CENTRED SCHEMES FOR NONLINEAR HYPERBOLIC
EQUATIONS
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ABSTRACT. A hierarchy of centred (non-upwind) schemes is identified for solv-
ing hyperbolic equations. The bottom of the hierarchy is the classical Lax-
Friedrichs scheme, which is the least accurate, and the top of the hierarchy is
the FORCE scheme, which is the optimal scheme in the family. The FORCE
scheme is optimal in the sense that it is monotone, has the optimal stability
condition for explicit methods, and has the smallest numerical viscosity. It
is shown that the FORCE scheme is consistent with the entropy inequality,
that is, the limit functions of the FORCE approximate solutions are entropy
solutions. The convergence of the FORCE scheme is also established for the
isentropic Euler equations and the shallow water equations. Some related cen-
tred schemes are also surveyed and discussed.

1. INTRODUCTION

We are concerned with numerical methods of the centred type (non-upwind)
for computing solutions to hyperbolic equations both in conservative and non-
conservative (or primitive) form. Up-to-date background information on the de-
velopment of numerical methods in the last two to three decades is found, for
example, in the textbooks [19], [31], [53], [54]. The most accurate methods for
solving hyperbolic equations are upwind (or upstream) schemes. These require the
explicit provision of wave propagation information, which is normally achieved via
local solutions of the Riemann problem, approximate or exact. For most known
hyperbolic systems, the exact or approximate solutions of the Riemann problem
are available, although in some cases this may be very expensive to evaluate. There
are systems of equations that are exceedingly complicated and for which, so far, the
solutions of the Riemann problem are not, to our knowledge, available. In such cir-
cumstances, there is no option but to adopt a centred approach, in which no explicit
information regarding wave propagation is used in the scheme, apart from stability
constraints via a Courant (or CFL) condition, for which at least the eigenvalues
of the system must be known, even if it is only numerically. But this information
must in any case be available, as knowledge on the nature of the eigenvalues would
inform us on the character of the equations being solved, hyperbolic or otherwise.

In this paper we identify a hierarchy of centred (non-upwind) schemes for solving
hyperbolic equations in both conservative and in non-conservative form. At the
bottom of the hierarchy lies the classic Lax-Friedrichs scheme, which is the least
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accurate of them all, having the largest numerical viscosity. At the top of the
hierarchy of centred methods is the FORCE scheme [51]. This is the most accurate
of all three-point centred methods within the considered family. Any attempts
to reduce the numerical viscosity will result in a scheme that depends on wave
propagation information, that is upwinding. We show that the FORCE scheme is
optimal in the sense that it is the most accurate of all centred methods that (i)
are monotone and (ii) have the optimal stability condition for explicit methods of
Courant number unity. We establish the connection between the FORCE scheme
and the first-order version of the Staggered Laz-Friedrichs scheme of Tadmor and
collaborators [36], [24], [25], [35], [26], [27], and [39].

The FORCE flux can be used to construct very simple and general upwind
numerical fluxes [55], in a multi-stage predictor-corrector fashion. Various other
extensions of the first-order monotone FORCE scheme are possible. Second-order
extensions are possible by following the TVD approach [20], [21], [37], and [56].
Other approaches for constructing higher order extensions of the FORCE flux in-
clude the ENO/WENO approach [22], [23], [43], [44], [45]; the ADER approach
[58], [62], [42], [47], [49], and discontinuous Galerkin finite element methods [12],
[13], [63]. FORCE-based schemes can also be extended to solve multi-dimensional
problems in a straightforward way following established approaches [12], [13], [46],
[53], [57], [63], [65].

In Section 2, we review the FORCE approach for solving hyperbolic equations
both in conservative and non-conservative form, construct and analyse a family of
three-point schemes and show that the FORCE scheme is the best of all centred
three-point schemes in the family. We also survey some of recent efforts to ex-
tend the FORCE schemes to higher order numerical methods and to dealing with
multidimensional problems. In Section 3, we show that the FORCE scheme is con-
sistent with the entropy inequality and is convergent for the Euler equations for
elasticity. Then we show the convergence and entropy-consistency of the FORCE
scheme for the isentropic Euler equations in fluid dynamics in Section 4. In Section
5, we show the convergence and entropy-consistency of the fractional-step FORCE
scheme for hyperbolic systems of conservation laws through a concrete model, the
shallow water equations. Conclusions are drawn in Section 6.

2. THE FORCE APPROACH FOR HYPERBOLIC SYSTEMS

2.1. Background. We are interested in numerical schemes for solving hyperbolic
partial differential equations. In differential conservation-law form, these read

(2.1) 9,Q+9;F(Q) =0,

in which Q is the vector of conserved variables and F = F(Q) is the vector of
fluxes. In the presence of discontinuous solutions, one uses the integral form of
(2.1), which is obtained, for example, by integrating (2.1) in a control volume
V = [z1,xRg] X [tB,tr] in the z — ¢ plane, leading to

(2.2)
/ " Qe tr)de = / " Qe tg)de— ( / "F(Qlan, t)) dt - / F(Q(xut))dt)

tp
We can also consider the non-conservative form of the equations, namely,

(2.3) AW + A (W), W =0,
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in which W is any vector of representative variables of the system, usually called
primitive variables, and A = A(W) is the coefficient matrix. Assuming a local
linearisation in (2.3), with a constant matrix Az g, followed by integration of (2.3)
in the control volume V gives

(2.4)

TR

TR tr tr
Q(z,tr)dx = / Q(z,tg)dr — ALgr ( Q(zg,t)dt — Q(.’L‘L,t)dt) .
T Tr tp te
The methods studied in this paper have their origin in the staggered-grid version
of the Random Choice Method (RCM) of Glimm [18]. A deterministic interpre-
tation of the stochastic steps of RCM leads to a centred (non-upwind) numerical
approach that is applicable to hyperbolic systems, both in conservative and in
non-conservative form. RCM makes use of local solutions of Riemann problems
RP(Qp,Qr), where Qr, and Qg denote the two constant states defining the initial

condition for the conventional Riemann problem for system (2.1) or (2.3).

2.2. Review of RCM on a Staggered Grid. We first briefly review RCM. The
staggered grid version of the RCM to solve (2.1) updates Q} to a new value Q'
in two steps, as follows:

Step 1. Solve the Riemann problems RP(Q}_;,Q}) and RP(Q},Q}, ;) to find re-
spective solutions

ol Al
(2.5) Q7 (w0, Q7 (1)
2 2
Random sample these solutions at a stable time At"+3 to find the values

(26) QU =QfEran Aty QE=Ql e A At

i = 1
-2 i+3

Step 2. Solve the Riemann problem RP(Q?_JF% 1.1+%) to find the solution Q?H (z,1)

1 1
3 itz
and random sample it, at a stable time At"T!, to obtain Q?H, namely,
(2.7) QI = QPO Aw, AT

The time steps A¢"F2 and At"+! must be chosen according to the usual stability
restriction for the RCM and need not be the same. The symbol 6,, denotes a
member of a sequence of pseudo-random numbers with some particular properties.
See Figure 1. For full details of RCM, see Chapter 7 of [53].

2.3. FORCE Schemes for Conservative Systems. In the FORCE approach
[51], [56], we replace the stochastic quantities (2.6) by the deterministic quantities

1Az
I e
(28) Ql*% - AJ] /;lAI Ql*% (.’I:, 2 )d:L’v
2
and
1Az
nr 1A

where it has been assumed that A"tz = A¢ntl = +At. Then we apply the integral
form of the conservation laws (2.2) to (2.8) and (2.9), in the control volumes V;_1 =
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Random sampling

\ N Il+1

\J ,'
. T
Random ! Random Atn+1
sampling I sampling
n+1/2 I | n+1/2
'/ T
:' i At n+1/2
n ' r:\ J n
[T
1o
i+1/ it

F1cUre 1. Illustration of the Random Choice Method on a stag-
gered grid.

[wi_1— 3Az Ti_1ty L Az]x[0, 1 At] and Vipr = [xi+%—%Aa:,xi+%+%Ax]x[0, T AL,
respectlvely We obtaln
n+1 1 At
(2.10) QCy =5 QL +Q7) — 55 (FF —FL),
and
1
(211) Q _:_%2 = (Qn + Qz+l) A (F?+1 F?) )

where F? = F(Q?). Denoting by Q;(z,t) the solution of the Riemann problem
k k

1 .
RP(QT.LJF2 ?:%2 ), we now define an integral average Q7 of Q;(z,t) at the com-

plete time step At:

1Ax
(2.12) Q! = =N / Qi(w,%At)da:.

Az A

This is the deterministic version of (2.7) which, by virtue of the integral form of
the conservation laws, (2.2) becomes

1 1 1 At
+1 _ n+ n+ Lw
@1y Q=g+ QL) - 55, (PR -FY).
where FLW = F(Qn+f) and szl = F(Q?:f) As a matter of fact FLJ‘F"Q is the
2 2 2 2
two-step Lax—Wendroff flux. In conservation form, the scheme (2.13) reads
At
(2.14) Q?—H Q- — (FH-% - Fi—%) )

with intercell numerical flux

A
(2.15) Fg‘fg = (F” + 2Fl+1 +F7, - A": QP — Q?)) i
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A surprising outcome is that the intercell flux (2.15) is in fact the arithmetic mean
of the fluxes for the two-step Lax-Wendroff and Lax—Friedrichs schemes, namely,
1
(2.16) Foge = (P +FIF, )
The resulting scheme (2.14)—(2.15) is in conservative form in a non-staggered grid,
it is monotone and has the linear stability condition |¢| < 1, where ¢ is the Courant
number, as discussed in Section 3, and the scheme is, in a sense to be defined,
optimal. At this point, it is also interesting to discuss the connection between
the FORCE scheme (2.14)—(2.15) and the first-order version of the Staggered Laz-
Friedrichs scheme of Tadmor and collaborators [36], [24], [25], [35], [26], [27], [39].
The first-order version of their scheme is precisely the two-step, or staggered, scheme
(2.11), (2.13), as obtained from a deterministic interpretation of the staggered-grid
random choice method of Glimm [18]. The staggered-grid scheme (2.11), (2.13)
advances the solution in two steps and has the stability restriction |¢| < 1/2 at
each step. In the next section, we review non-conservative versions of the FORCE
scheme.

2.4. FORCE-Type Non-Conservative Schemes. The FORCE approach can
also be applied to a non-conservative system of the form (2.3). This allows the
construction of centred, non-conservative (or primitive) schemes. For details, see
[59]. The stochastic quantities (2.6) are replaced by the integral averages:

LAz
S L VT T
(2.17) W= Aw/_%AwWi—% (@, =) da,
and
LAz
11 fEAT At
(2.18) W' = WE (2, 2 da.

i+% o AJI —%A.’L‘ i+% 2
Then we apply the integral form (2.4) of the locally linearised version of the non-

conservative equations (2.3) on control volumes V;_1 = [z;_1— 1Az, @, 1 +1Az]x

[0, 1 At] and Vigr =z - %Aaz,wH% + $Az] x [0, $At]. The result is

n+s _ 1 n n 1At £ n n
(2.19) W, r= §(Wi71 +Wi) - 55Ai—% (WP =Wiy),
and

n+3 1 n n 1 At~ n n
(2.20) Wir = §(Wi +Wil,) - 5 ApMitE (Wi —W7).

Denoting by W;(z, ) the solution of the Riemann problem RP (W"—% Wn+%), we

. 1 s 1
i—1 i+1
then define an average VV? Lof W ,‘(x, t), namely,

(2.21) wrtt = L e W, (z 1At) dz
‘ i Az | yap 2 '

Application of the integral form (2.4) of the linearised version of (2.3) gives

1 1
(2.22) Wi = (W W
2

- n+l 1 At ~ (

AR (Wt wr)
w1 T aag M Wi ~Wirf)-
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In the linearisation of (2.3), the constant coefficient matrices A; +1 in (2.20) and

A;in (2.22) are respectively given as

_ 1 X [y n+tg
(223) Ajp=A (5 (W, +W?+1)) , A=A <§ (Wi—§ +Wi+%2)> '

2.5. Some Basic Properties of the FORCE Scheme. For the purpose of the
analysis of the FORCE scheme, we now consider the model linear advection equa-
tion

where A is a constant wave propagation speed. The FORCE approach, when applied
to (2.24), gives the three-point scheme

(2.25) CI?H =b_1q;" 1 +boqi +b1q},, ,
with coefficients given as

1 1 1
2.2 1 ==(1+¢)? =-(1-¢ =-(1-¢)?
( 6) bl 4( +C) 7b0 2( c)7b1 4( C) )
which is a convex combination: b_; + by + b, =1,b; > 0,5 = -1,0,1.
Proposition (Stability, Monotonicity, and Modified Equation). The FORCE
scheme (2.25)—(2.26)

e is conditionally stable, with the stability condition:

A
(2.27) 0<|el<1, ¢= A—tx)\ : Courant Number;

e is monotone;
e has the modified equation:

1 1—¢? 1
(228) gt + Mz = QforceQon Qforce = —AAT = —qy ,
4 c 2
where ay¢ is the coefficient of artificial viscosity for the Lax—Friedrichs
scheme.

The proof can be found in [56]. In addition, we note that, for a non-linear system
(2.1), it is obvious that the FORCE flux (2.15) is consistent. A more general analysis
of the FORCE scheme is carried out in Sections 3 and 4.

2.6. A Numerical Map for Three-Point Schemes. It is instructive to consider
the family of three-point schemes of the form (2.25) with general coefficients b_1, bo,
and b for solving the linear advection equation (2.24). We consider the conservative
version of the schemes

At T A
(2.29) = - 5 (- 1),
with an upwind numerical flux of the Rusanov type [41]
1 1
(2.30) = SUT + ) = 55T — D),

in which ST is an estimate for ), the exact wave propagation speed in the differential
equation (2.24). This flux may be expressed as
S+

1 1
(2.31) fioy =5+ TP+ 50 -T)ff, T="",
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t Lax—Wendroff

LW Godunov U
God Cl1

Lax—Friedrichs

LF

0 X

FIGURE 2. Numerical map for explicit, stable three-point schemes.
All schemes lie in the wedge LWOLF between the Lax—Wendroff
and the Lax—Friedrichs schemes.

If the estimate is actually exact, [’ = 1, then we reproduce the first-order Godunov
upwind method, with the highest level of upwinding consistent with monotonicity.
Other levels of upwinding will result from other (possibly inaccurate) estimates
of ST and thus of the ratio I'. Various familiar schemes may be reproduced by
appropriate choices of I'. There are two extreme values consistent with stability,
and in general the following must be satisfied:
(232) FLwECSFSFLFE%

The upper bound I'y,p = 1/c¢ reproduces the Lax-Friedrichs scheme and the lower
bound I',w = ¢ reproduces the Lax-Wendroff method.

Fig. 2 shows a numerical map in the x-t plane of admissible three-point schemes
(2.25). They all lie in the wedge LWOLF between the Lax-Wendroff and the Lax-
Friedrichs schemes. In particular, the Godunov upwind method, denoted by Go-
dunov U, obviously, lies between the extreme schemes.

The FORCE scheme is obtained when

1+ ¢?

(2.33) T force = 5
and is located in a fixed position in the wedge LW OLF'. The first-order Godunov
centred scheme corresponds to the choice

1-2¢2
2.34 Cgosc = ————
( ) GodC (1 — C)(l T C)
and does not have a fixed position in the wedge of Fig. 2, its position depends
on the Courant number c¢. Recall that GodC has the restricted linearised stability
condition

1
(2.35) 0<|d < §\/i.

which is entirely consistent with the condition I' > 0 and Fig. 2. Note also that
for 0 < ¢ < % the Godunov centred scheme lies between the Lax-Wendroff and
the Godunov upwind scheme and that within this range the GodC scheme is not

monotone. For % <c< %\/3, God C lies between the Godunov upwind method



1 Lw
= | Godunov Centred
)
g Godunov Upwind
0.5 FORCE
0 LF
0 0.5 Courant number 1

F1GURE 3. Three-point schemes expressed as convex averages of
the Lax-Friedrichs scheme (bottom) and the Lax-Wendroff scheme
(top). The Godunov upwind scheme divides the square into a
region of monotone schemes (bottom part) and non-monotone
schemes (top part). The FORCE scheme is the optimal average
with constant weight w = 1/2 independent of c.

and the FORCE scheme. Finally, for %\/5 <ec< %\/5, God C lies between the
FORCE and the Lax-Friedrichs schemes.

Any three-point scheme (2.25) has a choice of I' and thus an explicit or implicit
choice of wave speed S*. Large values of I, and thus of ST, result in more diffusive
methods; schemes with lower values of I' are less diffusive but at the cost of losing
monotonicity.

2.7. FORCE: The Optimal Centred Scheme. We start by considering the
class of all three point schemes contained in the wedge LW OLF of Fig. 2. These
can conveniently be interpreted as convex averages of the two boundary schemes,
namely, the Lax-Wendroff method on the left and the Lax-Friedrichs method on
the right, that is,

S w 1
(2.36) ﬁ%:w¢%+u—mﬁg,
where the superscripts lw and [f identify the Lax-Wendroff and Lax-Friedrichs
fluxes, respectively. Manipulations of (2.25) give

1+¢
(2.37) mgz 5

1—c¢
((c = Nw+1)Ag!* + e ((c4+ 1w —1) Agiy, -

Insertion of the numerical fluxes into the conservative formula gives the three-point
scheme

(2.38) gt =boigly + bog + biglyy
with coefficients given as
(2.39)
1 1—
boy= (= Dwt1), bo=(1-c)L+cw, b= - ((c+Lw-1).

2 2c
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Monotonicity, Stability, and Modified Equation. Monotonicity is assured from
positivity (non-negativity) of all coefficients by in the scheme (2.25). First note that

1
(2.40) bt = S ((e-Dw+1)>0
implies the condition

1

2.41 <
(2.41) e —
and
(2.42) bp=(1—-¢)(14+¢)>0
implies the condition
(2.43) w > 0.
Finally, the condition

1—
(2.44) by = — 2cc (c+1Dw—-1)>0
implies
2.45 < .
(2.45) YST1+vc
In summary, we have that the monotone schemes satisfy

1 1

(2.46) nggwmaz51+|c|, igwmawgl.

Fig. 3 shows the unit square in the c-w plane containing all three-point schemes that
can be written as a convex average between the Lax-Friedrichs scheme (bottom)
and the Lax-Wendroff (top). The bottom boundary w = 0 corresponds to the
Lax-Friedrichs method (monotone) and the top line w = 1 corresponds to the Lax-
Wendroff method (non-monotone). The curve wpqq(c) = ﬁ corresponds to the
first-order Godunov upwind method and divides the complete family of three-point
schemes into two classes: the class of monotone schemes, which corresponds to
values of w below wyqz(¢) and the family of non-monotone schemes corresponding
to values of w above w4, (¢). The first-order Godunov centred scheme corresponds

to the choice wypar(c) = %& In Fig. 3, we verify that this scheme is non-

monotone in the range 0 < |c| < 3, it is monotone for the range 3 < |¢| < 1v/2 and
unstable for || > £1/2.

The uniform boundedness for scalar conservation laws follows from the mono-
tonicity:

ntl < 0
] < i—1I£ga§i+1 1951

Standard analysis shows that the modified equation for the schemes under study
has the form

(247) Gt + Az = Atpszz
with coefficient of numerical viscosity given by

AA
(2.48) Qps = 2—:(1 — ) (1 —w).

2.8. Extended FORCE Schemes for Hyperbolic Systems. Here we discuss
possible extensions of the FORCE schemes.
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2.8.1. Source Terms. We consider a hyperbolic system of conservation laws:

where S(Q,z) is continuous with respect to (Q,z). Then we can construct a
fractional-step FORCE scheme to compute solutions of (2.49).
In the first step we use the FORCE scheme for the homogeneous case:

At
* _ yn _ =Y force _ gpforce
Qi =Qi Az (FH‘% Fi—% ) ’
and for the second step we solve an ODE system:
Q" = Qi +AtS(QF, )

Combining them together we obtain the fractional step FORCE scheme:

At .
Qtt=Qr - ~ (Ffﬁ’";e - Ff_‘”"%“) + AtS(QF, z;).
In Section 4 we will show the convergence of the fractional-step FORCE scheme
through the system of shallow water equations.

2.8.2. High-Order Extensions of the FORCE Fluz. The simplest approach to ex-
tend the first-order monotone FORCE scheme (2.14)—(2.15) to second order of
accuracy is by following the TVD approach [20], [21], [37]. In [56], two ways of
constructing TVD centred schemes based on the FORCE flux are presented. The
first approach is the so-called fluz-limiter approach, whereby use is made of a lower-
order (monotone) flux as the building block and a higher-order flux. The FORCE
and the Lax-Wendroff fluxes are chosen as the lower-order and higher-order fluxes,
respectively. A flux limiter is derived from within a TVD region which is obtained
after appropriate TVD conditions for centred schemes were constructed. The re-
sulting scheme is called FLIC. Another way of constructing second-order TVD
extensions of the FORCE flux is via the MUSCL approach and slope limiters. The
resulting scheme is called SLIC. Other approaches for constructing higher order
extensions of the FORCE flux include the ENO/WENO approach [22], [23], [43],
[44], [45]; the ADER approach [58], [62], [49], [42], [47], and discontinuous Galerkin
finite element methods [12], [13], [63]. Further centred-based high-order schemes
can be found in [29], [33], [34], [36], [24], [25], [35], [26], [27], [66], [50], [39], and the
references cited therein.

2.8.3. Multi-Dimensional Problems. The most straightforward way of extending
schemes based on the FORCE flux to multidimensional problems is by operator
splitting or methods of fractional steps [46], [65]. Details of this approach for any
one-dimensional scheme are given in [53], which works reasonably well for structured
meshes in which mesh distortions are not large. Another more attractive method of
extending FORCE-type schemes is via an unsplit finite volume method. For details,
see [57]. The discontinuous Galerkin finite element method [12], [13], [63] would be
another way of extending the FORCE flux, both to higher order of accuracy and
to multi-dimensional problems. Other centred-based schemes for multidimensional
problems can be found in [29], [33], [34], [36], [24], [25], [35], [26], [27], [66], [39],
and the references cited therein.
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2.8.4. Upwind Fluzes via Centred FORCE Fluzes. A very simple and general ap-
proach was proposed in [55] to construct upwind numerical fluxes, whereby centred
fluxes are utilised in a multi-stage predictor-corrector fashion. A particularly suc-
cessful scheme, constructed on the basis of the centred FORCE flux, is summarised
here. Consider any hyperbolic system of the form (2.1) and given two states QY
and Qg to the left and right of the interface at # = z;, 1, an upwind numerical
flux is computed in the following manner. The scheme has essentially two steps
and is started by setting [ =1, Q; 1) — = Q7 and QlJrl = Q7 ;. Then we do

(1) Flux evaluation:

F(l (Q(l ) ) 1 - F(Qerl)
1 At O

! (1
Qgﬁé - 2(Q )+Qz+1) 3 Az o Fit

-F), Fyy =F(@Q),),

W _ ) 0, w0 Az o\ .
Fz+; =1 (Fz +2F; +F ., — AL (Qz‘+1 -Q; )) ;

(2) Open Riemann fan:

At
leJrl) _ le) N 2t
(3) Go to Step 1.
The procedure is stopped at the end of Step 1 if the desired number of stages k£ has
been reached. Practical experience suggests that a number of k = 3 stages gives
numerical results that are comparable with those from the most accurate of fluxes,
namely, the first-order Glodunov upwind flux used in conjunction with the exact
Riemann solver. Concerning efficiency, it is found that, for the one-dimensional
Euler equations for ideal gases, such a scheme is comparable to typical existing
approximate Riemann solvers, such as Roe’s solver [40] or the HLLC solver [60],
for example, but much more efficient than the Osher-Solomon Riemann solver [38].
The advantage of the multi-stage predictor-corrector solver is its simplicity and
generality and will be fully realised when solving very complex hyperbolic systems
such as those arising in multi-phase flows, magnetohydrodynamics, and general

relativity.

Another approach is to combine the FORCE schemes with entropy flux splittings
developed in [7] and [8] so that upwind fluxes can directly be derived from the
centred FORCE fluxes for the splitting systems, since the centred FORCE fluxes
for the splitting systems are automatically upwind fluxes which share the same
physical entropy functions.

F

At
O, -FD), QY =l - TFD -F )

i—+1 i—+1 Az i—+1

3. CONVERGENCE AND ENTROPY-CONSISTENCY OF THE FORCE SCHEME FOR
STRICTLY HYPERBOLIC SYSTEMS

Now we illustrate in this section and Sections 4-5 how the convergence and
entropy-consistency of the FORCE scheme can be achieved via compactness argu-
ments and numerical entropy dissipation for the scheme for hyperbolic systems of
conservation laws.

Consider the Cauchy problem for a strictly hyperbolic system of conservation
laws:
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with initial data

(32) Q|t:0 = QO(m)v

endowed with a strictly convex entropy 7.(Q) and corresponding entropy flux
g+(Q), in some physical region ¥V C R™.

3.1. FORCE Approximate Solutions. The FORCE scheme is a three-point
scheme and provides a simple digital way to calculate entropy solutions avoiding the
use of Riemann solvers. On the other hand, this scheme can be interpreted through
Riemann solutions as explained in Section 2. Now we use this interpretation to
construct approximate solutions for hyperbolic systems of conservation laws.

As every difference scheme, the FORCE scheme satisfies the property of propa-
gation with finite speed, which is an advantage over the vanishing viscosity method:
the convergence result applies without assumption on the decay of initial data at
infinity. We now construct the family of FORCE approximate solutions Q(z, 1),
similar to these for the Glimm scheme. The FORCE scheme can be interpreted
to be based on a regular partition of the half-plane ¢ > 0 defined by t, = n At,
x; =il for n € N, i € N, where At and £ are the sizes of time-step and space-
step, respectively. It is assumed that the ratio At/ is constant and satisfies the
Courant-Friedrichs-Lewy (CFL) stability condition:

At
7||/\j(Q5)||Loo <1,

where A;(Q) are the eigenvalues of VF(Q), that is, the CFL number is 1.

Each strip {(z,t) : ¢, <t < typy1} is divided into two substrips, {(z,t) : ¢, <
t < tn+1/2} and {(.T,t) : tn+l/2 S t < tn+1}.

In the first strip {(z,t) : 0 <t < t; }, we can construct the approximate solutions
as follows:

In the first substrip {(z,t) : #; < & < zi11, 0 <t < tyy9, @ € N}, we define
Qf(z,t) by solving a sequence of Riemann problems for (3.1) corresponding to the

Riemann data:
0

Q'(z.0) = { fooe <Tap

0
Qi+17 T > Tir1/2s

Q) = %/ o Qo () da.

Ti—1/2

with

We set

12 L[, " 0)d
Qi+l/2 - Z Q (.T, 1/2 — ) €.
x;

In the second substrip {(z,t) : ©; < @ < Tig1, tiyp <t < ty, i € N}, we define
Qf(x,t) by solving a sequence of Riemann problems for (3.1) corresponding to the
Riemann data:

1/2
QZ(QL’ 0) _ Qi_1/27 T < Zj,
’ Q1/2 T > x;
i+1/2) i

Then the FORCE scheme at t = ¢; is

Tity1/2
Qzl = 1/ QZ(.'L‘,tl — 0) dz.

t i—1/2
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When Qf(z,t) is defined for t < t,, we set

1 Tity1/2
-7/ Qw0

i—1/2

In the substrip {(z,t) : @; <& < Tiy1,tn <t <tyi1/2,i € N}, we define Q(z, 1)
by solving the Riemann problems with the data:
Ql(xvtn) = { ?7 v

QY T >3y
We set
Q?fll/; = % / - Q' (2, tny1/2 — 0) da.
i
In the second substrip {(z,t) : z; < & < Tjy1, tpy12 <t < tpy1, © € N}, we

define Q‘(z,t) by solving a sequence of Riemann problems for (4.1) corresponding
to the Riemann data:

n+1/2
Q' (z, tni1) = Qi—1/2’ T < T,
yintl) = n+1/2 ]
Qi+1/2 , T > ;.

Then the FORCE scheme at t = t,, is

1 Tity1/2

1
Q=5

=7 Q' (z, tny1 — 0) da.

Ti—1/2

This completes the construction of the FORCE approximate solutions Qf(z,t)
for which {Q7} is the FORCE scheme interpreted via Riemann solutions.

3.2. Estimates of Numerical Dissipation. Without loss of generality, we as-
sume 7, (0) = 0 and 7.(Q) > 0; otherwise, we can use the following entropy pair:

1+(Q) = 1:(Q) =1+(0) — V. (0)Q,  4.(Q) = ¢(Q) —¢.(0) = V.. (0)(F(Q) —F(0)),

instead of (7, g«)-

Consider the entropy dissipation measures 9;1.(Q) + 9,¢.(Q?) associated with
the convex entropy pair (1., ¢ ). Since each Q*(z,t) has compact support, we may
use p(z,t) = 1 as a test function and then use the Gauss-Green formula in the strip
R x [0,7T") with T'= K At for some integer K. Using 7.(Q) > 0, one has

(3.3)

Z/;f (n.(Q%) — 7.(Q})) dfﬂfZ/x

T
+/
0

Tit1

(@2 = n.@))) da

(ﬂﬂWW%MJmﬁS/m@me
) R

shocks z (¢t
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while

(3.4)
Z/ Q) - (@) da

imn Y1

=2
in

>0

i

T.1 1
/ . /0 Q" - Q20 (QF +7(Q" — Q)(Q" — Q)T (1 - 7) drde

and

(3.5)

Z/ “ (”*(QT%) —n.(Q) ) de
- Z/ - / f-q) 0V m(Q"Jﬂl Qe Q?:%%))

x(QFE ijf )7 (1= 7)drda >0,

where Q" = Q'(z, t, —0) and Q"% = Q(z, 1, ; — 0).

Note that the entropy inequality, ='(¢) [.](t) — [g«](¢) > 0, is satisfied for shocks.
On the other hand, 7, is convex in the conservative variables Q. Estimates (3.3)—
(3.4) yield

(36) [T (omo-ww)as<c

shocks z(t)

(3.7) Z/m% (IQ’i —QiP+1Q"": - q ;fﬂ ) dz < C.

; 1
in -3

3.3. Consistency with the Lax Entropy Inequality. Now we check here that
the limit of the FORCE approximate solutions Qf(z,t) is actually an entropy so-
lution of the Cauchy problem (3.1)—(3.2).

Theorem 3.1. Let Q%(x,t) be the FORCE approzimate solutions which are uni-
formly bounded and converge strongly almost everywhere to a limit Q(z,t). Then
Q(z,t) is an entropy solution of the Cauchy problem (3.1)—(3.2).
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Proof. For any entropy pair (1, ¢) with convex n and for any nonnegative function
v € C§°(R x [0,00)), we have

(3.8)
/ / Q)rp + 4(Q")01p) drdt + / n(Q (z,0))(z,0) de
R
+Z (soz / (n(Q") — n(QY)) de

;1
i-g

+<pf++f/ o (n(Q’f%) —n(Qfo)) dw)

+Z(/ (1) — o) (N(Q) — 0(QP)) de

* /z - (‘P(%%%) - sosz) (n(QT%) - n(Q?ff)) dx) ‘

Since 7 is a convex function, then the entropy inequality for shocks in the ap-
proximate solutions Qf(z,t) yields

(3.9) / S (@) [ - ) d >0,

shocks z(t)

1 pl
Z@?/ +2/0 Q" — QN V2.(Qr +7(Q" — QM)(Q" — Q™M) (1—7)drdx >0,

and

Furthermore, we have

I3[ tott) = o) Q) — (@)

1/2
p mH% n n
< ClPYglle (Z/ 1Q” - Q; Ide) ;

i T, 1
in i-%

and

5[ (st o) (0@ @) dal

1/2
1/2 i n "+22
<l [ D2 Q" - QY Pdr| .
in YT
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Thus, when ¢ — 0,
(3.10)

IZ / T (el ta) = @) (n(Q7) — 0(Q)) da

2 / T (et o) (1@ @) dal

< 081/2 - 0.

Since |le(l‘,t)| < C and Qf(z,t) — Q(x,t) ae. (z,t), we have |Q(z,t)| < C
almost everywhere. We also conclude from (3.8)—(3.10) that Q(z,t) satisfies the
entropy inequality

/ / Q)09 + q(Q)0:¢) dmdt-f—/R??(Qo(x))Qﬁ(x,O) dx > 0,

for any nonnegative function ¢ € C§°(R x [0,00)). This completes the proof of
Theorem 3.1.

3.4. Convergence of the FORCE Scheme for 2 x 2 Strictly Hyperbolic
Systems.

Theorem 3.2. Let system (3.1) be 2x2 strictly hyperbolic and genuinely nonlinear.
Let Qf(x,t) be the FORCE approzimate solutions satisfying

1Q(z,1) < C,

where C > 0 is independent of {. Then there exists a subsequence Q' (z,t) con-
verging to an L entropy solution Q(x,t):

Q" (z,t) = Q(z,1),  n — oo,
with
|Q(z,t)] < C.

For any bounded set Q2 C R x [0,7] and for any entropy pair (7, q), we deduce
as for (3.8) that, for any ¢ € C§°(§2), we have

(3.11) /OOO/R(U(QZ)atsOJrq(Q[)aw) d:cdt+/Rn(Q‘(w70))<ﬂ(w70) dw
= 5%¢) + Li(¢) + L5 (9),

where
Lie) =3 (@? [ e - n@pyas

(3.12) vt [ @ - @ yas)
L) =Y ( [ et = o) @) — @) de

(3.13) o[ <w<x,tn+%>—soﬁjfﬂn(q’i*%)—n(Q;‘:§>>dx).
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Then

15@)] < Cliglle, / S @ (0] — () d < Cligllese,
L4 ()]

< Cllelle, Z / / Q" — QM V*.(QY + 7(Q" — QM)(Q" — QYT (1 —7)dr

it1 1. nel nel nal
o / — QU@ @ Q)
x (@ -QrhT (1 -nar) <C.

Hence, |(M¢+ S+ L{)(p)| < C ||<p||c0, which yields a uniform bound in the space
M(Q) of bounded measures for M* + S¢ + L, considered as a functional on the
space of continuous functions:

[M°+ 5+ Lillpmeey < C-

compact
—

The embedding theorem M () WL(Q), 1 < go < 2, yields that

(3.14) MY+ S°+ LY s a compact sequence in W1 (Q).
It remains to treat L4(p). Let ¢ € C§(Q). Then
(3.15)

Ti41 1 n
llplles 3 ( [ @ —n@p P

in i

|L3(¢)|

IN

" / Q) - n(Qp)? de

i— L

2

Tit1 1
- +1 vt}
< P Vnlle=llolles Z(/ Q- Qi e
in Ti
1/2
wiJr% n n|2
+ / Q" — QIP de
T, 1
2
<

- 2

C e 1/2||<10||W01’p(9)’ for allp> m

Estimate (3.15) implies

. 2

(3.16) [|L|lyw—1.00() < C*H% — 0, when £ — 0, for 1 < go < T34 < 2.
Finally, we combine (3.14) with (3.16) to obtain that
(3.17) MY+ S+ LY + LS is compact in W% (Q).

Since |Qf(z,t)| < C, we have that
(318) M+ S8°4+ LY+ LY isboundedin WTLT(Q),r > 2.
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The interpolation lemma in [14], (3.17), and (3.18) imply that
M+ 8+ Lt + LY is compact in -~ WH2(Q),

which implies that

(3.19) an(QY) + 8,¢(Q%  is compact in  W~H2(Q).

In view of the uniform boundedness of Qf(z,t), (3.19), Theorem 3.1, and the
compactness theorem in DiPerna [16], we conclude that there exists a subsequence
Qf»(z,t) converging for a.e. (x,t) to an entropy solution Q € L.

As a direct application of the analysis above and a compactness theorem recently
estalished in Chen-Li-Li [10], we conclude the convergence of approximate solutions
Qf = (v, u’) of the Euler equations for one-dimensional media with unit reference
density and zero body force in Lagrangian coordinates:

O — Opu = 0,

(3.20) Oyu — Oy0 =0,

where u denotes the velocity, o the stress, and v the strain of the medium. When
the medium is elastic, the stress at the material point x and time ¢ is determined
solely by the value of the strain at (z,t) € ]Ri := Rx Ry via a constitutive relation:

(3.21) o(x,t) = o(v(z,t)).

Under the standard assumption o’(v) > 0, system (3.20)—-(3.21) is strictly hyper-
bolic. In elastodynamics, genuine nonlinearity is typically precluded by the fact
that the medium in question can sustain discontinuities in both the compressive
and expansive phases of the motion. In the simplest model for common rubber,
one postulates that the stress o as a function of the strain v switches from concave
in the compressive mode v < ¥ to convex in the expansive mode v > 0, i.e.,

(3.22) sign((v — 9)a" (v)) > 0.
Moreover, we assume that o satisfies that
(3.23) there is no interval on which o is affine,

and there exists an integer m € [1, co] such that, on an interval (0,94 9) or (0 —49,0)
for some 6 > 0,

(3.24) > e ()] # 0.
k=1

Conditions (3.22)-(3.24) are very general, which especially include the stress-
strain relation

2n
(3.25) " (v) = sign(v)e_ﬁ (szn%) , n=1,2---.

System (3.20)—(3.21) is strictly hyperbolic, whose genuinely nonlinearity fails on
the set {v : ¢”(v) = 0}. Nevertheless, this system is endowed bounded convex
invariant regions for Riemann solutions and thus for the FORCE approximate so-
lutions, which implies the uniform boundedness of Q‘(z,t). Then the compactness
theorem in [10] combining the H ! compactness (3.19) and the entropy-consistency
theorem (Theorem 3.1) implies the convergence of the FORCE scheme for this phys-
ical system.
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4. CONVERGENCE AND ENTROPY-CONSISTENCY OF THE FORCE SCHEME FOR
THE EULER EQUATIONS FOR ISENTROPIC FLUIDS WITH VACUUM

Now we follow the same line in Chen [2] and Ding-Chen-Luo [14], [15] to show
the convergence and entropy-consistency of the force scheme for the isentropic Euler
equations.

4.1. Isentropic Euler Equations. The system of isentropic Euler equations reads:

{ 8tp+8zm = 0,

(4.1) oym + 0, (mTz +p> =0,

where p is the density, v the fluid velocity, with pv = m the momentum, and p the
scalar pressure.
As usual, assume that the pressure function p(p) satisfies that, when p > 0,

(4.2) p(p) >0, p'(p) > 0 (hyperbolicity),
. pp" (p) + 2p'(p) > 0 (genuine nonlinearity),

and, when p tends to zero,
(4.3) p(p), P'(p) =0,

which is different from the isothermal case. In addition, we assume that there exists
an exponent v € (1,00), a smooth function P = P(p), and some real ¢ > 0 such

that
44 p(p) = kp" (1+ p"0F9 P(p)),
. P(p) and p® P"'(p) are bounded as p — 0,

where k := (v — 1)2/(47) after normalisation. Of course, the function P(p) may
exhibit some singularities at p = 0. In fact, (4.4) implies solely that p P'(p) and
p? P"(p) remain bounded.

For a polytropic gas,

(45) p(p) = Klop’yv v > 17

where k9 > 0 is any constant under scaling. The pressure-density laws above
especially include the example

(4.6) p(p) = K1 p™ + Ko P2, Y,7v2 > 1, K1,k2 > 0.
The eigenvalues of system (4.1) are
(4.7) Aj=m/p+ (=)' (p), j=12

and the corresponding right-eigenvectors are

. 2p/P(p)

4.8 ri =aq; LA, ai(p) = (—1) ,
( ) J J (p)( J) J (p) ( ) pp/,(p) + 2p,(p)
so that VA; -r; = 1,5 = 1,2. The Riemann invariants are

(4.9) =D (—1)it /Op 7\’]1®d5, j=1,2.

wj = )

Top

From (4.3) and (4.7),
A2 — A1 =24/p'(p) = 0, p— 0.
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Therefore, system (4.1) is strictly hyperbolic in the nonvacuum states {(p,v) : p >
0, |v| < Co}. However, strict hyperbolicity fails near the vacuum states {(p,m/p) :
p= 07 |m/p| < CO}

A pair of mappings (1,9) : R x R = R x R is called an entropy-entropy flux
pair (or entropy pair for short) of system (4.1) if it satisfies the hyperbolic system:

(4.10) Va(p,m) = Vn(p,m)VF(p,m).

Furthermore, 7(p, m) is called a weak entropy if

(4.11) n =0.
p=0
v=m/p fixed
For example, the mechanical energy (a sum of the kinetic and internal energy) and

the mechanical energy flux

m? ? p(s) m3 P p'(s)
4.12 *\ M - - d 5 *\ s - a5 —=d
(4.12) 7« (p,m) 2p—i—p/o 2 ds q(pm)—2p2—|-m/0 L ds

form a special entropy pair; n.(p,m) is convex for any v > 1 and strictly convex
(even at the vacuum states) if v < 2, in any bounded region in p > 0.

4.2. Estimates of L™ Bound and Numerical Dissipation. As in Section 4.1,
we can construct the FORCE approximate solutions (pf, m?)(x,t), using the solv-
ability of the Riemann problems for any Riemann data with nonnegative density.
We also set v* = m?/p’ when p’ > 0 and v’ = 0 otherwise.

First we estimate the L bound and numerical dissipation.

Proposition 4.1. For any w? > w3, the region
Z(w(l)’ug) = {(P,m) L S w(l)) w2 2 wgv w1 — w2 Z 0}
is also invariant for the FORCE approzimate solutions (p*, m%)(x,t). In particular,
there exists C' > 0 such that
(1.13) 0<pl(@,t)<C |mt(w,t)/ptw,8)] < C.
First it is easy to check that > (w?,w9) is an invariant region for the Riemann
solutions. Since the set > (w?,w9) is convex in the (p,m)-plane, it follows from

Jensen’s inequality that, for any function satisfying {(p,m)(z) : a < z < b} C
> (w?, wd) for some (wf, w),

1
b—a

b
(o) i= 5 [ (pom)ads € Y (w?uf),
a
Therefore, Y (w?,w3) is also an invariant region for the FORCE scheme, which
implies estimate (4.13).

In particular, Proposition 4.1 shows that the approximate density function pf(z, t)
remains nonnegative, and both pf(z,t) and m(x,t)/p’(x,t) are uniformly bounded
so it is indeed possible to construct the approximate solutions globally, as described
earlier.

Consider the weak entropy dissipation measures 9;7(Q) + 9,¢(Q") associated
with a weak entropy pair (7,q). Using the Gauss-Green formula, for any test-
function ¢(z,t) compactly supported in R x [0,T] with T' = K At for some integer



CENTRED SCHEMES FOR NONLINEAR HYPERBOLIC EQUATIONS 21

K, one has

) [ / Q)0e + a(Q),p) dadt = M'() + 5'() + LL () + L),
where

(415) M(p) = /R Q! (x,T)) o, T) de — /R n(Q!(x,0)) ¢(,0) dz,

and S*(p), L{(¢), and Li(¢p) have the same formulas as in (3.9), (3.12), and (3.13)
for Ql = (p[7m[)'

Since each Qf(x,t) has compact support, we may substitute (7, q) = (1x,¢.) and
© = 1 in the formulas (4.14) to obtain

(1.16) [T (ono-wo)a<c
shocks z(t)

and

(4.17)

Z/ L / Q" — Q¥ (QF +7(Q1 ~ QN)(Q™ ~ Q)T (1 —7)dr

Tit1 5 n n n+s=
+Z/ o @ Qi@ @

Q" QT (1-n)dr < C.

by using the entropy inequality and the convexity of 7,(Q). Then we observe the

following:
(i) For 1 < v < 2, entropy 7. is uniformly convex so that the Hessian matrix

V2, is bounded below by a positive constant, which implies

Ti41

Tity : n+i n
w19 [ [Hia-arars [Tt Qe | <c

R z—% i

(ii) For v > 2, the estimate (4.17) implies

Z/ <2 ra 122?)2

p'(p} +7(p” — p}')) 2>
+ 1—71)dr(p™ — p} dr < C,
/0 pi + 7P = 7)) (L =) drieZ = o)

and
1
. n+i n+i nt3
Z Tit1 o 2 (m_ 2 B i+% )2
— /e 2 nts net g
in P pH_l
n+i nti n+i
1p'(p L +7(p= ® —p 1)) I
+ 2 - 22— (1—=7)dr(p_"2 —p. 2)* | de < C
0 ntz +7( ntg "Jri) ity -
Pivy P i+l
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In view of assumption (4.4), there exists Cy > 0 depending on 7 such that

/1 P'(p} +7(p — p}))
o P TP = py)

(L—7)dr > Cy min {1, (p" — p}")" "2},

which yields

Tivg m’  mp 2
S [ (o B By i) as <
x 1 p— pz

i,mn i-5

The Cauchy-Schwarz inequality implies

Tipl n n
(4.19) Z/ | B P gy < V2,
im YT 1 P pz
’ 2
and
$i+%
(4.20) > lp" — pildz < C 071,
in Y- 1
Similarly, we have
1 n+3
Tiq1 1 m”+2 m.
+ — i+ —
(4.21) Z/} P - e < o0
imn Ui P p’H’%
and
Tit1 ntld ntld 1 1
(4.22) Z/ 0272 = pi e < O /=L,

4.3. Convergence and Entropy-Consistency of the FORCE Scheme.

Theorem 4.1. Let (po,mo)(x) be the Cauchy data satisfying
0 < po(z) < Co, |mo(x)/po(z)| < Co,

for some constant Cy > 0. FEzxtracting a subsequence, if necessary, the FORCE
approzimate solutions (pt, m%)(x,t) converge strongly almost everywhere to a limit
(p,m) € L*°(R%) which is an entropy solution of the Cauchy problem (4.1) with
initial data (po, mo)(x).

First, from Proposition 4.1, there exists a constant C' > 0 depending only on Cy
and p(p) such that

(4.23) 0< plla,t) <C,  Im(e,0)/p(@,0)] < C.

For any bounded set Q@ C R x [0,7] and for any weak entropy pair (n,q), we
deduce from (3.9), (3.12), (3.13), (4.14), (4.15), and (4.23) that, for any ¢ € Co(),

|M ()| =0,

T
15°(0)] CII@IICO/O Y@ O] = lg:]) dt < Cliglleso,

IL{(@)] < Cllelles)-

Hence |(M*+ S*+ L) ()| < Clolle,, which yields a uniform bound in M () for
M+ St + LE:

IN

1M° + 5 + Lil )y < C.
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Then
(4.24) M 4+ S°+ LY s a compact sequence in W19 (0), 1<qgo <2

It remains to treat L(y). Let ¢ € C§(Q), & < a < 1. We distinguish two cases :
(i) For 1 < v < 2, we deduce as before from (4.18) that

(4.25)
|LE(p)| < C L2721Vl Leelplles

1/2
Tty n it 41 nt1
AT [T —@pas Y [ R QR
in zi—% in Y Ti-1
< O |||y for all p > ——
= @ WP (Q) p l—a
(ii) For v > 2, estimates (4.19)—(4.22) yield
(4.26)
Titd m_  mp
L < e IVallislielios | 3 [ 0n = 4015 = T do
i Vi1 P= Pi
1 n+3
Tit1 1 1 1 mn+2 m. 1
+ + + — i+
e [ e e - | an
in YT p_ szr%

< C gl cs o)

Estimates (4.25) and (4.26) imply

2
(4.27) [|LE|lw-1.00 () < CL* — 0, when £ — 0, for 1< g < T5a < 2,

where a9 = max{a — 1/2,a — 1+ 1/~}. Finally, we combine (4.24) with (4.27) to
obtain that

(4.28) M 4+ S+ LY + L5 is compact in = Wh90(Q).
Since 0 < p(z,t) < C,|mt(z,t)/p'(x,t)] < C, we have that
(4.29) M +S°+ LY+ L5 isboundedin  WTLT(Q),r > 2.
The interpolation lemma in [14], (4.28), and (4.29) imply that
MY+ S+ LY + LY is compactin - W12(Q),
which implies that
(4.30) an(QY) + 8,¢(Q%)  is compact in  WH2(Q).

In view of Theorem in Chen-LeFloch [5], [6] (also DiPerna [17], Ding-Chen-Luo
[14], Chen [2], and Lions-Perthame-Souganidis [32]) and (4.30), there exists a subse-
quence Q (z,t) converging for almost every (z,t) to a limit function (p,m) € L.

Now we check here that Q(z,t) = (p, m)(x,t) is actually an entropy solution of
the Cauchy problem (4.1) with Cauchy data (pg,mo)(x).
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For any weak entropy pair (1, ¢) with convex n and for any nonnegative function
v € C§°(R x [0,00)), we obtain from (4.14) that

(4.31)
/ / (n(Q)drp + 4(Q")0p) drdt + /R Q! (z,0))p(x, 0) di

=Sy +Z%/ Q") - n(Q))) da
) / <n<crz+%> @) o
+Z/ " (plata) - oF) (n(QY) —n(QP)) do

+Z/ U (et =9l ) (1@ —n@() a

Since 7 is a convex function, then

(4.32) SZ(QO) Z 0,
(4.33)
St [ @) -niap)as
_ n Titl n _ on\w2 N4 Q" — QP n _ on\T — N drde
—%;% / /O(Qf Q)V*n(Q} +7(Q" - Q!))(Q” - Q) (1 —7)drd
>0,

and, similarly,

.t1+1 l
(4.34) o / - Q) )) dz > 0.
Furthermore, for 1 < 7 < 2, one has as before that, when ¢ — 0,

|Z / tn) = ¢4 ((Q™) = 1(Q})) dal

) / (et - 6l E) (@ (@) el

< Cll/z - 0.
For v > 2, (4.19) and (4.20) imply
(4.36)

|Z/ (o =) (n(Q2) —1(Q7)) da|

n

Titg n n n M= m;
< Cﬁ”@”cgz [ (|p_ T ARTAL |) dr < C gy 7 - 0.
in Y- 1

- (2
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Similarly, we have

1

s | [ (o= et) (@t —n@ith) sl < Clleley 27 0,

mb (x,t)
Pll (@,t)
we have 0 < p(z,t) < C and J’;A(%[ < C almost everywhere. We also conclude
from (4.31)—(4.36) that Q(x,t) = (p, m)(z,t) satisfies the entropy inequality

Since

‘ < C and (p',m’)(z,t) — (p,m)(z,t) for almost every (z,t),

/ h [ @06+ a(@0,0) dndt + [ n(@Qu() 6(2.0)di 2 0,
0 R R

for any nonnegative function ¢ € C§°(R x [0,00)). This completes the proof of
Theorem 4.2.

Remark 4.1. Combining the analysis above with the argument in Chen-Li [9], we
can also establish the convergence and consistency of fractional-step FORCE-type
schemes to an entropy solutions for the Euler equations for isothermal fluids (i.e.
~v = 1) with spherical symmetry.

Remark 4.2. The convergence and consistency of the Lax-Friedrichs scheme (the
bottom of the hierarchy) and the Godunov scheme to an entropy solutions for
the Euler equations for isentropic fluids were first established in Chen [2], [3] and
Ding-Chen-Luo [14], [15] (also see Chen-LeFloch [5], [6]).

The Lax-Wendroff scheme is a second-order scheme, which is an important part
of the FORCE scheme. The convergence and consistency of the Lax-Wendroff
scheme were also established for scalar conservation laws in Chen-Liu [11].

5. CONVERGENCE OF FRACTIONAL STEP FORCE SCHEME FOR THE SHALLOW
WATER EQUATIONS

In this section, through an example, we show the convergence of fractional-step
FORCE schemes for hyperbolic systems of conservation laws with source terms.
The example we consider is the shallow water equations:

{ Oy + 0y (hv) =0,

5.1
(5-1) Oy (hv) + 0, (hv? + Sgh*) = —gb' (z)h,

where v is the velocity of water, g is the universal gravitational acceleration that
is a constant, z = b(x) is the function of bottom or bed of the flow of water, and
h(z,t) is the depth of water, the vertical distance between the bottom and the
free-surface position z = b(z) + h(z,t). Define m = hu as the momentum.

First we construct the fractional FORCE approximate solutions Qf(z,t) =
(ht,m%)(z,t). As before, the fractional FORCE scheme satisfies the property of
propagation with finite speed, and the convergence result applies without assump-
tion on the decay of initial data at infinity.

We now construct Qf(z,t), similar to these in Section 4, by taking care of the
lower-order term. As before, it is assumed that the ratio At/ is constant and
satisfies the Courant-Friedrichs-Lewy stability condition:

At
N m e <1,
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that is, the CFL number is 1, and each strip {(z,t) : ¢, <t < t,41} is divided into
two substrips, {(2,t) : t, <t <t,p12} and {(z,1) : tpy1/0 < <tpy1}

In the first strip {(z,t) : 0 <t < t; }, we can construct the approximate solutions
as follows:

In the first substrip {(z,t) : 2; < < Zi41, 0 <t < ty)2, @ € N}, we define
Qf(z,t) by solving a sequence of Riemann problems for (5.1) corresponding to the

Riemann data:
0

Q(z,0) = { o

i+1 r > xi+1/27

o 1 Tit1/2
Q= Z/ Qo(z) dx.
Ti—1/2

Then we define Q"(z,t) in the strip 0 <t < #1/5 by the fractional step scheme:
Q' (x,t) = Qg(x,t) — gb'(«)(0, hg(,1)).

T < Tiy1/2,

with

We set
1 [T+t
Q34/,21/2 = Z/ Q[($7t1/2 —0) dz.
x;

In the second substrip {(z,t) : @; < & < Tip1, tyyp <t < t1, i € N}, we define
Q! (x,t) by solving a sequence of Riemann problems for (5.1) corresponding to the

Riemann data:
Qlliz ) T < Tj,
Q"(x,0) = “13"°
Qi+1/2’ x> T;.
Then we define Q"(x,t) in the strip ¢, /2 <t <ty by the fractional step scheme:
Q' (z, 1) = Qg (w, 1) — gb'(x)(0, hg(x,1)).

Then we set

1 Tity1/2
Q== Q(z,t, — 0) da.
ﬁ Ti—1/2
If QY(x,t) is known for t < t,, we set
1 Tit1/2
- [ Q-0
h Ti—1/2

In the substrip {(z,t) : z; < ¥ < @iy1,tn <t < tpp1/2}, we define Ql(z,t) by
solving the Riemann problems with the data:

n

Q" (x,tn) ={

QY x>y

xr < T,

Then we define Q"(x,t) in the strip ¢, <t < t,,11 /2 by the fractional step scheme:

Q' (a,1) = Qf(,) — gb'(@) (0, hf ().
We set,
nt1/2 1 [T+t .
Qi+1/2 = Z/ Q (watn+1/2 —0)d.
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In the second substrip {(z,t) : ¥; < 2 < Tip1, tpy12 <t < tpyr, 1 € N}, we
define Q! (z,t) by solving a sequence of Riemann problems for (4.1) corresponding
to the Riemann data:

Qn+1/2

. r <z

¢ ~1/2° i
Q(z,tpy1) = {Q;H//z

it1/20 T > xi

Then we define Qf(z,t) in the strip ¢, /2 <t <tpy1 by the fractional step scheme:

Q' (z,t) = Qg(x, 1) — gb' (x)h (2, t).
This completes the construction of the fractional FORCE approximate solutions
Q' (,1).
Then we set
" 1 Tit1/2 ‘
Q;H_ = 7 Q (xytn-i-l —0)dz.
Ti—1/2
It can be checked that the fractional-step FORCE scheme {QF} interpreted
via Riemann solutions is consistent with the fractional-step FORCE scheme as
described in §3.7 up to second order of accuracy.

Theorem 5.1 (Convergence and Existence). Let (ho,mo)(x) be the Cauchy data
satisfying

0 < ho(z) < Co,  [mo(x)/ho(x)] < Co,
for some constant Cy > 0. Euxtracting a subsequence, if necessary, the fractional-
step FORCE approzimate solutions (ht,m%)(z,t) converge strongly almost every-
where to a limit (h,m) € L>®(R3) which is an entropy solution of the Cauchy
problem for the shallow water equations (5.1) with initial data (ho,mo)(x).

We now show how the L° uniform bounds for the approximate solutions can be

obtained. We first estimate the Riemann invariants
l4
¢ ¢ m*(z,1)
w (z,t) = w(Q"(x,t)) =
(@.6) = w(@(x.0) = T

¢ _ ¢ _ mf(z,1) 9 e
25z, t) = 2(Q"(z,t)) = Tt N (z,t).
For t; <t < t;41, we have
(5:2) w(z,t) = wy(z,t) — g’ (@)t —t;),  2(x,1) = (@, 1) — gb'(x)(t — t2),
where wf(z,t) = w(Qf(z,t)) and z§(z,t) = 2(Qf(z,t)) are Riemann invariants
corresponding to the Riemann solutions Qf(z,t).

Notice that Proposition 5.1 still holds for the Riemann solutions Qf(z, t).
For t; <t < t;41, Proposition 5.1 implies

+ 2/g\/ ht(z, 1),

(5.3) wh(z,t) = wh(z,t) — gb'(x)(t — t;) < supwl(x,t; +0) + CAt,
(5.4) 2z, t) = 2§(x,t) — gb' (x)(t — t;) > inf 2§(x, t; + 0) — CAt,
(5.5) w'(z,t) — 28z, t) > 0.

By the assumption that 0 < ho(z) < Cp and |mo(z)| < Coho(x), there exists ag > 0

such that

sup w(ho(z),mo(z)) < ap, inf z(ho(z), mo(x)) > —ao,

(5.6) z ’
w(ho(z), mo(x)) — 2(ho(x), mo(x)) > 0.
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For 0 <t < t1, the special features of Riemann invariants imply
w(h(l;(x7 t)v m(l;(x7 t)) S Qp, Z(h(l;(x7 t)v m(l;(x7 t)) Z —Qo,

5.7
(5.7) w(hé(m,t),mf)(x,t)) — z(hf)(x,t),mé(x,t)) > 0.

By (5.3)-(5.5), we obtain
wt(z,t) = w(ht,mb) < ag + CAt, 2%(x,t) = 2(h,mb) > —ay — CAt,
w'(z,t) — 24z, t) > 0.

Performing the same procedure, we conclude that, for 0 < ¢ < T, there exists
M = M(T) > 0 such that

(5.8) 0 < hf(z,t) <M, |m'(z,t)] < Mh*(x,1).

With the uniform bounds for the approximate solutions Qf(x,t) in II; = R x
[0, T], we can follow the similar analysis in Section 5 (also see Ding-Chen-Luo [15])
to conclude that, for any weak entropy pair (1, ¢)(Q),

om(QY) + 9,¢(Q°) is compact in Hl;i (IL7).

In view of the compactness theorems in Lions-Perthame-Souganidis [32] and
Chen-LeFloch [5], [6], there exists a subsequence Q% (z,t) converging for almost
every (z,t) to alimit function (p,m) € L*. As shown in Section 5.3 (also see [15]),
the limit function (p, m)(z,t) is an entropy solution of the Cauchy problem for the
shallow water equations (5.1).

The analysis presented above can be applied to handling more general source
terms for the isentropic Euler equations; see Ding-Chen-Luo [15].

6. SUMMARY AND CONCLUSIONS

We have identified a family of centred (non-upwind), three-point schemes for
solving nonlinear systems of hyperbolic equations. The schemes, written in conser-
vative form on a non-staggered mesh, are monotone and have the optimal stability
condition of Courant number unity. From the point of view of accuracy, as given
by the numerical viscosity in the modified equation, this family of schemes forms a
hierarchy of methods. At the bottom of the hierarchy is the classic Lax-Friedrichs,
which is the least accurate, and at the top of the hierarchy is the FORCE scheme,
being the optimal scheme in the family. The FORCE approach can also be extended
to solve nonlinear systems in non-conservative form. Extensions of FORCE-based
schemes to include source terms, multiple space dimensions, and higher order of
accuracy are also discussed. Another extension of the FORCE approach is the con-
struction of very simple and yet very accurate, upwind fluxes, where the FORCE
flux forms the building block of a multi-stage predictor-corrector procedure. Pre-
liminary results show that in this way one is able to attain the accuracy provided
by an exact Riemann solver. The procedure is applicable to absolutely any hyper-
bolic system, regardless of their complexity. The FORCE scheme is shown to be
consistent with the entropy inequality, that is, the limit functions of the FORCE ap-
proximate solutions are entropy solutions. The convergence of the FORCE scheme
is also established for the isentropic Euler equations and the shallow water equa-
tions.
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