecture instances grows extremely rapidly in n. Fortunately, there
are large classes of equivalent conjecture instances. Here, (G, e, f) and (G', €/, ') are called equivalent
if inequality 2.1 is invariant under interchange of both sets of parameters, i.e. Ki1Ko = K{K} and
K3Ky = K{K). We denote this by (G, e, f) ~ (G', €, f').

We propose two measures to reduce complexity: (1) to choose an enumeration that ab initio avoids many
equivalent instances; and (2) to skip instances identified as equivalent to earlier ones using index function
1 from section 3.3.

3.6.1. Efficient enumeration. Choosing G first confronts us with the hard problem of deciding which
choices of e # f € E will produce distinct conjecture instances. To avoid this, we begin by fixing the
only two non-isomorphic choices of e, f (connected or not); without loss of generality E7 = {eq, f1} :=
{(1,2),(1,3)} and E2 = {e2, fo} = {(1,2),(3,4)}. We then examine the instances (G, e;, f;) for graphs G
containing either (or both) E;. This is sufficient: given any instance (G, e, f) with e = (a,b), f = (¢, d)
or e = (a,b), f = (b,c), there exists a permutation v mapping a, b, c,d to 1,2, 3,4, respectively. Hence
(G,e, f) ~ (G7,e;, f;) for i =1 or 2, an instance of the form above.

Let Gs = {G € G : |G| = s,E; C G some i = 1,2} be the layer of supergraphs G of E; of size s, for
s =2,...,N. As in section 3.2, our algorithm to construct G is best described inductively: Begin with
Ga = {E1, E2}. Having found G, construct Gsy1 by iterating through all G € Gs; for each G, enumerate
all N = (g) possible edges e; = (v;, w;) € E(Ky) in lex order (ie. e; <. e; if v; < wvj; or v; = vy, w; < Wj).
If e; is not already present in G, add G + e; to Gs11.

We incorporate a simple optimization to avoid some apparently equivalent instances from the start; it is
most effective on low layers G, with s <« N, when the order n is large. Let v* be the smallest isolated
vertex of G. Then, by construction, all higher vertices w € {v*,...,n} are also isolated. It is easy to show
that a conjecture instance (G + (u, w), e;, f;) will be equivalent to (G + (u,v*), e;, f;) for all v < v* < w,
and (G + (w,w'), e;, fi) ~ (G + (v*,v* + 1),¢;, f;) for all v* < w < w'. We may therefore restrict our
attention to edges e; with v;, w; < v* (with the exception of the last edge to be added, namely (v*, v*+1)).

3.6.2. Skipping equivalent instances. Having constructed G5, we must verify all instances (G,e;, f;) for
G € Gs; and E; C G. However, the cardinality of G, grows prohibitively fast, like O((I:)), which in any
computer implementation is bound to quickly exhaust the available resources. To address this critical
issue, we require a criterion to identify equivalent instances. This will enable us to skip many redundant
checks of inequality 2.2, and to reduce Gs by deleting graphs G for which both instances (G, ey, f1) and
(G, ea, f2) are equivalent to earlier ones. We use the following proposition:

Proposition 3.5. (Equivalence of conjecture instances)

Let G,G' € G and e # f € ENE'. If conditions (K1) - (K3) of Theorem 3.2 hold for X0 — {e, f} and
D) =GO, then (G,e, f) ~ (G',e, f).

8 PROF. GEOFFREY GRIMMETT, STEPHAN WINKLER

Proof. Recall that by definition, (G, e, f) ~ (G',e, f) if k1K = K{K/}, and K3K4 = K{K}. By Theorem
3.2, the assumptions immediately imply K1 = K{, so all we have to show is (1) Ko = K5 and (2)
K3Ky = KLK,.

Let p,o as in the proof of Theorem 3.2. In this context, X’ = X* reads {e, f} = {e, f}*, so that p either
fixes or swaps the edges e and f. To show (1), we construct a bijection ¢ : Fie ;1(G) < Fie 51 (G') by
mapping F — F' = F°,

Statement (2) follows from the observation that mapping F = e + A € F¢;(G) to e? + A constitutes a
bijection between F¢(G) and either F¢;(G') or F/.(G'), depending if p fixes or swaps e and f, and we
have K3 = K} or K3 = K} accordingly. By an analogous argument, Ky equals K} or K}, respectively.
This establishes (2). O

The main use of this result is the following: Assume that for some instance (G, e;, f;), K1 is successfully
retrieved from a database of values KX (D) using index i(G, E;,#) = ¢, say. Then this value springs
from an earlier computation for parameters (G, X', Y’) with same index i(G’, X', Y’) = . We deduce
that X’ ~ E;, and so X’ = Ej;, since this is the only such choice that we have ever used. Similarly,
Y ~ 0 =Y =0. Applying Proposition 3.5 with e = e;, f = f;, we conclude that (G, e;, f;) is equivalent
to (G', e;, fi). Since inequality 2.2 has already been checked for the latter instance, we are safe to skip the
former now.

More importantly, we can be sure that for any supergraph H of G, there is a supergraph H' of G’ with
(H,e;, fi) ~ (H',e;, fi). Hence, if both instances (G, eq, f1) and (G, es, f2) were identified as equivalent
to earlier ones, we no longer need to consider descendants of G when constructing G; for ¢t > s; we may
safely delete G from G, altogether. (If only one of these two instances, (G, e;, f;) say, was found equivalent
to an earlier one, we must leave G in Gg; at least we know in advance that we may skip later instances
(H, ey, f;) for all descendants H of G.)

3.7. Recursive formula for KX (D). Despite our efforts, a large number of explicit computations of
KX (D) remain inevitable. As remarked above, the cost of computing KX (D) explicitly grows exponen-
tially in the size of X and D. It is therefore preferable to expand this quantity into a sum over KX (D’)
for larger sets of constraints X’ and smaller graphs D’, which are cheaper to compute, or may even be
available from earlier computations. We propose a method based on the following

Proposition 3.6. Forallde D — X,

(3.1) KX(D) = KX(D — d) + KX*(D).

Proof. This identity is immediate from the definition of KXy (G): Partition FX (D) = F; | | F2 by putting
F into JF; if it does not contain d, and into F» otherwise. Observe that we may bijectively identify F;
with FX(D — d) and F» with FX*+4¢(D). The result follows by taking cardinalities. O

Repeatedly applying proposition 3.1 to the last summand in equation 3.1 yields a recursive formula for
KX(D), as follows. By assumption, D is of the form D = X + {d1,...,dx} with k = |D| — |X|. We
define the increasing sequence of constraints X; = X +{d1,...,d;—1} (assuming X; = X) and the reduced
graphs Dj = D — d; for j € [k]. The corresponding values K~i(D;) are called minors of KX(D). Then

Corollary 3.7.

k
(3.2) K*(D) =) K%(D;)+ K" (D)

We make several observations:

NEGATIVE CORRELATION OF EDGE EVENTS ON UNIFORM SPANNING FORESTS 9

(1) Equation 2.2 shows how to obtain one value of K by aggregating several others. Despite appear-
ance, this saves runtime for the following reasons: (a.) If X is a standard constraint, then the first
summand on the ths, KX1(D;) = KX(D — d), has already been computed on the layer below D.
(b.) KP(D) is simply 0 or 1, depending if D is itself acyclic. (c.) If we buffer not only the result
KX (D), but all the minors K-i(D;) obtained on the way, we may expect that over time, some
minors can be retrieved from earlier calculations using index function 1.

(2) To increase the probability of minors being available from earlier computations, we buffer the
intermediate results KX7(D): identity 3.1 yields the recursive expression

KEX(D) = K%(Dj+dy)
= KY%(D;)+ KX+ (D)

Observe that X;41 = D. Hence, for j = k, the rhs is just the sum of the last two terms in 3.2.
We may then compute K~ (D) for j =k — 1,k —2,...,1 in turn, at each stage adding the j-th
term of 3.2 on to a running total. When j = 1 is reached, we can read off the overall result
KX(D) = KX (D).

(3) To further accelerate the evaluation of 3.2, observe that KX (D) = 0 whenever X contains a cycle.
Since the sequence X is increasing, if some X; contains a cycle, then so does X, for all j' > j.
Let j* be the largest j with X; acyclic. If j* < k, then 3.2 simplifies to

KX(D) = iKX"(Dj)
j=1

To determine j* algorithmically when X is a standard constraint, we start from the edge set
X1 = X (which is acyclic as | X| < 2) and add edges whilst keeping track of the components of
X;. So long as addition of an edge merges disjoint components, X; remains acyclic. Once this
fails to hold, we have gone past, and hence identified, j*.

4. IMPLEMENTATION

4.1. Overview. In this Chapter, we present our implementation of the above algorithm in C++-, available
at http://www.statslab.cam.ac.uk/~grg/rsf.zip. The source code is fully commented and compiles
with both gcc version 3.2 and Visual C++ 6.0. We have chosen C++ for a variety of reasons: First, for
speed and for the benefits of object-oriented design. Second, to profit from the powerful Standard Template
Library (STL) when handling advanced data structures such as vectors, sets and maps. Third, to be able
to incorporate the excellent C-program naeuty by Brendan D. McKay, needed to obtain canonically-labelled
isomorphs of (partitioned) graphs.

In section 4.2, we document our representations (classes) of the various mathematical objects under
discussion, including permutations, edges, components, forests, and general graphs. We further describe
the data structures used to manage sets of forests and graphs such as Fg and Gs (see 3.2 and 3.6), and
how we realized the database of values KX (D), indexed by i (see 3.3 - 3.5).

Section 4.3 is devoted to our implementation of the algorithm itself. We discuss programming issues
relevant for the three main components: explicit computation of K~y (G) (see 3.2), enumeration and
verification of conjecture instances (G, e, f) (see 3.6), and the recursive formula for KX (D) from section
3.7.

The findings of our investigation are summarized in section 4.4. Notably, we confirm Conjecture 2.1 for
all graphs G of order n < 8, present distributional statistics and evaluate the efficacy (and limitations) of
the various optimizations used.

4.2. Classes and data structures.

10 PROF. GEOFFREY GRIMMETT, STEPHAN WINKLER

4.2.1. Class architecture. The class CPermutation stores the image of some permutation v of [n] as vector
and possesses methods permute and inverse to compute 7 and v~1. The class CEdge represents undi-
rected edges e = (v, w). For reasons that will emerge later, it supports operators ==, < to test for equality
and precedence, where the latter is defined by e <. ¢’ :& v <o if v # v/, and w < w’ otherwise.

The classes CVertices and CEdges wrap vectors _V, _E of types int, CEdge, listing the elements of a vertex
set V and an edge set E, respectively. These classes also carry operators for lex ordering. Individual or
sets of elements can be added and removed, alternatively at the end of the list (using push and pop) or
preserving lex order (using add and remove). Both classes possess a method combine that merges two
ordered lists of elements into one. Finally, CEdges can evaluate v*, the smallest isolated vertex of the
graph G = (N, E) (see subsection 3.6.1).

Components C' are connected subgraphs (V| E) of a graph G = (V/,E’), with V. C V' and E C E'. In
our implementation, they are represented by the class CComponent, which contains objects _V, _E of type
CVertices, CEdges, respectively. There are three constructors: one to instantiate the singleton ({v},0);
another to construct a component ({v,w},{e}) from a single edge e = (v, w); a third to merge disjoint
sub-components C; and Cs by adding an edge e assumed incident with both. A method add_edge is
provided to augment C' by some incident edge f ¢ C. A total order is imposed on components by giving
precedence to components with fewer edges. Formally,

(V.E) <c (V,E') & [E|<|E'| if |E|#|E|

v<v if both are isolated vertices, V() = {v("}, E") =
E <. E’" under lex order on edge lists, otherwise
Forests F' = |_|f:1 C; = (C1,...,C)) are modelled by the class CForest. Its member vector<CComponent*>

_C stores pointers to the objects representing C;, so they may be centrally administered and shared among
multiple forests. Forests may be constructed from either a set of components (the notion of a set will be
made precise below) or another forest, replacing two old components with a new one. Given forests F, F”,
we define their order by giving precedence to forests with fewer components:

F<pF & k<FK ifk#£Kk
(C1,...,Ck) <c (C1,...,C1) under lex order on component lists, otherwise

The class CGraph plays a pivotal role for the present implementation. When instantiated, it represents
a graph G = ([n], E) of order n. Rather than storing E, we record Matrix _A!, the adjacency matrix
of G. This allows simple and fast book-keeping (e.g. add_edge(s), remove_edge(s) and has_edge), but
renders the class inappropriate for large sets of graphs such as G,. Instances may be constructed from a
specified edge set F, or randomly sampled fixing the desired size s or probability p for edges to appear
independently at random. When not instantiated, the class CGraph acts as interface, whose static methods
implement components of our algorithm not associated with an individual graph object (see section 4.3
below).

To store graphs more economically, we introduce a dedicated class CGraphcode. Employing McKay’s
highly optimised technique, the adjacency matrix A;; is encoded in a vector r; of unsigned longs. This
appears as member Graphcode _code, where Graphcode is a placeholder for vector<unsigned long>.
For comparatively small graphs like those considered in this study, one r; suffices to store the j-th row
of A. We impose a (somewhat artificial) ordering on instances G of class CGraphcode by setting G <¢
G & (r1,...,rn) < (r},...,7,) under lex order. A subclass CGraphdata is derived from CGraphcode to

store further information pertinent to the encoded graph, as will be described below.

Remark: Objects of all classes are able to produce an easy-to-read textual representation of their current
data. For CEdge, CEdges and CVertices, there exists an operator << to write the object to a given
ostream&. All other classes implement a method report.

IThe type Matrix is short for vector< vector<int> >.

NEGATIVE CORRELATION OF EDGE EVENTS ON UNIFORM SPANNING FORESTS 11

4.2.2. Sets and maps. Apart from vectors, we make extensive use of the template classes set<T', <> and
map<S,T> provided by STL. A set<T,<p> is a sorted associative container that can store and retrieve
unique objects of some type T, ordered by <p. Internally, sets use balanced binary trees to ensure that
the times for insertion, random access and deletion grow logarithmically in the size of the set. Elements
are stored in maps as pairs in which each unique key (of type S) has an associated value (of type T').

It is easily seen that the class set<T, <p> meets all requirements to represent sets of forests and graphs
such as Fs and G, from sections 3.2 and 3.6. Hence we define types Forests and Graphs by set<CForest,
less F> and set<CGraphdata, less_G>, respectively. less_F, less_G are function objects implement-
ing the total orders <p,<g. We note in passing one further situation where this approach is fruitful.
Recall that CForest-objects do not keep local copies of, but merely pointers to, their constituent com-
ponents. These are administrated in a central repository, for which we use the type Components :=
set<CComponent, less_C>.

The subtle question remains how to buffer KXy (G) = KX(D) in a database indexed by the triple
i = (C(D),C(X,n),C(D — X,n)). It is crucial to retain these values precisely as long as they might be
queried. It turns out that a simple and effective criterion for this is given by the size of D. Assume G € G;
and note that for standard constraints Y C {e, f}, we have s — 2 < |D| < s. Therefore, when we examine
the layer of graphs G, D and hence C(D) are confined to the last three layers. When we use the recursive
formula from 3.7, we have to make it four, since all reduced graphs D; = D — d; are of size |D| — 1.

In consequence, we need to retain K~ (D) only while D lies on G; fort = s, ..., 5—3. In our implementation,
these are represented by the array Graphs graph DB[4], aka graph database, such that graph DB[t%4]
= G;. We separate the first component C(D) from the triple ¢ to serve as 'main category’. In order to
retrieve a value K~ (D), we first dial the CGraphdata object representing C(D) from the appropriate layer
of the graph database.

At this stage, the template class map<S, 7> is used to map the latter two components of ¢, namely the pair
(C(X,m),C(D — X,)), to the desired result KX (D). The former is of type S = Key := pair<Graphcode,
Graphcode>. For the latter it would be sufficient to choose type unsigned long. Nonetheless, we define a
dedicated class T' = CKdata to be able to compile certain usage statistics. In conclusion, every CGraphdata-
object has a member map<Key, CKdata> _K_DB to perform the look-up of values KX (D).

Two final remarks: (1) This architecture makes it trivial, upon completion of a layer G, to discard all
obsolete values K~ (D): simply clear the set graph DB[(s-3)%4] corresponding to Gs_3. It can then be
reused for G,11. (2) Observe that among all graphs on a given layer G, only canonically labelled ones need
to be possess a map _K_DB. For all others, indeed the vast majority, a plain object of class CGraphcode
would be enough, saving a lot of memory. This is incorporated by imposing that the graph database
graph DB only stores canonical labelled graphs C(G). In return, the CGraphdata-object representing C(G)
contains a vector<CGraphcode> _G which lists all other G € G5 with G ~ C(G).

4.3. Implementing our algorithm. In this section, we discuss the methods implementing our algorithm
as described in Chapter 3. To provide a tidy interface, they are all bundled in the class CGraph, although
some are static and do not operate on a particular graph object.

4.3.1. Explicit computation of KXy (G). The ad-hoc approach from section 3.2 is implemented in the
method count_forests in a straightforward way. First, the auxiliary function construct_forest converts
the edge set X into a set of components {C;}, from which we instantiate the smallest valid forest. An array
Forests forest DB[2] serves to store the current layer Fs and the next layer F,;;1 being constructed,
while the set Components component DB handles the component repository.

Iterating through all forests F' € Fy, all pairs of components C; # C; of F', and all edges e between them,
we keep constructing (potentially) new components C' = C; 4+ C; + e and (replacing C;, C; by C’ in F)
new forests F’' € Fsy1. Whether C’ and F’ are actually new is not a concern: this is automatically taken
care of by the sets component DB and forest DB[(s+1)%2]. We keep a running total of distinct forests
encountered to give the final result.

12

PROF. GEOFFREY GRIMMETT, STEPHAN WINKLER

4.3.2. Enumerating and verifying conjecture instances (G, e, f). The most complex task of our program
is distributed across the following three main functions:

(1)

check_conjecture up_to_K n. This public method is called by the user specifying n. We begin
by defining the edge sets E; (using the notation of section 3.6.1) and standard constraints X;x, Y
with i € [2],k € [4], and place Ej, E2 into graph DB[2]. Iterating through all layers from s = 2
to N — 1, we enumerate all canonically-labelled graphs C(G) stored in graph DB[s%4] and all
G ~ C(G) listed in the CGraphdata-object representing C(G). For each G, we call...

analyse_supergraphs. Iterating through all edges e ¢ E in lex order up to (v*,v* + 1), we form
new graphs G’ := G + e and retrieve/insert their canonically-labelled isomorphs C(G’) from/into
graph DB. We thus proceed to checking any new conjecture instances brought about by G’. Two
conditions determine for which i the instance (G’, e;, f;) may be skipped at once: (1) if E; ¢ G or
(2) if, for some ancestor H C G, (H,e;, f;) was found equivalent to another instance. If these do
not apply, we pass (G', e;, f;) on to the method. ..

check_instance. From this method, the retrieval/computation of the four values K} (using
obtain K) is coordinated. If K7 can be retrieved from an earlier computation, an instance equiva-
lent to (G, e, f;) has been checked before (as shown in section 3.6), and we may return without de-
lay. Otherwise, we obtain the remaining K} and check K1 Ky < K3K,4 (using check_inequality).
In the former case, upon return to analyse_supergraphs, we record that (H, e;, f;) may be skipped
for all decendants H D G’. Depending if we arrive at this conclusion for both i = 1,2, we will or
will not include G’ in Gs41.

We briefly mention three auxiliary methods used throughout this process:

e compute_isomorph provides an interface to the nauty-library, and serves a double purpose: (1)

Given a partitioned graph (G, 7) with 7 based on an interface Z and a permutation 4, it computes
C(G,7). Here, T is represented by vector<bool> I, with I[v-1] true iff v € Z. (2) Given an
(unpartitioned) graph G, it provides C(G) as well as § : G — C(G).

obtain CG. Given a CGraph G, this routine first uses compute_isomorph to create a CGraphdata-
object representing C(G). Taking this as key, it attempts to retrieve an equivalent object (equal
under the operator ==) from graph DB. If successful, the key is discarded, otherwise it automatically
becomes a new entry. Finally, C(G) is returned.

obtain K. Given G, X,Y, this method co-ordinates the retrieval or, if neccesary, evaluation of
KXy (G). Tt prepares the edge sets D, D — X and obtains C(D),§ (using compute_isomorph) as
well as Z(X, D — X) (using mark_I). It queries graph DB for C(D) and then tries to read K~y (G)
from the corresponding _K_DB-object. Failing that, it computes the value afresh using compute K
(see below).

4.3.3. Recursive formula for K~ (D). Finally we present the method compute K implementing formula 3.2
for KX (D), which is straightforward using the machinery developed above. First, compute_j max is called
to determine the upper bound j* of the summation (for this purpose, X is iteratively enlarged until a
cycle forms, almost as in construct_forest). Then obtain K minor provides the minors K7 (D;), while
store K_tot buffers the intermediate results K7 (D).

4.4. Results and statistics.

5. CONCLUSION

