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Abstract

When a high-frequency acoustic or electromagnetic wave is scattered by a surface
with a conical point, the component of the scattered wave corresponding to diffraction
by the conical point can be represented as an asymptotic expansion, valid as the wave
number k — oo. The diffraction coefficient is the coefficient of the principal term in
this expansion. It can be computed by solving a family of homogeneous boundary value
problems for the Laplace-Beltrami-Helmholtz equation (parametrised by a complex wave
number-like parameter), on a portion of the unit sphere bounded by a simple closed
contour ¢, and then integrating the resulting solutions with respect to the complex
parameter. In this paper we give the numerical analysis of a method for carrying out this
computation (in the case of acoustic waves) via the boundary integral method applied
on ¢, emphasising the practically important case when the conical scatterer has lateral
edges. The theory depends on an analysis of the integral equation on ¢, which shows its
relation to the corresponding integral equation for the planar Helmholtz equation. This
allows us to prove optimal convergence for piecewise polynomial collocation methods
of arbitrary order. We also discuss efficient quadrature techniques for assembling the
boundary element matrices. We illustrate the theory with computations on the classical
canonical open problem of a trihedral cone.

Keywords: Acoustic wave scattering, high-frequency asymptotics, diffraction coefficients,
conical points, lateral edges, boundary integral method, collocation, mesh grading.

1 Introduction

When an incident plane acoustic or electromagnetic wave is scattered by a bounded impen-
etrable (3D) obstacle, the asymptotic behaviour of the scattered wave when the frequency is
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Figure 1: Geometry of obstacle

large is described by the classical Geometric Theory of Diffraction (GTD) [21]. As well as
the simple reflections caused by a non-grazing incident wave at smooth parts of the obstacle,
or a more complicated grazing incidence which leads to asymptotics in the shadow [20] and
special boundary-layer asymptotics in the “penumbra” (see e.g. [6]), the scattered wave’s
asymptotics may also contain components arising from diffraction by non-smooth “singular”
points of the scattering surface, such as edges or conical points. From the GTD [21] (and
its further developments), the principal parts of those components are known to be described
by the far field of waves scattered by the tangent cone at the singular point(s). This is the
so-called “principle of localisation” (which is the essence of the GTD). Many authors have
considered the problem of describing completely the asymptotics of the diffracted wave for
various “canonical” cones (see e.g [7] and further references therein).

When the obstacle is a cone with a single conical point, this problem has been studied in
detail by many authors, see e.g. [7],[5] and further references therein, where explicit formulae
for the principal asymptotics of the diffracted wave were derived. For example, consider
the scalar (acoustic) case, with an incident plane wave U"¢(x) = exp(—ikwg - x), with the
point wy € S?, the unit sphere in R?, describing the direction of incidence. Then, both the
scattered wave U*¢ and the total wave U := U + U*¢ satisfy the 3D Helmholtz equation,
(A + k*)U = 0, in the domain of propagation, and U*¢ satisfies an appropriate radiation
condition. The theory in [23], [3] and [5] describes the behaviour of the diffracted component
U/l (x) of U*¢(x) at any point x in the domain of propagation. Using spherical coordinates
centred at the conical point: x = rw with w € S? and r > 0 denoting the distance of x from
the conical point, it follows from the general recipes of the GTD that (with either Dirichlet
or Neumann conditions imposed on the surface of the scatterer), U4// has the asymptotic
representation

exp(ikr)

U (x, k =2
<X7 7""0) a ]{?T

flw,wp) +O((kr)™?), k — oo. (1.1)
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Figure 2: Contour of integration

Here the distribution f(w,wy), which is infinitely smooth everywhere except at the so-called
“singular directions”, is the important “diffraction coefficient” (also known as the kernel of
the “scattering matriz”), and describes the intensity of the diffracted wave in the particular
direction w.

This paper is about the numerical analysis and implementation of methods for computing
f(w,wyp). In [3] and [5] an algorithm for this task was proposed.

To obtain a formula for f, we take O to be the vertex of the conical obstacle, =, (which is
indicated by dotted lines in Fig 1) and let M denote the portion of the unit sphere S? which
is exterior to 2. M is a sub-manifold of S? with boundary which we denote by ¢ (see again
Fig 1). Let A* denote the Laplace-Beltrami operator on S? and introduce the “spherical”
Green’s function g(w,wg, ) on M, satisfying:

(A* 4+ 1% — 1/4)g(w,wp, V) = §(w —wy), w,wp€M andveC, (1.2)

where ¢ denotes the Dirac delta function and the differentiation on the left-hand side is with
respect to w. As a function of w, ¢ is also required to satisfy a Dirichlet or Neumann boundary
condition on ¢ (whichever is given in the original scattering problem). Once ¢ is known, the
diffraction coefficient in (1.1) is then given by the formula:
f(w,wy) = lim L exp(—iv(m + s))g(w, wo, v)vdu. (1.3)
s—0 77 5

The integration contour v in (1.3) has to be chosen in the complex plane, so that the (positive)
numbers v/A (where ) ranges over all eigenvalues of —A*+41/4 on M, subject to the appropriate
boundary condition on ¢) lie on its right (see Fig 2).

Thus the computational procedure for realising the asymptotic formula (1.1) requires:
(i) the computation of the Green’s function g(w,wy,r) for all required incidence directions
wo and observation directions w € M and (ii) the computation of the integral in (1.3), by
quadrature. Note that (ii) in turn implies that g(w,wy, ) must be evaluated for sufficiently
many v € vy to ensure an accurate answer.

For certain configurations of w,wq (which, say, in the case of a smooth, fully illuminated
and convex cone corresponds to the direction of observation w with no reflected wave [23][3]),
the right-hand side of (1.3) can be transformed by deforming the contour of integration =y
onto the imaginary axis and then interchanging the limit with the integral. Moreover the
Green’s function ¢ in (1.3) can be replaced by its regular part g", ¢" := g — go, where gq is the



(known) fundamental solution for the operator (A* + v? — 1/4) on all of S? (see §2). These
modifications yield the simpler formula:

flw,wy) = —% /_OO exp(7m)g" (w, wy, iT)7drT. (1.4)

[e.e]

The configurations of w and wy for which the formulation (1.4) is possible are described by a
geometrical condition (see [5, §2.3]). All our computations in this paper are for cases in which
(1.4) is valid. In other cases one must compute the limit (1.3) as it stands, leading to a more
complicated approximation problem directly employing (1.3) with sufficiently small s [5].

In [3] and [5] a numerical method was proposed for the computation of (1.4) and (1.3).
The boundary integral method was used to compute ¢g". (g" satisfies the homogeneous PDE
(A* + 1% — 1/4)g"(w,wy, v) = 0, on the manifold M, subject to an inhomogeneous boundary
condition on its boundary ¢.) This was implemented in [3] and [5] in the case when Z is a
smooth cone, using “in effect” a simple trapezoidal-Nystrom type method and the trapezoidal
rule was used for the contour integration with respect to v in (1.3) or (1.4). The approach
of [23],[3] and [5] was also extended to the electromagnetic case [24], which was implemented
numerically in [4]. However the papers [3] and [5] contained no convergence analysis of the
method and moreover, they dealt only with the case of a smooth cone =. The case of a
cone with lateral edges is of fundamental importance in both the high-frequency theory of
diffraction (where it is one of the unsolved canonical problems [21]) and in practice, where
high frequency scattering by antennae or corners of buildings is a key problem in microwave
engineering.

Although the integral equation method reduces the computation of g(w,wq,v) to a com-
putation on the (1D) contour ¢ on the surface of the unit sphere S?, this equation has to
be solved many times for different values of v (and also more times if different w and wy
are to be considered). Moreover, as we shall see, the evaluation of the kernel in the integral
equation arising from the spherical PDE (1.2) is much more costly than for typical boundary
integral equations in planar scattering theory. Thus there is strong practical demand for the
development of an efficient algorithm, in particular one which solves the integral equation
with the highest accuracy and the minimal number of kernel evaluations. Thus the purposes
of this paper are

(i) To propose an efficient method for computing diffraction coefficients which is robust
even when the cone = has lateral edges and analyse its convergence;

(ii) To minimise the number of kernel evaluations required in the implementation;

(iii) To demonstrate its use in the computation of diffraction coefficients in several sample
cases.

The plan of the paper is as follows. In §2 we describe briefly the boundary integral method
for computing ¢". This leads to non-standard integral equations posed on the spherical contour
(. In §3 we obtain the important properties of the integral operators which arise, including
the case when the cone = has lateral edges. In §4 we describe a flexible numerical method
based on collocation with piecewise polynomials and we prove its convergence as a means of
approximating ¢"(w,wq, ). Finally in §5 we provide computations of diffraction coefficients
for several sample problems. Subsequent work will consider the electromagnetic case. We also
give §5 outline descriptions of various technical issues such as the computation of the contour
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integral in (1.3) and the evaluation of the kernel which appears in the integral operator. These
are described in more detail in [8].

2 Formulae for the Conical Diffraction Coefficients

Throughout the paper we shall assume that the cone = has a finite number of smooth (analytic)
faces, joined at lateral edges, and that the angle between pairs of adjacent faces lies in (0, 27)
(i.e. cuspoid edges are excluded). This implies that the contour ¢ consists of a finite number
of analytic arcs, also joined at non-cuspoid corners. For much of what we are going to do
below, a lower order of smoothness for the faces would be sufficient, but we suppress this extra
generality in the interests of readability.

For w,w’ € S? we define f(w,w’) to be the geodesic distance between two points w and
w’ on the sphere S? (i.e. cosf(w,w') = w - w'). We will assume that the cone satisfies

flw,w') <7 foral w,w e’ (2.1)

This technical restriction, which is introduced for convenience could, in principle, be removed.
However it holds for most practically important conical geometries. (An example of a case for
which (2.1) fails is the three-dimensional wedge, consisting of two semi-infinite planes meeting
on an infinite straight line. However the problem of diffraction by a wedge is solved by simpler
methods.)

For a fully illuminated cone (i.e. —wy &€ M) the technical condition alluded to in the
introduction, which allows the deformation of the contour « in (1.3) to the imaginary axis in
(1.4) can now be stated as

01 (w,wy) = I‘Bierg{@(w,w') +0(w' wo)} > . (2.2)

when 0 (w,wgy) < 7 the formula (1.3) may either be undefined or may have to be interpreted
in a distributional sense. We will not discuss this here but the reader may refer to [5] and [§]
for more detail, including the case when the cone is not fully illuminated.

As mentioned in §1, the regular part ¢g" of the Green’s function ¢ in (1.2) is defined by

gr(wvwm V) = g(w7w07 V) - 90(w7w07 V) (23)

where gg is the fundamental solution:

/ o 1 /
go(w,w' V) = Teos(nr) PV_%( cos f(w,w')), (2.4)

with Py denoting the Legendre special function of the first kind of index k (see e.g. [1, page
332]). It is well-known (see e.g. [23], [3], [5]) that this satisfies:

(A*+ 12— 1/4)go(w, ', V) = f(w —w') , w,w' €S (2.5)

(where the differentiation is with respect to w), i.e. it is the fundamental solution for the
operator A* 4+ 12 — 1/4 on all of the sphere S?. Comparing (2.5) and (1.2), we see that for
each wy € S? and v € C, the function g", as a function of w, satisfies the homogeneous PDE

(A* + 12— 1/4)g" (w,wq,v) =0, w € M, (2.6)

)



subject to the boundary condition on ¢

either ¢"(w,wy, ) = —go(w, wy, V), the Dirichlet case } for all w e/
or (0g" /Om)(w,wy, V) = —(9gy/Om)(w,wy, ), the Neumann case '

(2.7)
The boundary condition to be imposed on ¢" is inherited from the boundary condition imposed
on the original scattering problem. In (2.7) and throughout the paper, 9/0m denotes the
(outward) normal derivative with respect to w € /, i.e. the derivative in the direction m € S?
where m lies in the tangent plane to S? at w € ¢, is orthogonal to the tangent t at w, and is
directed outward from M.

The problem (2.6),(2.7) can now be solved by an integral equation method on (. Here we
follow the classical indirect approach, e.g. [2], adapted to the present problem in [3] and [5],
although we note that a direct approach based on Green’s formula would also be possible.

In the Dirichlet case, we seek the solution in the form of a double layer potential

0

g (w,wq,v) = / do (w,w V)u(w',v)dw', we M, (2.8)
¢ 8rn’

where 9/0m’ denotes the outward normal derivative at w’ € . Taking limits as w tends to

the contour ¢ in (2.8) and using the jump conditions of the double layer potential and the

Dirichlet boundary condition from (2.7), we obtain the second-kind integral equation:

%u(w, v) + /ggﬁ;)/ (w, W', V)u(w', v)dw' = —go(w, wy, V), (2.9)
for all smooth points w € [. This equation is given in [3]. A rigorous justification for potential
theory on manifolds is given in a very general context in [12]. For corner points the factor
1/2 has to be replaced by a factor related to the corner angle, c.f. [9]. However, since
we will estimate errors for our boundary integral equations in L? type spaces, this point is
unimportant. Notice that, since w € ¢ and wg € M, the right-hand side (2.9) is never singular.
Analogously, the Neumann problem is solved with the single layer potential:

g (w,wq,v) = /go(w,w’,y)u(w',y)dw', we M, (2.10)
¢
Taking the normal derivative and fitting the boundary condition leads to:
1 3] 3]
—iu(w, v) + e inol(w,w', viu(w', v)dw' = —a—f:l(w,wo, v), (2.11)

We can write (2.9),(2.11) (almost everywhere) in operator form as

(1 + LB)U = by, with (Lpu)(w) = /LB(w,w’)u(w’)dw’ . B=D,N, (2.12)
¢
with solution u(w,v) abbreviated by u(w). In the Dirichlet case the data is
9,
bp(w) := —2go(w,wy, ), Lp(w,w'):= 2832’ (w,w' V), (2.13)
and in the Neumann case,
d d
by(w) := 28—f3(w,w0,1/), Ly(w,w') = —28—f:l(w,w',l/) . (2.14)

Although the operators in (2.12), with the kernels from (2.13) or (2.14) are not classical,
we will show that their properties are analogous to those of the standard layer potentials for
the Helmholtz equation on the boundary of a planar domain.
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3 Integral Operators

3.1 Preliminary Results

The aim of this subsection is to identify the principal parts of the kernels L and Ly. This
is done in Theorem 3.3. To prove this we need two technical lemmas.

Lemma 3.1

Lp(w,o) = mﬁi_%(—cos@(w,w')) t.(w A W) (3.1)
Ly(w,w') = —m Pl (~ cosfw.w')) t.(w' Aw) (3.2)

where t (respectively t') is the unit tangent to ( at w (respectively w') orientated such that
t,m,w (respectively t', m’,w’) form an orthogonal right-handed triple (see Fig. 3 below).

Proof First note that by employing spherical polar coordinates
W' = (sin @ cos @', sin @' sin ¢, cos &),
then for any v : S? — R, we have the representation

ov
om’

where V, is the spherical gradient:

(W) =V {vow'} -m',

Vw = ;%/i +eevi )
sin@ " 0¢ o0’
with
ey = (—sing',cos¢’,0)"  and ey = (cos® cos ', cos @' sin¢’, —sin )" .
Since cos f(w,w') = w - W', we have
%P,,_%(— cosf(w,w')) = —P;_%(— cos f(w,w")) Vi {w : w’} -m’. (3.3)
Now an easy calculation shows that

!/

Vw/{w~w'} -m’ = {(w'eqy) ey + (w-eqy) egf} ‘m’ =w-m'.

Thus from (2.4) and (2.13), we have
]' /

LD(W,LU/) = m P;_%<—C089(w,wl>> Ww-m . (34)
Since t’, m’ and w’ form a right-handed triple, we have m’ = w’ A t’, and so
1
LD(LU,W/) = m P;_%<— COsS Q(w,w')) w - (w' AN t/) s
which is equivalent to (3.1) by cyclic permutation. Since Ly(w,w’) = —Lp(w',w), (3.2)
follows easily. O

The next lemma identifies the asymptotic behaviour of P’ (x) for x close to —1. We will
combine this with (3.1), (3.2) to identify the behaviour of Lp and Ly near w = w'.

7



Lemma 3.2 For all k € C, Py(x) is an analytic function of x € (—1,1). Moreover

1+

Pu(x) = ay(x) log (T) + b (2),

where ag(x) and by(x) are both analytic on (=3,1), with

an(—1) = SR )

™

where (k) = —y =372 (1/(k+1r) —1/r) and v is the Euler constant.

_ sin(mk)

{v(k) + (k= 1) + 29},

Proof From [1, equation 8.1.2] we get the following representation of P

1—
Pulx) = F(—k, k+1;1; Tx) (3.5)
where F'is the hypergeometric function. It follows from [1, page 556] that F/(—k,k+1;1;2) is
a convergent, power series for —1 < z < 1. Therefore, by (3.5), Py(x) is analytic for x € (-1, 3)
and in particular for x € (—1,1). This proves the first statement in the theorem.
Furthermore from [18, Chapter V. equation 53] we have that

P.(x) = ag(z) log <1 ha x) + b (),
where )
ax(z) = Smf’%(—k, k+ 115 (1+2)/2) (3.6)
and
bi(z) = Smgfk) {[w(k)+w(—k—1)+2~y]F(—k, k131 (1+x>/z>+§j Bk, 7)o (k.7) <1 '; "3)} .
" (3.7)
Here R (k=D (k1) (k)
Bl = R -3
and . : )
B 2h(k +1) +j
k0= )

=1

As remarked above, F(—k,k + 1;1;(1 + x)/2) is a convergent power series for —1 <
(1+x)/2 <1, s0 ax(x) is analytic for x € (=3,1). Moreover ay(—1) = sin(nk)/x follows from
[1, page 556]).

Turning to by, it is clear that the first term on the right-hand side of (3.7) is also analytic
for x € (—3,1) and that the assertions about b, will then follow provided the domain of
convergence of the power series

S Bk )l r) (1 ;”’3> (3.8)



can be shown to be (—3,1).
To obtain this result, note that lim, ., ¢(k,r) is clearly finite. If lim, o ¢(k,7) # 0 then
1t follows that

i |B(k,r +1) ¢(k,r + 1)((1 +x)/2)" ] ‘1+x
e Bl ok, M1+ 2)/2)]

‘ —k+r)(k+r+1)o(k,r+1)
™ (r+1)2 o(k,r)

(3.9)

‘1+x‘

and (3.8) is convergent for x € (—3,1) by the ratio test. However if lim, ., ¢(k,r) = 0 then,
for large enough r, [¢(k, )| < 1. Since (3.9) also shows that the power series >, B(k,r)((1+
x)/2)" converges for x € (—3,1), the comparison test then ensures that (3.8) also converges
for x € (—3,1).

O
We now combine Lemmas 3.1 and 3.2 to obtain:
Theorem 3.3 (i) For w,w' € (,
t - (wAwW)
LD(W,UJI) = —W+FD(w7wl)7 (310)
t- (W Aw)
LN(w,w/) — m—i_FN(w,w/>, (3.11)
where Fp and Fn are bounded on € x (.
(ii) When w is not a corner point of (,
t- A w' t- (WA
t(wAw) ot (W Aw) (3.12)
T|w — w'|? T|lw — w'|?
are both smooth functions of w' in a neighbourhood of w and, for B =D or N,
Fp(w, o) =0(w — wPloglw —o'|), a5 W —w. (3.13)

Proof We give the proof for Lp; the argument for Ly is analogous.
(i) From Lemma 3.2 with k£ = v — 1/2, we have, for x > —1,

plm:—wWW{l }wm (3.14)

V=3 s r+1
where @) 1)
a, 1(x)—a, 1(—1 r+1
Also note that, since w,w’ € S%, we have
1
—cosf(w,w)+1=-ww +1= §|w — W (3.16)
Hence 5
cos(mv
Pl:_%(— COS Q(W,wl)) = —Wm + T(—l + |w - wl|2/2) (317)
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Therefore combining Lemma 3.1 with (3.15) and (3.17), we obtain the formula (3.10) where

Fp(w,w') = (=14 |w—w?/2) t' (wAW) . (3.18)

2 cos(mv)

To complete the proof of (i) we now show that Fp is bounded on ¢ x (. Substituting (3.15)
into (3.18) we obtain

2cos(mv)Fp(w,w') =

a, 1(-1+|w—w'?/2)—a, 1(—1
t - (w/\w'){ 1 ||w —w|’|2//; A + b;_%(—l—k |w —w'|2/2)} (3.19)

+ a;_%(—l + |w — W'[?/2) {t' (wAw)log(lw —w'|7/4)} . (3.20)

To obtain the desired result for Fp, recall from Lemma 3.2 that a, 1 and b’ ' are both

analytic on (=3, 1). Also, using the assumption (2.1) and the Compactness of ¢, it follows that
there exists € > 0 such that —1 < —cosf(w,w’) <1 —€, for all w,w’ € (. Thus it follows
from (3.16) that

1< -1+ |lw-w]?/2<1—¢ (3.21)
Since |w — w'|? is a smooth function of w,w’, it follows that the terms inside the braces in
(3.19) are smooth functions of w,w’ € ¢. Moreover

It (WA W) < H|lwAw| = sinf(w,w) = {1 - cos®f(w,w)}/?
= {1- (0 )} ={1-0 )1 +w )}
1
= §|w—w’||w—|—w'|. (3.22)

which ensures the boundedness of (3.19). The boundedness of (3.20) follows in a similar way,
using the above remarks and the analyticity of a/ _, on (=3,1).

(ii) Now suppose that w is not a corner point aQnd that w' is sufficiently close to w so as
to ensure that there is no corner point between w and w’ on (. Let p denote an arclength
parameterisation of ¢ from any fixed reference point, set w = p(s) and choose the parameter-
isation such that the unit tangent t at w is given by t = p,(s), the derivative of p(s). Then
for w' near w with w' = p(o), we have

lw—w'|/|s—0c]=0(1) and |s—ol|/|lw—w'|=0(1) as od—s. (3.23)

Also,
wAw' = p(s) A p(o) = (p(s) = p(o)) A p(0).
Hence
t' (wAW) =p,(0) ((p(s) = plo) = (s = o)p,(0)) A p(0)). (3.24)
Since |w — W'|> = (p(s) — p(0)) - (p(s) — p(c)), it follows that (3.12) are smooth functions as
o — s (i.e. w — w). Moreover (3.23) and (3.24) imply that |t' - (w Aw')| = O(Jw — w'|*) and
o (3.13) follows from (3.20). O
We see from Theorem 3.3 that if there are no corner points on ¢, then Lp and Ly are

bounded (in fact continuous), so in both the Dirichlet and Neumann cases the integral operator
L will be compact on most standard spaces, e.g. C((), L>({). Then standard stability proofs

10



Figure 3: Wedge w and contour /¢

for the numerical method will follow. However if ¢ does contain a corner, compactness is lost
and so another approach is needed to show stability of a numerical method. The approach we
will use is to compare the integral operator Lp with a corresponding plane Laplace integral
operator Kp and then use stability results which are known for the planar Laplace problem.
This is done in the following subsection.

3.2 Relation to Planar Laplace Case

To simplify the presentation, we assume that the contour ¢ has one corner which we will
denote by the point w,. € S2. The case of several corners is obtained analogously. Without
loss of generality, we assume w. = (0,0,1)7. Let p denote the arclength parameterisation of
(¢ chosen so that p(0) = w, and so that p(s) travels around ¢ with M on the right-hand side
(as indicated by the arrow in Fig. 3), as s travels from —A to A, where 2A is the length of (.
Then we can introduce the “wedge” w in the tangent plane to S? at w, as follows.

Definition 3.4 The wedge w is defined to be the union of two straight line segments:
w=w" Uw" where

w” ={(0,0,1)" +st7 15 € [-A0]},  w"={(0,0,1)" +st7:s€[0,A]},

and tF = lim, o+ p,(s) (see Fig. 3). The angle between the tangents t} and —t_ is measured
“anticlockwise” about the z axis (when viewed from outside the sphere) from w™ to w™ and is
denoted A, where X € (0,2)\{1}. Without loss of generality we choose our coordinate system
s0 that t} is in the direction of the x axis. Each x = st € w* can be associated with a unique

11



w = p(s) € (, and with a unit normal m at w € ( orientated outward from M. To x we
associate a unit normal n to w in the plane tangent to S* at w,, orientated so that n-m — 1
as s — 0. (See also Fig 3.)

The fundamental solution of Laplace’s equation on the plane is (1/27)log|x — x’|. Using this
we introduce the operators

(Kpu)(x) = / Kp(x,x")u(x")dx' ,B=D,N .

Analogously to (2.13), (2.14), the Dirichlet and Neumann kernels are

. , 10 , (x—x')-n'

AD(X,X) = ;81’;/ {log |X — X |} = —W (325)
. , 10 , (x—x')'n

KN(X,X) = —;%{10g|X—X|}: —W (326)

Here m, n’ are unit normals to w at x,x’ € w, as described in Definition 3.4.

Theorem 3.5 will show that the principal singularity of Lz near w = w’' = w, is the same
as Kp near x = x' = w,.. This is useful because the properties of the integral operator Kp
with kernel Kp are well-understood [11], [9], [15].

To prepare for Theorem 3.5, we use the arclength parameterisation, p(o), of ¢, introduced
above, to rewrite (2.12) on [—A, A]. Putting w = p(s) and w' = p(o) we obtain

~ ~ -~ A ~
(I +Lp)u=0bp, with (Lpu)(s) =/ Lg(s,0)u(o)do, se€[—A,A] (3.27)

—A

where u(s) = u(p(s)). In the case of Dirichlet boundary data, using (2.13) and Lemma 3.1
we have

bp(s) == —2g0(p(s), wo,v) and
1

Lo(5,0) = oo Py (= costl(p(s), p(0) pulo) - (pls) A plo)). (329

(Note that since p is the arclength parameterisation, the Jacobian satisfies |p,(o)| = 1 and
does not appear explicitly in the kernel.) For Neumann boundary data, using (2.14) and
Lemma 3.1 we obtain,

by (s) = 28161;(}(03) (p(s),wq,v) and
Ev(s00)i= 5o P (- costlpls).p(o) p.00) - (plo) A p(s). (329

where m(s) is the corresponding normal to ¢ at p(s).
If we now denote the arclength parameterisation of w by =, with »(=A) = (0,0,1)7 — At_,
r(0) = w. and 7(A) = (0,0,1)T + At], then we can also rewrite Ky as an operator

~ A ~
(Kpu)(s) =/ Kg(s,0)u(o)do se€[-ANA], B=D,N,

—A
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where from (3.25), (3.26),

) ) nlo)
ol ?) = = —r@p 230

A _ _[(r(s) =r(0)) -n(s)
Ky(s,0) = e — @R (3.31)

for the Dirichlet and Neumann problems respectively. Here n(o) is the normal to w at

x = r(0). The following theorem shows that Kz contains the principal singularity of Lp near
the corner point s = ¢ = 0 in both the Dirichlet and Neumann cases, B = D, N.

Theorem 3.5 Let B =D or N. Then for (s,0) € [=A,A] x [-A, A], Lg(s,0) — Kg(s,0) is
a bounded function.

Proof We give the proof for the case B = D. The case B = N is analogous. First we
consider the kernel Kp. From Definition 3.4 the parametric equation, r, for w, is given by

r(o) = { (=0 cos(Ar), —osin(Ar), 1)7T, o €[-A,0] (3.32)

(07 07 1)T7 s [0, A]

Notice that if —A < s,0 < 0or 0 < s,0 < A then r(s) and r(o) lie on the same arm of w
and so it follows from (3.30) that K p(s,o) = 0 and, by Theorem 3.3(ii), Ly (s, o) is bounded.
So we have to consider only the case when s and ¢ are on different sides of 0.

First consider the case —A < s < 0 < ¢ < A. Then (3.32) implies that r(s) — r(0) =
(=scos(At) — 0, —ssin(A7),0)T and n(s) = (0,1,0)T. Therefore (r(s) — r(0)) - n(o)=
—ssin(Ar) and |r(s) — r(0)|*= s + 2s0 cos(Ar) + o2 So from (3.30),

1 ssin(Ar)

K == ~A<s<0<o <Al 3.33
“n(s,0) 7 (52 4 2s0 cos(A) + 02)’ =9=0=0= (3:33)

A similar calculation shows analogously that

~ 1 ssin(Ar)
K S
p(s,) 7 (%2 + 2s0 cos(A) + 02)’

—A<o<0<s<A (3.34)

Now we turn our attention to the kernel, Lp(s, o). Using Taylor’s theorem we can write
the parameterisation p as,

p(0) = { (—o cos(A), —osin(Ar), 1)T + o*(au(—0), fi(—0), 1 (—0))", o€ [—A,0]
(07071)T+O-2(a2<0->7/62(0)772<0->>,r7 (S [OaAL
(3.35)

where «;(s), f;i(s) and ;(s) are smooth functions on [0, A], for i = 1,2. Thus, for —A < s <
0 <o <A, we have, from (3.35),

p(s) A p(o) = (—ssin(\r), scos(Ar) + 0,0)" + O(max{]s|, |o|}?),

as max{|s|, |o|} — 0. Hence with w = p(s) and w’ = p(0), we have

t'=p,(0) = (1,0,0)" +0O(ol), (3.36)
—t' - (wAW) = ssin(Ar) + O(max{|s|, |o|}?)
and |w —W'|? = 5%+ 2s0cos(Ar) + 0% + O(max{|s|, |o|}?) , (3.37)
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as max{|s|, [c]} — 0. Therefore we have from (3.10)

- sin( A7) s+ (s, 0) ~
L = F
p(s,9) T 82+ 2s0cos(AT) + 0% + n3(s, 0) + Fols,0),

where Fiy(s,0) = Fp(p(s), p(c)) and
ni(s,0) = O(max{|s|,|o|}), i=2,3. (3.38)

Hence, for —A <s<0<og <A,

(T~ o)) = 207 s m(s.0)

7r s2 + 2s0 cos(Am) 4+ 02 + n3(s, 0)
s
- +
s2 + 250 cos(A) + o2 }

~

Fo(s,0),  (3.39)

which is clearly continuous for (s, o) # (0,0).

In order to show that (Lp — Kp)(s,o) is bounded near (s,o) = (0,0) we need to show
that the limit (as (s,0) — (0,0)) of the first term on the right-hand side of (3.39) is bounded.
We do this for 0 < —s < 0. The case 0 < ¢ < —s is analogous. To obtain the result, write

s+ (s, 0) S

s2 + 250 cos(AT) + 02 + 13(s,0) 2+ 2s0sin(Ar) + 02
na(s,0)(s* + 2s0 cos(AT) + 02) — n3(s,0)s
(82 + 250 cos(AT) 4+ 02)(s? + 250 cos(Am) + 02 + n3(s, 0))
M((ﬁ)z + 22 cos(Am) +1) — 1ls0) 5

= Ei ? o (3.40)
- 52 s )2 s n3(s,0)\ :
((2)2+22cos(Am) +1)((£)2 + 22 cos(Am) + 1+ )

o2

Now, when 0 < —s < ¢ we have 0 < |s| < |o| and from (3.38) it follows that ny(s,o)/0? =
O(1), n3(s,0)/0® = O(1) and n3(s,0)/0*> — 0 as (s,0) — (0,0). Moreover, since \ €
(0,2)\{1}, we have

2%+ 2z cos(Am) +1 > sin*(\r) > 0 forall v €R.

Combining all these facts with (3.40) shows that the first term in (3.39) is bounded as (s, o) —
(0,0). Since F)p is a bounded function it follows that Lp(s, o) — Kp(s,o) is bounded for
“A<s5<0<o<A.

For —A <o <0 < s < A the result follows analogously.

O

We shall analyse the equation (3.27) in the space, L*[—A, A], of 2A-periodic functions with
the norm ||v|[ 2 = {fi\A |v(0)|?do}/?. This allows us to cover the Neumann and Dirichlet
problems in a unified setting. (There is a corresponding theory in the space L*[—A, A] which
applies to the Dirichlet problem but not to the Neumann problem.) The next result follows
directly from Theorem 3.5.

Corollary 3.6 For B=D or N, EB — JACB is a compact operator on L*[—A, A].
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Proof The kernel of EB — J/%B is (EB — R\’B)(S,O') which, from Theorem 3.5, is a bounded
function and the result follows from [19, page 326].
O
The remainder of this section is devoted to proving the well-posedness of (3.27) in L*[—A, A].
This is done in Corollary 3.9. Since L B is a compact perturbation of K B, the key part of the
proof of Corollary 3.9 is contained in the following theorem, which is of key importance also
when we come to the numerical analysis in §4.

Theorem 3.7 For B=D or N, (I +Xg)™! exists and is bounded on L*[—A, A].

Proof Since it follows standard procedures for dealing with Mellin convolution operators we
will be brief. More detail is in [8]. The first step is to write the operator v — (I + Kp)v on
L?[—A, A] as two coupled convolution operators on [0, A]. For (wy,ws) € L*[0, A] x L?[0, A]
we introduce the norm ||(wi,ws)|| = {[[wil72p 5 + ||w2||%2[0,/\]}1/2- Also we define the map
IT: L?[—A, A] — L0, A] x L?[0, A] by

[Tv := (vy,v2), where v(s) = v(—s) +v(s) and wvy(s) =v(—s) —v(s), s€[0,A]

Clearly II is a bijection and ||TTv||* = 2||v||%2[_ a4 Moreover, an elementary calculation using
(3.33) and (3.34) and the analogous kernels for B = N (see [8] for details) shows that

Xz =Kgll, B=DorN. (3.41)

N Xz 0
Kp = -
b (0 —JCB)’

and X is the Mellin convolution operator on L2[0, A] defined by

Here Ky is the matrix operator

(Kp0)(5) = / ka(s/0)o(0)"L.

g

with kernels

T 1—2scos A+ s2’ T 1—2scosAm+ s
Hence, for all v € L?*[—A, A], we have
(I +Xp)v =TI + Kp)o. (3.42)

It can be shown, using Mellin integral transform techniques, that ||fJVCB|| r2,a] < 1 (see [8]).

Hence by Banach’s lemma I + K5 has a bounded inverse on L, [0, A] and the result follows
from (3.42). O

Corollary 3.6 and Theorem 3.7 can now be combined to obtain the well-posedness of (2.12),
via the Fredholm alternative. The proof requires the following assumption.

Assumption 3.8 The homogeneous version of (2.12) has only the trivial solution, i.e.

(I+Lp)a=0 = u=0, for ac L[—A,A]
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A proof of this assumption requires (a) uniqueness results for the PDE A* +v? — 1/4 on
the manifolds M and S*\{M U ¢} and (b) jump relations for various layer potentials on /.
These can be easily established when ¢ is smooth using, for example, the results in [12] to
obtain the jump relations (see [8]). It is expected that Assumption 3.8 will continue to hold
when ¢ has corners (just as the corresponding statement for the planar Helmholtz equation
also holds for corner domains) but we do not attempt to prove it here.

Corollary 3.9 For B =D or N, suppose that Assumption 3.8 holds. Then (I+EB)_1 erists
and is bounded on L*[—A, A].

Proof Using Theorem 3.7 the left-hand equation in (3.27) can be rewritten as
(I+(I+Xp) " (Lp—Kp)i=(I+XKgs) bs. (3.43)

Since, by Corollary 3.6, (I + JACB)‘l(EB — JACB) is a compact operator, it follows from the
Fredholm alternative that (3.43) has a unique solution. It also follows that the operator on
the left-hand side of (3.43) has a bounded inverse. Therefore,

||| 2j—an) < C|[(1 + fKB’)_leL?[—A,A] < C|bpl| 22—,
and the result follows. O

Remark 3.10 If the cone = contains more than one lateral edge, then the contour ( will
contain several corners. All the results of this subsection remain true in this case. In particular
the analogue of Corollary 3.9 ensures the well-posedness of (3.27), or equivalently (2.12) in
the multiple corner case. The proof is entirely analogous to the proof above, except that a
pair of coupled Mellin convolution equations local to each corner has to be considered. Such
systems are standard — see e.g. [9].

4 Numerical Method

In this section we shall discuss piecewise polynomial collocation methods for (3.27) and obtain
their convergence, using the results of §3. We also describe briefly its efficient implementation.
The performance of this scheme will be illustrated in §5.
The basic collocation scheme is entirely standard, so we will be brief. First introduce a
mesh:
A=< < .. <Tp <Tpp1 <...<x,=A. (4.1)

We assume here that ¢ has a single corner situated at x,, = 0 in parameter space and that
n = 2m. The case of several corners is similar (see Remark 3.10), and a smooth boundary
is straightforward (see [8]). We define I; = [x;_1, ;] and h; = x; — x;_,. We assume that for
each integer r» > 1, we have chosen, a priori, r points: 0 < & < &) < ... <& < 1. Then we
introduce the approximation space

ST-A Al = {ve L®[-A,A] 0], € P} | (4.2)

where P, denotes the set of polynomials of order r > 1 (degree r — 1). Also, on each I;, we
define the r collocation points x7; = x;_; + h;&} and we define the basis functions of S;[—A, A]
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H Mxi(z), when r > 1

ot —al
(bz](l’) = 1%2? 2] ik
Xl(x) when r=1 ,
for j = 1,...,7 and i = 1,...,n, where y; is the characteristic function on I;. Clearly

¢ij

I, € P, and ¢ij(xi’j’> = (Sii/éjj/.

In the collocation method for (3.27), we seek an approximate solution

Upn(s) = Z Z i ®is (),

i=1 j5=1

where 11;; are chosen so that the residual vanishes at the collocation points:

[t jr +ZZ”U/ EB(xz,j,,a)d>ij(0)d0 =33(z1:f,j,) yfor i =1,...0n, j'=1,...,r, (4.3)

i=1 j=1 1i

Equivalently, PR o~
(I+P.Lp)in = Pubs | (4.4)

where P, denotes the projection onto S’[—A, A], defined by interpolation at the collocation
points.

Here we restrict to the h method and assume r is fixed. In §5 we briefly discuss h — p
methods, where the polynomial degree on some subintervals may increase as the mesh is
refined. Thus we adopt the usual a priori mesh grading for this type of problem:

Ty = £(0/m)IA,  fori=0,...,m, (4.5)

where ¢ > 1 is the grading exponent.

The stability of the collocation scheme now follows from the analysis in §3 and known
results on the stability of collocation for Mellin convolution equations [13] — see also [9, 15].
To state this result we need to concept of a modification parameter ix > 0. Given such
a parameter, the corresponding modified collocation scheme is exactly the same as that
described in (4.3) when ix = 0. But when ix > 1, 1, is set to 0 on each of the subintervals
I ;i =m—ix+1,... , m+ix and (4.3) are required to hold only for i & {m—ix—+1,...m+ix}.
(In other words, the collocation solution is set to 0 on each of the 2ix subintervals nearest the
corner.) For notational convenience we shall continue to write the collocation equations as
(4.4), thus suppressing i* from the notation.

Theorem 4.1 For B = D or N there exists a modification parameter ix and a constant
C > 0 such that for all n sufficiently large,

|(I 4+ PuLp)vnllL2—a,a] > CllvnlL2[—a,a]

for all v, € ST[—A,A].
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Proof We shall show that, for each € > 0 there exists a modification 7% such that for n
sufficiently large

(T = Po)Evallezian < elloallzran) (4.6)

for all v, € ST[—A,A]. Then, since I + P, Ly = (I + Lp) — (I — P,)Lp, the required result
follows from standard operator theory and Corollary 3.9.
To prove (4.6), first we use the triangle inequality to obtain, for v, € ST[—A, A],

1T =P pvallo—an < 1= P)Kpvallzzan + 1T = Pu)(Lp = Kp)vall2oan. (A7)
Now recall that UADn projects to zero on the 2ix intervals nearest 0. Thus

(I = Pn)(Lp — :KB)UNH%Q[—A,A] < (L5 — JCB)vn||%2[xm_i*,xm+”]

+ (1= Pa) (L — K )vall22 (4.8)

AvA]\[:Um—i*;l’m-H*])'
Since (ﬁ 5—X ) is compact from L?[—A, A] to C[—A, A] the first term on the right-hand side
of (4.8) may be estimated by

(L5 —Kp)vall22 < 2 mria| (B = K)val3oeo, oo mnrg < O val[2

[Trm—insTmtin]

(4.9)
Moreover, introduce ‘JADI;; to denote the interpolation projector onto ST[—A, A] without mod-
ification (i.e. i* = 0). Then P¢ = P, on [—A, A]\[Zm_ix, Tmsix] and the second term on the
right-hand side of (4.8) may be estimated by ||(I — P¢)(Lp — JACB)vnH%Q[_A,A]. Since (I — P°)
is pointwise convergent to 0 on C[—A, A] and since Ly — Xp is compact from L?*[—A, A] to
C[—A, A] we then have

T —i% ;$m+i*]

(I = P0)(Lp = Kp)vall2-aa) < 0(U)lvallfoan)- (4.10)

By (4.7) - (4.10) we see that to prove (4.6) it is sufficient to prove it with L5 replaced by K.
To do this, we first employ the operators I and Ky defined in the proof of Theorem 3.7,
as well as the fact that the mesh (4.1) is symmetric about 0, to obtain nP,XKy = B,Kgll

where ~
~ P, 0
P,=( " o ).
(0 5.)
with P, defined as the restriction of P, to functions on [0,A].  Thus, we have

I+ ‘j)nﬂACB =171 + IFKB)H and the proof is complete if we show that for all ¢ > 0, there
exists a modification i* such that

10 = D)Koz < ellvallzon (4.11)

for all v,, € ST'[0, A]. However result (4.11) follows from the general results in [15] on numerical
methods for Mellin convolution equations. (See Theorem 3.1 there, and the remarks following
it. Note that £p and Ry both satisfy the conditions (A1) and (A2) of [15], with p = 2.)
See [17], [9], [13] and also [8] for more details about the approximation of solutions of Mellin
convolution equations. O
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Remark 4.2 The introduction of the parameter ix is solely a device to prove stability of the
collocation method for (2.12) when ( contains a corner. No unmodified practical collocation
method has ever been observed to be unstable. However the proof that these methods are stable
without modification has eluded researchers for 15 years. For this reason and to simplify the
presentation we assume that Theorem 4.1 holds for ix = 0 (i.e. no modification) for the
remainder of this section.

Theorem 4.1 implies that the collocation equation (4.4) is uniquely solvable for all n
sufficiently large. An easy manipulation using the equations (2.12) and (4.4) shows that

(I +P,Lp)(Pu—1u)=—-P,Lp(I —P,)u). Theorem 4.1 then implies

1Pt — Tl 221-na) < ClPuLs(I = Pp)il| L2 an (4.12)

After some technical manipulations using properties of L B = X B+ (E B— K p) it can be shown
that the right-hand side of (4.12) can be bounded by a constant multiple of ||(1 —P,)u||2(_4 A
(see [8]). Then the triangle inequality implies:

@ = Unll2i-an < CNT = Po)ull2-a,n)- (4.13)

Therefore to obtain convergence rates we need estimates for ||z — @ﬁ” r2(-a,a]- These of course
depend on the regularity of the solution. To describe this regularity we introduce the weighted
Sobolev space for an interval J C R. For £k € Nand o € R

L2*()) ={v: |z *D'v e L*(J), j =0,1,...,k},
equipped with the norm [[v|| 2, = Z?:o |27~ D7v]|2(y, (see [13]).

Examples 4.3
(i) The function
u(r) =C"+C"x|’, where 1/2 <6 <1, (4.14)

satisfies u(x) — C' € L2*[—A,A] for all k > 0 and o < 0 + 1/2.
(i1) The function
a(z) = Clz|’"t, where 1/2 <6 <1, (4.15)

satisfies u(x) € LEF[—A, A] for all k >0 and o < 6 — 1/2.

Remark 4.4 When we solve the Dirichlet problem for the Laplace equation in the region
interior to a planar polygon using the indirect boundary integral method, the solution of the
resulting integral equation has its principal singularity in the form (4.14), where the corner is
atx =0 and 0 = 1/(1 + |x|), where(1 — x)7 is the angle between the tangents at the corner
(x € (—1,1)\{0}). When we solve the Neumann problem with the same geometry again using
the indirect boundary method the density has its principal singularity in the form (4.15), again
with = 1/(1+ |x|) (see e.g [11], [17], [15]).

Since the integral operator in the spherical boundary integral equations has a principal
part which coincides with the Laplace integral operator we conjecture that the solutions of our
integral equations have the same principal singularity as identified in Examples 4.3 (i) and
(i1). The numerical results in §5 support this conjecture.
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Following Remark 4.4, in [8] we prove estimates for ||(I — P,,)d]| 12[—a,A] under assumptions
which encapsulate Examples 4.3(i) and (ii). Combining this with (4.13) the final result is (see

[8]):

Theorem 4.5 (i) Suppose that B = D and that the exact solution to (3.27) satisfies u —C" €
L2 [—=A, A] with 1 < o < 3/2, then for sufficiently large n the collocation method described by
(4.4) converges with error

[0 = Unllr2i-an = O[T = Ol p2r_y o) as 1= 00, (4.16)

provided the grading parameter ¢ > max{r/a,1}.

(11) Suppose that B = N and that the exact solution to (3.27) satisfies u € L%"[—A, A]
for some 0 < o < 1/2, then for sufficiently large n the collocation method described by (4.4)
converges with error

@ = Unp2p-a,a) = Cn7"|[Ull j2r_p o) as n— 00, (4.17)
provided the grading parameter q > r/c.

The implementation of the collocation method (4.3) requires the efficient calculation of
the stiffness matrix entries

Ly iy 3=/IEB($§/j/,0)d>ij(0)da- (4.18)

Each evaluation of the kernel Ly in (4.18) requires an evaluation of (the derivative) of the
Legendre function with complex index (see (3.28), (3.29)). We do this by integrating Leg-
endre’s differential equation using a Runge-Kutta method — details are in [8]. Thus efficient
quadrature methods for (4.18) are of the utmost importance. This is especially true when
we remember that (2.12) needs to be solved many times over (for different values of v on
the imaginary axis) in order to allow the approximate integration of (1.4). The key difficulty
in evaluating (4.18) is the singularity which arises when i’ = i. (This is strongest when I;
contains the origin in parameter space, corresponding to the corner on £.) In [8] a detailed
study of quadrature for (4.18) is carried out. Here we have room to mention only the most
useful result from [8]:

Theorem 4.6 Suppose the collocation points xi;, j =1,...,r, are chosen to be the r Gauss-
Legendre points on [0, 1], shifted to I;. Then we may approzimate (4.18) using Gauss-Legendre
quadrature based also at these points. If we do this for all i,i satisfying

dist(I/, I,) > hY/" 2, (4.19)
then the O(n™") convergence rate reported in Theorem 4.5 continues to hold.

Since ¢;; vanishes at all the points z7,, except k = j, the implementation of the rule in
Theorem 4.6 requires only one kernel evaluation and (4.19) shows that this can be done for
most of the matrix as the mesh is refined. It also turns out that even when (4.19) is not
satisfied, rules with O(log(n)) kernel evaluations can be employed and the O(n™") rate in
Theorem 4.5 remains unperturbed — for more details see §5 and also [8].
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Figure 4: The contour ¢ associated with a trihedral cone

5 Numerical Results

We shall illustrate the performance of the numerical method described above in the case of
the diffraction of acoustic waves by a trihedral cone. In the asymptotics literature this is an
unsolved canonical problem - i.e. it is a relatively simple geometry which often occurs in
applications, but there is no known closed form expression for the diffraction coefficients.

Our trihedral cone is determined by three rays which emanate from the origin and pass
through the points w,., € S?%, i = 1,2,3, which are specified by spherical polar coordinates
(6*,0), (*,2m/3) and (0*,47/3) respectively, where cos@* = 1/v/3. The conical scatterer =
has its surface composed of the three planar segments determined by each pair of rays and the
contour ¢ is made up of three smooth geodesic curves in S2, with each pair of smooth curves
meeting at an angle of 7/2 at one of the points w.,. The geometry is depicted in Fig. 4. The
contour /¢ is drawn in bold.

Throughout the computations we used collocation at the Gauss points of subintervals. For
the evaluation of the boundary integrals (4.18), we used Gauss quadrature at the collocation
points in the “far field”, i.e. when 4,4 satisfy (4.19). When (4.19) does not hold we increase
the number of quadrature points, d, logarithmically. More precisely, we choose d to be the
smallest integer satisfying

(r +1)log(n)
2log(2)

Note that for this geometry, when w,w’ lie on the same edge of the geodesic triangle ¢ then
Lp(w,w’) = 0. Hence one third of the matrix entries are zero. Included in these zero entries
are the integrals that occur when the observation point lies in the interval of integration. Note
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that our procedure uses only one kernel evaluation for most matrix entries, as mentioned in §4.
We shall see that our numerical results coincide with the theoretical predictions of Theorem
4.5.

Our first set of results illustrate the accuracy of methods for solving the integral equation
(2.12) (equivalently (3.27)) arising from the boundary value problem (2.6). For these tests we
set wy = —w,, and set the parameter v = 1.

The density @ in (3.27) is not smooth near the corner. In fact, in the case of the Dirichlet
problem, we expect from Remark 4.4 that there exists a constant C’ such that, 7 — C" € L2",
with o < 7/6. (This is because for the corners in this example y = 1/2, so § = 2/3 and hence
6 +1/2 = 7/6.) When Neumann boundary conditions are prescribed, we expect u € L>",
a < 1/6. So for the Dirichlet problem, piecewise constant approximation should yield optimal
O(n~') convergence (in the L? sense) on a uniform mesh (¢ = 1, c¢f. Theorem 4.5). On the
other hand for the Neumann problem we expect a rate of convergence close to O(n~/°) on a
uniform mesh.

To illustrate convergence, for each case we have computed an “exact” solution u* by using
piecewise linear collocation on a mesh with 498 nodes. (To obtain the “exact” Dirichlet
solution we grade the mesh towards the corners with ¢ = 2 and for the the “exact” Neumann
solution, since the optimal grading is rather severe, we only use a grading exponent ¢ = 3.
Recall the mesh is given in (4.5).) We computed the approximate L? error errl := ||a* — U]
using mid-point quadrature with respect to the mesh with n subintervals.

The results are given in Table 1. As expected, a convergence rate of close to O(n™!) is
observed for the Dirichlet problem and close to O(n~'/6) for the Neumann problem.

Table 1: Estimated errors for the piecewise constant collocation method for (3.27) on a uniform
mesh

Dirichlet Problem || Neumann Problem

n err? ratio err. ratio

24 | 9.957E-2 1.609E-3
48 | 5.285E-2 | 1.88 1.530E-3 1.05
96 | 2.472E-2 | 2.14 1.229E-3 1.24
192 | 1.074E-2 | 2.30 1.077E-3 1.14

384 | 4.992E-3 | 2.15 9.589E-4 1.12

As we have shown, mesh grading will improve the rates of convergence, (except in the
piecewise constant approximation of the Dirichlet problem case where optimal convergence
is obtained using a uniform mesh). Consider the Neumann problem. Because the Neumann
solution satisfies, @ € L?", with o < 1/6, it can be shown that with ¢’ < 6r a rate of
convergence of O(n~7/%) in the L? norm can be attained when a graded mesh is used with
grading exponent ¢ > ¢ for collocation onto piecewise polynomials of order r. We illustrate
the correctness of this result with ¢ = 3. The results are in Table 2.

Here we find that the Neumann problem now converges with rate close to O(n~'/?), as
expected. The Dirichlet problem now appears to converge with a superoptimal rate, but this
could be expected to subside back to O(n~!) asymptotically. These results indicate that our

integral equation solver is working as predicted by the theory.
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Table 2: Estimated errors for the piecewise constant collocation method for (3.27) on a graded
mesh, q=3

Dirichlet Problem || Neumann Problem
n err! ratio errl ratio
24 | 1.257E-2 6.307E-3
48 | 4.948E-3 | 2.54 6.106E-3 1.03
96 | 2.147E-3 | 2.30 4.744E-3 1.29
192 | 7.842E-4 | 2.74 3.553E-3 1.34

384 | 2.442E-4 | 3.21 2.738E-3 1.30

Our next set of results illustrate the convergence of the approximate solutions to the
spherical boundary-value problem (2.6), (2.7). We consider the same problem as above with
wy = —w,, and v = 7. In Tables 3 and 4, we tabulate the errors in approximate solutions to
(2.6), (2.7) obtained by substituting wu,(p(s), ) = u,(s) into (2.8) (in the Dirichlet case) and
(2.10) (in the Neumann case) and computing the resulting integral by the Gauss quadrature
rule based at the points used in the computation of %,. For illustration we have chosen to
observe the solution at the particular observation direction w = (0,0, —1). The error err? is
computed by |¢! (w,wq, V) — §"(w,wq, v)| where §" is computed with a large n (= 330) and
q=3.

The results illustrate the superconvergence of the method (well-documented in the case
of planar problems (e.g. [9, 2, 15]), with close to O(n™2) convergence attained for ¢ = 3.
The extreme gradings needed for optimal convergence of the density may not be needed for
the potential, and in fact better than optimal convergence may be obtained because of the
smoothness of the fundamental solution away from the boundary /.

We emphasise that the results in Tables 1 - 4 illustrate not only the convergence theory
in §4, but also show that the algorithm used to compute the Legendre function with com-
plex index (by applying a Runge-Kutta method to Legendre’s differential equation), which is
described in detail in [8], is working in a stable manner.

Table 3: Estimated errors for the potential (2.8) using the piecewise constant collocation
method (Dirichlet boundary conditions)

Uniform mesh, q=1 | Graded mesh, q=2 | Graded Mesh, q=3
n err? ratio err? 2

. . ratio err; ratio
12 | 3.12E-4 3.16E-4 4.69E-4
24 | 1.35E-4 2.3 1.35E-4 2.33 1.67E-4 2.8
48 | 5.46E-5 2.5 4.19E-5 3.23 6.13E-5 2.7
96 | 2.10E-5 2.6 1.31E-5 3.21 1.98E-5 3.1

192 | 8.51E-6 2.5 3.78E-6 3.46 5.61E-6 3.5

Our experiments so far have covered only low-order methods but results for higher order
are found in [8]. An important point is that, since only one kernel evaluation is needed for
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Table 4: Estimated errors for the potential (2.10) using the piecewise constant collocation
method (Neumann boundary conditions)

Uniform mesh, q=1 | Graded mesh, q=2 | Graded Mesh, q=3

n err> ratio err> ratio err> ratio

12 | 6.25E-5 3.74E-5 4.45E-5
24 | 2.71E-5 2.3 1.03E-5 3.64 8.14E-6 3.5
48 | 1.11E-5 24 2.92E-6 3.52 3.07E-6 2.7
96 | 4.53E-6 2.5 7.62E-7 3.82 8.63E-7 3.6

192 | 1.81E-6 2.5 1.95E-7 3.91 2.26E-7 3.8

most matrix entries independent of the order of the basis functions, the cost of implementation
does not increase much as the order of the basis functions is increased. This suggests that the
h — p version of the boundary element method should be very competitive for this application
and our next set of results concern this method.

For fixed o € (0,1) we define a geometrically graded mesh on [—A, A] by

Tonti = o™, — X = 0 TA 1=1,...,m T = 0. (5.1)

We seek an approximate solution on the space S’ defined in (4.2). A typical distribution of
orders r in the h — p version of the algorithm would be :

ri=[(m+1—=0pfori<m, r;=[(i—m)p| fori>m+1

for some fixed parameter 5 > 0, where, for € R, [z]| denotes the smallest integer which is
strictly greater that x. On the intervals I;, ¢ = m, m + 1 the approximate solution is set to
zero. Thus, on intervals close to the corner we approximate the solution on small subintervals,
using low order methods, while further away we use higher order on larger subintervals. The
maximum order increases linearly with m and hence also with n.

By making use of the fundamental results of Elschner ([14]) for the Laplace case, and
combining these with our results in §3, it can be shown [8] that the h — p method is stable.
By making further assumptions about the regularity of the solution to (3.27), it can be shown
that the h — p method converges exponentially. In Fig. 5 we illustrate the convergence of
the h — p method, compared with the piecewise constant and piecewise linear cases for the
potentials (2.8) arising from the Dirichlet problem with wy = —w.,, w = (0,0, —1) and v = i.

In these computations, the parameter values o = 0.25 and 3 = 0.5 were employed in the
h — p method. For these results we naively used the r;-point Gauss-Legendre rule to calculate
the matrix entries Ly j ;;, i.e. in this case all of the matrix entries were computed using one
kernel evaluation. Observe the exponential convergence of the h — p method in Fig. 5.

Finally, in order to illustrate the computations of the diffraction coefficients for this geom-
etry, we shall show graphically how the computed f(w,wy) in (1.4) varies for three different
incidence directions wg, and many observation directions w ranging over a subdomain of M.
In this illustration we restrict to the Dirichlet problem, we consider the incident directions
given in spherical polar coordinates by

wo = (m,0), (117/12,0), and (57/6,0), (5.2)

24



-6 T T T T T T

T
= hp-version
v+ h-version, r=1
= = h-version, r=2

log(error)

20 I I I I I I I
2 2.5 3 3.5 4 4.5 5 5.5 6

log(degrees of freedom)

Figure 5: Errors for the potential (2.8) for the h-version and h-p-version of collocation

and a range of observation directions
w=((r—0),¢), with 0<0<7/3, 0<¢ <27, (5.3)

In Fig. 6 we illustrate how |f(w,wy)| varies as a function of 6 and ¢, for each of the
three different incident angles. The quantity |f(w,wq)| is plotted on the x3 axis against the
projection of w onto the zyx9-plane given by: w = (7 — 6, ¢) — (0 cos ¢, §sin ¢).

Observe in Fig. 6 that when wg = (7, 0), i.e. the incident wave propagates in an “axial”
direction, then the magnitude of the diffraction coefficients is smallest in the backscattering
direction. This is in qualitative agreement with results for the circular cone [3]. Also note
when wy = (7,0) that if we fix # > 0 then the distance between w = (7 — 0,¢) and the
boundary of the nonsingular region, given by 6;(w,wy) = 7 — see (2.2), is smallest when
¢ =0,27/3,47/3. At the singular directions f is infinitely large hence the three peaks appear
in Fig. 6.

As we vary the angle of incidence the position of the singular directions will vary. In
particular it can be shown from (2.2) that for wg = (117/12,0) and (57/6,0), and fixed 6 > 0
the distance between w and the singular directions is smallest when ¢ = 0. This explains the
faster growth, as 6 increases, of |f(w,wq)| along ¢ = 0 (i.e. along the line x5 = 0).

The numerical method used for these computations was the piecewise constant collocation
method with n = 48 subintervals on a uniform mesh (c¢f. Theorem 4.5). To produce each
picture in Fig. 6 the density in the integral equation (3.27) was approximated for 80 values of
v. Then using these densities we computed the solution to the BVP (2.6), (2.7) for the same
80 values of v at ~ 800 observation points w. Therefore ~ 64,000 evaluations of the double
layer potential were required. The diffraction coefficient f was computed from formula (1.4)
by truncation to a finite domain of integration and then applying the trapezoidal rule. The
truncation points are chosen according to an analysis of the asymptotics of the integrand in
(1.4) and are designed to yield an overall method which converges at the same rate as the
method for computing ¢" (see [8]).
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A colour pdf file of this paper including Fig. 6 may be viewed at:
http://www.maths.bath.ac.uk/~igg/diffraction.pdf .
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Figure 6: Diffraction coefficients for a trihedral cone
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