A WAVENUMBER INDEPENDENT BOUNDARY ELEMENT
METHOD FOR AN ACOUSTIC SCATTERING PROBLEM*
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Abstract. In this paper we consider the impedance boundary value problem for the Helmholtz
equation in a half-plane with piecewise constant boundary data, a problem which models, for example,
outdoor sound propagation over inhomogeneous flat terrain. To achieve good approximation at high
frequencies with a relatively low number of degrees of freedom we propose a novel Galerkin boundary
element method, using a graded mesh with smaller elements adjacent to discontinuities in impedance
and a special set of basis functions so that, on each element, the approximation space contains
polynomials (of degree v) multiplied by traces of plane waves on the boundary. We prove stability and
convergence, and show that the error in computing the total acoustic field is O(N_("'H) logl/2 N),
where the number of degrees of freedom is proportional to N log N. This error estimate is independent
of the wavenumber, and thus the number of degrees of freedom required to achieve a prescribed level
of accuracy does not increase as the wavenumber tends to infinity.
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1. Introduction. High frequency scattering problems are of enormous inter-
est to the mathematics, physics and engineering communities, with applications to
electromagnetic scattering, radar problems, high frequency acoustics and geophysical
waves. Although these problems have a long pedigree, their numerical solution con-
tinues to pose considerable difficulties. Many problems of scattering of time-harmonic
acoustic or electromagnetic waves can be formulated as the Helmholtz equation

(1.1) Au+ k*u =0,

in R1\Q, d = 2,3, supplemented with appropriate boundary conditions. Here € is
the scattering object and k > 0 (the wavenumber) is an arbitrary positive constant,
proportional to the frequency of the incident wave.

Standard schemes for solving (1.1) become prohibitively expensive as k — oc.
For standard boundary element or finite element schemes, where the approximation
space typically consists of piecewise polynomials, the number of degrees of freedom per
wavelength must remain fixed in order to maintain accuracy,with the rule of thumb in
the engineering literature being a requirement for ten elements per wavelength. Often
in applications this can result in excessively large systems when the wavelength is small
compared to the size of the obstacle. These difficulties have been well documented,
see for example [28, 29, 31]. For the finite element method the situation is arguably
worse in that additional pollution effects are known to be important [5], these being
phase errors in wave propagation across the domain, so that the degrees of freedom
per wavelength need to increase somewhat to retain accuracy as k increases.

The development of more efficient numerical schemes for high frequency scatter-
ing problems has attracted much recent attention in the literature. In the case of
boundary element methods, a great deal of effort has focused on the fast solution of
the large systems which arise, using preconditioned iterative methods (e.g. [14]) com-
bined with fast multipole (e.g. [16, 17]) or fast Fourier transform based methods (e.g.
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[7]) to carry out the matrix-vector multiplications efficiently. The reduction in the
computing cost achieved by the use of these schemes increases the upper limit on the
frequency for which accurate results can be obtained in a reasonable time. However,
as the size of the system still grows at least linearly with respect to k this upper limit
is not removed altogether.

An increasingly popular approach in the literature for higher frequencies is to use
either a finite element or a boundary element method in which the approximation
space is enriched with plane wave or Bessel function solutions of (1.1), in order to
represent efficiently the highly oscillatory solution when k is large. This idea has
been applied to both finite element [26, 20] and boundary element schemes [28, 29],
and other related methods include the microlocal discretisation approach [18; 16, 1],
the ultra weak variational formulation [8] and the partition of unity method [25].
Promising numerical results have been reported for all these methods, but most are
lacking in mathematical analysis, specifically with regard to how the error estimates
depend on the wavenumber k.

The first method for which the dependence of the error estimates on the wavenum-
ber k was specified is a microlocal discretisation approach for plane wave scattering by
smooth convex obstacles in which a standard Galerkin boundary element method is
applied to the ratio of the scattered field to the incident field [1]. The error estimate in
this case is that the relative error in the best approximation from a boundary element
space of piecewise polynomials of degree < v is O(h”) 4+ O((hk'/?)**1). This result
is clearly better than the (at least) linear dependence discussed previously. However
the number of degrees of freedom needed to maintain accuracy is still predicted to
grow like k'/3 as k increases, and moreover the analysis does not guarantee that the
Galerkin method solution is close to this best approximation in the limit as k — oc.

More recently, in [12], the authors and Ritter proposed a new high frequency
boundary element method for a problem of acoustic scattering in 2-D by an inho-
mogeneous impedance plane, for which it was shown that the number of degrees of
freedom needed to maintain accuracy as k — oo grows only logarithmically with &.
This appears to be the best theoretical estimate to date for any scattering problem in
terms of the dependence on the wavenumber. In this paper we will be concerned with
the numerical solution of the same problem, proposing modifications of the numerical
scheme of [12]. For our modified scheme we are able to show, employing somewhat
more elaborate arguments than those of [12], that for a fixed number of degrees of
freedom the error is bounded independently of the wavenumber k. To our knowledge,
this is the first such result for any scattering problem.

The problem we will consider is one of acoustic scattering of an incident wave by
a planar surface with spatially varying acoustical surface impedance. This problem
has attracted much attention in the literature (see for example [9, 10, 11, 13, 19, 21]),
both in its own right and also as a model of the scattering of an incident acoustic or
electromagnetic wave by an infinite rough surface [6, 30]. In the case in which there is
no variation in the acoustical properties of the surface or the incident field in some fixed
direction parallel to the surface, the problem is effectively two-dimensional. Adopting
Cartesian coordinates 0x1xox3, let this direction be that of the x3-axis and the surface
be the plane 22 = 0. Assuming further that the incident wave and scattered fields
are time harmonic, the total acoustic field u* € C(U) N C?(U) then satisfies (1.1) in
U :={(z1,72) € R? : 15 > 0}, supplemented with the impedance boundary condition

Out

(1.2) s

+ikfu' = f,  onT :={(21,0):z; € R},
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with f = 0, where k = w/¢ > 0. Here w = 2mpu, p is the frequency of the incident
wave and c is the speed of sound in U. The acoustic pressure at time ¢, position
(z1,79,73) is then given by Re(e “!ul(z)), for x = (21,22) € U.

In outdoor sound propagation, the relative surface admittance 5 depends on the
frequency and the ground properties, and is often assumed in modelling to be piecewise
constant, and constant outside some finite interval [a, b] (see for example [10, 20, 22]),
with § taking a different value for each ground surface type (grassland, forest floor,
road pavement, etc. [4]). Thus, for some real numbers a = tg < t; < ... < t, = b, the
relative surface admittance at (z1,0) on T is given by

(1.3) Bla1) = { ﬁi: e %{Etlo’,tgii-

If the ground surface is to absorb rather than emit energy, the condition Ref > 0
must be satisfied. We assume throughout that, for some € > 0,

(1.4) RefB.>€, ReBj>e, B <€, |Bjl<et, j=1,....,n.

For simplicity of exposition, we restrict our attention to the case of plane wave
incidence, so that the incident field u’ is given by u’(z) = explik(z; sin§ — x5 cos )],
where § € (—7/2,7/2) is the angle of incidence. The reflected or scattered part of the
wave field is u := ut —u’ € C(U) N C?(U), and this also satisfies (1.1) and (1.2) with

(1.5) f(z1) == ike*®1500 (cos§ — B(z1)), 1 €R

In figure 1.1 we show scattering by a typical impedance plane. In this particular
example, the surface admittance 3 is given by

B(z1) = { 0.505 — 0.31, x1 € (—5X,5)],

! 1, z1 € R\(=5),5)],
where A = ¢/pu = 27 /k is the wavelength. There are discontinuities in impedance at
x1 = —5X and at &y = 5. The incident plane wave (§ = 7/4 in this example) can
be seen in the top left and the scattered wave in the top right of figure 1.1. This
scattered wave is a combination of reflected and diffracted rays. The diffracted rays,
propagating radially from the points (—5X,0) and (5, 0), can be seen more clearly in
the bottom right of figure 1.1, where we have subtracted from the total field u’ the
(known) total field in the case that g = 1.

To achieve good approximations with a relatively low number of degrees of free-
dom, a boundary element method approach was used in [12] with ideas in the spirit
of the geometrical theory of diffraction (GTD) being used to identify and subtract off
the leading order behaviour (namely the incident and reflected rays) as k — oo. The
remaining scattered wave (consisting of the rays diffracted at impedance discontinu-
ities as visible in the lower right corner of figure 1.1) can then be expressed (on the
boundary I') as the product of the known oscillatory functions e***1 and unknown
non-oscillatory functions denoted as f]?t. Rigorous bounds were established in [12] on
the derivatives of the non-oscillatory functions fjjE both adjacent to and away from
discontinuities in impedance. Using these bounds a Galerkin method was developed,
using a graded mesh with elements very large compared to the wavelength away from
discontinuities in /3, in order to take advantage of the smooth behaviour of fji away
from these points, and a special set of basis functions so that on each element the
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F1G. 1.1. Acoustic scattering by an impedance boundary.

approximation space consists of polynomials (of degree v) multiplied by e*#?1 5o as
to obtain a piecewise polynomial representation of the non-oscillatory functions fji.
Using this approach, it was shown in [12] that the error in computing an approxima-
tion to uf|r on [a,b] in the Ly norm is O(log” /% (k(b— a))M~+1)) where M is the
number of degrees of freedom.

In this paper we consider the same problem as in [12], and use a similar approach.
We again subtract off the leading order behaviour as k& — oo on each interval, and
again we express the scattered wave as a product of oscillatory and non-oscillatory
functions. However, here (in §2) we prove sharper bounds on the non-oscillatory
functions fjjE away from impedance discontinuities. Using these stronger bounds,
in §3 we propose a similar Galerkin method to that in [12], but with a different
approximation space. As in [12] this consists of polynomials (of degree v) multiplied
by e*#21 hut unlike in [12] here the choice of whether to use et#71 or e~##1 on
each element is dictated by how close the relevant element is to each impedance
discontinuity, and the graded mesh is chosen in a different way so that when k is large
compared to N we do not discretise the entire domain. This is the key to achieving
a convergence rate independent of the wavenumber.

In §3 we present an error analysis for this new approach, and we show that the er-
ror in computing an approximation to u!|r on [a, 8] is O(N~®+1 log'/? | min(N, k(b—
a))|), in the Ly norm, where the number of degrees of freedom is proportional to
Nlog | min(N, k(b — a))|. As min(N, k(b — a)) < N, this error estimate shows that
the error is bounded independently of & for a fixed number of degrees of freedom. We
believe this to be the first result for any scattering problem where for a fixed discreti-
sation the error does not grow at all as the size (in terms of number of wavelengths)
of the scattering object to be discretised tends to infinity. Moreover, for fixed k, as
N — o0, the extra logarithmic dependence on N of the error estimate and the number
of degrees of freedom disappears, and we retain the same asymptotic convergence rate
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as in [12].

Whereas in [12], results were only proved regarding the approximation of u!|r,
here we also show, in theorem 3.6, that the total acoustic field at any point z € U
can be computed to a similar order of accuracy. Finally in §4 we discuss the practical
implementation of our approach, and we present some numerical results demonstrating
that the theoretically predicted behaviour is achieved.

2. Integral equation formulation and regularity of the solution. In the
rest of this paper, v is the degree of the polynomial approximations used in the
Galerkin method described in §3 below, and ¢, in the range 0 < € < 1, is the constant
in the bound (1.4). Throughout C denotes an absolute constant, and C,, C, and C, ,
denote constants depending only on €, v, and both € and v, respectively. Each is not
necessarily the same at each occurence.

We begin by stating the problem we wish to solve precisely and reformulating
it as an integral equation. For H > 0, let Uy := {(x1,22) : 23 > H} and 'y :=
{(z1,H) : z1 € R}. To determine the scattered field u uniquely we impose the
radiation condition proposed in [9] that, for some H > 0, u can be written in the half
plane Ug as the double layer potential

() (pp
(2.1 ute) = [ I o) dse), @ € U

for some density ¢ € Loo(T'y), where Hél) is the Hankel function of the first kind of
order zero. The boundary value problem that we wish to solve for u is thus as follows:

Boundary Value Problem. Given k > 0 (the wavenumber), 6 € (—n/2,7/2) (the
angle of incidence) and B given by (1.3), find u € C(U) N C*(U) such that:
(i) u is bounded in the horizontal strip U\Upy for every H > 0;
(i) u satisfies the Helmholtz equation (1.1) in U;
(i4i) u satisfies the impedance boundary condition (1.2) on T (in the weak sense
explained in [9]), with f € Loo(T') given by (1.5);
(iv) u satisfies the radiation condition (2.1), for some H > 0 and ¢ € Loo(TH).

For g* € C with Ref* > 0 let G« (z,y) denote the Green’s function for the
above problem in the case of constant relative surface impedance, which satisfies (1.2),
with 8 = * and f = 0, and the standard Sommerfeld radiation and boundedness
conditions. Explicit representations and efficient calculation methods for G- are
discussed in [11]. We shall require later the following bounds on G- [12, (2.9),(2.10)],
which hold provided Ref* > € and |8*| < e !:

Ce(]. +k$2)
(klz —y])*/>’
(2.3)  |Gp-(z,y)] < Cc(1 —log(klz —y)), z€U,y€eT, 0<klz—y/ <L

(2.2)  [Gp(2,9)] < zelU, yel, z#y,

The following result is shown in [12]:
THEOREM 2.1. If u satisfies the above boundary value problem then

24) ()= / G- (2,9)(K(B(y) — B )u(y) — f@)) ds(y), z€T.

Conversely, if ulr € BC(T') (the space of bounded and continuous functions on I")
and u satisfies (2.4), for some (* with Ref* > 0, then u satisfies the above boundary
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value problem. Moreover, equation (2.4) has exactly one solution with u|lr € BC(T),
and hence the boundary value problem has exactly one solution.

We denote the (known) solution of the above boundary value problem in the
special case f = (* by ug+, and the corresponding total field by ufg = ul + ugs.
Then it is easily seen [12] that ug- is the plane wave ug-(x) = Rg~(6) exp[ik(z1 sinf+
x2 cos 0)], where Rg- (6) := (cos §—3*)/(cos8+/*) is a reflection coefficient. Moreover,
it is shown rigorously in [12] that u! satisfies

(2.5) u'(z) = uj. (2) + ik /F G (2,y)(B(y) — B")u'(y) ds(y), z€T.

We note that the approximate and numerical solution of this integral equation has
been extensively studied, see for example [27, 21, 10, 19, 13, 12].

To make explicit the dependence on the wavenumber k in the results we obtain it
is useful to introduce new, dimensionless variables. Thus, define ¢(s) := u?((s/k,0)),
P+ (s) := uf.((s/k,0)), and ks-(s) := Gp-((s/k,0),(0,0)), s € R Then (2.5) re-
stricted to I is the following second kind boundary integral equation for ¢:

@0) 6l =var(s)+i [ k(s — OB/ - F)o0) AL, sER

— 0o

It is the main concern in the remainder of the paper to solve this equation nu-
merically in the case when * = .. Clearly,

(2.7) s (s) = (1+ R (6))e* "7,

and it is shown in [12], using the representation for G- in [11], that

. *2i|s| oo —1/2 —|s|t
_ o p*e t " ifs|(1-ay)
(2.8)Kp+(s) = 2HO (Is]) + - /0 2 2 ) dt + Cg-e +

(2.9) =el*lRg.(s), s€R\{0},

where a4 := 17 (1 — 8*2)2, with Re{(1 — 8*2)1/2} > 0,

*

(way ImpB* < 0,Re(ay) <0,
sapoyes ImBT <0,Re(ay) =0,
0, otherwise,

CB* =

and

- 1 * Ir%(lrl_21)% —r|s —ils|a
(210) h}ﬁ* (S) = ;A me ‘ |d’l"+0[—}*6 ‘ | Jr, S € ]R\{O}

Clearly the only dependence on k in the known terms in (2.6) is in the impedance
function S(t/k). We shall see shortly that the oscillating part of xs-(s) is contained
in the factor el*l in (2.9), &s-(s) becoming increasingly smooth as s — +00.

In view of (1.3), if we set 8* = . in (2.6), the interval of integration reduces to
the finite interval [@, b], where @ := ka = ktq, b := kb = kt,,. Explicitly, (2.6) becomes

b

(2.11) ¢(s) = ¥s.(s) +i/ k. (s —1)(B(t/k) = Bo)o(t) dt, s €R,

a
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with 15, and kg, given by (2.7) and (2.8) respectively with * = .. This integral
equation is studied, in the case . = 1, in [9]. From [9, theorem 4.17] it follows that

(2.12) [9llcc < Cellthrlloc = Ce[1 + R1()] < Cc cosb.

As in [12], and as discussed in the introduction, our numerical scheme for solv-
ing (2.11) is based on a consideration of the contribution of the reflected and diffracted
ray paths in the spirit of the GTD. In particular, to leading order as kK — oo, on the
interval (t; 1,t;) it seems reasonable to suppose that the total field ¢ ~ 1g;, the
total field there would be if the whole boundary had the admittance ; of the in-
terval (tj_1,t;), given explicitly by (2.7) with 8* = ;. In fact, for s # t; := kt;,

j=0,...,n, it follows from theorem 2.3 below that ¢(s) — ¥(s) as k — oo, where
Vs, (), s€(tj—1,t], j=1,...,n,

2.13 v = J 207

( ) (S) { wﬁc (S); s € ]R\(to,tn]

In our numerical scheme we compute the difference between ¢ and ¥, i.e.
(2.14) D(s) :=P(s) —V(s), s€R

which may be thought of as the correction to the leading order field due to scattering
from impedance discontinuities. Clearly, from (2.11) we have that

(2.15) ® =V + K9,

where \Ilgc € Lo (R) is given by \Izgc =15, — ¥+ KgC\I!, and

b
Koy(s) =i / (s — )(BE/E) — Bo)x(t) dt.

Equation (2.15) will be the integral equation that we solve numerically. By setting
B* = f; in (2.6) we obtain explicit expressions for ® on each subinterval, namely

(216) (D(S) = eisf;“(s - fj_l) + e_isf]-i(fj - S), EXS (fj_l,fj], ] = 1, R 1N

where for j = 1,...,n, f;r,f; € C[0, 00) are defined by

(2.17) [ = / T fog, (1 +tj_1 — t)e i(B(t/k) — B;)e(t) dt,

— o0

Q1) = ks, (6= T+ D)S(B(R) — By)é(0) dt,

t;

with &g; given by (2.10) with g* = ;. Similarly, from (2.11),

e ft (s—1tn), s>t
— o n+1 - njs N’I’lﬂ
(2.19) D(s) { (g — 5), s < o,

where f;[+1a fo are given by (2.17), (2.18) respectively, with By := §. and fp41 := Be.

The first term in (2.16) can be viewed as an explicit summation of all the diffracted
rays scattered at the discontinuity in impedance at t;_; which travel from left to
right along (t;_1,t;). Similarly, the other term in (2.16) is the contribution to the
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diffracted field diffracted by the discontinuity at ¢;. In the remainder of this section,
so as to design an efficient discretisation for ®, we investigate in detail the behaviour
of the integrals fji. As a first step, we prove the following bounds on |R(BT)(S)|, for
m=0,1,..., s € (0,00), which were stated without proof in [12].

LEMMA 2.2. Suppose that ReB* > ¢, |3*| < e ! hold for some € > 0. Then, for
m =0,1,..., there exist constants c,,, dependent only on m and €, such that,

y cm(14+|logs|), m =0,
K < enlLE s b =0 o <s <,

|Rgf)(s)| < epsTETm, for s > 1.
Proof. First, we define

21/2(2‘—2i)1/2 Zl/Q(Z—Qi)1/2

22 — 2z — B2 (z—iay)(z —ia_)’

(2.20) F(z):= z € C,

where Rez!/2, Re(z—2i)1/2 > 0 and a4+ = 1F/1 — 3*?, as before, with Rey/1 — ** >
0. Then F(z) has simple poles at z = ia4 (which may lie near the real axis if Rea is
small), and z = ia_ (which cannot lie near the real axis as Rea_ > 1). Recalling (2.10)
we then have, at least provided Reas # 0 or Imay > 0, so that the pole at ia4 does
not lie on the positive real axis,

m 1
(2.21) |@J@ng; , 5>0.

oo
/ F(r)yr™e " dr| + |C’5*afe1m&+s
0

Now, since Ref* > ¢, it is easy to see that Imay = 0 if and only if §* € [e, 1],
and in this case Rea; > 1 —vV1—¢€2 = /(1 + V1 —¢€2) > €2/2. We thus define
Se == {B* : ReB* > ¢,|*| < e ! ,Rea, < €2/4}. Then S, is closed and bounded,
and |Tma, | and |\/1 — 8*?| are both continuous and non-zero on S,. Thus, for some
n>0,

(2.22) Iméay| >n and ‘\/ 1-p+2

for all g* € S..

Next, we note that if Reay > 0 then Cg« = 0 while if Rea < 0 then g* € S, so
that (2.22) holds. Moreover, if Cg« # 0 then Imf* < 0 and so Imay < 0. Since also
o] <1414 €2, we see that

>,

|CB*&TeIm&+S| <Cee™, s>0.
We turn to bounding the first term on the right hand side of (2.21). To do this
we consider the two cases |Redy| > €?/4 and |Rea| < €2 /4 separately.
First, suppose |Rea| > €2/4. Then
(2.23) |F(r)| < Cr'/?, r>0,
and thus

(2.24)

/ F(r)yrme " dr
0

< Ce/ rmH 2o dr < O T (m+3/2)s ™32 s> 0,
0
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where T" is the Gamma function (see eg. [2, (6.1.1)]). This bound suffices when s > 1,
but for 0 < s < 1 we need a sharper bound.

We proceed by establishing bounds on the m*" derivatives of the first two terms
on the right hand side of (2.8), for 0 < s < 1. It can easily be deduced from the power
series representations for the Bessel functions (eg. [2]) that there exist constants C},
j=0,...,such that, for 0 < z < 1,

(2.25) |Hg" (2)] < Co(1 + ] log 2]),
dm

2.2
(2.26) o

H ( )‘gcmzm, m=1,2,....

Next note that, for 0 < s < 1, the mt* derivative of the second term in (2.8) has
absolute value not more than

(2 27) 6*2 /oo (i _ t)mefstt71/2 dt i /oo (1 + t2)m/2€7stt71/2 dt
. T Jo (t—2i)1/2(t2 —2it—ﬂ*2) ™ Jo (t2+4)1/4|(t—i&+)(t—id_)|
1 )
(228) S Ce |:/ t71/2 dt+/ tmflefst dt:|
0 1
(1 —1logs), =0,
(2.29) < { G aATOs™ w12

Combining (2.25), (2.26) and (2.29) and recalling (2.9) the result follows.

Now we consider the case 0 < Rea; < €2/4 (the proof for the case —e?/4 <
Rea; < 0 is similar). As # € Se, (2.22) holds. If Ima; > 0 then the bounds (2.23)
and (2.28) hold and we proceed as above. If Ima; < 0 however, F(z) has a pole
at z = iay with Re(iay) > 1, 0 < Im(iay) < €2/4. To bound the integrals on
the left hand side of (2.24) and (2.27) in this case uniformly in 8* we first deform
the path of integration. Define T', to be the semicircle, centre (—Ima,,0), radius
7 := min(1/2,7), lying in the lower half plane. (Note that by (2.22) Rez > 7/2 for
z € T..) Let 7. = [0, —Imay —n/2]U[—Imay +1/2, 00). Then, by Cauchy’s theorem,
it follows from (2.21) that, for Reas > 0,

/ F(r)yrme™"dr +/ F(r)yrme™"dr|,
Ye T

By continuity arguments, taking the limit Rea, — 07 in (2.30), equation (2.30) holds
also for Reas = 0. For r € ~, the bound (2.23) holds, and so the integral over . is
bounded by the right hand side of (2.24). Further,

_(m 1
(2.30)  |&5(s)] < =

™

s> 0.

/ F(r)rme " dr
I

_n me-Ts —ns/2
< 21:33{|F() | < Ce )
so we obtain the required bound for s > 1. To obtain the desired bound for 0 < s <1
we proceed as in the case |[Reda| > €2/4, but deforming the path of integration as
above to bound the left hand side of (2.27). O

The following result is a slight sharpening of [12, theorem 2.6], obtained by com-
bining the bounds in lemma 2.2 and (2.12) with the representations (2.17) and (2.18).

THEOREM 2.3. Suppose (1.4) holds for some e > 0. Then, forr >0,j=1,...,n,
m=0,1,..., there exist constants c,,, dependent only on m and €, such that

‘fi ‘<cmcosﬂE (r),
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{ l—logr
=r

%_m, forr > 1.

where

, for0<r <1,

333
AVARI!
N = o

Remark. Using the identical argument it can easily be shown that |f," +1(m) ()],

|f(;(m) (r)] < emeos8En(r), r > 0, for m = 0,1,..., where ¢, is the same constant
as in theorem 2.3.

The design of our numerical scheme is based on the following sharper bound on
|fi(r)| when r > 1.

THEOREM 2.4. Suppose (1.4) holds for some ¢ > 0. Then forr >1,j=0,...,n,

r—3/2p3

a0l <el

Proof. First we consider f; (r). Recalling (2.14), for j = 0,...,n, f; (r) =
I (r) + Ix(r), where

L) = / ko, (= T + )M i(B(E/R) — B,) U (1) dt,
t;
B i= [ (= i+ )30/ - 5)B(0) .
t
We begin by establishing a bound on I;. Recalling (2.13) and (2.7),

n

m
L(r)= ) i(Bn~ ﬁj)/ i, (t— £ +7)(1+ Rg,, (0))e" ™+ dt

m—jt1 T

+i(Be — ﬂ])/ g, (t — fj +7)(1 4 Rg, (9))eit(sin 0+1) 44,
tn

Integrating by parts,

n= Y Cn B RO ([o oy ppemosn] "

i sinf + 1

tm e
— / kbj (t—1;+ r)elt(in0+1) gy

tm—1

+

(Be — B;)(1 + Rs,(9)) <[7€5J- (t—F;+ r)eitin 9+1)] e

sinf + 1 T

_/ Ry (t— T + r)eitCin 0+ dt> _
{ 2

n

Now from lemma 2.2, for r > 1

ig; (tm — 1 +r)| < Ce(tm — 15 +r) 32 <Car 32 m=j,...,n.
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Thus, noting that |1+ Rpg,, (8)| = |2 cos8/(cos 8+ f)| < Cc cosf and |, — B;] < 2/,
and using lemma, 2.2 again to bound R’Bj, we have, for r > 1,

1—9 o0
IL(r)| < CGM [r3/2 +/
t;

il (t—1; ‘dt
sinf + 1 HBJ( i) ]

r=3/2n cos @

. < Ce—
(2.31) <@ sinf + 1

It now remains to establish a bound on I>. Recalling (2.16) and (2.19),

n
(2.32) L) <2 | JL+ > (Th+T.) ],
m=j+1
where
tm ~ ~
(2.33) T = / R, (t — E + IS5 — F)] d,
tm—1
i‘m ~ ~
(2.34) Jr = / ks, (t — T + )| fm (B — 0)] .
tm—1
(2.35) Jh = / R, (= T+ )| f o (6 — Ea)] dt.
tn

First we bound JX. Applying lemma 2.2 and theorem 2.3, and noting the remark
after theorem 2.3, for r > 1,

T < Ce 0089/ (t=Fn+7) A+t — )t
i,
=Ce cosﬁ/ (s+7)32(1 +5)7 Y2 ds
0

T oo
< Cecosd <7“3/2/ (1+5)/2ds +r*1/2/ (s+1)73/2 ds>
0 T
< C.r~cosé.

Arguing similarly, J;; < C.r—!cosé, but to bound J,, we need a slightly different
argument. Again using lemma 2.2 and theorem 2.3 we have

tm
J,. <C. cosﬁ/_ (t—tmer +7) 321+ 1, — )"V dt
tm—1
2D
=C. cosﬁ/ (s+1)732(1 +2D — s)~'/? ds,
0

with D := (£;, — tm—1)/2. Splitting the integral,

D 2D
J- < Cecosb (1+D)_1/2/ (s+r)_3/2ds+(D+r)_3/2/ (1+2D—s)_1/2ds]
0 D
B D+r)1/2—r1/2) B D _
< C.cos6 |(1+D 172 (( D 3/2/ 1+6) 712 at
< Cecos | (14 D) (D 1 )12 +(D+r) | (L+1)




12 S. LANGDON AND S. N. CHANDLER-WILDE

(14 D)~/ (D+r—r) ~3/2 1/2
< Cccosd "D+ (D 11 5177 +(D+r)"°*(1+D)
< Ccrtcosh.

Thus, recalling (2.32), |Ix(r)] < Cer~'ncosf. Combining this with (2.31), we have
shown that forr > 1,5 =0,...,n,

(2.36) |f; (M < (r)] + [12(r)] < Ccor~'ncosé <% + 1) .

Proceeding in a similar way, we can show that, forr > 1, j=1,...,n+ 1,
r1/2

(2.37) |f]+(r)| < Cr'ncosf <m + 1> .

Recalling (2.32)—(2.35), we can use (2.36) and (2.37) to establish sharper bounds on
I,. Using (2.37) in (2.35), we have for r > 1 that

00 . . _ 7 y-1/2
Jt < Cencosb (t—ip+1r)3 21+t —1,)"" <1 + M) di
i 1—sind
(1+5)"1/2
1—siné ds

r —1/2
< Cencosf <r3/2/ (1+s)t (1 + &> ds
0

:Cencosé/ (s+7)21+s)7" <1+
0

1—sinf
00 —1/2
—1 -3/2 (4 r
+r /T (s+r) ( +71—sin0> ds)
(2.38) < Cr—®/*ncosf(logr + (1 —sinf) ™).
Arguing similarly, we can show that
(2.39) Jh <0 Pncoslogr + (1 —sinf)™Y), m=j+1,...,n,

but again for J,, we must argue differently. Using (2.36) and lemma 2.2

d N - 14 Em —t)"1/2
I SC’Encosﬂ/ (t—Tm 1 4+7) A 41, — 1)} <1+u> d¢
fm—1

1+ siné
2D 12
1+2D
SCencos9/ (s+7)*2(1+2D —s)"" <1+( 2D 9) )ds,
0 1+sinf

with D := (£,, — tm_1)/2 as before. Splitting the integral as above

-1 w /D —3/2
(1+D) <1+ Thsmg ) J, ) s

(2.40) +(D 4 7)73/? /OD(l +1)7 ! (1 + %) dt] .

I < Cencosd

Considering first the first term on the right hand side

B 1+D)71/2 D B
1 D 1 1 ( / 3/2
(1+ D) ( +71+sin9 > ; (s+r) ds
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<C@1+D)™! <1 n (1 +D)1/2> (D + r)1/2 — p1/2)

1+sinf r1/2(D +r)1/2
- D 1 ) (1+D)~1/2
= (14 D)(D +1r)/2 r1/2(D +r)1/2 1 +sind
(2.41) < Cr732(1 +sin) L.

To bound the second term, we need to consider the cases »r > D and r < D separately.
If r > D, we have

(2.42) (D 4 7)~%/%(log(1 + D) + (1 +sin8) ') < Cr—*/2(logr + (1 + sin ) ~1).

If » < D then we need to split the integral a second time to get

_ "1 (1+1t)"1/2 P (1+1t)1/2
D 3/2 / 1 dt / 1 dt
(D+7) lo 1+:U " 1tsing R A el G gy

< O(D +7)732 [logr(1 +sin) ™" + (D —r)(1 +7)~" (1 +sing) ']
D-—r

(D +7)3/2(1 +7)

(2.43) < Or—*/?logr(l+sinf) .

Putting (2.41), (2.42) and (2.43) into (2.40) we get

<C [r_3/2 logr + ] (1+4sinf)~!

J < Cer™3/?ncosf(logr 4+ 1)(1 +sinh) 1,
and thus, combining with (2.38) and (2.39),

r=3/2(log r 4 1)n?

—3/2, 2 —sin?9)7" =
|I2(r)| < Cer™/"n” cosf(log r + 1)(1 — sin” 6) Ce cosf

Thus

=3/2(logr + 1)n?
cos b

)

(2.44) 1 () < L] + |5 < .-

and in a similar way it can be proved that

=3/2(logr 4 1)n?
+ <ol &
(2.45) £ ()] < C. e .

To remove the dependence on logr in (2.44), (2.45), we use the fact that [ |fji(r)| dr
is now bounded by a constant, namely

2

cosf’
using (2.44), (2.45). Using this fact, and lemma 2.2,

[l se.
0

—3/2,2

JE < CET*S/Z’/ £ (s)|ds < O —,
0 cosf

and an identical bound holds on J%. Hence, recalling (2.32),

—3/2,3

r n

[I(r)] < Ce

cosf ’

and combining this with (2.31) the result follows. O
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3. Galerkin method and error analysis. Our aim now is to design a numer-
ical method for the solution of (2.15), supported by a full error analysis, for which the
error bounds are independent of the parameter k(b —a). To achieve this we will work
in Ly(R), and to that end we introduce the operator @ : Lo (R) — Lo(R) defined by

- X(S)a se [&55] = [Eovin]:
Qx(s) = { 0, seR\[ab

Writing ®* := Q®, and noting that K°® = K@, it follows from (2.15) that
(3.1) " — QK5 ®" = QU

where ®* and Q\Ilgc are both in Ly(R).

Existence and boundedness of (I — QK/'?C)’1 : Ly(R) — Lo(R) are shown in [12],
where it is also shown that the unique solution ®* = (I — QKgC)_lQ\ch of (3.1)
satisfies ||®*||2 < C’1||Q\Il§“ 2, with C1 = Ref./(ReBe — || — Bello) if

(3.2) |B; — Bel <ReBe, j=1,...,n,

and C; unspecified but dependent only on € and f. if (3.2) does not hold.

To approximate the solution ®* = Q® of (3.1) we use a Galerkin method, similar
to that in [12], but with the approximation space chosen in a different way so as to
take advantage of our stronger bound on ® (theorem 2.4), in order to remove the
dependence of the error estimates on k(b — a). As in [12], on each interval (¢;_1,%;),
we approximate f;r (s—t;_1) and Iy (t; — s) in (2.16) by conventional piecewise poly-
nomial approximations, rather than approximating & itself. This makes sense since,
as quantified by theorems 2.3 and 2.4, the functions f;" (s — ;1) and f; (; — s) are

smooth (their higher order derivatives are small) away from #;_; and ¢;, respectively.
To approximate f;‘(s —1;_1) and Iy (t; — s) we use piecewise polynomials of a fixed
degree v > 0 on a graded mesh, the mesh grading adapted in an optimal way to the
bounds on f]-i(m) in theorems 2.3 and 2.4.

To begin, we define a graded mesh on a general interval [0, A], for A > 1, with
more mesh points near 0 and less near A. This mesh is identical to that defined in
[12, definition 3.1]; the difference here is in how we choose the value of A when we
apply this mesh to the discretisation of each interval [f;_1,%;]. Whereas in [12], A
was chosen as a function of #;_1 and #; and the functions fji were approximated over

the whole interval [¢;_1,%;], here we choose A as a function of N, a positive integer,
where the size of N also determines the density of the mesh on [0, A]. A judicious
choice of A = A(N), as described below, allows us to discretise only a subsection of
the interval [f;_1,%;] near to £;_; and f;, and to approximate f;° by zero away from
these points without harming the overall accuracy of our scheme. This is the key to
achieving error estimates independent of k(b — a).

The mesh we use also has similarities to that used in [24] for solving (1.1) in the
case k = ir, 7 > 0, 7 large, where a similar idea of only discretising a subsection of
the boundary as k — oc was used in order to establish error bounds independent of 7.

DEFINITION 3.1. For A>1and N =2,3,..., the mesh An a = {yo,-.., YN+N,}
consists of the points y; = (i/N)%,1=0,...,N, where ¢ = 1+ 2v/3, together with the
points yn4j; = AIINa j =1,..., Ny, where Ny = [N*], the smallest integer > N*,
and N* := —log A/[qlog(1 — 1/N)].
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The mesh An 4 is a composite mesh with a polynomial grading on [0,1] and a
geometric grading on [1, A]. The definition of N4 ensures a smooth transition between
the two parts of the mesh. Precisely, the definition of N* is such that, in the case
N4 = N*, it holds that ynt1/yn = yn/yn—1, so that yy_; and yn are points in
both the polynomial and the geometric parts of the mesh. It is shown in [12] that the
total number of subintervals N 4+ N4 of the mesh on [0, A] satisfies

log A
(3.3) N+Ny< <g+ Oi )N.

Let TTa N,y = {0 : 0|fy;_, 4, i @ polynomial of degree < v, j =1,..., N + Na},
and let P be the orthogonal projection operator from L,(0,A) to II4 ., so that
setting p = Py f minimises || f —p||2,(0,4) = {fOA |f @) —p(t)|? dt}'/? overallp € T4 N,
The mesh Ay 4 is designed to approximately minimise [|f — Pg fl[2,(0,4), over all
meshes with the same number of points, when f € C*(0,00) with |f**V(s)| =
E,11(s), s > 0, where E, 1 is defined as in theorem 2.3. It achieves this by ensuring
that [|f — PX fll2,(y;_1.y;) 15 approximately constant for j = 1,...,N + Ng, i.e. by
equidistributing the approximation error over the intervals of the mesh, as shown in
the proof of the following result in [12].

THEOREM 3.2. Suppose that f € C*(0,00) and |f'(s)] < Ei(s), |f*TV(s)| <
E,11(s), s > 0. Then there exists a constant C,, depending only on v such that

N 1 +log1/2A
||f - PNf||2,(07A) < CVW

To form our approximation space on [, b] = [fo, f,], we begin by defining

. nSNu+1 ~ ~
(3.4) Aj :=min {am,tj — tjl} ,

where a > 1 is an absolute constant which will be determined experimentally and
whose value will not effect the asymptotic convergence rates. The reason for our
choice of A; will become apparent shortly, in the proof of theorem 3.3. Clearly A;
is bounded independently of k(b — a). As we are primarily concerned with the high
frequency problem, we assume for simplicity that 4; > 1, j = 1,...,n, but remark
that in the case A; < 1 for any value of j then we can define Ay 4, to be an appropriate
subset of the points y;, and this will give similar approximation properties to those
achieved using Ay 4, when A; > 1. For j = 1,...,n we define the two meshes
Q;r = th,1 + AN,4;, Q; = fj — An,4;. Letting e4(s) := et’s s € R, we then define
Vot , =1{oey 10 €lgs }, V-, i={oe_:0 €l,- }, for j =1,...,n, where
J’ J’ J?

Ho+ , :=={0 € L2(R) : 0](7,_, 4y,._1.5;_1+y.) IS @ polynomial of degree < v, for
m = ]_, . ,N —+ NA]., and U|R\[£j—la£j—l+14j} = 0},
-, :={0 € La(R) : 07, _y,. 7, y._.) i @ polynomial of degree < v, for

m = 1,...,N+NA]., and U|R\[£j—Aj,£j] :0},

and yo, . .. S YN, are the points of the mesh Ay 4,. Our approximation space is then
Va,v, the linear span of U;_; ,{Vo+ , UVy- }.
ERERE] o o



16 S. LANGDON AND S. N. CHANDLER-WILDE

Let (-, ) denote the usual inner product on Lo(R), (x1,Xx2) := ffooo x1(s)xz2(s) ds,
X1, X2 € La(R). Then our Galerkin method approximation, ®x € Vg ,, is defined by

(3.5) (Bn,p) = (57, p) + (K5 @y, p), forall p€ Vi,
equivalently,
(3.6) Oy — PyKj @y = PnQUY,

where Py : La(R) — Vg, is the operator of orthogonal projection onto Vg ,,. Equation
(3.5) can be written explicitly as a system of My linear algebraic equations, where
Mp, the dimension of Vg ,, i.e. the number of degrees of freedom, is given by

(3.7) My =2(v+1) Zn:(N +Na,).

j=1

By (3.3) and (3.4)

n ) 3
My < 2(y+1)z<g+logq14]> N < 2(y+1)nN<g+log(an /c05021+(1/+1)10gN> .
j=1

Using a similar argument to that for the Galerkin method in [12], it can be shown
that (3.6) is uniquely solvable and that, provided (3.2) holds,

Ref
3.8 I—PyK3) Y| < € ,
(3.8 I R Refe — [|8 — Belloo
and thus
Ref.
3.9 d* — Pyl < ®* — Py®*|.
(39 17 =k = g B 1~ vl

There is also a description in [12] of how one can perturb the original problem in such
a way that the condition (3.2) on f is forced to hold, and the solution of the perturbed
problem is arbitrarily close in an arbitrarily large bounded region to the solution of
the original problem. In any case, numerical results in [23] suggest that the Galerkin
scheme we propose is stable and convergent even when (3.2) does not hold. In this
case the bound (3.9) does not apply, however.

It remains to bound ||®* — Pn®*||2, showing that our approximation space is
well-adapted to approximate ®*. We introduce PJJ\; and Py, the orthogonal projection
operators from Ly(R) onto Ilg+ , and Ilg- , respectively, where Ilg=+ , denotes the
linear span of | J;_; HjSﬂ,. We also define

f+(s) == { f]"'(s —tji—1), s€ 1,1, 5=1,....n,

O’ s € R\(E‘Jafn]:
 frG=s), s€ (i), i=1,...,m,
f-(=) _{ 0, ’ sER((t}O,tzn].

Then we have the following error estimate.
THEOREM 3.3. If (1.4) holds for some € > 0, then there exists a constant C,, > 0
such that

nl/2 . n3 NVt
I = P el < Con i (1108 (min (a2 k0 - 0) ) )
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where o is the constant in (3.4), and the identical bound holds on || f— — Py f—||2.
Proof. We prove the result for ||fy — P f4 |2, the bound on ||f— — Py f—|l2 can
be proved in a similar way. Recalling (3.4),

£ = P fll = 11f = PR f+15 05
=> [||f+ = PS5 sty aeay T =PRSS 6, vas )] -
j=1
Now by theorems 2.3 and 3.2,

1+ log'/? A;
NV+1

If an®N"*1/cosf > t; —t;_1, then A; =#; —t;_1 in which case

I+ = PR filloy, 1 iy s4ay) < Cewcosd

I f+ — P]—\lf—f+||2,(fj—1+AJ"£j) =0.

If an®N"*1/cosf < t; —t;_1, then A; = an®N"*1/cosf and then, recalling the
definition of Ilg+ , and theorem 2.4,

6 [e'e)
_ pt 2 o 2 . 2 N -3
£+ PNf+||27(tj—1+Ajatj) ||f+”2a(tj—1+Aj7tj)S € cos2 6 A s " ds
6 2
2 N -2 _ Ce N—2(v+1)
€2cos26 7 202 ’

and recalling that a > 1 the result follows. O

To use the above error estimate, note from (2.16) that ®* = e, fy +e_f_. But
e+PR,'f+ +e_Pyf- € Vg, and Py®* is the best approximation to ®* in Vg ,.
Applying theorem 3.3 we thus have that, if (1.4) holds,

|9* — Py®*||> < [|®* — (e Py f+ + e— Py f-)ll
= llex(f+ — Py f+) +e—(f— = Py fo)ll2
<letlloollf+ = P follz + lle—llocll f= — Py f=1l2

nl/2 . n3 Nv+1
<o, 22 (min (o™X - |
<Cep N <1 + log <m1n (a p— k(b a))))

We have shown the following result.
THEOREM 3.4. If (1.4) holds for some € > 0, then there exists a constant C , > 0
such that

nl/2 . n3 Nv+1
* * < A /2 . neyo _
[|@* — Pn®*|2 < Cen N <1 + log <m1n (a p— k(b a)))) )

where « is the constant in (3.4).

Combining this result with the stability bound (3.9) we obtain our final error
estimate for the approximation of ® by ®y.

THEOREM 3.5. If (1.4) holds for some € > 0, and (3.2) is satisfied, then there
exists a constant Ce, > 0 such that

Ceyn /(1 + log"? (min(an3 N**1/ cos 0, k(b — a))))
(Refe — 1B = Belloo) N H1 ’

2=y 5 = 12" =Bn]l2 <
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where « is the constant in (8.4). Further, the number of degrees of freedom My
satisfies

My < C.,nN log(min(an® N1/ cos 8, k(b — a))).

We finish by considering the computation of an approximation to u* throughout
the upper half plane U, once the Galerkin solution ®x has been computed. Re-
calling (2.13) and (2.14) we define ¢n € L2(a,b), an approximation to ¢ on (a,b),
by

¢N(3) = QN(S)’F'([)B](S): se (ijflath]a j:]-:"';na

where 15, is given explicitly by (2.7). Then, recalling that u’((y1,0)) = ¢(ky1),
we define an approximation to u! by replacing uf(y) by its approximation ¢y (ky;)
in (2.5), to give the approximation u, defined by

b
(310)  uly(z) == uby (2) + ik / G, (2, (41, 0)(B(an) — Be)bov (k) dyn.

From (2.2) and (2.3), and using properties of standard single-layer potentials [15],
it follows that ul, € C?(U) N C(U) and satisfies the Helmholtz equation (1.1) in U.
Further, from theorem 3.5 we deduce the following error estimate.

THEOREM 3.6. If (1.4) holds for some € > 0, and (3.2) is satisfied, then there
exists a constant C.,, > 0 such that, for x € U,

Ceon'2(1 + log* (min(an N**1/ cos 8, k(b — a))))
(Refe — [|8 = Belloo) NV H ’

|u' () — uy ()] <

where a is the constant in (3.4).
Proof. Subtracting (3.10) from (2.5) and using the Cauchy-Schwarz inequality
and the definitions of ®* and ¢y, we see that

[u (2) — u(2)] =

b
/_ G (2, (t/k, 0)) (B(t/K) — 5) (B(8) — D (1)) dt

o0 1/2
<118 = el { [ Gt /R ODF atf o = @l o

Now, defining H = kzo, and using (2.2) we see that for H > 1/2 it holds that

o dt

[ G aemopascarny [T oS

— 00 —

(1+ H)? /OO ds /OO ds
=2 <1 —-
Ce H? o (1+s2)3/2 = 8Ce o (1+s2)3/2

Using (2.2) and (2.3) we see that, for 0 < H < 1/2,
o0 ° (14+H)dt Rl
G t/k,0)))? dt < 2C, (+H)"dE / 1— = log(t* +H?)) dt
| (Gt ak 0 at < (/H et (-glos+H)

o0 1
<20, g/ d—:—l—/(l—logt)dt .
4 )zt 0
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Thus
[ut (2) - uly(@)] < Cl = Bnlly o,
and the result follows from theorem 3.5. 0

4. Implementation and numerical results. We restrict our attention in this
section to the case v = 0. The implementation of the scheme is similar for higher
values of v. Recalling (3.5), the equation we wish to solve is

(4.1) (®n,p) — (K3-®n,p) = (W], p), forall pe Voo

Writing ®x as a linear combination of basis functions of Vg, we have ®n(s) =
Z]Nil‘{ v;p;j(s), where My is given by (3.7) and p; is the j basis function, defined by

Xt or H(8) et i
pj(s)::ﬁa ]:J+2Z(N+NAT”)7 :17"'1N+NA1,7
(Sj - 3371) m=1
R 1)(5) . p-1 .
pils) = T P AT IENENAA2) (N4 Na), j=1, N+ Ny,
j -1 m=1

forp=1,...,n, where 51+ € Q;;, s, €Q, forl =0,...,N+Nyu,, and x[s, s,) denotes
the characteristic function of the interval [sq, s2).
Equation (4.1) then becomes the linear system

My
(42) Zv]((p]apm) - (Kgcp]apm)) = (\chapm)v m = 11"'7MN'
j=1

If k£ is large compared to N, then, from the definition of A; in (3.4), it is clear that
the two meshes Qj and Q) will not overlap. In this case the basis functions pj,
j=1,..., My, form an orthonormal basis for Vo, (this is not true for the Galerkin
method described in [12]), and hence the condition number of our linear system (4.2)
will be bounded by (see e.g. [3, §3.6.3])

. Red,
1T = PYEEIT — PaKE) s < (14 1K) ( )

Ref. — ”B - Bc”oo

IIB—Bclloo> < Ref, >
S <1 * Reﬂc Reﬂc - ||ﬂ - ﬂc”oo

_ Refe + |8 — Belloo
~ ReBe — 18 = Bellos
where we have used (3.8) (under the assumption that (3.2) holds), and the facts
that [|K5lla < ||8 — Belloc/Refe (see eg. [12, (3.2)]) and ||Py]l> = 1. The fact

(4.3)

that we can establish such a bound on the condition number of our linear system is
in direct contrast to some other schemes in the literature where the approximation
space consists of plane wave basis functions, e.g. [26, 28, 29], where serious difficulties
due to ill-conditioning have been reported.

To evaluate the coefficients (Kg“pj,pm) and (\Ilg“,pm) of (4.2) we must compute
some integrals numerically. The exact formulae are given in [23], but note that the
most difficult of these take the forms

FA=nE@) [T A=) EE) A=) E)
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where s < 0 and F(r) is given by (2.20). These integrals are similar in difficulty to
integral representations for the Green’s function G-, for which very efficient numer-
ical schemes are proposed in [11]. In particular, we remark that the integrands are
not oscillatory as the oscillating part of the integrands is removed by the integrations
which are carried out analytically. As a result, the coefficients do not become more
difficult to evaluate as k — oc.

As a numerical example, we take § = 7/4, n = 1, and

[ 0.505—-0.3i, se€[-mAm}],
Bls) = { 1 s ¢ [-mA, m}],

for m=>5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560 and 5120, where k¥ = 1 and
A = 27 is the wavelength. This experiment is equivalent to fixing the interval [a,b] =
[to,t1] and decreasing the wavelength. The assumption (3.2) is satisfied, so that
theorem 3.5 holds. For each value of m, we compute ®y with v = 0, a = 25v/2
(so that an®/cosf = v/2a = 50, with this value being chosen experimentally) and
N=2, 4, 8, 16, 32, 64. For the purpose of computing errors, we take the “exact”
solution to be the solution computed with v/2a = 1000 and N = 128. Whereas for
the scheme of [12] the number of degrees of freedom needed to maintain accuracy
increases logarithmically with respect to k(b—a) as k(b—a) — oo, here the number of
degrees of freedom needed to maintain accuracy remains bounded as k(b — a) — oo,
as we shall see below.

In figure 4.1 we plot |®*| and |®»| for m = 10. Noting the logarithmic scales on
the plots, it is clear that |®*| is highly peaked near the discontinuities in impedance.
Recalling that ® is a correction term, namely the difference between the true solution
and the solution that there would be if the impedance was constant everywhere, the
reason for this is clear. On the plot of |®5| we also show the two grids Q] and Q7. For
s/ less than about —6 and for s/ greater than about 6 the grids do not overlap, and
on these regions ®,(s) = e*x (piecewise constants) and ®5(s) = e~ *x (piecewise
constants) respectively. Thus |®2(s)| is piecewise constant where the grids do not
overlap, and this can be clearly seen in figure 4.1. Where the grids overlap, (roughly
between s/A = —6 and s/\ = 6) the oscillatory nature of ®,(s) is more apparent.

¥
*
3
1)
¥
{

0.0, }

o *||
Lo

s\

F1G. 4.1. Plot of |®*| and |®2|, m = 10, so that b — a = 20\
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In figure 4.2 we plot |®n| for m = 160 and for N=2, 4, 8, 16, 32, 64. Again
noting the logarithmic scales on each plot, |® x| is highly peaked near the impedance
discontinuities, much more so than for m = 10. As [N increases so we discretise a larger
part of the domain [—mA, m\], as well as having a finer mesh near the discontinuities
in impedance at —mA, mA. For N=2, 4, 8 16 the piecewise constant approximation
can be clearly seen, as the grids 2] and ©; do not overlap. For N = 32 the grids
overlap between about sA = —100 and sA = 100. For N = 64, each grid covers the
whole domain [—mA\, mA].

-100 0 100 -100 0 100

-100 0 100 -100 [ 100

Z
3
. &
10 10

-100 0 100 -100 0 100
s/A s/A

Fi1G. 4.2. Plot of |Pn|, N =2, 4, 8, 16, 32, 64 for m = 160, so that b — a = 320\

In figure 4.3 we plot |®*| and |®* — ®x| for m = 5120 and for N = 4, 16 and
64. In this case the interval [-mA, m}] is over ten thousand wavelengths long, and
so even for N = 64 the grids Q] and 7 do not overlap. As m increases, so |®*|
becomes even more peaked, and the benefit of clustering the grid points around the
impedance discontinuities becomes even more apparent.

For m = 10, 160 and 5120 the relative Ly errors ||®* — ®y|2/||®*|]2 are shown
in Table 4.1. (All Ly norms are computed by approximating by discrete L norms,
sampling at 100000 evenly spaced points in the relevant interval for the function whose
norm is to be evaluated.) The estimated order of convergence is given by

K —‘I’NII2>

EOC :=1 _—_
082 (||<1>* —Bonlls

For this example, theorem 3.5 predicts that
* C 1/2 .
8 = @yll> < (1 +log!/* (min(vZaN, 2m)))),

so that we expect EOC = 1, and this is what we see. For each value of m, the number
of degrees of freedom My increases approximately in proportion to Nlog N as N
increases until the two grids Q] and ] each cover the whole domain [—m\, m)]
(i.e. until v/2aN > 2m)), after which My increases only proportionally to N as N
increases further. For m = 10, the whole domain is covered by the grids for N = 4; for
m = 160 this occurs for N = 64 but for m = 5120 the two grids do not overlap even
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Fi1G. 4.3. Plot of |®*| and |®* — |, N =4, 16, 6 for m = 5120, so that b — a = 10240

(b—a)/A| N | My | [[® —®n|2/[[® 2 | EOC | COND
20 | 2 18 1.635 x 10T 1.1 1.8
4 42 7.393 x 102 1.1 2.6
8 90 3.525 x 102 1.0 8.1
16 | 182 1.773 x 1072 1.0 94.0
32 | 370 8.875 x 1073 1.0 | 625.5
64 | 742 4.557 x 1073 2551.6
320 | 2 18 1.647 x 101 1.2 1.8
4 46 7.399 x 102 1.0 2.0
8| 106 3.622 x 102 1.0 2.0
16 | 240 1.790 x 102 1.0 2.1
32 | 530 8.662 x 103 0.9 2.1
64 | 1094 4537 x 1073 92.7
10240 | 2 18 1.639 x 10~ 1T 1.2 1.8
4 46 6.918 x 102 0.8 2.0
8| 106 3.881 x 102 1.2 2.0
16 | 240 1.751 x 102 1.1 2.1
32 | 530 8.076 x 103 0.8 2.1
64 | 1154 4.579 x 1073 2.1
TABLE 4.1

[[@* — ®n]||2/||®*]|2 for m = 10, 160 and 5120, and increasing N.

for N = 64. The condition numbers for the matrix of the linear system (4.2) (denoted
by COND) satisfy the bound (4.3), which predicts that COND < 3.75, so long as the
grids do not overlap, i.e. N < 16 for m = 160, all values of NV for m = 5120. For
N < 32 the number of degrees of freedom is the same for m = 160 and m = 5120,
and yet the relative Lo error is almost the same for the two cases b — a = 320\ and
b —a = 10240A\.

In Table 4.2 we fix N = 16 and show ||®* — ®1¢4]|2/||®*||2 and also ||®* — P16]|2
for increasing values of m = (b — a)/2\. As m increases, the number of degrees
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(b—a)/A | My | [[®" = P16[l2/[|®"][> | [[®* = P1gll2 | COND

10 | 162 1.746 x 1072 | 7.936 x 103 181.5

20 | 182 1.773 x 1072 | 8.059 x 103 94.0

40 | 204 1.775 x 1072 | 8.068 x 1073 24.7

80 | 226 1.766 x 1072 | 8.027 x 1073 8.2

160 | 240 1.761 x 1072 | 8.000 x 103 2.1

320 | 240 1.790 x 1072 | 8.122 x 1073 2.1

640 | 240 1.749 x 1072 | 7.916 x 103 2.1

1280 | 240 1.650 x 1072 | 7.435 x 10~3 2.1

2560 | 240 1.616 x 1072 | 7.216 x 1073 2.1

5120 | 240 1.556 x 1072 | 6.831 x 10~3 2.1

10240 | 240 1.751 x 1072 | 7.433 x 1073 2.1
TABLE 4.2

[|@* — ®i6]|2/||P*||2 for increasing interval length.

of freedom increases logarithmically for those values of m for which v2aN > 2m),
i.e. for m < 40, but as m increases further for m > 80 the number of degrees of
freedom remains constant, and yet both the relative and actual Ly error also remain
roughly constant as m grows. For m = 5120 the interval is of length greater than
ten thousand wavelengths, and yet we achieve almost one per cent relative error with
only 240 degrees of freedom. As in table 4.1, the condition number of the linear
system (4.2) is bounded by (4.3), so that COND < 3.75, when m is sufficiently large
that the grids Qf and Q; do not overlap, i.e. for m > 160.

In figure 4.4 we plot |u!(z)| for x = (21, ), 1 € [-2mA, 2m]], i.e. the absolute
value of the total acoustic field one wavelength above the plane, as computed with
v2a = 1000 and N = 128, for m = 5 (plot (i)), m = 10 (plot (ii)), m = 20 (plot (iii)),
m = 40 (plot (iv)), m = 80 (plot (v)) and m = 160 (plot (vi)). In each plot the z-axis
represents z1 /) and the y-axis represents |ut(z)|. One can clearly see that the wave
diffracted from the impedance discontinuities at x = (—mA,0) and x = (mA,0) is a
significant component of the total field only within a small number of wavelengths
of the impedance discontinuities. Figure 1.1 shows a surface plot of the incident,
scattered and total wave fields up to ten wavelengths above the plane for this same
example with m = 5.

We also computed ul(z) for z = (mA/2,A) and z = (mX,\) for m = 10 and
m = 160 and for v2a = 50, N = 2, 4, 8, 16, 32 and 64. Taking the values for
a = 500v/2, N = 128 to be the “exact” values, the errors are shown in table 4.3. The
estimated order of convergence is calculated as

tioN ot
EOC :=log, <7|u () — u| > ,

lut(z) — U§N|

and from theorem 3.6 we would expect EOC ~ 1. The convergence rate is rather
irregular, but broadly speaking it is at least as good as expected, and the actual and
relative errors are both very small. The value of |u®(z)| is between 0.7 and 0.9 in each
case.
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FIG. 4.4. |ut(z)| (on the y-azis) against x1 /X (on the x-azis) for v = (z1,)), 1 € [~2mA, 2m)],

plotted for m =5 (plot (1)), m = 10 (plot (ii)), m = 20 (plot (ii)), m = 40 (plot (iv)), m = 80
(plot (v)) and m =160 (plot (vi))

= (m\/2,\) x = (m\ )
m [ul(x) — uly(z)] | EOC | |ul(z) — uly(z)| | EOC
10 3.894 x 1071 1.5 1.108 x 10~* 1.3

1.421 x 10~* 2.5 4514 x 1075 3.5
2.432 x 1075 1.0 4.068 x 10~ 0.2
1.183 x 1072 2.7 3.448 x 106 0.8
1.841 x 10°© 1.0 2.014 x 106 1.1
64 9.350 x 10~ 7 9.108 x 1077
160 | 2 1.059 x 1077 2.0 5.278 x 1071 2.6

4 2.572 x 1072 0.4 8.790 x 10~° 2.8

8 1.978 x 10~° 0.0 1.283 x 107 0.3
16 1.981 x 107° 2.1 1.060 x 10~ 0.8
32 4.474 x 1076 0.9 6.029 x 106 3.4

64 2.431 x 1076 5.634 x 1077
TABLE 4.3
|ut(z) — ul ()| for m = 10 and m = 160, and increasing N.

B8 o o2
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