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Abstract. The dispersive properties of hp version discontinuous Galerkin
finite element approximation are studied in three different limits. For the
small wave-number limit hk → 0, we show the discontinuous Galerkin gives
a higher order of accuracy than the standard Galerkin procedure, thereby
confirming the conjectures of Hu and Atkins (J. Comput. Phys., 182(2):516–
545, 2002 ). If the mesh is fixed and the order p is increased, it is shown
that the dissipation and dispersion errors decay at a super-exponential rate
when the order p is much larger than hk. Finally, if the order is chosen so
that 2p + 1 ≈ κhk for some fixed constant κ > 1, then it is shown that an
exponential rate of decay is obtained.

1. Introduction

The numerical propagation of waves poses a significant challenge in scientific
computation. Many alternative approaches have been explored in the quest for
a stable method that can efficiently resolve the wave without excessive dissi-
pation or dispersion, particularly in the context of high frequency applications.
Some of the more promising domain based approaches involve the use of higher
order schemes including spectral element methods [8, 10], higher order standard
Galerkin finite element methods [3, 17, 25] and, more recently, higher order dis-
continuous Galerkin finite element methods [2, 4–6, 12, 13, 27].

The study of the dispersive and dissipative properties of a method provides
insight into the ability of a method to accurately propagate a wave. Indeed,
the order of accuracy of the discrete dispersion relation is often used as a basis
for ranking different methods.

Higher order standard Galerkin finite element schemes for the Helmholtz
equation in one space dimension were studied by Thompson and Pinsky [25]
and Ihlenburg and Babuška [17, 18]. Recently [1], sharp estimates were obtained
for the dispersive behaviour of higher order elements for the Helmholtz equation
in multi-dimensions using tensor product elements.

The dispersive properties of higher order discontinuous Galerkin finite ele-
ment methods have been studied in [14–16, 23]. In particular, Hu and Atkins [14]
examine the dispersion properties of the approximation of the scalar advection
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equation in one dimension in the limit hk → 0, for methods of order up to 16
using a computer algebra approach. On the basis of the computations, it was
conjectured that the discrete wave-numbers are related to certain Padé approx-
imants and that the dispersion relation for an N -th order method is accurate to
order 2N +3 in hk for the dispersion error and order 2N +2 for the dissipation
error. These orders of accuracy exceed those for the standard Galerkin finite
element procedure [25].

The present work is concerned with the analysis of the dispersive behaviour
of high order discontinuous Galerkin finite element methods. One by-product
is a proof of correctness of the conjectures of Hu and Atkins (see Theorem 2).
Moreover, Theorem 2 gives the coefficient of the leading terms in the error
which, in view of the fact that in practical computations hk is finite, may be
viewed as being of at least as much practical relevance as the order of decay. It
is found that the leading coefficient decreases rapidly with increasing order N
suggesting it may be advantageous to increase the order N whilst maintaining
a fixed mesh.

This idea is pursued in Theorem 3 where it is shown that as the order N
is increased, the dissipation and dispersion errors pass through three different
phases depending on the size of N relative to hk. In the unresolved regime
where 2N +1 < hk−o(hk)1/3, the error oscillates without decay as the order is
increased. At the opposite extreme, if the order is large, specifically 2N + 1 >
hk + o(hk)1/3, then the error reduces at a super-exponential rate. The error

decreases at an algebraic rate O(N−1/3) in the transition zone between these
extremes.

The super-exponential rate of convergence in the resolved regime, where
2N + 1 > hk + o(hk)1/3, means that it is unnecessary to increase the order N
much beyond this threshold. Instead, a practical alternative consists of tracking
the envelope where the super-exponential phase begins by choosing the order
of approximation so that 2N + 1 ≈ κhk for some fixed constant κ > 1. In The-
orem 4, we prove that this approach results in an exponential accurate discrete
dispersion relation.

It is illuminating to compare these results with those for the continuous
Galerkin finite element method analysed in [1]. The nature and the analysis
of the discrete dispersion relation is quite different in the present situation,
and this is reflected by the fact that the discontinuous Galerkin method has a
higher order of accuracy in the limit hk → 0. On the other hand, in the limit
as N → ∞, the threshold where the method resolves the wave is identical to
that for the continuous Galerkin method despite the fact that the argument is
completely different. This means that the better dispersive behaviour of the
discontinuous Galerkin method in the limit hk → 0 fails to carry through to
the limit N → ∞.

The remainder of this paper is organised as follows. We begin by describing
the model problem and the details of the discontinuous Galerkin discretisation,
and then give a detailed description of the theoretical results along with sup-
porting numerical evidence. Section 3 is devoted to the study of the errors in
certain types of Padé approximants of the exponential with particular attention
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to the situation where the order of the approximant is comparable to the argu-
ment, and where both are large. The link between the dispersive behaviour and
the Padé approximants is established in the following section where we study a
certain eigenvalue problem. We conclude with the proofs of the results stated
in Section 2.

2. Description of DGFEM and Its Dispersive Properties

2.1. Model Problem. Consider the linear advection equation in R
d, d ∈ N,

ut + α · gradu = 0 (1)

subject to appropriate initial conditions. The advective field α ∈ R
d is assumed

constant and we orient our Cartesian coordinate system so that α has non-
negative components. It is well-known that this equation admits non-trivial
solutions of the form

u(x, t) = cei(k·x−ωt) (2)

where ω is a prescribed frequency and k ∈ R
d is the corresponding wave-

vector. Inserting this expression into equation (1) and simplifying shows that
the equation admits a non-trivial solution provided that ω and k satisfy the
dispersion relation

ω = α · k. (3)

Obviously, the sinusoidal solution u is also a Bloch-wave [20]: i.e. for all hm ∈
R
d and τ ∈ R,

u(x + hm, t+ τ) = ei(hk·m−ωτ)u(x, t), ∀x ∈ R
d, t ∈ R. (4)

One repercussion of discretisation of the continuous problem is that the nu-
merical scheme usually admits a non-trivial Bloch-wave satisfying condition (4)
where, however, the exact wave-vector k is replaced by a discrete wave-vector

k̃. The discrete wave-vector k̃ provides valuable information on the ability of
a numerical scheme to propagate wave-like solutions. For instance, if the real

part of the component of k̃ in some direction differs from the corresponding
component of k, then the numerical approximation will exhibit a phase-lag or
phase-lead compared with the true solution. Likewise, dissipative and instabil-

ity effects arise when k̃ has imaginary components.

2.2. Discontinuous Galerkin Discretisation. The discontinuous Galerkin
finite element discretisation (DGFEM) of (1) is constructed on a partitioning
of the computational domain into non-overlapping elements. Although rather
general partitions may be employed for DGFEM, our chief interest here lies in
investigating the ability of the numerical scheme to propagate waves through
regions of free space remote from domain boundaries, where one would generally
use a highly structured mesh. For this reason we shall confine our attention to
uniform partitions of R

d consisting of square, or cubic, elements of size h > 0,
whose sides are aligned with the coordinate axes and whose nodes are located
at the points hZ

d.
ForN ∈ N, let PN denote the space of polynomials of degree at mostN . AN -

th order DGFEM seeks an approximate solution uDG whose restriction to each
element K belongs to the space P

d
N , but does not require the approximation to
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be continuous at element interfaces. Instead, continuity is enforced in a weak
sense between neighbouring elements K and K ′ through the use of a numerical
flux function σ̃γ defined on the interface γ = ∂K ∩ ∂K ′. The true flux on the
interface in the direction of the unit normal n to the interface is given by

σ(n, u) = n · αu.

The numerical flux σ̃γ(nK , u
DG) from element K to element K ′ in the direction

of the unit outward normal nK is defined, for given γ ∈ R, by the rule

σ̃γ(nK , u
DG) = Λ+

γ (nK)uDG

K + Λ−
γ (nK)uDG

K′ on ∂K ∩ ∂K ′,

where Λ±
γ is defined by

Λ±
γ (n) =

1

2
(n · α ± γ|n · α|) .

The function Λ±
γ satisfies two important properties:

Λ+
γ (n) + Λ−

γ (n) = n · α (5)

and

Λ±
γ (−n) = −Λ∓

γ (n). (6)

The former property ensures that σ̃γ(n, u) = σ(n, u) for all γ, while the latter
property implies that the flux from element K ′ to K balances out the flux in
the opposite direction from element K to K ′:

σ̃γ(nK , u
DG) = −σ̃γ(nK′ , uDG) on ∂K ∩ ∂K ′.

The preparations are now complete for the definition of the DGFEM. Using
equation (1), we find that the true solution u satisfies

0 =

∫

K
vut −

∫

K
uα · grad v +

∫

∂K
vσ(nK , u)

for all sufficiently smooth test functions v. The DGFEM approximation is
defined on the basis of this relation by replacing the true flux with the numerical
flux, and then requiring that for every element K: uDG

K ∈ P
d
N

0 =

∫

K
vuDG

K,t −
∫

K
uDG

K α · grad v +

∫

∂K
vσ̃γ(nK , u

DG) ∀v ∈ P
d
N . (7)

For present purposes, it is more convenient to work with the equivalent state-
ment

0 =

∫

K
v
(
uDG

K,t + α · graduDG

K

)
+

∫

∂K
vΛ−

γ (nK)(uDG

K′ − uDG

K ) ∀v ∈ P
d
N , (8)

which is obtained from (7) by integrating by parts and using property (5) to
simplify the resulting contributions from the boundary terms.
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2.3. Dispersive Behaviour of DGFEM. We turn now to our study of the
dispersive behaviour of DGFEM. The next result describes the properties of
the discrete wave-vector for the DGFEM:

Theorem 1. For h > 0 and N ∈ N, consider the N -th order DGFEM on a
grid hZ

d used in conjunction with the numerical flux function σ̃γ. If ω ∈ R

and k ∈ R
d satisfy the continuous dispersion relation ω = α · k, then there

exists a corresponding discrete Bloch-wave solution uDG satisfying (7) and, for
all m ∈ Z

d and τ ∈ R,

uDG(x + hm, t+ τ) = ei(hk̃·m−ωτ)uDG(x, t), ∀x ∈ R
d, t ∈ R. (9)

Moreover, each component k̃` of the discrete wave-vector k̃ may take one of

two possible values corresponding to either a physical mode, eihk̃` ≈ eihk` , or a
spurious mode

eihk̃` ≈ (−1)N+1 1 + γ

1 − γ

H∗
N

HN
e−ihk` , γ 6= 1. (10)

where HN = 1F1(−N ;−2N − 1;−ihk`) (see (20)) and ∗ denotes complex con-
jugation. The relative error ρN is the same in both cases,

ρN =
(1 − γ)HNe

ihk`EN + (−1)N+1(1 + γ)H∗
Ne

−ihk`E∗
N

(1 − γ)HNeihk` + (−1)N (1 + γ)H∗
Ne

−ihk`

+ O(|EN |2) (11)

where EN is the relative error in the [N + 1/N ]-Padé approximant to eihk` .

The proofs of this, and the remaining results stated in this section are deferred
to Section 5. Theorem 1 gives a complete description of the discrete wave-vector
in terms of the quantity ρN . In turn, ρN is related to the relative error in
certain Padé approximants to the exponential, which we shall study in detail
in Section 3.

2.4. Small Wave Number hk � 1. Suppose that k ∈ R
d satisfies the disper-

sion relation (3) for the continuous problem. We shall use Theorem 1 to study

the corresponding discrete wave-vector k̃ in the computational regime where
components the wave-vector k are of moderate size. More specifically we shall
assume that, for mesh-sizes h in the range of practical computation, the fre-
quency is sufficiently moderate so that every component of hk may be regarded
as being small. Although dispersion analyses are often performed under this
kind of assumption their relevance to high frequency applications, where hk
is finite, is limited. Nevertheless, one often sees competing numerical schemes
ranked on the basis of their order of accuracy in this limit.

The next result gives the leading term in the asymptotic expansion of the
relative ρN in terms of hk in terms of the order N and the parameter γ:

Theorem 2. Let N ∈ N and suppose hk � 1, and define

QN (s) = s+ ihk(N + 1)

[
s2

2N + 1
− 1

2N + 3

]
. (12)
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Figure 1. Real and imaginary parts of relative error ρN for the
approximation of the physical mode eihk using methods of order
N = 1, . . . , 5 for γ = 0.5 and the exceptional case γ = 0. The
asymptotic rates of convergence predicted in Theorem 2 are in-
dicated.

(1) If γ 6= 0, then

ρN ≈ 1

2
(hk)2N+2

[
N !

(2N + 1)!

]2

QN

(
γ(−1)N

)
(13)

(2) If γ = 0, then

ρN ≈ i

2

[
N !

(2N + 1)!

]2





−(hk)2N+3 N + 1

2N + 3
, N even

(hk)2N+1 2N + 1

N + 1
, N odd.

(14)

Figure 1 shows the real and imaginary components of the actual relative
error in the case γ = 1

2 , along with the theoretically predicted orders of decay.
Corresponding results for the exceptional case γ = 0 are also shown along with
the theoretical predictions. For hk � 1, the relative error satisfies

ρN =
eihk − eihk̃

eihk
≈ ih(k − k̃),
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and hence, in the usual case where γ 6= 0, Theorem 2 shows that the dispersion
error is

<(hk̃) −<(hk) ≈ (hk)2N+3

2

[
N !

(2N + 1)!

]2{ N + 1

2N + 1
γ2(−1)N − N + 1

2N + 3

}

while the dissipation error is

=(hk̃) ≈ (hk)2N+2

2

[
N !

(2N + 1)!

]2

γ(−1)N

,

thereby proving the conjectures of Hu and Atkins [14, Eq. (41)-(42)]. In view
of the fact that in practical computations hk is finite, the information provided
by Theorem 2 on the coefficient of the leading term in the error is of at least
as much practical relevance as the order of approximation. The fact that the
leading coefficient decreases rapidly with increasing order N suggests (though
of course does not prove) that there may be advantages in keeping the mesh-size
fixed and increasing the order N .

2.5. Large Order N and Large Wave Number kh. Motivated by the re-
sults of the previous section, we now investigate the behaviour of the relative
error ρN in the case where the mesh-size h is fixed (so that the value of hk may
be large) and the order N of the method is increased. Figure 2 shows the real
and imaginary parts of the actual relative error ρN as the order N is increased,
for a range of wave-numbers. The numerical results indicate that as the or-
der N is increased, the behaviour of the error passes through three different
phases depending on the size of N relative to hk. Firstly, in the pre-asymptotic
regime where 2N + 1 < hk − o(hk)1/3, the order is inadequate to resolve the
wave and the relative error tends to oscillate without decay as the order is in-
creased. At the opposite extreme, if the order N is large compared with hk,
i.e. 2N +1 > hk+ o(hk)1/3, then the error reduces at a super-exponential rate.
The transition zone between these two extremes occurs when the order N lies
in the relatively narrow range where hk − o(hk)1/3 < 2N + 1 < hk + o(hk)1/3.
The following result shows that the behaviour observed in the particular cases
studied in Figure 2 is true in general, and that in the transition region, the
error is of order unity but decreases at an algebraic rate N−1/3.

Theorem 3. Let N ∈ N, and define

ΥN (hk) =
(1 − γ)ei(hk+ψN ) + (−1)N+1(1 + γ)e−i(hk+ψN )

(1 − γ)ei(hk+ψN ) + (−1)N (1 + γ)e−i(hk+ψN )
(15)

where ψN = arg 1F1(−N ;−2N − 1;−ihk). As the order N is increased relative
to hk, the relative error ρN passes through three distinct phases:

(1) if 2N + 1 < hk−C(hk)1/3, then EN oscillates but does not decay as N
is increased;

(2) if hk−o(hk)1/3 < 2N+1 < hk+o(hk)1/3, then EN decays algebraically

at a rate O(N−1/3).
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Figure 2. Real and imaginary parts of relative error ρN for the
approximation of the physical mode eihk for hk = 25, 50, 100,
200 and γ = 0.5. Observe the super-exponential rate of decay
once the order N exceeds the threshold 2N + 1 > hk+ o(hk)1/3

as predicted in Theorem 3(1).

(3) if 2N +1 � hk, then ρN decays at a super-exponential rate as N → ∞,

ρN ≈ −
(

ΥN (hk) − ihk

2N + 3

)[
ehk

2
√

(2N + 1)(2N + 3)

]2N+2

. (16)

Theorem 3 also gives sharp estimates for the thresholds on (a) the size of the
order N , in terms of hk, beyond which the wave is resolved and the error begins
to decay, and in addition, (b) the value of h, in terms of N and k, below which
the wave is resolved. The main difference between the two approaches lies not
in the level of resources needed to resolve the wave, but in the rate at which
the relative error decays once the thresholds are reached. Decreasing h gives
algebraic rate of decay, while increasingN is superior giving a super-exponential
rate of decay.

2.6. Exponential Convergence on the Envelope 2N + 1 ≈ hk. Although
most analyses of dispersive behaviour are performed under the assumption that
hk � 1, many applications occur at high frequencies for which reducing the
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mesh-size to this extent is simply not a viable practical proposition. In prac-
tice, computational simulations of high frequency phenomena are generally per-
formed on the envelope where hk is of moderate size, but by no means van-
ishingly small. In other words, the range of frequencies studied in numerical
simulations is often dictated by the smallest mesh-size h that can be resolved by
the available computational resources, rather than by the frequencies of physical
interest. As more powerful computational hardware becomes available, mean-
ing a smaller mesh-size h becomes feasible, the range of simulated frequencies
is increased so that hk effectively remains constant.

We have already seen that increasing the order N on a fixed mesh is more
effective than reducing the mesh-size h. The super-exponential rate of conver-
gence in the resolved regime, where 2N + 1 > hk + o(hk)1/3, means that it is
inefficient to increase the order N much beyond this threshold. A more practical
alternative is to work on the envelope of the region where the super-exponential
convergence sets in. Thus, to resolve problems where hk � 1, one could adopt
a strategy whereby the order is chosen so that 2N + 1 ≈ κhk for some fixed
constant κ > 1.

The analysis of this type of procedure is rather more delicate than the situ-
ations considered earlier, requiring estimates that are uniformly valid for large
order N and large wave-number hk such that the ratio of the two quantities
remains constant (of order κ). The following result shows that this strategy
delivers an exponential rate of convergence:

Theorem 4. Let κ > 1 be fixed. If N , hk → ∞ in a such a way that 2N +1 =
κhk, then ρN decays at an exponential rate as N → ∞,

ρN ≈ −e−β(N+1/2)

(
1 −

√
1 − 1

κ2

)(√
κ2 − 1 − i

)
(17)

where β is a positive real number, defined in (32), which only depends on κ.

Figure 3 shows the actual relative error ρN and the asymptotic results pre-
sented in Theorem 4. It is observed that the asymptotic results provide an
accurate indication of the actual behaviour even for moderate values of N that
could reasonably be used in practical computations.

2.7. Spurious Mode. The nature of the spurious mode appearing on the right
hand side of (10) is discussed at length in [14] to which we have little to add.
We point out that the mode corresponds to a wave travelling in the opposite
direction to the physical wave and, for non-negative γ, is damped by a factor
(1−γ)/(1+γ) as it passes through each element. This means that in the resolved
regime, where the relative error ρN is small, the mode decays exponentially fast
and has no impact in practical computation.

3. Analysis of Remainder in Padé Approximant

3.1. Padé Approximant to the Exponential. The study of Padé approxi-
mants of the exponential ez has enjoyed a long history going back to the original
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Figure 3. Real and imaginary parts of relative error ρN with
γ = 0.5 for various values of hk with the order N chosen so
that 2N + 1 = κhk as described in Theorem 3(2). The results
obtained with κ = 1.0 (shallowest), 1.2, 1.4, 1.8, 2.0, 2.5 and 3.0
(steepest) are shown along with the theoretical prediction (17).
Observe that an exponential rate of decay is obtained for κ > 1
as predicted in Theorem 3(2).

work of Padé himself [22] where the following results, quoted from Varga [26],
are obtained for non-negative integers p and q:

[p/q]exp(z) =
1F1(−p ;−p− q ; z)

1F1(−q ;−p− q ;−z) (18)

with remainder given by

ez − [p/q]exp(z) =

ezzp+q+1

∫ 1

0
e−tztp(t− 1)q dt

(p+ q)! 1F1(−q ;−p− q ;−z) . (19)

Here, 1F1 denotes the confluent hypergeometric function defined by the series

1F1(a, b, z) = 1 +
a

b
z +

a

b

a+ 1

b+ 1

z2

2!
+
a

b

a+ 1

b+ 1

a+ 2

b+ 2

z3

3!
+ . . . (20)

or, if we adopt Pochhammer’s notation (a)0 = 1 and (a)k = a(a + 1) . . . (a +
k − 1), then we have the alternative form

1F1(a, b, z) =
∞∑

k=0

(a)k
(b)k

zk

k!
.

The behaviour of the remainder in the limit z → 0, and for the [N − a/N ]-
Padé approximants (where a = 0, 1) asN → ∞ for fixed z, is well-documented [19,
Page 191]. However, we require expressions for the remainder in the sub- and
super-diagonal Padé approximants with purely imaginary argument that are
uniformly valid for large order N and large argument z. Our approach is based
on expressing the remainder in terms of Bessel functions and then using Langer’s
formulae [9], which provide uniformly valid expansions for Bessel functions of
large order and argument. This enables us to deduce the leading terms in the
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remainder, although actual bounds could be obtained if we were to use the uni-
form asymptotic expansions with error bounds provided by Olver [21] in place
of Langer’s formulae. A related approach was adopted by Driver and Temme [7]
in their analysis of the locations of the poles and zeros of the polynomials ap-
pearing in the quotient (18) for the diagonal approximants (i.e. p = q). There
the remainder is expressed in terms of Bessel functions and expansions in terms
of Airy functions are employed.

We begin by establishing a link between the remainder in the Padé approxi-
mant and modified Bessel functions of the second kind:

Lemma 1. Let N ∈ N. Then,

ez − [N + 1/N ]exp(z) = ez
{

1 +
(−1)N

π

KN+1/2(z/2) +KN+3/2(z/2)

IN+1/2(z/2) − IN+3/2(z/2)

}−1

(21)

where I and K denote modified Bessel functions [11].

Proof. From (19) with p = N + 1 and q = N ,

ez − [N + 1/N ]exp(z) =

ezz2N+2

∫ 1

0
e−tztN+1(t− 1)N dt

(2N + 1)! 1F1(−N ;−2N − 1;−z) .

The proof consists of rewriting the numerator and the denominator as follows:
(i) A simple change of variable gives

T1 =

∫ 1

0
e−tztN+1(t− 1)N dt =

(−1)Ne−z/2

22N+2

∫ 1

−1
esz/2(1 − s)N+1(1 + s)N ds.

Using the identity (9.221) of [11], this may be rewritten as

(−1)Nz−N−3/2e−z/2
N !(N + 1)!

(2N + 2)!
M1/2,N+1(z)

where M1/2,N+1 denotes the Whittaker function of the first kind [11, (9.220)]
with index 1/2. Whittaker functions satisfy the following identity [24, (2.5.1)],

z−1/2M1/2,N+1(z) = M0,N+1/2(z) −
1

2(2N + 3)
M0,N+3/2(z)

where M0,µ is the Whittaker function of the first kind of order µ and index zero.
The latter functions are related to Bessel functions as follows [11, (9.235)2]

M0,µ(z) = Γ(1 + µ)22µz1/2Iµ(z/2).

where Γ is the gamma function [11]. This leads to the conclusion

M0,N+1/2(z) −
1

2(2N + 3)
M0,N+3/2(z) =

Γ(N + 3/2)22N+1z1/2
(
IN+1/2(z/2) − IN+3/2(z/2)

)
.

In summary, after simplifying using the relation

22NΓ(N + 3/2) =

√
π

2

(2N + 1)!

N !
,
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we arrive at the conclusion

T1 =

√
π

2
(−1)Nz−N−1/2e−z/2N !

(
IN+1/2(z/2) − IN+3/2(z/2)

)
.

This completes the treatment of the numerator.
(ii) The denominator may be expressed in form

(2N + 1)! 1F1(−N ;−2N − 1;−z) =

∫ ∞

0
e−ttN+1(t− z)N dt,

which is easily verified by using the binomial expansion and integrating. Then,
with t = sz, this may be rewritten as

z2N+2

∫ ∞

0
e−szsN+1(s− 1)N ds = z2N+2(T1 + T2)

where T1 is defined above, and

T2 =

∫ ∞

1
e−szsN+1(s− 1)N ds.

Making the substitution s = t+ 1 gives the alternative form

e−z
∫ ∞

0
e−tztN (t+ 1)N+1 dt

which in turn may be written in terms of a Whittaker function of the second
kind using [11, (9.222)1],

N ! e−z/2z−N−3/2W1/2,N+1(z).

Identities (9.235)1 and (9.235)2 of [11] imply that

W1/2,N+1(z) =
1

2
z1/2

(
W0,N+1/2(z) +W0,N+3/2(z)

)

and then identity [11, (9.235)2] gives

W1/2,N+1(z) =
1

2

z√
π

(
KN+1/2(z/2) +KN+3/2(z/2)

)
.

Therefore,

T2 =
N !

2
√
π
e−z/2z−N−1/2

(
KN+1/2(z/2) +KN+3/2(z/2)

)
.

Finally, combining these results gives

ez − [N + 1/N ]exp(z) = ez
(

1 +
T2

T1

)−1

and inserting the expressions for T1 and T2 gives the result claimed. �

The next result gives a closed form expression for the error in terms of first-
kind Bessel functions when the argument is purely imaginary.
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Lemma 2. Let N ∈ N and Ω ∈ R. Then,

eiΩ − [N + 1/N ]exp(iΩ) = 2eiΩ {1 + iRN (Ω/2)}−1 (22)

where

RN (x) =
YN+1/2(x) − iYN+3/2(x)

JN+1/2(x) − iJN+3/2(x)
. (23)

Proof. First, recall that

Kn+1/2(z/2) = (−1)n+1π

2

(
In+1/2(z/2) − I−n−1/2(z/2)

)
.

Inserting this expression into the term in parentheses on the right hand side of
equation (21) and simplifying shows that the term may be written as

1

2

{
1 +

I−N−1/2(z/2) − IN+3/2(z/2)

IN+1/2(z/2) − IN+3/2(z/2)

}
.

Then, inserting z = iΩ into the (finite) series expansions for In+1/2, Jn+1/2

and Yn+1/2 (see (8.462), (8.467) and (8.468) of [11]), and using the resulting
relations between the Bessel functions leads to the conclusion that the above
expression coincides with

1

2

{
1 + i

YN+1/2(Ω/2) − iYN+3/2(Ω/2)

JN+1/2(Ω/2) − iJN+3/2(Ω/2)

}

and the result then follows from Lemma 1. �

3.2. Remainder for Small Argument Ω. The general result in Lemma 2
provides an easy passage to the following expression for the remainder at small
argument Ω:

Corollary 1. Let N ∈ N and suppose Ω ∈ R is small. Then

eiΩ − [N + 1/N ]exp(iΩ) =

−Ω2N+2 e
iΩ

2

[
N !

(2N + 1)!

]2{
1 − 2iΩ(N + 1)

(2N + 1)(2N + 3)
+ O(Ω2)

}
. (24)

Proof. For small κ, identity (8.440) of [11] gives

Jn+1/2(κ) =
1

Γ(3/2 + n)

(κ
2

)n+1/2
+ . . .

while combining identities (8.465)1 and (8.440) of [11] gives

Yn+1/2(κ) = (−1)n−1J−n−1/2(κ) =
(−1)n−1

Γ(1/2 − n)

(κ
2

)−n−1/2
+ . . .

where Γ denotes the gamma function. Simple substitution and the use of for-
mulae (8.339) of [11] gives, after some simplification,

1 + iRN (Ω/2) =
−4

Ω2N+2

[
(2N + 1)!

N !

]2 1 + iΩ/(4N + 2) + . . .

1 − iΩ/(4N + 6) + . . .

and the result then follows by inserting this expression into the error represen-
tation given in Lemma 2. �
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3.3. Remainder for Large Order N and Large Argument Ω. We now
consider the behaviour of the remainder for large order N and large argument
Ω in detail. Three distinct regimes are identified depending on the relative
sizes of N and Ω. If N � Ω, then the remainder tends to oscillate without
decay, while if N � Ω, then the remainder decays at a super-exponential rate.
The following result gives a sharp identification of when the transition between
these extremes occurs, and provides a precise estimate for the nature of the
transition.

Theorem 5. Suppose Ω ∈ R and N ∈ N. As the order N � 1 is increased
relative to the argument Ω, the error EN (Ω) = eiΩ−[N + 1/N ]eiΩ passes through
three distinct phases:

(1) if 2N + 1 < Ω − CΩ1/3, then EN oscillates but does not decay as N is
increased;

(2) if Ω− o(Ω1/3) < 2N + 1 < Ω + o(Ω1/3), then EN decays algebraically at

a rate O(N−1/3). More precisely,

EN (Ω) ≈ 2eiΩ

1 − i
√

3

{
1 +

i
√

3

1 − i
√

3

35/6

π
Γ(2/3)2

ν−1/3tν − i(ν + 1)−1/3tν+1

ν−1/3 − i(ν + 1)−1/3

}

(25)

where ν = N + 1/2 and tν = (2/ν)1/3(ν − Ω/2);

(3) if 2N + 1 > Ω + CΩ1/3, then EN decays as

EN (Ω) ≈ ieiΩ
ν−1/2f(wν)

ν − i(ν + 1)−1/2f(wν+1)
ν+1

ν−1/2f(wν)−ν − i(ν + 1)−1/2f(wν+1)−(ν+1)
, (26)

where ν = N+1/2, wν = (1−Ω2/4ν2)1/2 and f : w 7→ ew(1−w)1/2/(1+

w)1/2.

Proof. Denote ν = N + 1/2 and x = Ω/2. The proof is divided into two cases
depending on the relative sizes of ν and x.

Case 1: 2N + 1 > Ω. Here, we have ν > x and we may apply Langer’s
formulas [9, Sect. 7.13.4 (34)-(35)] to obtain

Jν(x) =
1

π

√
z

wν
K1/3(z) + O(ν−4/3)

Yν(x) = −
√

z

wν

[
I1/3(z) + I−1/3(z)

]
+ O(ν−4/3)





(27)

where w = (1 − x2/ν2)1/2 and z = ν(tanh−1w − w).

Case 1(a): Ω < 2N + 1 < Ω + o(Ω1/3). For N in this range, we find that

w ≈ (2/ν)1/2(ν − x)1/2 � 1 and so z ≈ (1/3)νw3 = (2/3)t3/2 = o(1) where

t = (2/ν)1/3(ν − x). Inserting series expansions for the Bessel functions I±1/3

and K1/3 with small argument and simplifying gives

Jν(x) ≈ 3−2/3Γ(2/3)−1(2/ν)1/3
[
1 − 35/6Γ(2/3)2t/2π + O(t3)

]
,

Yν(x) ≈ −3−1/6Γ(2/3)−1(2/ν)1/3
[
1 + 35/6Γ(2/3)2t/2π + O(t3)

]
.

}
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Substituting these expressions into the ratio RN given in (23) and using the
fact that t = o(1), we arrive at

RN (x) ≈ −
√

3

[
1 +

35/6

π
Γ

(
2

3

)2 ν−1/3tν − i(ν + 1)−1/3tν+1

ν−1/3 − i(ν + 1)−1/3

]
,

and then inserting this into (22) and simplifying gives the result claimed.

Case 1(b): 2N + 1 > Ω + CΩ1/3. In this range, the value of z will be large.
The Bessel functions appearing in (27) may be written in terms of the Airy
functions Ai and Bi as in (11.1.04) and (1.1.12) of [21] to give

Jν(x) =

√
3z

wνt
Ai(t) + O(ν−4/3)

Yν(x) = −
√

3z

wνt
Bi(t) + O(ν−4/3)





where z = (2/3)t3/2. The behaviour of the Airy functions for large argument is
given by (1.1.07) and (1.1.16) of [21]:

Ai(t) ∼ e−z

2
√
πt1/4

; Bi(t) ∼ ez√
πt1/4

.

Elementary manipulations give e±z = f(w)∓ν , where f is the function defined
in the statement of the result. On inserting these expansions and simplifying,
these formulae may be written in the alternative form

Jν(x) ≈
1√

2πwν
f(w)ν ; Yν(x) ≈ −

√
2

πwν
f(w)−ν ,

where w = (1 − x2/ν2)1/2. Observe that f is monotonic decreasing on (0, 1]
from 1 to 0 and, since w > 0, the ratio RN (x) defined in (23) dictates the
behaviour of the error (22) for large order N . The claim (26) then follows on
substituting the expressions for Jν and Yν and simplifying.

Case 2: 2N + 1 < Ω. Here, ν < x and we may apply Langer’s formulas [9,
Sect. 7.13.4 (32)-(33)] to obtain

Jν(x) =

√
z

wν

[
J1/3(z) cosπ/6 − Y1/3(z) sinπ/6

]
+ O(ν−4/3)

Yν(x) =

√
z

wν

[
J1/3(z) sinπ/6 + Y1/3(z) cosπ/6

]
+ O(ν−4/3)





(28)

where we now define w = (x2/ν2 − 1)1/2 and z = ν(tan−1w − w).

Case 2(a): Ω−o(Ω1/3) < 2N+1 < Ω. For N in this range we find, as in Case

1(a), that w ≈ (2/ν)1/2(x− ν)1/2 � 1 and so z ≈ (1/3)νw3 = (2/3)τ 3/2 = o(1)

where τ = (2/ν)1/3(x−ν) = −t. Expanding the terms appearing in parentheses
in (28) and simplifying gives

Jν(x) ≈ 3−2/3Γ(2/3)−1(2/ν)1/3
[
1 + 35/6Γ(2/3)2τ/2π + O(τ 3)

]

Yν(x) ≈ −3−1/6Γ(2/3)−1(2/ν)1/3
[
1 − 35/6Γ(2/3)2τ/2π + O(τ 3)

]

}
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where τ is given above. If we substitute τ = −t, then these formulae are
identical with those obtained in Case 1(a) and the remainder of the argument
then follows the one used in Case 1(a).

Case 2(b): 2N + 1 < Ω − CΩ1/3. For N in this range, z will generally be
large. The behaviour of the Bessel functions of order 1/3 for large argument z
is given in (8.440)1 and (8.440)2 of [11]:

J1/3(z) ∼
√

2

πz
cos

(
z − 5

12
π

)

Y1/3(z) ∼
√

2

πz
sin

(
z − 5

12
π

)
.





(29)

Together, expressions (28)-(29) show that the Bessel functions JN+1/2(Ω/2) and
YN+1/2(Ω/2) tend to oscillate but not decay as the order N is increased in the
range considered. Consequently, the expression for EN (Ω) appearing on the
right hand side of (22) reflects this behaviour as N is increased. �

The next result provides further elaboration on the estimate (26) in two
important limits as N → ∞:

Theorem 6. Let Ω ∈ R and N ∈ N. Let EN (Ω) denote the error in the
[N + 1/N ]-Padé approximant of eiΩ.

(1) If 2N + 1 � Ω, then EN (Ω) decays at a super-exponential rate:

EN (Ω) ≈ −eiΩ
[

eΩ

2
√

(2N + 1)(2N + 3)

]2N+2(
1 − iΩ

2N + 3

)
(30)

(2) Let κ > 1 be fixed. If N , Ω → ∞ in a such a way that 2N + 1 = κΩ,
then EN (Ω) decays at an exponential rate:

EN (Ω) ≈ −eiΩ−β(N+1/2)

(
1 −

√
1 − 1

κ2

)(√
κ2 − 1 − i

)
(31)

where β is the positive real number (which depends on κ) given by

β = ln
1 +

√
1 − 1/κ2

1 −
√

1 − 1/κ2
− 2

√
1 − 1

κ2
. (32)

Proof. Denote ν = N + 1/2 and x = Ω/2. By Theorem 5, we have

e−iΩEN (Ω) ≈ i
ν−1/2fνν − i(ν + 1)−1/2fν+1

ν+1

ν−1/2f−νν − i(ν + 1)−1/2f
−(ν+1)
ν+1

, (33)

where fν = f(wν) and fν+1 = f(wν+1), with wν = (1 − x2/ν2)1/2 and f : w 7→
ew(1 − w)1/2/(1 + w)1/2.

Case 1: In this situation ν � x so that wν ≈ 1 − x2/2ν2. Hence fν ≈ ex/2ν
and fν+1 ≈ ex/2(ν + 1). Therefore, for ν � x we have f ν+1

ν+1 f
−ν
ν � 1 and as a
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consequence we obtain

e−iΩEN (Ω) ≈ −
√
ν + 1

ν
fνν f

ν+1
ν+1

1 − i
√
ν/(ν + 1)fν+1

ν+1 f
−ν
ν

1 + i
√

(ν + 1)/νfν+1
ν+1 f

−ν
ν

≈ −fν+1
ν+1

[√
ν + 1

ν
fνν − i

(
2 +

1

ν

)
fν+1
ν+1

]
.

Inserting the approximations for fν and fν+1 and simplifying gives

e−iΩEN (Ω) ≈ −
[

ex

2
√
ν(ν + 1)

]2ν+1{
1 − i

(
2 +

1

ν

)(
1 +

1

ν

)−ν−1/2 ex

2(ν + 1)

}

and then observing that
(

2 +
1

ν

)(
1 +

1

ν

)−ν−1/2

→ 2

e
as ν → ∞,

we arrive at

e−iΩEN (Ω) ≈ −
[

ex

2
√
ν(ν + 1)

]2ν+1(
1 − ix

ν + 1

)

which, on replacing ν and x, gives the result claimed.
Case 2: In this case, wν =

√
1 − 1/κ2 and an easy computation then shows

that

wν+1 = wν

(
1 +

1

ν

1

κ2 − 1
+ O(ν−2)

)
.

Hence, using Taylor’s theorem and the fact that f ′(w) = w2f(w)/(w2−1) gives

fν+1 =

(
1 − 1

ν

√
1 − 1

κ2
+ O(ν−2)

)
fν . (34)

Therefore, for large ν, f νν+1 ≈ fνν e
−
√

1−1/κ2

. With the aid of (33), we obtain

e−iΩEN (Ω) ≈ if2ν
ν

ν−1/2 − i(ν + 1)−1/2fν+1e
−wν

ν−1/2 − i(ν + 1)−1/2f−1
ν+1e

wν

.

By equation (34),

e−wνfν+1 ≈ e−wνfν
(
1 + O(ν−1)

)
= Rν

(
1 + O(ν−1)

)

where Rν =
√

(1 − wν)/(1 + wν), and we deduce that for large ν,

e−iΩEN (Ω) ≈ if2ν
ν

1 − iRν
1 − i/Rν

= if2ν
ν (1 − wν + iRνwν)

By substituting wν =
√

1 − 1/κ2 and simplifying further, we arrive at

e−iΩEN (Ω) ≈ if2ν
ν

(
1 −

√
1 − 1/κ2

)(
1 + i

√
κ2 − 1

)
.

Let β be defined as in the statement of the result, then

e−β = e2wν
1 − wν
1 + wν

= f2
ν ,
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and using this to replace f 2
ν in the previous estimate gives the result claimed.

Finally, if wν ∈ (0, 1), then f(wν)
2 = f2

ν < 1 and β is therefore positive. �

4. Analysis of an Eigenvalue Problem

Properties of the following eigenvalue problem will prove useful in the analysis
of the dispersion error:

Find Φ ∈ PN and λ ∈ C such that for given Ω ∈ C,

(
Φ′, v

)
+

1

2
(1 − γ) (λΦ(−1) − Φ(1)) v(1) (35)

+
1

2
(1 + γ)

(
Φ(−1) − λ−1Φ(1)

)
v(−1) =

1

2
iΩ(Φ, v) ∀v ∈ PN

As usual, the condition under which the eigenvalue problem will possess non-
trivial solutions reduces to an algebraic equation for the eigenvalue λ, which we
now proceed to identify.

4.1. Conditions for an Eigenvalue. We begin by considering the exceptional
cases where γ = ±1. In what follows, it will be convenient to let L denote the

differential operator defined by Lv = 1
2 iΩv+ v′, and to use P

(p,q)
N to denote the

Jacobi polynomial of type (p, q) and degree N (see Ch. 8, Sec. 9.6 of [11]).

Lemma 3. (i) Suppose γ = 1. If λ = λ+
N = [N/N + 1]exp(iΩ), then equa-

tion (35) admits a non-trivial solution Φ+
N ∈ PN of the form

Φ+
N (s) =

N∑

k=0

(iΩ)k
(2N + 1 − k)!

(2N + 1)!
P

(N−k,N−k+1)
k (s). (36)

(ii) Suppose γ = −1. If λ = λ−N = [N + 1/N ]exp(iΩ), then equation (35) admits

a non-trivial solution of the form

Φ−
N (s) =

N∑

k=0

(iΩ)k
(2N + 1 − k)!

(2N + 1)!
P

(N−k+1,N−k)
k (s). (37)

Proof. Consider the case γ = 1. Elementary manipulations and the use of the
following identity, see (8.961)4 of [11],

d

ds
P

(N−k,N−k+1)
k (s) =

1

2

(2N − k + 2)!

(2N − k + 1)!
P

(N−k+1,N−k+2)
k−1 (s),

reveal that

LΦ+
N = −(iΩ)N+1

2

(N + 1)!

(2N + 1)!
P

(0,1)
N (s). (38)

Hence, the orthogonality properties of Jacobi polynomials mean that Φ+
N sat-

isfies equation (35) when v is of the form (1 + s)w for some w ∈ PN−1. It only
remains to show that (35) is satisfied when v is a constant. Firstly, since

P
(N−k,N−k+1)
k (1) =

(
N
k

)
,
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see (8.960)2 of [11], we have

Φ+
N (1) =

N∑

k=0

(−N)k
(−2N − 1)k

(iΩ)k

k!
= 1F1(−N ;−2N − 1; iΩ). (39)

Now, thanks to (7.391)4 of [11], (P
(1,0)
N , 1) = 2/(N + 1), and then by (8.961)1

of [11], P
(1,0)
N (−s) = (−1)NPN (s), and we obtain (P

(0,1)
N , 1) = (−1)N2/(N +1).

Therefore,
(
LΦ+

N , 1
)

=
N !

(2N + 1)!
(−iΩ)N+1 (40)

and hence, using the fact that

P
(N−k,N−k+1)
k (−1) = (−1)k

(
N + 1
k

)
,

see (8.960)2 and (8.961)1 of [11], we obtain

(
LΦ+

N , 1
)

+ Φ+
N (−1) =

N+1∑

k=0

(−N − 1)k
(−2N − 1)k

(−iΩ)k

k!

= 1F1(−N − 1;−2N − 1;−iΩ).

Consequently, equation (35) holds for constant v (and therefore all v ∈ PN )
provided that

λ = λ+
N =

1F1(−N ;−2N − 1; iΩ)

1F1(−N − 1;−2N − 1;−iΩ)
= [N/N + 1]exp(iΩ)

as claimed. The proof in the case γ = −1 follows similar lines. In particular,
we obtain

LΦ−
N = −(iΩ)N+1

2

(N + 1)!

(2N + 1)!
P

(1,0)
N (s) (41)

which leads to
(
LΦ−

N , 1
)

= − N !

(2N + 1)!
(iΩ)N+1. (42)

Manipulations similar to those used in the case γ = 1 give

Φ−
N (−1) = 1F1(−N ;−2N − 1;−iΩ) (43)

and

Φ−
N (1) −

(
LΦ−

N , 1
)

= 1F1(−N − 1;−2N − 1; iΩ)

which lead to the condition that

λ = λ−N =
1F1(−N − 1;−2N − 1; iΩ)

1F1(−N ;−2N − 1;−iΩ)
= [N + 1/N ]exp(iΩ)

as claimed. �

The functions Φ±
N that arise in the case γ = ±1 may be used to analyse the

general case γ ∈ [−1, 1]:
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Lemma 4. Let γ ∈ [−1, 1] and N ∈ N. If λ satisfies the algebraic equation

0 = (1 − γ) 1F1(−N ;−2N − 1;−iΩ)(λ− λ−N )

+ (−1)N (1 + γ) 1F1(−N ;−2N − 1; iΩ)

(
1

λ+
N

− 1

λ

)
, (44)

then equation (35) admits a non-trivial solution Φ ∈ span{Φ+
N ,Φ

−
N}.

Proof. In view of Lemma 3, we may assume that γ ∈ (−1, 1). We seek a non-
trivial solution ΦN ∈ PN of the form

ΦN = c−Φ−
N + c+Φ+

N

where c− and c+ are non-zero scalars whose existence is to be determined.
Thanks to (38) and (41), it follows that LΦN ∈ span{P (1,0)

N , P
(0,1)
N }. As a

matter of fact, by writing

P
(1,0)
N =

N + 2

2N + 2
P

(1,1)
N +

1

2
P

(1,1)
N−1

and

P
(0,1)
N =

N + 2

2N + 2
P

(1,1)
N − 1

2
P

(1,1)
N−1 ,

we conclude that
LΦN ∈ span{P (1,1)

N−1 , P
(1,1)
N }.

This implies that ΦN satisfies equation (35) for all v of the form (1−s2)w where
w ∈ PN−2, since equation (35) then reduces to the identity

0 =

∫ 1

−1
(1 − s2)w(s)LΦN (s) ds

which holds due to the standard orthogonality properties of Jacobi polynomi-
als. It therefore suffices to show there exist non-trivial scalars c− and c+ such
that (35) is satisfied in the special cases v = 1± s. Inserting the expression for
ΦN into (35) and choosing v = 1 ± s shows that the existence of a non-trivial
solution is equivalent to the algebraic condition

∣∣∣∣
R(Φ−, 1 + s) R(Φ+, 1 + s)
R(Φ−, 1 − s) R(Φ+, 1 − s)

∣∣∣∣ = 0

where R(Φ, v) denotes the functional defined by the difference between the left
and right hand sides of equation (35). The off-diagonal entries in the determi-
nant may be simplified using (38) and (41) to obtain

R(Φ+, 1 + s) = (1 − γ)
(
λΦ+

N (−1) − Φ+
N (1)

)

and
R(Φ−, 1 − s) = (1 + γ)

(
Φ−
N (−1) − λ−1Φ−

N (1)
)
.

Expanding and simplifying the resulting determinant gives the algebraic condi-
tion

0 = (LΦ−
N , 1 + s) (LΦ+

N , 1 − s)

+ (1 − γ) (LΦ+
N , 1 − s)

[
λΦ−

N (−1) − Φ−
N (1)

]

+ (1 + γ) (LΦ−
N , 1 + s)

[
Φ+
N (−1) − λ−1Φ+

N (1)
]
. (45)
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Lemma 3 implies that

0 = (LΦ−
N , 1 + s) + 2

[
λ−NΦ−

N (−1) − Φ−
N (1)

]

and

0 = (LΦ+
N , 1 − s) + 2

[
Φ+
N (−1) − 1

λ+
N

Φ+
N (1)

]
.

If these identities are used to eliminate Φ−
N (1) and Φ+

N (−1) in (45), then on
simplifying the resulting expression, we arrive at the condition

0 = (1−γ) Φ−
N (−1)(LΦ+

N , 1−s)(λ−λ−N )+(1+γ) Φ+
N (1)(LΦ−

N , 1+s)

(
1

λ+
N

− 1

λ

)
.

Finally, using (38) and (40), we obtain

(LΦ+
N , 1 + s) = 2(LΦ+

N , 1) =
2N !

(2N + 1)!
(−iΩ)N+1

and similarly, using (41) and (42),

(LΦ−
N , 1 − s) = 2(LΦ−

N , 1) = − 2N !

(2N + 1)!
(iΩ)N+1 .

With the aid of these expressions the condition becomes

0 = (1 − γ) Φ−
N (−1)(λ− λ−N ) + (−1)N (1 + γ) Φ+

N (1)

(
1

λ+
N

− 1

λ

)
,

and the result then follows as claimed thanks to (39) and (43). �

Lemma 4 establishes the condition (44) for the existence of an eigenvalue and
thereby proves the conjecture of Hu and Atkins [14, Eq. (35)].

4.2. Properties of the Eigenvalues. Let N ∈ N and Ω ∈ R. Denote HN =

1F1(−N ;−2N − 1;−iΩ) and define

λS = (−1)N+1 1 + γ

1 − γ

H∗
N

HN
e−iΩ, γ 6= 1. (46)

The next result characterises the solutions of the algebraic eigenvalue equation
as approximations to the physical mode λ ≈ eiΩ and the spurious mode λ ≈ λS .
The relative error in both approximations is shown to have the same magnitude,
which in turn is dictated by the remainder in the Padé approximants:

Theorem 7. If γ 6= ±1, then there are two distinct eigenvalues λ ≈ eiΩ and
λ ≈ λS. Furthermore, the relative error in these approximations is given by ρN
and −ρN respectively, where

ρN =
(1 − γ)HNe

iΩEN + (−1)N+1(1 + γ)H∗
Ne

−iΩE∗
N

(1 − γ)HNeiΩ + (−1)N (1 + γ)H∗
Ne

−iΩ
+ O(|EN |2) (47)

and EN is the relative error in the Padé approximant,

EN =
eiΩ − [N + 1/N ]eiΩ

eiΩ
. (48)
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Proof. Let EN be defined as above, then

λ−N = [N + 1/N ]eiΩ = eiΩ(1 − EN )

and
1

λ+
N

= [N + 1/N ]e−iΩ = e−iΩ(1 − E∗
N ).

Inserting these expressions into condition (44) gives

0 = (1 − γ)HN (λ− eiΩ + eiΩEN )

+ (−1)N (1 + γ)H∗
N (λ− eiΩ − λE∗

N )
1

λeiΩ
,

or, on rearranging,

eiΩ − λ

eiΩ
[
(1 − γ)HNe

iΩ + (−1)N (1 + γ)H∗
Nλ

−1
]

= (1 − γ)HNe
iΩEN + (−1)N+1(1 + γ)H∗

Ne
−iΩE∗

N . (49)

If EN ≈ 0, then equation (49) has roots at λ ≈ eiΩ and λ ≈ λS (provided
γ 6= 1), which depend continuously on EN . As EN → 0, passing along the
branch corresponding to eiΩ, the second term in parentheses on the left hand
side of (49) tends to

(1 − γ)HNe
iΩ + (−1)N (1 + γ)H∗

Ne
−iΩ,

and equation (49) then implies that the relative error in the approximation of
this zero by eiΩ is given by ρN .

The left hand side of (49) may be rewritten as

λ− λS
λ

[
(1 − γ)HNe

iΩ + (−1)N (1 + γ)H∗
Ne

−iΩ + O(λ− λS)
]
.

As EN → 0, passing now along the branch corresponding to λS , this expression
approaches

λ− λS
λS

[
(1 − γ)HNe

iΩ + (−1)N (1 + γ)H∗
Ne

−iΩ
]
,

and it follows that the relative error in the approximation of the second zero
by λS is given by −ρN . �

5. Proofs of Main Results

Finally, we present the proofs of the results described in Section 2.3.

5.1. Proof of Theorem 1. Let ω and k ∈ R
d satisfy the hypothesis. Consider

an arbitrary element K =
∏d
`=1(a`, b`). For each ` = 1, . . . , d, we begin by

defining a function uDG

` by the rule uDG(x`) = Φ(s), s = (2x`−a`−b`)/h, where
Φ is a non-trivial solution of the eigenvalue problem (35) with Ω = hk` and λ`
chosen according to Theorem 7. Performing the change of variable indicated
above, we arrive at the conclusion that uDG

` ∈ PN (a`, b`) satisfies

(∂uDG

` , v)` +
1

2
(1 − γ)

(
λ`u

DG

` (a+
` ) − uDG

` (b−` )
)
v(b−` ) (50)

+
1

2
(1 + γ)

(
uDG

` (a+
` ) − λ−1

` uDG

` (b−` )
)
v(a+

` ) = ik`(u
DG

` , v)`
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for all v ∈ PN , where (·, ·)` denotes the L2-inner product on (a`, b`). The
restriction of the function uDG to element K is defined to be

uDG

K (x, t) = ce−iωt
d∏

`=1

uDG

` (x`).

The value of the function uDG on remaining elements is then defined so that
equation (9) holds automatically. Specifically, the discrete wave-vector is de-

fined by eihk̃` = λ` and to obtain uDG on any remaining element K ′, we use (9)
with x ∈ K and hm chosen to be the position vector of the centroid of K ′

relative to the centroid of K. Obviously uDG

K′ ∈ PN . Moreover, choosing x ∈ K,
τ = 0 and m = me` in (9) gives

uDG(x +mhe`, t) = eihmk̃`uDG(x, t) = λm` u
DG(x, t), m ∈ Z

and then inserting the expression for uDG and simplifying, we obtain

uDG

` (x` +mh) = λm` u
DG

` (x`), x` ∈ (a`, b`).

By first selecting x` = b−` and m = −1, and then x` = a+
` and m = 1, we find

uDG

` (b±` ) = λ`u
DG

` (a±` ),

and hence, with the aid of (50), we arrive at the conclusion

(∂uDG

` , v)` +
1

2
(1 − γ)

(
uDG

` (b+` ) − uDG

` (b−` )
)
v(b−` ) (51)

+
1

2
(1 + γ)

(
uDG

` (a+
` ) − uDG

` (a−` )
)
v(a+

` ) = ik`(u
DG

` , v)`

for all v ∈ PN .
It remains to show that uDG satisfies (7) or equivalently (8). Thanks to

property (9), it is sufficient to prove (8) holds on the particular element K. Let

a general test function v be expressed in the form
∏d
`=1 v`(x`) where v` ∈ PN .

Inserting these expressions into the statement (8), simplifying using (6) and
cancelling a factor ce−iωt, shows that (8) is equivalent to the following condition:

iω

d∏

`=1

(v`, u
DG

` )` =

d∑

m=1

∏

6̀=m

(v`, u
DG

` )`

×





(vm, αm∂mu
DG

m )m

+ Λ−
γ (em)

(
uDG

m (b+m) − uDG

m (b−m)
)
vm(b−m)

+ Λ+
γ (em)

(
uDG

m (a+
m) − uDG

m (a−m)
)
vm(a+

m)





where em is the m-th unit vector. The assumption αm ≥ 0 implies that
Λ±
γ (em) = 1

2(1 ± γ)αm, which in turn shows that the expression in paren-
theses reduces to αm multiplied by the left hand side of (51). Condition (8) is
therefore equivalent to

iω
d∏

`=1

(v`, u
DG

` )` = iα · k
d∏

`=1

(v`, u
DG

` )`, ∀v` ∈ PN
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or equally well, ω = α · k. The statements concerning the discrete wave-vector
follow at once from Theorem 7.

5.2. Proof of Theorem 2. By Lemma 1, the relative error in the Padé ap-
proximant is given by

EN = −1

2
Ω2N+2

[
N !

(2N + 1)!

]2{
1 − 2iΩ(N + 1)

(2N + 1)(2N + 3)
+ O(Ω2)

}
.

Furthermore, since

HN = 1F1(−N ;−2N − 1;−iΩ) = 1 − N

2N + 1
iΩ + . . . ,

we have

HNe
iΩ = 1 +

N + 1

2N + 1
iΩ + . . . .

Inserting these expressions into (47) gives

ρN = −1

2
Ω2N+2

[
N !

(2N + 1)!

]2

×
{

(2N + 1)qN+1 + qN (N + 1)iΩ

(2N + 1)qN + qN+1(N + 1)iΩ
− 2iΩ(N + 1)

(2N + 1)(2N + 3)
+ . . .

}

where
qN = (1 − γ) + (−1)N (1 + γ).

Case 1: Suppose γ 6= 0. It is then straightforward to verify that the term in the

second set of parentheses simplifies to QN (γ(−1)N

), giving the result claimed.
Case 2: If γ = 0, then qN+1 vanishes for even N , and the expression simplifies
to (14)1. Equally well, if N is odd, then qN vanishes, and the expression reduces
to (14)2 in this case.

5.3. Proofs of Theorems 3 and 4. The first two parts of Theorem 3 are
restatements of the first two parts of Theorem 5. The final part of Theorem 3
follows by inserting the estimates from the first part of Theorem 6 into the
expression (47) and simplifying. The proof of Theorem 4 follows in the same
way, using instead the second part of Theorem 6.
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