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Abstract

In this article we introduce a new model that generalizes the model of
Perona-Malik and the total variation model. One main issue is to show
that the discrete solutions of this new model conserve some properties of
the solutions of the continuous model, in particular convergence of the
iterative scheme to a critical point. We also implement this new model by
a numerical algorithm with two different energy-based stopping methods.
Computations are performed for a test picture.
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1 Introduction

Along with stochastic modeling and wavelets, the theory of PDEs is an impor-
tant issue in modern image processing. A detailed outline is given in Aubert
and Kornprobst [1]. Our goal is to develop a model for image processing, that
generalizes Perona-Malik (PM) (see [9]) and the total variation model (TV) (cf.
Rudin, Osher and Fatemi [10] or Osher and Fedkiw [8]). Besides giving a PDE for
denoising purposes we analyse the global dynamics of a fully discrete model and
discuss the problem of a well suited stopping time. This is important, because
most PDE based models (including the two mentioned above) yield the best de-
noising results when the evolution time is halted after a while. In the definition
of this stopping time our main emphasis is laid on the observation that no use
of knowledge of the original picture should be made. This is crucial for practical
reasons, because in most applications only a perturbed image of the real image
is known.

Consider the following PDE on the domain  C R2:

—eAus+u; = V(g(|Vul?)Vu) in Qfort >0
oyu 0 on 0 fort>0 (1)

’U,(t)|t:0 = Upoi in Q,

where g : [0,00) — [0, 00) with
1
9(s) = W,

and € > 0 and «a,y > 0 are parameters and v is the outward unit normal on 0f).



The initial condition wu,,; is the noisy data (e.g. a picture) which is sup-

posed to be denoised by the evolution of (1) without losing characteristic

features like edges, for instance. Note that ¢ = 0 and o = 1 in (1) delivers

the (PM) model, whereas ¢ = 0 and a = 0.5, v = 1 represents some kind of a
1

regularized version of the (TV) model, which is given by g(s) = —=.

The comparison of the models induced by different parameters is done as follows.
We choose some target data s, a function on Q = [0, 1]? showing some geometric
figures (cf. Figure 1).

As initial data for (1) we used (Figure 2):

Unoi = Utqr +  N0ISE”. (2)
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Figure 1: g, Figure 2: w4

Besides finding good parameters, an important issue will be to find a good stop-
ping criterion, i.e., some stopping time t* at which the denoising procedure is
halted. Unfortunately (except for some special cases, like the heat equation
model [3]) there is no satisfactory answer. In case u,, is known (as in our case),
one could choose as t* that time ¢t when ||u(t) — U, ||r2 stops decreasing. The
closer u(t*) gets to w4, for some stopping time t* > 0, the better the reconstruc-
tion of the original picture works.

For practical applications, however, u;,, is usually not known. Therefore we
need different stopping criteria for the denoising procedure which take this into

account. We define the function H(s) by H'(s) = 3g(s), i.e.,

H(s) = % v log(1 + %) fora=1 (3)
and otherwise 1 .
H(s) = 30—a) [(1+ ;)1_“ —1] (4)



We see that H(0) = 0 and H'(s) > 0 which implies H(s) > 0. From
g'(s) < 0 we deduce that H is non-convex. With the additional parameter A > 0
we construct an energy functional given by

A
Gltess ) 1= 5 s = s + [ H(Vul?) )
Q

The first term measures the fidelity of the image u with the original noisy image
Uno; Whereas the second term measures the smoothness of the image u. In order
to vary the balance of these two measures one has the scalar A\. Based on this
energy functional we tested two different methods :

Method (1):

Set A = A;. Solve (1) and stop when E(Une,t) := G(Unei,u(t)) achieves a

first local minimum in ¢. Note that the integral of H in (5) is a Liapunov

functional for the evolution of (1). Therefore our stopping criterion balances

the smoothing evolution of (1) represented by the term [ H(|Vul|*) dz with a
Q

fidelity term )‘2—1||unoz — ul|%, that punishes u going too far away from ;. In our
numerical implementation we will see that for any discrete solution of (1) v — 0
for t — oo (cf. Corollary 4.2) and therefore we get

A
E(unoiat) — 51“@[%01,”%2 for t— 0.

Furthermore we will prove that E(uye;, . ) is decreasing for small ¢ (cf. Corollary
3.4). If uy,; is sufficiently smooth we can choose A; large enough to achieve

A
Bt 0) = [ H(|Vtno?) dz < St
Q

and a positive finite minimum of E(uye, . ) is guaranteed yielding a well defined
stopping criterion.

In our second method we depart from the evolution (1) and consider gradient
flow for the energy (5):

Method (2):



Instead of the PDE (1) we consider:

—eAug+u; = V(g(|Vu[?)Vu) + Xo(tine; —u) in Q for ¢t >0
du = 0 on 00 for t>0 (6)

U’(t)\t:O = Upoi in Q,

where )y > 0. This evolution is H'! gradient flow for the energy functional
G (Unoi, u) With A = Ay.

We will show that the discrete solution u of (6) converges as t — oo (cf.
Theorem 4.1) and we stop when u reaches a small neighborhood of a steady
state, i.e., the evolution is halted when

[u(t + At) — u(t*)|].>
At

< tol

for some fixed small tolerance tol > 0 and at some discrete time point ¢* > 0.
One easily verifies that the PDE (6) is a gradient flow for the Liapunov functional
E(tnei, ). After an introduction of some notation in Section 2 we will see in
Section 3 that our discretization preserves that property, i.e. a discrete version
of (6) (with Ay = Xg) is still a Liapunov functional for our discrete model.
Furthermore in the discrete model (as well as in the continuous one) both
methods have some natural invariance properties like conservation of the average
value or gray-level shift invariance (cf. again Section 3). They will be useful
to prove the convergence theorem in Section 4 and the existence of a discrete
Liapunov functional. At last, in Section 5 we report on some computations using
the discretization from above and both stopping methods.

One may ask why we chose this special family of functions g = g,,. There
are some properties the evolution should have which lead to corresponding
restrictions for g. For instance the condition g(0) = 1 implies behavior almost
like the heat equation in case |Vul is small. In other words it leads to isotropic
smoothing in flat regions. In points nearby a steep edge the evolution locally
should be stopped which yields the restriction lim; o, g(s) = 0. In a more
precise examination it turns out that the function b(s) = g(s) + 2s¢’(s) plays an
important role (cf. e.g. [1], Theorem 3.3.6 and [11], Section 3). The signs of
g(|Vul?) and b(|Vu|?) determine if our equation is locally forward parabolic or
not. If both are positive we have local parabolicity which leads to a smoothing
model. But it is absolutely reasonable to consider a smoothing-enhancing model,
i.e. a model where edges are smoothed out or enhanced depending on the
steepness of the edge. This leads to a replacement of the condition b > 0 by
b(s) > 0 for s < 59 and b(s) < 0 for s > sy for some threshold sy > 0. If in the
considered point the condition |Vu|? > s, is valid, we get a locally backward



parabolic equation in direction of sharpest increase, which leads to sharpening
of significant edges. With our special choice of g this condition only depends
on the parameter a. We get a smoothing model for o < % and a smoothing-
enhancing one for & > 3. A more detailed discussion is given in [11], Sections 2-4.

Finally we mention some classical existence results to this equation. For ¢ > 0
equation (6) (which is including (1)) has a classical solution on a maximal time
of existence [0,7") in an appropriate Banach space (compare [11], Section 12).
For ¢ = 0 we can generalize the problem by considering u € BV (€2). With the
help of the notion of maximal operators one can prove the existence of a unique
solution u = wu(t) : [0,00) — L?(2) of the generalized problem (1) in case of
Unoi € BV (), see [1], Theorem 3.3.1.

In summary, our major contributions are: Our choice of g in (1) generalizes the
PDE ansatz of both the PM and TV model. We also extended these models
by a viscous € regularization. This regularization leads to a well posed PDE
problem although g yields a non-convex variational problem. We focused on
the analysis of the discrete dynamics which in effect yields a well-posed discrete
scheme for the forward parabolic and the forward-backward parabolic case (even
if the regularization parameter ¢ is zero). Finally we discussed the two different
stopping criteria and made some numerical simulations.
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2 Preparations

For the spatial discretization we replace 2 = [0, 1] by a discrete grid of d* points
1 1
Qd:{?«':(%y)69|d$—§a dy—§€Z}

and order these grid points z1, ..., zg2 row after row.
For any function v : [0,1]2 — R we name the vector v € R¥ on the d? grid points
as its discrete counterpart:

v = (v1, 2, ..., Vg2)
with
v = v(z1), va = v(22), v3 = v(z3),
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This method has been extensively studied in [6], Chapter 4.

2.1 Notation

Let v,w € R? be arbitrary vectors (corresponding to functions v, w : [0, 1] — R).
We will frequently use the following notation:

diag(v) € R% > is the diagonal matrix

U1 0o --- 0

0 Vg -+ - 0
diaglv) = . . . s

0 0 Vq2

vow € R¥ is the vector valued product {vjw;}i—1. q2. In fact, the point
wise multiplication of the functions v, w may be simulated by v o w = diag(v)w.
For v o v we also write v?.

For any function f : R — R we define the vector f(v) € R¥ by

flv) = {f(Uz')}z':l,...,dZ-

We use the shortcut 1 for the vector (1,1,...,1) € R% . Tt represents the constant
function u = 1. With the usual inner product in R* (, ) we obtain that

1

ﬁ(]lfu)

is the discrete analogue for [ v(z)dz. Hence the L? product [ v(z)w(z)dz changes
Q Q
to

1 1
E(]]_,'U (¢] 'LU) = ﬁ(ﬂ,ﬂ)).

The discrete p-norm (p > 1) is defined by

1
lolly = /(1. lof).

Especially for p = 2 we have that |[v]|3 = (1, [v|?) = & (|v], [v]) = & (v, v).

d2
In the case p = 0o we set ||v]|e0 = max |v;]-
=T,



2.2 Discrete derivatives and the discrete Laplacian

Our goal is to descretize the Laplacian A and the term V(g(|Vu|?)Vu), where g
is defined by

g=g—1

To approximate derivatives at a grid point we have to incorporate some grid
points in its neighborhood which leads to problems at marginal grid points. For
any given functions v, w on €); the general idea is to extend them beyond the
boundary on a greater grid (24,5 regarding the Neumann boundary conditions,
to apply the usual derivative operators and to restrict then the result on {2; again.
This restriction is realized by a linear operator

R: RO+ 5 RY,
It removes all values of a given function v on the marginal grid points of the
extended grid. We call Rv the restriction of v.
For d = 3 we have for instance:

R(Ul, ---,025) = (07,US,Ug,U12,U13,U14,U17,U18,U19)-

Inversely for every linear operator

E:RY — R’
with

REw =w

we call Ew an extension of w € RY .

In our problem we have to regard the Neumann boundary condition
o,v=0 on 0.

The derivative in outer normal direction in a point of the boundary may be
approximated by the difference é(vc — Up,) where v, = v(z,) is the value at a
marginal point z, (those with distance 5; to the boundary) and v, = v(z,) is its
continuation beyond the boundary. If we choose v. = v, we match the Neumann
boundary condition.

In other words missing neighbors are constructed by reflection of marginal points
at the boundary. This special extension of v is realized by a linear operator

Ey: RY — RU+2”,

which we call the Neumann extension. By ”usual derivative operators” we
mean the matrices

Di, DY, D, Dy e RO <27,
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1 0 - 0 1 1 - 0

Ds—l (—1 1 ... 0\ Dd—1( S .
w_g ) x_a 0 1 1 3

\ 0 - -1 1) \ 0 0 -1

r —-r .- 0 -7 0 0
! 1/5'-. \ 1(I—I 0\
D\ =- o=z T,

dlo . 1 -I U
\o - 0 I ) \ 0 - I -I)

where [ is the (d + 2) x (d + 2) unit matrix. They are the sinistral, dex-
ter, lower and upper derivative operators respectively. Confer for instance [11],
Subsection 7.2, for more details.

For functions v with Neumann boundary conditions restricted to €; we
can approximate d,v ~ RD?Eq. We see that D, := RD:E, € R¥*% is an
endomorphism on R? . In the sequel we use D, as (sinistral) approximation
of 0,. An easy calculation gives:

M 0 --- 0
Dm:a : - : (7)
0 0 M
with
0 0 0
m=| 5 Y cgexe
0 - —1 1

Similarly, for any given functions v, w on Q4 (w with Neumann boundary con-
ditions) we have approximately 9, (v O,w) ~ RD%(Ev o D$Eyw). Hence for the
discretization of 0, (v d,w) we use

RD%(Ev o DiEyw) = —D, diag(v) Dyw.
We call —D] diag(v)D,w € R the discretization of 9, (v d,w) on Q.

In the same manner we receive as discrete version of d, for functions with Neu-
mann boundary conditions restricted to €4 the matrix D, := RD} E, € RY x4

I =1 - 0
1 oL e :
Dy==|: " ] 8
Y7dl o ... T —JI (8)
0 .-« 0 0



Here I is the d x d unit matrix. The discretization of 9,(v J,w) on Q is:

8y(v 8yw) ~ RDY(Ev o D! Eyw) = —D, diag(v) Dyw.

Now we are able to construct the discrete Laplacian subject to Neumann bound-
ary conditions. We can write A in the form

Aw = diw + diw = 8, (v d,w) + 9y (v Fyw),
with v = 1. Hence the discrete Laplacian A, € R %4 ig given by

Ay = —D,diag(1)D, — D, diag(1)D,
= —(D;D,+ D, D,).

For the discretization of |Vv|? we define a vector valued symmetric bilinear form
B:R¥ x R¥” — R? by

B(v,w) = (Dgv) o (Dyw) 4+ (Dyv) o (Dyw).

Especially B(v,v) may be seen as the discrete version of |Vv|?. This is justified
by the approximation:

IVu]* ~ R[(DEw)*+ (D} Ew)?]

(RD;Egv)® + (RD} Eyv)?

= (Dov)* + (Dyv)?*
B(v,v)

Using this method and with the definition of the symmetric d* x d? ma-
trix

D(w) := —D, diag[§(B(w,w))|D; — D, diag[g(B(w, w))]|Dy (9)
we see, that V(g(|Vw|?)Vw) is discretized by

D(w)w.

The following identities for v, w € R” essentially accord to integration by parts.
They will be needed later on.

(1, B(v,w)) = (1, Dyvo Dyw+ Dyvo Dyw)
= (w,D; Dyv+ D, Dyv)
= (w,—Au) (10)

9



(1, g(B(v,v)) o B(v,w)) = (1,§(B(v,v)) o [Dyv 0 Dyw + Dyv 0 Dyw])
(w, Dy [9(B(v,v)) o (Dyv)]
+D, [§(B(v,v)) o (Dyv)))

= (w,=D(v)v) (11)

—~
=

(1,9(B(v,v)) o B(v,w)) = (1, B(v,w)+ g(B(v,v))o B(v,w))
= (w,—Agv — D(v)v) (12)

We will also need:

B(v,v) o B(w,w) — B(v,w)> = [(Dyv)o (Dyw)— (Dyw)o (Dyw)]*. (13)

Further we deduce from D 1 = D1 = 0:

Agl=0 and D(v)L =0. (14)

For some technical reasons we will need that the restriction of —A, on the sub-
space W = {v € R |(1,v) = 0} consisting of functions with zero mass is strictly
positive. To that end we note that the discrete Laplacian A, : R — R¥ with
Neumann boundary conditions has the eigenvectors e,,,, m,n =0, ...,d—1, given

by
(émn); = cos(mmz;) cos(nmy;), 7 =1,...,d° (15)

where (z;,y;) are the coordinates of a grid point z; € Q4. The corresponding

eigenvalues are
4
o= (o (1) s (25). i

Thus we have p,, = 0 for m = n = 0 and otherwise i, < 0.

Lemma 2.1 Forv € W and some constant ¢; > 0 we have:

(v, —Agv) > ¢1(v,v). (17)

Proof: —A, is symmetric, so we have an orthonormal basis of eigenvectors
{e1,...,eq2}. We denote the corresponding eigenvalues according to (16) as
/,Li,i = 1, ceey d2.

—Adei = MU;€4, 1= 1, .. ,d2.

10



Ordering them to 1 < o < ... < pge we get: g1 = 0,e; =1 and 0 < py <
for 2 < 3.

d2
Suppose that v = ) a;e; € W. Now we immediately obtain:
i=1
d2
0=(1,v)= Zai(elu €i) = a1
i=1

and hence

(v, —Agv) = (Z a,ez,Zaz,uzez> > po(v,v).

3 Numerical Algorithm, Invariance Properties
and Liapunov Functional

Both methods are implemented numerically by the following algorithm:

We use the time discretization ¢ty = 0,¢,11 = ¢, + At™. The width of the time
steps At™ can be constant or regulated in an adaptive way. However in the
following we shall assume that {A#"} is bounded.

Then we start with the discretized initial functlon u® = u(0) = upy; € R” and
compute iteratively the solutions at later times u! = u(t;),u? = u(tp), ..

The iterative scheme is given by:

Cou™t = Au™ + At"[D(u™)u™ + Aou’] (18)
with
A=1—-eN; e R" x R”
and

Cp=A+At"(MoI — Ay) € RT x RY.

This is a well posed discrete scheme since C), is symmetric positive definite and
in particular bijective for all At" > 0 and ¢ > 0.

To see this we write C,, as C,, = (11 — (A4 with (3, (3 > 0. In terms of the proof
of Lemma 2.1 we get

d2
(Crv,v) =Y aF (G + Capra) > 0 for all v # 0.

=1

The symmetry of C,, follows from the symmetry of A; and I.

11



To compute the solution u™*! at a later time ¢, we have to solve a linear system
of dimension d?. This can be done by using the conjugate gradient scheme (c.f.
[7]) or a fast fourier transformation. Note that this algorithm is used for Method
(1) and Method (2). If we consider the evolutions (1) and (6) we see that (6)
includes (1), if we set Ay = 0. Corresponding to that we set Ay = 0 in the
algorithm, if we work with Method (1). For better understanding we give a
formal derivation of this algorithm:

First we substitute in the original evolution

—eAug+u; = V(g(|Vul?)Vu) + A (u(0) — u)
= V(3(|Vul")Vu) + Au + Ag(u(0) — u)

n+1

the function u by u" or u and the operators by their discrete counterparts,

respectively. The time derivative is approximated by u; ~ “nzlt;“" :
n+1 _ u™
(—eAg + I)Tt” = D(u")u" + Agu™ ™t + A (u® — u™tH)

If we order the terms with u™*! to the left hand side this is equivalent to (18).

With this discretization of the evolution it is easy to see that the average value
of u is conserved. Furthermore we have gray-level shift invariance. To be more
precise:

Lemma 3.1 Given the iterative scheme (18) the equation
(1, u™) = (1, u’)
holds for all n.
Lemma 3.2 Let u® generate the sequence (u™) via (18) and let K € R be given,
then the modified start vector @° = u® + K 1 generates the sequence

(a™) = (u" + K 1).
(provided equal time steps At™)

A formal calculation shows that the right hand side of (5) with As instead of A
gives a Liapunov functional for (6). This leads to the conjecture that the iterative
scheme (18) has the discrete Liapunov functional .J : R¥ — R,

J(u) = %Huo — ull5 + %(n, H(B(u, u))). (19)

12



Theorem 3.3 For the sequence (u™) generated from (18) and some constant co >
0 the inequality

T 2 = w3 < I holds for alln €Ny, (20)

In particular J is a discrete Liapunov functional for Method (2). Setting Ao =0
it is also a discrete Liapunov functional for Method (1).

+1_,n

Proof: If we use Taylor expansion of J around u™ and the shortcut h = u" u”,

we receive a £ € {su” + (1 — s)u"™" | s €[0,1]} € R with:
d*(J (™) — J(u"))
= (]1’ )\Q(un - u()) oh+ g(B(una un)) © B(un’ h))

1 (L Ak + 26/(B(E.€)) o BIE.h)? + g(B(E,€)) 0 B(h, 1)

<0 n+1
g (n, Ao (% - u°) o h+ g(B(u", u") o B, h))

+ (1 59086 )0 BOw)

—1=g<0 n+1 n 1
g (n,Az(u—uO)oh+g(B(u",u">>oB(u",h>+§B<h,h>)

2
(12),(10),(18) Ao 1 1 £
= —| = |+ — —-A
1
< ——(h,h).
- At”( h)
since —Ay is positive. O

In particular we receive for A\, = 0 and n = 0 from (20):

(1, H(B(u',u")) — (1, H(B@®, ")) < —Aito ('~ — ). (21)

This results can be applied to Method (1):
If we discretize the functional (5), we obtain K : R — R,

K(u) = S =l + 2 (1, H(Bw, ).

The following corollary gives conditions under which Method 1 is justified:

13



Corollary 3.4 If the sequence (u™) is generated from (18) with Ay = 0 and the
first time step At° fulfills At® < /\—21, then

K(u') < K(u°).

In particular the discretized version of functional (5) of Method 1 decreases at
the beginning of the iteration.

Proof: We set h = u! — u°:

if we choose At? < /\% a

4 Convergence

Due to the conservation of the average value (Lemma 3.1) and the gray-level
shift invariance (Lemma 3.2) we can reduce our observations to the subspace
W = {u € R”|(1,u) = 0} of functions with mass zero.

Theorem 4.1 Assume « € [0, %] and u® € W and let arbitrary positive constants
0<c<C begiven. If c < At" < C for all n then the sequence (u™) constructed
by (18) (with e > 0) converges to an unique critical point u sufficing the condition:

—Agqu = D(u)u + Ay (u® — u). (22)

Proof: The concept of this proof is adapted from [2] and [5]. We define p=1—«
and p = 2p. Then p € [$,1] and p € [1,2].

It is easy to see that for nonnegative numbers a,b the following inequality
holds:
a? — b <la—blP.

We deduce from Holders inequality:
aP + b < 2'7P(a + b)P. (23)
This yields for nonnegative numbers a, b, ¢, d:

(@ =) + (P —d)? < |la—b*P+|c—d*
< 2Y7[(a—b)2 + (c— d)?P. (24)

14



The bilinear form B(u,u) = (Dyu) o (Dyu) + (Dyu) o (Dyu) is a vector with
components of the form

(ui — uj)® + (up — w)?
for some indices 1, j, k,l € 1, ..., d%. This follows from the simple structure of the
matrices D, and D, (compare Subsection 2.2). We infer:

SO B, [uP) = 3 Sl ~ [P+ (fual? — )
<2 Sl g2 + (el —
l—pi )2 — )21
< 2 r [t — 3)? + (e — )’]
= 21—1’5(]1,3(@6,@6)1’). (25)

Finally we obtain a discrete Poincare inequality:
There is a constant ¢; > 0 so that for all p € [1,2] and u € W we have:

- 1
allullf = clﬁ(ﬂ,IUIQ”)
1

= gyl ul)
an 1
< (= Agup)
(o) 1
= ﬁ(]l,B(|u|p,|u|p))
(25) 1, 1
< 27P—(1, B(u,u)?). (26)

S 7

We have « € [0, 5] and therefore (see (4)):

o = g |(+3)
g2y
@) 1 [1+)
= cs?—k (27)

for s > 0 and some constants c3 > 0, k£ € R.
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From Theorem 3.3 we deduce that the sequence u™ is bounded in the

p-norm:
J(W’) > J(u")
1 n o, n
(27) 1 S
= CSE(]LB(U y U )p)_k
(26) 1 .
> 2P C]_Cg”Un”g — k.

Repeated use of (20) leads to:

J(u") + co Z
k=1

i k_1||% < J(UO)
Ate-1 = '

Because J(u) > 0 the sum converges for n — oo, which implies

n+1l _

I I3 noog

0.
Atr
Recalling At™ < C for all n we obtain:
= a2 0
Due to ¢ < At™
||un+1 _ un||2 n—)_o)o 0
Atr ’

Therefore we obtain for some positive constants cs, cg:

ID(u™)u™ = D" u" |2

1
(8 ||A—tnA(u7“Ll —u") + (Mod — Ag)u™t!
1
N

[ —utfla | flu = u" s
5

<
N N

+ cgl|u™ Tt — u™ o

From (29) and (30) we infer:

| D(u™)u™ — D(u™ " )u" 2|, %20,

16

(28)

A(u”™ — u"_l) — (Ao — Ag)u™||2

(31)



The sequence u™ is bounded in the p norm. Then a convergent subsequence (u"*)

exists with

™ — ul|; =3 0.

We write (18) in detail for u™':
Au™ + At (Agu™ — Agu™) = Au™ 1 + At (D (u™ Hu™ 1 + Au®)
or

—Agu"

1
= A(u™t — ™) 4+ D(u™ )y

Atnk—l
—i—[D(u”’“_l)u”’“_l — D(u"*)u"*| 4+ /\2(u0 —u"*).

Since we have 1 < p < 2 the p norm is dominated by the 2 norm. This follows
from Holders inequality:

s 1 5
ol = (1, 10)

d2
1
= F
=1
d2

SO PP
= PP (D

= [loll5- (32)

IN

Using (30), (31) and passing to the limit £ — oo in the p norm
we see that u fulfills (22):

—Agu = D(u)u + M (u’ — u). (33)

Finally we show that (22) has a unique solution: Let u1, us be solutions of (22).
We consider the function f : R¥ — R given by:

flu) = (Agqu + D(u)u — \au, h)

17



with h = U1 — Uog.

From (12) follows that
fu) == (1, 9(B(u,u)) o B(u, h) + Agu o h).

For the derivative we obtain:

Df(u) (v) = —(1,2¢'(B(u, u)) o B(u,v) o B(u, h)
+9(B(u,u)) o B(v, h) + Agv 0 h).

Due to the mean value theorem there exists a vector £ € R* with:

0 = f(u)~ flu)
— DJ(€) (h)
= —(1,2¢(B(£,9) o B, h)* + g(B(&,€)) 0 B(h, h) + Aoh?)
< —(1,24(B(&,€)) o BE N + 9(B(£,€)) 0 B(h, 1) < ..
using ¢'(s) < 0 and (13)
< —(L,2/(B(6,9) 0 B(£,6) 0 B(h, h) + g(B(E,€)) 0 B(h, h))

= —(B(h,h),2¢'(B(£,€)) o B(E,€) + g(B(£,6)))

VAN

0.

Note that the function b(s) = g(s) + 2¢'(s)s is strictly positive for o <

N[—

Hence it follows that B(h,h) = 0:
0 = (1,B(h,h))

We obtain h = 0.

18



Altogether we have shown that every convergent subsequence converges to
the same critical point. This, in turn, implies that the whole sequence converges.
O

Corollary 4.2 For Ay =0, i.e. for Method (1) the critical point u from The-
orem 4.1 is the constant function with mass zero u = 0.

Proof: For Ay = 0 (22) can be written as
(Ag+ D(u))u = 0.
We deduce from (12):

(u, =(Aq + D(u))u) = (1, g(B(u, u)) o B(u,u)) = 0.

Since ¢ is positive and B(u, u) > 0 in every component it follows
(1, B(u,u)) =0

and like in the proof of Theorem 4.1 v = 0. O

If we allow that the constants in the estimates may depend on the grid dimension
d, we get boundedness of the sequence u™ for all o > 0:

Theorem 4.3 Under the premises of Theorem 4.1 but with o € (%,oo) the se-
quence (u™) is bounded and has therefore a convergent subsequence. Every con-
vergent subsequence converges to a critical point u, i.e. a solution of (22). If
these critical points are isolated, the whole sequence converges to one of them.

Remark 4.4 In general the solutions of (22) are nonunique.

Proof of Theorem 4.3: This proof uses some ideas from Elliott [4], see also
[5]. For any vector v € R¥ we have the estimates Fvlloe < lJv]lt < [|V]|os- From
Theorem 3.3 we deduce that

d*J(u’) > d*J (u") > (1, H(B(u",u"))) = d*| H(B(u",u"))[l1 > | H(B(u",u"))||o-

Since the function H(s) is non-negative and monotone increasing we have

I|H(B(u", u"))|loo = H(||B(u™ u™)]|s). This implies:

Co = H™(@J () > | B(u", ") > | B(u™,u")]l.
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With ||B(u”, u™)||y = & (1L, B(u", u™)) we finally get:

d*c, > (1, B(u", u"))

(10)

= (u",—Agu")
(17)

> e (u,uh).
= dallu"s,

where we used u™ € W. Hence (u") is bounded. We claim next that every
convergent subsequence (u™) of (u™) converges to a limit point u that fulfills
(22). To see this we can adopt the proof of Theorem 4.1 numbers (29)-(33)
setting p = 2.

Let P be the set of critical points. Assuming that all these critical points
are isolated we have some § > 0 with

B3(5(’U,Z‘) N ng(uj) = @ for all Ug, Uy S P,Z 7é ]

Let o(u®) C P be the set of limit points of (u"). Suppose @ € o(u®) and let (u™?)
be a subsequence of (u™) that converges to 4. We will show now that then also
(u™*1) converges to 4 and consequently the whole sequence, i.e. o(u’) consists
of the singleton 4.

As in the proof of Theorem 4.1 repeated use of (20) and At"” < C for all n yields:

n+1 n—oo

|| u"l|ls — 0.

Therefore we may assume that ||u"*' —u"||y < 6 for all n. Hence (u"*!) C
Bys(t) for all ¢ > qo(0):

i — w" l <l — ulfl2 + [l — u"e ) < 26,

Suppose (u"*1) does not converge to @&. Then we get for some > 0 a subse-
quence (u") C Bos(6)\B,(@) of (u™™!). This subsequence in turn possesses a

convergent subsequence with limit point u* € Bas(4)\B,(2) C Bss(4) but not
equal to 4, which is a contradiction to 4 being isolated.

O
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5 Computations

In our computations we used finite differences on a 50 x 50 grid for the spatial
discretization of (18). The linear system in (18) is solved by the CGS-Method
(iterative scheme).

We tested the following parameter constellations:

a method

a) | 0.5 0.01 almost TV
b)[1 1 Perona-Malik
c) |05 1 regularized TV
d |2 1 unnamed

N TN N N

For example (1)(a) means: Use Method (1) and the parameters o = 0.5, v = 0.01.
The free parameters are ¢ and A; for Method (1)(respectively A, for Method (2)).

We note that Method (a) is used to mimic the (unregularized) (TV)-model
(g(s?) = %|) Method (d) has not been given a name in the literature so far as
well as al{ models with € > 0 regularization.

In order to compare the Methods (1)(a)-(2)(d) among each other, we use
our knowledge of wus,. The closer u gets to u, at the stopping time t* , the
better the method works. We investigated the following three norms:

[w(t") = trar [, [u(t") = vtarll2 , and [Ju(t*) = viar||co-

After the computations we saw that for Methods (a)-(c), the best choice of the
parameter \;,i = 1,2, is somewhere intermediate (not too small and not too
large), whereas Method (d) seems to prefer )\; small. The range of ¢ > 0 (we
tested ¢ = 107" and 1073), where our numerical scheme converged showed no
significant differences in the result compared to € = 0. For € larger than 1073,
further computations have to be carried out to be able to judge any significant
effect.

The ||.||2 results seem to be the most natural to compare the different methods.
We observed that the optimal ||.||2 value for each of the methods (1)-(2), (a)-(d) is
within a small range from 0.03 to 0.07. Therefore, from this point of view none of
the methods seems to be significantly better than the others. However, knowing
the best choice of \;/)\; is a critical issue, since the ratio of the worst over the
best ||.||o result reaches almost the factor 10. Therefore (d) could be the method
of choice for a real application, because here the results are uniformly quite good.
Also comparing the data as a whole, Method (2) is slightly better than Method
(1). The whole data of our computations can be found in [11], Section 13.
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In Figure 3 we show the optimal result (2(a),e = 0.001, Ay = 100).
It looks kind of rough. This is especially true when compared with Figure 4
(Method 2, & = 1,y = 100,e = 0, A\, = 1000).

a7
A
g\
A
X

7 illty

Figure 3: ugp Figure 4: Ugmootn

In Figure 4 the image got smoothed out much better, but the result is further
away from the target u,, as we can see when looking at the difference

’U,(t*) — Utar

in Figure 5 and 6.
We have ||topr — Utar||2 = 0.0329 and ||Usmooth — Utar||2 = 0.0395.

Figure 5: wopt — Utqr Figure 6: Usmooth — Utar
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