An Efficient Solution to the Eikonal Equation

on Parametric Manifolds

A. Spira and R. Kimmel

Abstract

We present an efficient solution to the Eikonal equation on para-
metric manifolds, based on the fast marching approach. This method
overcomes the problem of a non-orthogonal coordinate system on the
manifold by creating an appropriate numerical stencil. The method
is tested numerically and demonstrated by calculating distances on

various parametric manifolds.

1 Introduction

The viscosity solution ¢(z,y) of the Eikonal equation
Vol = F, (1)

is a weighted distance map from a set of initial points, where the values of
¢ are given. The weights are given by the scalar positive function F(z,y).
Efficient solutions to the Eikonal equation on the plane parameterized by a
regular (orthogonal) numerical grid were introduced by Sethian [6] and by
Tsitsiklis [10]. Sethian’s fast marching method was extended by Kimmel and

Sethian [1] to the solution of the Eikonal equation on triangulated manifolds
IVuoll = F, (2)

with M the manifold and V ;¢ the gradient on the manifold. This extension

enables a fast calculation of geodesic paths [1], Voronoi diagrams, and offsets

1

[2, 3] on triangulated manifolds. Sethian and Vladimirsky [9] presented Or-
dered Upwind Methods (OUM) for static Hamilton-Jacobi equations. These
methods enable the solution of equations where the directions of the char-
acteristics are different from those of the gradients of ¢. As an example,
they demonstrate the solution of the Eikonal equation for manifolds which
are function graphs. Mémoli and Sapiro [4] calculated distances on implicit
manifolds by using orthogonal fast marching in a thin offset band surrounding
the manifold.

We present here an efficient solution to the Eikonal equation on paramet-
ric manifolds, based on the fast marching approach. A parametric man-
ifold consists of a parameterization plane U = {u',u?’} € R?, which is
mapped by X :R? — RY to the parametric manifold X (U) = {z!(u!,u?),
2?(ul,u?),..., 2 (u!,u?)} € RY. In this method the calculations are done
on the 2-dimensional uniform Cartesian grid of the parameterization plane
and not on the manifold like in Kimmel and Sethian’s method or in RV ac-
cording to Mémoli and Sapiro. The numerical stencil at each grid point is
calculated directly from the metric and there is no need for the “unfolding”
procedure of Kimmel and Sethian or for finding the“near front” as done by
Sethian and Vladimirsky. The presented method is first order accurate as
that of Kimmel and Sethian, but can be extended to higher orders by using
Sethian and Vladimirsky’s higher order directional derivative approximations
[8]. The error of Mémoli and Sapiro’s method is o (\/i_z)

The derivatives of X with respect to u’ are defined as X; & gffi,

constitute a non-orthogonal coordinate system on the parametric manifold.

and they

See Figure 1. The distance element on the manifold is

ds = +/gijdutdud, (3)

where we use Einstein’s summation convention, and the metric tensor of the

manifold g;; is calculated by

g11 912 X1-X1 Xi-Xy
(9i5) = = : (4)
921 G2 XXy Xo-Xy

2

X2

X1

U X(U)

Figure 1: The orthogonal grid on the parameterization plane is transformed

into a non-orthogonal one on the manifold.

This paper is organized as follows. The second section describes the non-
orthogonality of the coordinate system on the manifold and the resulting
problem. Section 3 introduces the construction of a numerical stencil which
overcomes this problem. Section 4 presents the numerical scheme, and Sec-
tion 5 the marching method for solving the Eikonal equation on the manifold.
The performance and accuracy of the numerical scheme is tested in Section

6. The conclusions appear in Section 7.

2 The Non-Orthogonal Coordinate System on
the Manifold

The power of the fast marching algorithm lies in its ability to solve the
Eikonal equation in one sweep without iterations. The algorithm takes ad-
vantage of the upwind nature of the Eikonal equation in order to update the

value of each grid point by a number of times bounded by the number of its

neighbors. We would like to devise a similar algorithm for Equation (2).
The orthogonal fast marching algorithm [6] solves the Eikonal equation for
an orthogonal coordinate system. In this case, the numerical stencil for the
update of a grid point consists of one or two points out of its four neighbors.
The first point is one of the top/bottom pair and the second is one of the
left /right pair. The two grid points in the stencil, together with the updated

grid point, compose the vertices of a right triangle. See Figure 2.

Figure 2: The numerical stencil for the orthogonal fast marching algorithm

is a right triangle.

This is not the case for manifolds with g1 # 0, where we get a non-
orthogonal coordinate system on the manifold, see Figure 3. The resulting
triangles are not right triangles. Each grid point is a origin of two acute angles
and two obtuse angles. If a grid point is updated by a stencil with an obtuse
angle, a problem may arise. Depending on the direction of the advancing
‘update front’, the value of one of the points of the stencil might not be
set in time and cannot be used properly for supporting the updated vertex.
There is a similar problem with fast marching on triangulated domains which

contain obtuse angles [1].

X2

X1

Figure 3: Two acute angles and two obtuse angles for a non-orthogonal

coordinate system on the manifold.

3 Splitting Obtuse Angles

Our solution to obtuse angles is similar to that of [1] with the exception that
there is no need for the “unfolding” step. We perform a pre-processing stage
for the grid, in which we split every obtuse triangle into two acute ones, see
Figure 4. The split is performed by adding an additional edge, connecting
the updated grid point with a non-neighboring grid point. The distant grid
point becomes part of the numerical stencil.

The need for splitting is determined according to the angle between the

non-orthogonal axes at the grid point. It is calculated by

cos (a) = (X1 - Xo) __ 912
Xl Xell) /911922

If cos (a) = 0, the axes are perpendicular, and no splitting is required. If

(5)

cos () < 0, the two angles with an angle of « should be split. Otherwise,
the two other angles should be split. The denominator of Equation (5) is
always positive, so we need only check the sign of the numerator gi5.

In order to split an angle, we should connect the updated grid point with
another point, located m grid points from the point in the direction of X;
and n grid points in the direction of Xy (m and n may be negative). The

point provides a good numerical support, if the obtuse angle is split into two

5

Figure 4: The numerical stencil for the non-orthogonal coordinate system.
Triangle 1 gives good numerical support to the black grid point, but triangle

2 includes an obtuse angle. It is replaced by triangle 3 and triangle 4.

acute ones. For cos («) < 0 this is the case if

>0,

(6)

cos (ﬂ) B < X - (mX1 -+ ’I’LXQ)) o mgi1 + ngio
) = =
[X1[[[lmX1 + nXa|| \/911 (m2g11 + 2mngio + n2ges)

and

cos (By) = (Xs - (mXy +nXy)) _ mgi2 + NGz
,) = =
(| Xo[[|mX: + nXo| V922 (M g1 + 2mngis + n2gon)
(7)

Also here, it is enough to check the sign of the numerators. For cos () > 0,

the equation for cos (32) changes its sign and the constraints are
mgi1 + ngiz > 0, (8)

and

mgiz + ngae < 0. 9)

Equations (6,7,8,9) give together the condition

912
—n

g11

922
n)

912

<m< (10)

and we would like to find the minimal m and n that satisfy this condition.

We define P = “;%f' and Q = |§f§|. The problem is solved by the following

algorithm
elfP>1,p=P—|P|land g=Q — |P]. Else, p= P and ¢ = Q.

Start with n = 1.

P,=p-n,Qn=gq-n.

If [P,] < Qn, then m = [P,]. Else, set n = n + 1 and return to the

previous step.
e IfP>1, m=m+|P| n
e If cos (o) > 0, then n = —n.

If we define L = [1/(Q—P)] = [%], with g = det(gij) = g11920— 935, then
|n| is bounded by L, because for n = L we have Q,,— P,, > 1, and there will be
an m that complies to the condition in Equation (10). We could use binary
search and the bound L to get a complexity of O(log L) for this algorithm,
but because the bound is not a tight one, we use the algorithm as is. It should
be noted that g;; and therefore L are parameterization dependent. If we have
a parameterization with regions where X; and X, are almost parallel, the
resulting m and n might be large, affecting the accuracy and efficiency of the

numerical scheme.

4 The Numerical Scheme

Once the pre-processing stage is over, we have a suitable numerical stencil for
each grid point and we can solve the Eikonal equation numerically. The sten-

cil is composed of the vertices of an acute angle, see Figure 5, where the vertex

7

C is updated according to the vertices A and B. If the triangle was originally
acute, we have a = /g11, b = /922 and 0 = «a. If it is a triangle created by
splitting, we have a = /g1 or a = /g2, b = \/m2911 + 2mngia + n2gee and
0 = 3, or § = f3,. Next, we want to find ¢ such that % = F.

Figure 5: Two views of the numerical stencil.

The numerical scheme according to [1] is
o u=¢(B) - ¢(A).
e Solve the quadratic equation
(a®+b° —2ab cos 0)t* +2bu(a cos § — b)t + b (u®> — F?a’sin*§) = 0. (11)

o Ifu<tandacosf < "4 < 2 then ¢(C) = min{g(C),t + ¢(A)}.

Else, ¢(C) = min{¢(C), bF + ¢(A), aF + ¢(B)}.

5 Marching on Manifolds

After the pre-processing stage, the Eikonal equation is solved by the following
algorithm [7].

Initialization:
e The initial points are defined as Accepted and given their initial values.
e All the other grid points are defined as Far and given the value infinity.
Iterations:
1. Far ‘neighbors’ of Accepted points are defined as Close.

2. The values of the Close points are updated according to the numerical

scheme.
3. The Close point with the minimal value becomes an Accepted point.
4. If there remain any Far points, return to step 1.

We used the term ‘neighbors’ above to describe grid points that belong
to the same triangular numerical stencil. These points are not necessarily
neighboring points on the original grid. We find these ‘neighbors’ during the
pre-processing stage described in the previous section.

The complexity of the algorithm is upper bounded by O(N-max(log L, log N)),
where N is the number of points in the grid. The log N results from using a

min-heap data structure for sorting the Close points [7].

6 Testing the Numerical Scheme

The algorithm was tested for parametric manifolds with non-orthogonal coor-
dinate systems. In Figure 6 it is implemented on the tilted plane z = 3x+2y.
The correctness of the distance map is evident from the resulting level curves,
which are concentric circles on the manifold. In Figure 7 the algorithm is

implemented for the manifold z = 0.5 sin(47z) sin(47y).

9

The accuracy of the algorithm is measured by running the algorithm on
the manifold z = 0.5 sin(47z) sin(47y) with one initial point at (z = 0.5,y = 0.5).
Table 1 gives the estimated errors of the algorithm on various grid sizes and

estimations of the order of accuracy. The normalized L, error at grid size n?

is e} = ”Ufn#”?, where u” is the result of the algorithm on a grid of size n?
and v is the correct solution. The L, error for this grid is €% = ||v — u"|| .
Since v is unknown, we estimate it by the result of the algorithm on a grid
of size 1025%. Assuming that v is of the form v = u™ + Ch™ + O(h™!), where
h = ﬁ, the order of accuracy of the numerical scheme according to the Ly

norm at grid size n? can be estimated according to [5]

n en
r, = log, (eQ_kn)) (12)

k

size: 172 332 652 1292 257 5132
er:6.2-107%|23-10%(84-10*|3.0-10%|4.1-10° | 5.7-10°°
Ty 1.43 1.45 1.50 2.86 2.85
en: | 0.4425 0.2702 0.1746 0.0977 0.0277 0.0101
T 0.71 0.63 0.84 1.82 1.46

Table 1: The estimated errors and orders of accuracy of the algorithm as a

function of grid size.

7 Conclusions

A new efficient method for solving the Eikonal equation on parametric mani-
folds was introduced. The method requires only the metric tensor at each grid
point in order to determine the numerical stencil and execute the numerical
scheme. This method enables a fast calculation of distances on manifolds,
needed in many applications.

Acknowledgements: We thank I. Blayvas for helpful suggestions.

10

Figure 6: Fast marching on the manifold z = 3z + 2y. Left: implemented on

the parameterization plane. Right: projected on the manifold.

05

Figure 7: Fast marching on the manifold z = 0.5 sin(47x) sin(47y). Left: im-

plemented on the parameterization plane. Right: projected on the manifold.

References

1]

3]

R. Kimmel and J. Sethian. Computing geodesic paths on manifolds.
Proceedings of National Academy of Sciences, 95(15):8431-8435, July
1998.

R. Kimmel and J. Sethian. Fast voronoi diagrams and offsets on triangu-
lated surfaces. In AFA Conference on Curves and Surfaces, Saint-Malo,
France, July 1999.

R. Kimmel and J. Sethian. Optimal algorithm for shape from shad-
ing and path planning. Journal of Mathematical Imaging and Vision,
14(3):237-244, May 2001.

F. Mémoli and G. Sapiro. Fast computation of weighted distance func-

tions and geodesics on implicit hyper-surfaces. Journal of Computational
Physics, 173(2):730-764, 2001.

S. Osher and J. Sethian. Fronts propagation with curvature dependent
speed: Algorithms based on hamilton-jacobi formulations. J. Comput.
Phys., 79:12-49, 1988.

J. Sethian. A fast marching level set method for monotonically advanc-
ing fronts. Proceedings of National Academy of Sciences, 93(4):1591—
1595, 1996.

J. Sethian. Level Set Methods and Fast Marching Methods. Cambridge

university press, 1996.

J. Sethian and A. Vladimirsky. Fast methods for the eikonal and related
hamilton-jacobi equations on unstractured meshes. Proc. Nat. Acad. Sci.
USA, 97:5699-5703, 2003.

J. Sethian and A. Vladimirsky. Ordered upwind methods for static
hamilton-jacobi equations: theory and applications. SIAM J. on Nu-
merical Analysis, 41(1):325-363, 2003.

12

[10] J. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE
Trans. on Automatic Control, 40(9):1528-1538, 1995.

13

