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Abstract

We study a current density-electric field formulation of Bean’s model for the experimental
set-up of a infinitely long cylindrical superconductor subject to a transverse magnetic field. We
introduce a finite element approximation of the model and prove an error between the exact
solution and the approximate solution for the current density of order (h 4+ At)'/2. Numerical
simulations for a variety of given source currents are presented.

1 Introduction

In this paper we consider a critical state model for type-II superconductors formulated in terms of
the current density and the electric field intensity. The physical setting is that of an infinitely long
cylinder of type-II superconducting material subject to an applied transverse magnetic field. We
take the cylindrical superconductor to occupy the region D = Q x IR, where 2 is a bounded simply
connected domain in IR? that denotes the cross section of the superconductor. In this set-up the
current density J = (0,0, J(z, t)) and the electric field intensity E = (0,0, E(z,t)) lie parallel to the
axis of the cylinder. Surrounding the superconductor we have copper windings, with cross section
region denoted by €, = Uleﬁwi, where each (2, is a simply connected bounded domain in R?,
see Figure 1. In this region we apply a given source current J; = (0,0, Js(z, )).

An evolutionary variational inequality formulation of the model involving the current density J
was derived and analysed by Prigozhin in [10, 11, 12]. In these works a numerical method was
developed and computations presented. Engineering applications of this approach, relating to the
modelling of superconducting induction motors, may be found in [2, 3].

In a recent paper [7] we gave a finite element approximation of the model and proved error estimates
between the exact solution and the approximate solution for the current density and the magnetic
field. As observed by Bossavit, [4], Bean’s critical state model can be formulated as a degenerate
Stefan problem. In this paper we study a Stefan problem involving the current density and the
electric field equivalent to the variational inequality. We formulate the model in Section 2 and
state the relationship between solutions of the model and the unique solution of the variational
inequality studied in [7]. In Sections 2.1 and 3 respectively we consider continuous in time and
fully discrete finite element approximations of the model and we show an error estimate between
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Figure 1: Infinitely long superconducting cylinder and copper windings.

the exact solution of the model and the solution of the fully discrete model. We observe that the
discretizations of the variational inequality and Stefan problems are equivalent. The error bound in
this paper is for a practical fully discrete scheme involving numerical integration in the non-linear
term and this differs from the fully discrete discretization analysed in [7]. In Section 4 we present
a Gauss Siedel iteration to solve the fully discrete approximation and we show the convergence of
this iteration. We conclude with Section 5 where we present some numerical results.

2 Formulation of the model

Inside the superconductor the electric field intensity is related to the current density by a critical
state form of Ohm’s law

where (3(-) is the is the multi-valued maximal monotone mapping defined by:- for r € [—J,, J],

(—00,0] if r=-J,
B(r) = 0 it |r| < J.
[0,00) if r=.J,

with J, being the critical current magnitude.
The current inside the superconductor €2 and the copper windings §2,,, satisfies

|J(z,t)| < J. for ae. z € Q, /Jd§=/ Js dz = 0.
Q w

We use the eddy current form of Maxwell’s equations given by

OB+ curl E=0 in R3x[0,7) (2.1)
curl H = Jxq + Jsxq, in R? x [0,7)
V-B=0 in R?®x[0,7],

where B is the magnetic flux density. We assume a linear constitutive law B = pyH where the
permeability p is piecewise constant in space, taking different values in Q, ©Q,, and IR?\(Q U Q).
By taking the curl of (2.1) it is easy to see that

1
Oy Jxa — div (;VE) = =0 s X (2.4)
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holds in the sense of distributions on the space-time cylinder R? x (0,7 where

|J(z,t)| < J. forae. (z,t)€Qx(0,T) (2.5)
J(z,t) =0  forae (z,t)¢Qx(0,T) (2.6)

and Jg(z,t) is given such that
Js(z,t) =0 for ae. (z,t) & Qyu x (0,7). (2.7)

Inside the superconductor we have

E(z,t) € B(J(z,t)) forae. z€Q, te(0,T]. (2.8)
This system has the initial condition

J(z,0) = Jo(z) z€,
where Jy(z) = 0 for z ¢  and the boundary condition
VE ~0 aszx ~ oo.

We suppose that

J, € HY0,T; I2(R2), Jy(m,) =0 for ace. z € RA\Dy, / Jo(t) =0

Qy

and we seek a weak solution defined in the following way:-
(P) Find J € L*®(R? x (0,T)) and E € L?(0,T; H. ,(IR?)) such that

T 1 T

/ / A <—J8m + -VE- Vn) dzdt = —/ Oy Jsndzdt —|—/ Jo(z)n(z,0)dx (2.9)

0 ? 1% 0 Ja, Q

for all
n€J = {neH0,T;L*(R?): Ve L0,T;IR?), n(-,T) =0}
where
|J(z,t)| < J. for ae. (z,t) € Qx(0,7T)
J(z,t) =0 for a.e. (z,t) ¢ Q x (0,T)
and
/ E(n—J)dz <0 forae te(0,T),VneK
Q

with

K= {neL*(Q):n| < J.}.

2.1 Reduction to a bounded domain

It is convenient to work on a bounded domain By which is a ball of radius R such that QUQ,, C Bgr
and 4 is constant outside Br. We observe that for v being harmonic outside B and Vv € L?(IR?)

1 1 1
/ —Vu-Vnp :/ —Vu - vn+/ —B(v)n Vne H(R?
R* H Bp M oBp M

where B : H'/?(0BR) — H~'/?(0Bg) is the Dirichlet to Neumann map,

<1 2 0vy .
B(v)‘aBR '_;E g k(o — g



where v, is the trace of v on dBg. It is useful to introduce the bilinear forms:-
1
(&mn) = &n, aln) ==V, ), (e = [ &n
BR /1' w

be,m) = /aB LB, Aen) = ale.n) +b(en).

1
We set .
= — dzx
]{J " ol /w" .
and
L{y(Br) = {n€L*Bg):n=0forae z¢Q}
Li(Br) := {n € L*(Bg) : ][ n= 0}
Bpr
L(Q)’Q(BR) = {ne€Li(Bg):n=0forae z¢Q}
Lg’Qw(BR) = {ne Lg(BR) :n =0 for a.e. z ¢ ﬁw}
Ko = {neLi(Bg):|n <J. onQ}
Koo = {ne L(Z)’Q(BR) dnl < J. oon 2}

The problem (P) may be rewritten as:-
(Pr) Find J € L*®(0,T; Ko o) and E € L?(0,T; H' (Bg)) such that

T T
/0 [(—7, 84) + A (B, €)]dt = /O (=0T, )t + (o, £(,0)) (2.10)

for all
¢ € Jr=1{¢€ H'(0,T;L*(Bg)) N L*(0,T; H' (Bg)), (-, T) = 0}

and
(E,n—J)<0 VneKq, forae te(0,7). (2.11)

Also useful for the analysis is the Green’s operator
G:Li(Bg) =V := {n € L7 (R?) : V¢ e L*(R?), § &€= 0}
Br
defined as the unique solution of
1
—VGn-Védz = / néde Y EeV. 2.12
/]R2 Jz Br (2.12)

This can be formulated on B by noting that G can be extended as the solution operator of:-
For n € F := (H}(Bpg))" where

! (5e) = {€ € 1'(B2): - o}

find Gn € H}(Bpg) such that
A(Gn,€) = (n.€) V€€ H,(Br) (2.13)
where (-,-) denotes the duality pairing between H}(Bg) and (H}(Bg))'. Note that:-

(n,€) = (n.€) Y1 e Lj(Br).



We define the semi-norm and the norm

% == A(n,n) Vne H'(Bg)
[[nllz = [Inl|a-1 == |Gn|a VneF

and we set

nlow = nll2@)s [nliw = Valle2@w), nllie = 1l w-

From [9] we have that A(,-) is continuous with respect to the H'(Bg) norm

|A (& n)] < C[¢]
and also (note A (n,1) =0, n € H'(Bg))

(&m) = A(GE,n) < |GElalnla = I€lla-1lnla V € € L§(Br), n € H'(Bg).

Henceforth for convenience of notation we set f := —0d,J;, € C([0,T]; L(Q)’Qw (Bg)).

1,Bx11nl|1,Bx

We introduce the following problem:-
(Qr): Find J such that

J € L®(0,T; Koo) N C([0,T; F]), 8J € L*(0,T;F) (2.14)

satisfying for any 7 € [0,7]
| @Gay=aae> [(Gr-ndr e 0.7 Ko) (2.15)
0 0

Ili=o = Jo.

Proposition 2.1 Let J; € HY(0,T;F) and Jo € Kogq. Then there exists a solution (J,E) of
(PR) and J € HY(0,T;F). Also J is unique and E is unique up to an additive function of time.
Furthermore J is the unique solution of (QR).

Proof: This follows by standard methods. For example using estimates for time discretizations of
the kind proved in Proposition 3.1 and then passing to the limit yields existence.

Finite element approximation

2.2 Notation

In this section we consider a finite element approximation of (Pr). We make the following assump-
tions on the partitioning:

Let T" be a partitioning of By into disjoint open elements x € T" such that UgerhE = Br.
Furthermore if £ N (0Q U 02, U O0BR) is non empty then the intersection consists of either one
vertex of k or one curved edge of k. There exist subsets 7)) C T" such that U,cnk = @ with
w = Bpr, Q or . ’

Associated with T" are the finite element spaces

Sh(= S}’%R) = {77 € C(BRr) : n|x is linear V x € Th},
s = {nes" " =0
S?z = {ne L*(Bg) :n € C(Q) : |, is linear V « € TS%, Npr\o = 0},
St = {ne€L*Bgr):n€C(Qy):nls islinear V x € T , nlpp0, = 0},
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S&Q = {7765’6:]{377:0}

R

S(})l’ﬂw = {7] - Sgw . fB 7] = 0}
R
K = {neSs:Inl<Je}
Kig = {neSlq:nl <J}

where
() = 3 / M (um)de, i € St o= S, Sh, Sh
K

KETh

and II" : C(Bg) — S" is the standard piecewise linear interpolant. Observe that S C H!(Bg)

since
(n, )" =(n,1) Vnest

For &, € S! we define
Ih(fﬂ]) = (6777) - (6777)11

and we note the well-known result

\1"(&,m)| = (&,m) — (&,m)"] < CR%E1 wnliw < ChIEN wlnlow-

(2.1)

Analogous to (2.13) it is convenient to introduce the operator G" : L2(Bg) — S such that for any

¢ € L(Bg), G"¢ € S} is the unique solution of :-

AG"E, ) = (&9) Vo eSE.

For 1 € L3(BR) we set

9lla-n = || G| = 0.G")"* v € L3(BrR)

and we note that
(G"¢,p) = (£,G"p) V&Y e Sy
and that
(&) < Cliéla-nldla V¢ €S, &€ Ly(Br).

Standard finite element estimates, see [9], yield

(G -Gy

_h
o,BR+h‘(G G 1,B

»OR

It is easy to see that
G"nla <|Gnla V1€ L§(Br)

and since
nlo.5, = A(Gn,n) < ClGnlallnlli, V1 eES

a standard inverse inequality yields
|77|0,BR < Ch_1|G7]|A Ve S(})l7
which implies using the error bound (2.5)

|Gnla < C|GM"nla Vo€ SE.

< CR’lnlyp, ¥ n€Li(Br).

(2.2)

(2.3)

(2.4)



Defining the projection operator Q" : L?(Bg) — S" by

(@) =) voes (29)

we note that if & € L§(Bg) then Q"¢ € S C H!(Bg) and if £ € Koo then Q"¢ € K{'q.
Furthermore

Q"¢

0,Br < C|€

0,Bp- (2.10)

Following [1] we have

|G(& — Q"E)|a < Chllo.pr V& € L3(Br). (2.11)

2.3 Continuous in time discretization

We now introduce a continuous in time finite element approximation of (Pg):
For J} € K&Q and fp(-,t) € S(’}’Qw satisfying
T 2
/ ‘thh‘ <C (2.12)
0 A

we have the following:

(PR) Find for ¢ € (0,T], Ju(-,t) € K, and Ep(-,t) € S" such that

(Oens ) + A(Ep, ) = (fro9p) VS (2.13)
Jn(z,0) = JMz) VzeQ (2.14)
(Eh('vt)vn - Jh('7t)) <0V ne KS%? Vite (07T] (215)

For x € S, setting ¢ = G"x in (2.13) and noting (2.15) yields the following variational formulation
of (PR):

(QR) Find J, € L®(0,T; K{',) such that
(atGth,X - Jh> > (thh,x - Jh) Vx € Kig. (2.16)

Proposition 2.2 There ezists a solution (Jy, Ey) of (PR) such that

T 9 T
/ ‘atGth‘ dt+/ |Ep|dt < C.
0 A 0

Also Jy, is unique and FEp is unique up to an additive function of time. Furthermore Jp is the
unique solution of (Qlﬁ)

Proof: This follows by standard results. For example, existence can be proved using the ideas of
discretization in time and using estimates of the type proved in Proposition 3.1.

For the forthcoming error analysis we require |f|o,p, < C and

T
[ = A1 < cn 2.17)

Lemma 2.1 For fj(-,t) € S&Qw satisfying (2.17) the unique solutions of (Pr) and (PR) satisfy

1T = Jnllz(or5a-1) < C(T)RM2. (2.18)



Proof: 1t is convenient to define
gt) = (BtGh(J ), J - Jh>
= ((G" = G)J,J = Jy) + (G T, J = Jp) — (G Ty, J — Jp), (2.19)

setting ¢ = G(J — Jy,) in (2.10) and ¢ = G*(J — J;) in (2.13) and noting (2.13), (2.2) and (2.3) we
have

E(t) = (0(G" = G)J,J = Jn) + (f,G(J = Jn)) = (fn. G"(J = 1))
By — B, J - Jy).

From (2.5), (2.7) and Young’s inequality we have

(O(G" = G)J, T = Jn) < |0(G" = G)J|allT = Tpl| a1
1
< ORI gy + 5 1T = Inlls
1
< ChloeT G-+ 51T = Tallfa (2.20)
Using (2.11), (2.15) and (2.11) we have
(Eh —-FB,.J—- Jh) < (Eh,J— Jh)
= (Bn,J = Q"J) + (B, Q"J — Jp)
< (By, J - QM)
< |BplallJ — Q" || a1
< Ch|Ep|alJo,Bg- (2.21)

Lastly from (2.5), (2.6) and Young’s inequality we have

(f,G(T = Tn)) = (fa, G"(T = Tn)) = (f = fn, G"(J = Tn)) + (f, (G — G")(J = T))
If = falla=t|G"(J = Tp)la + | flo,Be (G — G*)(J = Jn)lo,Bx

1 1
§||f — full4or + §|Gh(J— In) 4 + CB?|flo,spld — Jn

IA

IN

0,Br

IA

1 1
S = fullaes + 5117 = Tulaes + CR(Tlo sy + ilose) (222)

From (2.19)-(2.22) together with Propositions 2.1 and 2.2 we have

1d 1
Sl = Dl =€) < Ch 1= TP+ 51T = fallse

Noting (2.8), using Gronwall’s inequality and (2.17) yields the required result. O

3 Fully discrete model

In this section we consider a fully discrete discretization of (Pr). We set NAt =T, t,, :== nAt for
n=0—=N, fjl € S&Qw to be an approximation to f(-,t,) and for any g5 € S" we define
9 — g

We introduce the operator G" : (S&Q, S&Qw) — S& such that for any ¢ € (S’(’f’Q7 Sngw)’ Ghe € St
is the unique solution of :-

AG"ep) = (&) Yy esg. (3.1)
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We set X X
Inl% s == 1G5 = (G"n,m)" Vnesy

and we note using (2.1) that
(G = G"nla < Chlnlos, Ve Sy (3.2)
and hence from (2.6) we have that
In1%-n < Il + CR?Inlg 5, ¥ 1 € S5 (3-3)
Furthermore from (2.2) and (3.1) we note that

(&, Ghp) = (Gh¢,p) V&9 € Sh. (3.4)

We consider the following fully discrete discretization of (Pgr):

(P%At) Find {J}%E’?} c K&Q x S such that

G di )"+ AER¥) = (fl )" Vpesh (3.5)
T(z) = Jg(z) Yzen (3.6)
(Bjf,n—Jp)" <0 VneK] (3.7)

For x € S§, setting ¢ = G"x in (3.5) and noting (3.7) yields the following variational formulation
of (PEA%):

(QR™") Find JJ' € Kl', such that
N h N h
(G Gy =) = (G"fix—Jk) Y x€Klq, (3.8)

Proposition 3.1 Let At = Ch and ) 7]:7:1 At|f? < C. Then there exists a solution pair {J*, E'}n>0
h,At 2
to (PR"™") such that

N N N
S OALIG TR B ARG b, + ALY |ERS < C (3.9)

n=1 n=1 n=1

Also J} is unique and E}} is unique up to an additive constant. Furthermore {J}'}n>0 is the unique
. h,At -
solution of (QR™").

Proof: Let I* be the index set of triangle vertices z; € Q0. Let E? := E?(z;) and J := J(z;) for
i € I Tt is easy to see that (3.7) is equivalent to

|Ji'| < Jo and Ej'(sp = Jj') <0V [y < Je. (3.10a)
Elementary calculations yield the equivalence of (3.10a) with
Je(l9l = [EF)) 2 TP (Y = BfY) - Y [yl < Je (3.10b)

and also the equivalence with
Jj' € JesignEy. (3.10¢)

It follows that (3.5) and (3.7) are equivalent to :-

7. / I () — | B dz + ALA(E], o — Bf) > (TP + At — El)" V4 e s,
Q
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This is a necessary condition for £}’ to be a solution of the minimization problem:-

F(EBy) = iy F (1)

A
F) =g | Tz + 5 AW ) = G5+ At )

Since F is continuous and bounded below (using the fact that A(-,-) is positive definite on S§)
there exists a minimiser F}' and hence by equation (3.5) there also exists a J}' € Sh. Furthermore
by the above equivalences it follows that for J; € S&Q we have also J}' € K&Q and that (3.7) holds.
Hence we have existence of a solution pair {J;', E}'}.
Suppose {J, E}} and {J, EP'} are two separate solution pairs. It follows from (3.5) and (3.7)
that

(Ji = Jp )" + A(E} - Ejl,¢) =0 Vies

and ) :
(B — Ep, Jy —Jy) > 0.

This immediately implies that .J;' is unique and that E} is unique up to an additive constant.
Furthermore it follows from (3.1) and (3.5) that

Bl = GM(fi — 0, J) +

for a scalar A\}l. By considering (3.7) for n € K&Q we obtain (3.8) which implies that J}' is the

unique solution of (Q;’At).
Taking x = J7*~ ! in (3.8) we obtain

|G ST A < (G"fi, 6T
and so
10¢ T8 4=n < |fR | j=n-
Setting J € S" to be the interpolant of J* we observe that, see [6]
. 1 .
A(ED, 1) :/ Lvmpvir>o
Br M

and hence it follows from (3.5) that

[l = IR R+ 1R = TR < A IR
< CAHYfEn
By elementary calculations we have that the required bounds hold. 0.

Before we derive an error bound on the solutions of (PR) and (P?{’At) we introduce some useful

notation. For n > 1 we set

T aelt) = t‘i:*lngrt”A;th—l, Froadlt) = t‘i:*lfgﬂ”&tfg—l VtE [ty 1,tal, (3.11)
and
Jnne®) = T8 fane(t) = f YVt € (tn1,tn). (3.12)
From (3.11) and (3.12) it follows that for a.e. ¢t € (0,T)

Tnat — Inar = —(tn — 1) 0 Jp Ar- (3.13)

For the forthcoming error analysis we require that

T
/o 1fn = fhoadll%ondt < CAL. (3.14)

10



Lemma 3.1 For At = Ch the unique solutions of (PR) and (Plﬁ’At) satisfy

1 Tn = Tnaill 4o < C(T) (R + A2, (3.15)

Proof: Setting x = Jj a¢ in (2.16) and noting (3.4) we have

1d

Sd [ Jn = Tnadlion = (&:Ghjm Jp — Jh,At) - (@Gth,At, Jp — Jh,At)

(thhv Jp — Jh,At) - <3tGth,At, Jp — Jh,At)

h h h h
= I"(G"(fn — OJInat), Jn — In,ae) + (G (fn — O Inat), Jn — Jh,At)
= I"G"(fn — OTnat), In — Tnat) + (fh — Oy Jn At G (T — Jh,At))
= I"G"(fn — OInar), In — Tnar) + I"(fr = Ordnae, G"(Jh — Jnat))

+<éh(fh — OInat)s In = JIn At) (3.16)

IN

Setting x = J in (3.8) we have

R h . . h . . h
<3tGth,At s I — Jh,At) = <8tGth,At7Jh - Jh,At) + (8tGth,At7Jh,At - Jh,At)
o . h . . h
< (thh,m, Jp — Jh,At) + (3tGth,At, Jh,at — Jh,At)
s h o . h
= (G Jnats Jn — Jh,At) + (G (OsIn,at = fn), In,at — Jh,At) : (3.17)
From (3.16), (3.17), (2.1) and Propositions 2.2 and 3.1 we have
S—n = Tnadlion < TG (fr = 0idnae), In — Tnar) + I (fr — 0udnae, G (Tn — Tnoar))

( "(fn = frnae)s In — JIn At)h - (éh(atjh,At — )y At — Jh,At>h

C’h‘Gh(fh—atJh 2| Gy = Tnad)|

sDR sDR

IN

|J Jh Atlo ,Br +Ch|fh_atjh At|0 ,Br

+Hfh_thtH I = Inaell g-r + [0eTn,ae = frl j-n

Jhat — Jh,At‘A_l

< Ch+ Chlfu = Oty In = Instlaon + |1 = Fusd| - 190 = Tnadll s

O dn,at — fal j-n (3.18)

Jh,at — Jh,At‘A_l-

Using (3.18), (2.8), (3.3), (3.13) and Young’s inequality we obtain

1d 2

s In = Tnsilis < Cht ORI\ = Oudhadly gy + C o = Inail s + C [ = Foa

+0At|atJhAt — fhlA—h|atJh,At|A—1-

A-h

The result follows using a Gronwall inequality, (3.9) and (3.14). O

Finally from Lemmas 2.1 and 3.1 we have our main result.

( hAt)

Theorem 3.1 The unique solutions of and (P) satisfy

1T = Tn,atll oo o a1y < C(T) (B + A1)Y2.

11



4 The Gauss-Seidel iteration

It is easy to see that the fully discrete scheme (P?{’At) yields the algebraic problem:-

Find (J,E) € RY x RY such that
MJ+ AE —b =0,
J; =0, i¢ I,
J; € J. signFE;, ie I
Here J and E are the nodal values of J;' and E}' at the vertices of the triangulation according to

some ordering. We denote by I‘? the set of vertices on Q and set .J; = 0 for all i ¢ I, The diagonal
mass matrix M is defined by

x:dzx icI?
Mi?:{gﬂ ! Z¢IQ

where y; is the basis function associated with node i¢. A is the symmetric positive semi-definite
matrix defined by

£TA’(,D = A(ﬁ,’l’b) § € sh
where £ and 1) are the nodal values of £ and 1. It follows that

Ae =0,

and
ETAE > Call€l)*> V€ such that £Te =0

where {e}; =1 for all j. The right-hand side b is defined by
bly = (i + AtfiLy)" st

and
ble =0,

since J' ! € S&Q and f/' € S(’)l,ﬂw' We set |v| := (Jv1], |va], ..., |on|)T and vp := v — el ve.

In order to solve this problem we set out a version of the Gauss-Seidel iteration formulated by
Elliott, [6], for the enthalpy method for the Stefan problem.

Gauss Seidel Iteration
Given E°, for k > 1, {E¥,J*} are defined by:-
Fori=1— N, (JF'', EFf!) are the unique solutions of

(ABTUFHL b)), 4+ Ay (EFT — EF) + M JFT =0 (4.19)
JHl=0 g I® (4.20)
JEl e JsignEFT e 1%, (4.21)
where
ERTL = (BT BT EMTUEE L ER)T i=0— N,

As noted in the proof of existence in Proposition 3.1, this problem is associated with energy
minimization.
We set

1
FE) = J.(M%)T|E|+ 5ETAE - b'E
1
= J(M%)TE|+ 5Eg’AEp -b'E,
1 ~
> J.el MY|E| + 5CA,b||Ep||2 — Cay.
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Hence F(E) is bounded below and ||E|| < C(F(E), A4, b).

We define
FH(z) = F(EF B 2 BE L ER).

Clearly,

FHESTY) = F(BYY) and  Ff(Ef) = F(E'™V,
Furthermore

N

ST (A - FHED) = FEN) - FE

=1

= F(EMY — FEN). (4.22)
Lemma 4.1 The above iteration satisfies

FEF) - F(BR) < —Cy HEk+1 B EkH2

and
.. < 2
for all k > 0.
Proof:
A straightforward calculation gives
1 i
o= PHBEY - A = JAG(EET - BEP 4 (AR b)(B )

+ J My (|[EFFY - |EF)).

From (4.19) we have

1
0 = S Au(EET = BEY 4 My (JBE | = TEEE 1 JE B - T BY).
Since EF ! = 0 if JFT! = 0 from (4.20) and (4.21) we have

J|EFTY — JFEM =0 and JFTEF - J|EF| <0 fori=1- N.

Noting that A; > 0 for i = 1 — N and using (4.22) we have
N 2
Yok = FEMY) - FEF) < —Ca HE’““ - E’“H .
i=1

The bound on J* follows directly from (4.20) and (4.21). O
Theorem 4.1 The Gauss-Seidel iteration is globally convergent.

Proof: By Lemma 4.1 we have

k—1
FEF) +Cx Y ||IEF —EY)? < F(E).
=0

Hence for £ > 1,

k—1
IE¥| <G, max|Jf|<C, JF=0i¢I1% Y |EF -E|’<C,
el
=0

13



where the constants C' depend on E°. Tt follows that there is a subsequence labelled {E*#} such
that as k, — oo
Ef» — E*, Bt _Eb 0, Jb o 3%

Clearly
Ji=0i¢I? |J|<J. iel? e"MI*=0.

Observe that
AEi—l,kp-l—l — AEkp +A(Ei—1,kp+1 _ Ekp)

Since ||E***1 — E*»|| — 0 it then follows by passing to the limit in (4.19) for k = k,,
AE* —b+ MJ* =0.
From the equivalence of (3.10a)-(3.10c) we have
(B M —T) <0 Vo, |n| < T,
and passing to the limit we have
(B) M (n—-3) <0 Vn, |m] < J.

Hence J*, E* solve our problem and since J* = J is unique, the whole sequence {J*} converges to
J. O

5 Numerical results

In this section we report on numerical computations associated with a particular geometric config-
uration. We suppose that €2 is the interior of a circle of radius 0.5 that is set in an annular region
Q7 with inner radius 0.55 and outer radius 1. Contained in §2; are 12 symmetrically arranged
components €2, of 2,,. Each Q,, is a section of an annular region with inner radius 0.55 and outer
radius 0.8 sub-tending an angle 7/12, see Figure 2. This geometric configuration can be used to
model superconducting induction motors by viewing {2,, as the copper windings set in an annular
iron region €}y with a thin air gap separating Q and ;.

0.5

Figure 2: Geometric configuration

14



Initial Mesh

Yai W <]
3

O
CROKRX

Y-
SHBERREIEIX
35“3{“

)

‘
)

Figure 3: Initial mesh and first refinement in the superconductor.

The applied source current J; is given by
Js]Qu 41U i (t) = min(5t, 1) cos (4 + nw/3),

for n =0,2,4, and
J3|Qw7n+lugw7n+2 (t) = — min(5¢, 1) cos (4t + nn/3),

for n = 6,8,10. In all computations Bp has radius 2, and the critical current density J, = 1.

5.1 Constant magnetic permeability

Some computations were performed for ;s = 1 everywhere in order to test the rate of convergence.
Since an exact solution is not known the results on coarser meshes are compared with the solution
on a fine mesh with a mesh size hjmax < 1/128. Typical meshes are shown in Figure 3.

\ [t=02][t=04]t=06]t=08|
have ~ 1/8, At =1/25 | 0.0292 | 0.0278 [ 0.0304 | 0.0319
have = 1/16, At =1/50 | 0.0160 | 0.0159 | 0.0166 | 0.0176
have = 1/32, At =1/100 | 0.0066 | 0.0075 | 0.0079 | 0.0080

~
~

~

~

Table 1: H~'(Q) errors for current density.

5.2 Piecewise constant permeability

In order to simulate the high magnetic permeability in the annular iron region §2; we set

1 in R2\Q
H= 3 :
10 in Q.

In Figures 6 and 7 we can clearly see the effect on the amount of current in the superconductor
and the insulation of the electric field as p in the iron increases, as expected.

15



Note, a larger current density in the superconductor leads to a stronger magnetic field and thus a
much more powerful motor.
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Figure 4: Current Density with y =1

Figure 5: Electric field intensity with y =1
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Figure 6: Current Density at time ¢ = 0.8 with x4 = 0.1,10,100 and 1000
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Figure 7: Electric field intensity at time ¢ = 0.8 with x4 = 0.1,10,100 and 1000
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