
HP -INTERPOLATION OF NON-SMOOTH FUNCTIONS

J.M. MELENK∗

Abstract. The quasi-interpolation operators of Clément and Scott-Zhang type are generalized
to the hp-context. New polynomial lifting and inverse estimates are presented as well.

Key words. Clément interpolant, quasi-interpolation, hp-FEM, polynomial inverse estimates

AMS subject classifications. 65N30, 65N35, 65N50

1. Introduction. Quasi-interpolation operators, that is, operators achieving op-
timal rates of convergence also for classes of functions of low regularity have a long his-
tory, for example in splines theory (see, e.g., [25] for an overview). In connection with
the finite element method (FEM) such an operator was constructed by Ph. Clément
in [23] where he showed how H1-functions can be approximated by piecewise linear
functions. Subsequent refinements and variations include [11, 15, 21, 22, 27, 35, 37] to
account for higher order polynomials of fixed degree p, preservation of piecewise poly-
nomial boundary conditions, curvilinear elements, and Hermite elements. Several of
these refinements were done with a view to an application in residual based finite
element error estimation as discussed in the monographs [3, 5, 39].
While quasi-interpolation in the context of the h-version FEM is well documented in
the literature, the situation is less favorable for the p- and particularly the hp-version
of the FEM, where the approximation properties of spaces of piecewise polynomials are
quantified in terms of both the local mesh size and the local polynomial degree. The
one-dimensional situation of polynomial approximation on an interval has been thor-
oughly studied, and we refer the reader to [25] for an excellent exposition of pertinent
results. In higher dimensions, the situation is less developed: Approximation results
suitable for the application to the p-version FEM/spectral method in higher dimen-
sions can be found in the survey article [16] (for L2-based weighted and unweighted
Sobolev spaces) and [2] (for Sobolev spaces W k,q); the approximation results given
there are explicit in the approximation order but restricted to a fixed mesh. Approxi-
mation results (for L2-based Sobolev spaces) that reflect both the local mesh size and
the approximation order p can be found in [6, 36]. However, the constructions given
there assume extra regularity, namely, the function to be approximation has to be in
the Sobolev spaces Hs for some s > d/2, where d ∈ �

is the spatial dimension.
In the present paper, we develop optimal quasi-interpolation operators suitable for an
application in the framework of the hp-version of the FEM. We exhibit two kinds of
closely related operators: Clément type operators (see Theorem 2.1) defined on the
space L1 and Scott/Zhang type operators (see Theorems 2.3, 2.4) defined on W 1,q (so
that traces on the boundary are defined) that preserve piecewise polynomial bound-
ary conditions. Both operators achieve optimal rates of convergence. A particular
application of the operators developed in the present paper is that they permit the
extension of the h-FEM residual-based error estimation to the hp-FEM, [33].

This paper is organized as follows: In Section 1.1, we introduce the necessary nota-
tion, in particular γ-shape regular triangulations of two-dimensional domains and the
hp-FEM spaces of piecewise mapped polynomials. We emphasize that the element
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maps need not be affine, which is an important aspect in hp-FEM, and that variable
approximation order is considered. In Section 2, we present our quasi-interpolation
operators; Section 2.2 is devoted to the proof of their approximation properties. A
series of appendices concludes the paper: In Section A, we present optimal polynomial
approximation results for W k,q-functions on hyper cubes. Section B deals with sev-
eral polynomial lifting results in two dimensions. Section C presents two polynomial
extension operators in one dimension. In Section D, finally, we prove some polynomial
inverse estimates in two dimensions.

1.1. Notation and Assumptions.

1.1.1. Triangulations. We start with the standard definitions of meshes and
triangulations for two-dimensional domains.
A triangulation T of a set Ω ⊂ � 2 is a collection of elements K ∈ T ; associated with
each element K is an element map FK : K̂ → K, where the reference element K̂
corresponding to K is either the reference square S = (0, 1)2 or the reference triangle
T = {(x, y) ∈ � 2 | 0 < x < 1, 0 < y < min(x, 1−x)}. We consider triangulations that
satisfy the following standard conditions:

(M1) The element maps FK : K̂ → K = FK(K̂) are C1-diffeomorphisms between

K̂ and K, i.e., there exist domains K̂ ′ and K ′ with K̂ ⊂ K̂ ′, K ⊂ K ′ such
that FK is in fact a C1-diffeomorphism between K̂ ′ and K ′.

(M2) For two elements K, K ′ the intersection Γ := K ∩K ′ falls into exactly one of
the following categories: Γ is empty, or a vertex, or a whole edge, or K and K ′

coincide. (i.e., F−1
K (Γ) and F−1

K′ (Γ) are edges, or vertices of the corresponding

reference elements K̂, K̂ ′). Additionally, we require the map

Q : F−1
K (Γ) → F−1

K′ (Γ) : x 7→ (F−1
K′ ◦ FK)(x)

to be an affine homeomorphism.
(M3) Ω \ ∪K∈T is a set of Lebesgue measure zero.

A triangulation T is called γ-shape regular if additionally

h−1
K ‖F ′

K‖L∞( �K) + hK‖ (F ′
K)

−1 ‖L∞( �K) ≤ γ, (1.1)

where hK = diam K. We say that the triangulation is affine if all element maps
FK are affine maps. The restriction T |ω denotes the subset of T that represents the
triangulation of ω ⊂ Ω satisfying (M1)–(M3).
For each element K ∈ T we denote by E(K) the set of edges of K and by N (K) the
set of vertices of K. Similarly, N (T ) denotes the set of all vertices of T and E(T ) the
set of all edges. Setting

Î = (0, 1)

the assumption (M2) implies that we can define edge maps Fe : Î → e for each
e ∈ E(T ) by taking an element K such that e is an edge of K, then identifying the
edge F−1

K (e) of K̂ with Î via an affine map and finally taking Fe as the restriction of
FK to F−1

K (e); the assumption (M2) guarantees that the map Fe obtained in this way
is independent of the choice of K. Additionally, we introduce the notion of the patch
ωV associated with a node V ∈ N (T ) by

ωV := {x ∈ Ω |x ∈ K for some K with V ∈ K}◦, (1.2)
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Fig. 1.1. Left: interior reference patches ωint,6,1 and ωint,6,j (for some j ∈ {2, . . . , 26}. Right:
boundary reference patch ωbdy,3,1 and ωbdy,3,j for some j ∈ {2, . . . , 23}.

where A◦ denotes the interior of the set A. We note that the patches ωV are open
subsets of Ω. Of importance will be the connectivity of the patches. Our tool for
classifying patches according to their connectivity will be the notion of reference
patches that we make precise in the following definition:

Definition 1.1 (Reference patch). Reference patches are Lipschitz domains that are
either labeled interior or boundary patches. They are characterized as follows:

1. Interior patches: For each M ∈ �
, M ≥ 3, we define 2M interior reference

patches ωint,M,j , j = 1, . . . , 2M , as follows: ωint,M,1 is defined to be the
regular polygon with M edges of length 1 that is centered at the origin 0 ∈ � 2

and is triangulated with M triangles all sharing the vertex 0. The remaining
2M−1 reference patches are obtained from this one by replacing one or several
of these isoceles triangles by parallelograms (see Fig. 1.1).

2. Boundary patches: For each M ∈ �
we define 2M boundary reference patches

ωbdy,M,j, j = 1, . . . , 2M , in the following way: ωbdy,M,1 ⊂ {(x, y) |x > 0, y >
0} is the polygon that consists of M isoceles triangles all sharing the vertex
0 ∈ � 2 and having angle π/(2M) at 0. The remaining 2M − 1 patches are
obtained from this one by replacing one or several of these isoceles triangles
by parallelograms (see Fig. 1.1).

We will only consider triangulations whose patches can be related to these reference
patches:

(M4) For each vertex V of the triangulation there exists a reference patch ω̂V of the
form given in Definition 1.1 together with a homeomorphism FV : ω̂V → ωV

with FV (0) = V that has the form

F−1
V |K = AK,V ◦ F−1

K ∀K ∈ T |ωV ,

where the maps AK,V :
� 2 → � 2 are affine.

Remark 1.2. It is worth pointing out that slit domains are not excluded by (M4).
However, other kinds of domains that fail to be Lipschitz domain are not covered by
the present results: For example, domains such as the one depicted in Fig. 1.2 are not
admitted since the vertex cannot be mapped to a boundary reference patch in the
way condition (M4) requires.

We finish this subsection by noting that γ-shape regularity of the element maps implies
that only a finite number of elements can meet at a vertex:

Lemma 1.3. Let T be a γ-shape regular triangulation satisfying (M1)–(M3). Then
there exists a constant M ∈ �

, which depends only on γ, such that

1. no more than M elements share a common vertex;
2. for any two elements K, K ′ with K ∩K ′ 6= ∅ there holds M−1hK ≤ hK′ ≤

MhK.
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Fig. 1.2. Example of a mesh excluded by (M4).

If the triangulation satisfies additionally (M4), then the maps AK,V appearing in
condition (M4) satisfy

‖A′
K,V ‖L∞(K̂) + ‖A′−1

K,V ‖L∞(K̂) ≤ C

for some C > 0 that depends only on γ. Additionally, FV ∈ W 1,∞(ω̂V ) and F−1
V ∈

W 1,∞(ω), and we have the bound

h−1
V ‖F ′

V ‖L∞( �ωV ) + hV ‖ (F ′
V )

−1 ‖L∞( �ωV ) ≤ C, hV = min
K:V ∈N (K)

hK ,

for some C > 0 depending solely on γ.
Proof. 1. step: The element maps FK are C1 up to the boundary of the reference ele-
ments. The fact that the interior angles of the reference elements are non-degenerate
and the γ-shape regularity assumption (1.1) then imply that the interior angles of
elements K ∈ T are within (ε, π− ε) for an ε > 0 that depends solely on γ. The first
claim of the lemma then follows if we choose M ∈ �

such that M ≥ 2π/ε.
2. step: The γ-shape regularity assumption (1.1) also implies the existence of C > 0
depending solely on γ such

C−1hK ≤ |e| ≤ ChK ∀e ∈ E(K) ∀K ∈ T .

This fact together with the observation of the first step easily implies the second claim
after appropriately adjusting the constant M .
3. step: We will only show that F−1

V ∈ W 1∞(ω) with the corresponding bound for
the derivative. By assumption F−1

V |K ∈ C1(K) for each element K ∈ T |ωV . From
this an elementwise integration by parts together with the observation F−1

V ∈ C(ω)
implies that the weak derivative is elementwise given by (F−1

V )′|K = AK,V · (F−1
K )′.

From this representation, we readily infer F−1
V ∈ W 1,∞(ω) and the desired bound.

1.2. Polynomial spaces. The finite element spaces that we consider are the
variable order piecewise mapped polynomials, an early implementation of which is
discussed in [24]: For each element K ∈ T , we choose a polynomial degree pK ∈ �

and collect these numbers in the polynomial degree vector p = (pK)K∈T . We then
define the space Sp(T ) ⊂ W 1,q(Ω) by

Sp(T ) = {u ∈ C(Ω) |u|K ◦ FK ∈ ΠpK (K̂)}, (1.3)
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where we set

Πp(K̂) =

{
Pp := span{xiyj | 0 ≤ i + j ≤ p} if K̂ = T

Qp := span{xiyj | 0 ≤ i, j ≤ p} if K̂ = S.
(1.4)

We will write Sp(T ) if the degree vector p satisfies pK = p for all K ∈ T . In this
case, we will also permit the choice p = 0, where S0(T ) reduces to a one-dimensional
space.
Remark 1.4. By writing integrals over Ω as a sum of integrals over elements, it can
indeed be checked Sp(T ) ⊂ W 1,∞(Ω).
A key property of the spaces Sp(T ) is that we can identify “nodal shape functions”
that form a partition of unity, i.e., for each vertex V ∈ N (T ), we can find a function
ϕV ∈ S1(T ) such that

ϕV |Ω\ωV
≡ 0 and

∑

V ∈N (T )

ϕV ≡ 1 on Ω. (1.5)

A well-known consequence of the γ-shape regularity of the triangulation is that these
nodal shape functions satisfy for some constant C > 0 that depends solely on γ

‖ϕV ‖L∞(Ω) ≤ 1, ‖∇ϕV ‖L∞(Ω) ≤ Ch−1
K ∀K ∈ T |ωV . (1.6)

In the present paper we consider only γ-shape regular triangulations. Such trian-
gulations have the property that neighboring elements are comparable in size (cf.
Lemma 1.3). We will impose a similar condition on the polynomial degree distribu-
tion:

γ−1pK ≤ pK′ ≤ γpK ∀K, K ′ ∈ T s.t. K ∩K ′ 6= ∅. (1.7)

We will also employ the notation

pV := min{pK | V ∈ N (K)}, pe := min{pK | e ∈ E(K)}. (1.8)

1.3. Notation for Sobolev spaces. For domains Ω ⊂ � 2 and k ∈ �
0 , q ∈

[1,∞] we employ standard Sobolev spaces W k,q(Ω) as described in, e.g., [1]. For the
reference interval Î = (0, 1), κ ∈ (0, 1) and q ∈ [1,∞), we equip the space W κ,q(Î)
with the Slobodeckij norm

‖u‖q

W κ,q(Î)
= ‖u‖q

Lq(Î)
+

∫

Î

∫

Î

|u(x)− y(y)|q
|x− y|1+qκ

dx dy. (1.9)

We will also require the spaces W̃ κ,p(Î) which consist of the functions u ∈ W κ,p(Î)
such that their trivial extension (i.e., by zero) to

�
is an element of W κ,p(

�
). This

space is equipped with the norm

‖u‖q
�

W κ,p(Î)
= ‖u‖q

W κ,p(Î)
+

∫ 1

0

|u(x)|q
xq−1

dx +

∫ 1

0

|u(x)|q
(1− x)q−1

dx. (1.10)

In analogy to the spaces W̃ κ,p(Î) we can define the spaces W̃ κ,p
l (Î) if the trivial

extension to I ′ = {x ∈ � |x < 1} is in W κ,q(I ′). This space is equipped with the
norm

‖u‖q
�

W κ,p
l (Î)

= ‖u‖q

W κ,p(Î)
+

∫ 1

0

|u(x)|q
xq−1

dx. (1.11)
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We finally record how functions transform under concatenation with the patch maps
FV :

Lemma 1.5. Let T be a γ-shape regular triangulation satisfying (M1)–(M4). Let
q ∈ [1,∞]. Then for every patch ωV , V ∈ N (T ), and every u ∈ W 1,q(ωV ) we have
that û := u ◦ FV ∈ W 1,q(ω̂V ) and

‖û‖Lq( �ωV ) ∼ h
2/q
V ‖u‖Lq(ωV ), ‖∇û‖Lq( �ωV ) ∼ h

1−2/q
V ‖∇u‖Lq(ωV ), (1.12)

where hV = minK:K⊂ωV hK . The constants hidden in the ∼-notation depend solely
on γ and q.

Proof. We claim that the pull-back û is in W 1,q(ω̂V ). To see this, we first consider
the case q < ∞. For each element K of the patch ωV and its corresponding element
K ′ := F−1

V (K) ⊂ ω̂V , the assumption (M1) guarantees that FV |K′ ∈ C1(K ′) and
likewise F−1

V ∈ C1(K). Hence by standard properties of Sobolev space (see, e.g., [1,
Chap. III, Thm. 3.35]) we have for each element K that u ◦ FV |K′ ∈ W 1,q(K ′) and
the derivative satisfies (∇(u◦FV ))|K′ = (∇u◦FV )F ′

V . In order to see that u◦FV is in
W 1,q(ω̂V ) we have to check that the traces on the edges shared by two elements K1,
K2 of ω̂V coincide. This follows easily from the assumption (M3). The case q = ∞ is
obtained by inspection: Since the weak derivative has been identified as (∇u◦FV )F ′

V ,
one merely has to check that it is in L∞(ω̂V ), which is indeed the case. The bounds
(1.12) now follow from (1.1).

2. Quasi-interpolation of non-smooth functions.

2.1. Approximation results. We present two types of quasi-interpolation re-
sults for W 1,q-functions: In Theorem 2.1 we exhibit a quasi-interpolation operator of
Clément type; in Theorem 2.3 we present an operator that additionally preserves ho-
mogeneous boundary conditions that may be imposed on parts of the boundary. This
latter operator is generalized in Theorem 2.4 to an operator that preserves arbitrary
piecewise polynomial Dirichlet boundary conditions.

In order to formulate these results, we introduce the following additional notation: For
e ∈ E(T ) we denote by N (e) the two endpoints of e, i.e., N (e) = {V ∈ N (T ) |V ∈ e}.
Patches of order j ∈ �

associated with an element K ∈ T or an edge e ∈ E(T ) are
defined thus:

ω1
e :=

⋃

V ∈N (e)

ωV , ωj+1
e :=

⋃

V ∈N (T ):V ∈ωj
e

ωV , j = 1, 2, . . . , (2.1)

ω1
K :=

⋃

V ∈N (K)

ωV , ωj+1
K :=

⋃

V ∈N (T ):V ∈ωj
K

ωV , j = 1, 2, . . . , (2.2)

2.1.1. Clément type approximation. Quasi-interpolation of Clément type
takes the following form:

Theorem 2.1 (Clément type quasi-interpolation). Let T be a γ-shape regular tri-
angulation of a domain Ω ⊂ � 2 satisfying (M1)–(M4) and let p be a polynomial
degree distribution satisfying (1.7). Then there exists a bounded linear operator Ihp :
L1(Ω) → Sp(T ) ⊂ L1(Ω), and there exists a constant C > 0 that depends solely on
q ∈ [1,∞] and γ such that for every u ∈ W 1,q(Ω) and all elements K ∈ T and all
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edges e ∈ E(T )

‖u− Ihpu‖Lq(K) +
hK

pK
‖∇(u− Ihpu)‖Lq(K) ≤ C

hK

pK
‖∇u‖Lq(ω1

K), (2.3)

‖u− Ihpu‖Lq(e) ≤ C

(
he

pe

)1−1/q

‖∇u‖Lq(ω1
e). (2.4)

2.1.2. Scott-Zhang type approximation. The operator Ihp of Theorem 2.1
does not preserve boundary conditions if applied to functions of W 1,q(Ω). The oper-
ators of Theorem 2.1 can, however, be modified to accommodate this.
Let a set B ⊂ E(T ) of boundary edges of the triangulation T be given, i.e.,

B ⊂ E(T ) and b ⊂ ∂Ω ∀b ∈ B. (2.5)

Next, we define for q ∈ (1,∞) the spaces

W 1,q
B,0 := {u ∈ W 1,q(Ω) |u|b = 0 for all b ∈ B}, (2.6)

W 1,q
B,p := {u ∈ W 1,q(Ω) |u|b ◦ Fb ∈ Ppb

for all b ∈ B and (2.8) holds}, (2.7)

where the continuity condition (2.8) is:

for all b, b′ ∈ B and V ∈ N (b) ∩ N (b′) there holds lim
x→V
x∈b

u(x) = lim
x→V
x∈b′

u(x). (2.8)

Remark 2.2. Since the edges of B are part of the boundary of ∂Ω, the function
values are understood in the sense of traces. In the case of slit domains appropriate
limits have to be taken.
We then have the following approximation results:
Theorem 2.3 (homogeneous boundary conditions). Let T be a γ-shape regular tri-
angulation of a domain Ω ⊂ � 2 satisfying (M1)–(M4). Let p be a polynomial degree
distribution satisfying (1.7). Let q ∈ (1,∞) and a set B ⊂ E(T ) of boundary edges be

given. Then there exists a linear operator Ihp
hom : W 1,q

B,0(Ω) → Sp(T ) ∩ W 1,q
B,0(Ω), and

there exists a constant C > 0 depending solely on γ and q such that

‖u− Ihp
homu‖Lq(K) +

hK

pK
‖∇(u− Ihp

homu)‖Lq(K)≤C
hK

pK
‖∇u‖Lq(ω1

K), (2.9)

‖u− Ihp
homu‖Lq(e)≤C

(
he

pe

)1−1/q

‖∇u‖Lq(ω1
e).(2.10)

A slightly different situation arises if non-homogeneous piecewise polynomial bound-
ary conditions are to be preserved: The domain of influence in the local bounds is
enlarged, and we impose a restriction on the variation in polynomial degree distribu-
tion for elements near the Dirichlet part of the boundary:
Theorem 2.4 (Scott-Zhang type quasi-interpolation). Let q ∈ (1,∞), T be a γ-
shape regular triangulation of a domain Ω ⊂ � 2 satisfying (M1)–(M4). Let p be
a polynomial degree distribution satisfying (1.7). Let B ⊂ E(T ) be a collection of
boundary edges. Assume additionally that

|pK − pK′ | ≤ γ ∀K, K ′ s.t. K ∩K ′ ∩ b 6= ∅ for some b ∈ B. (2.11)
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Then there exists a linear operator Ihp
inhom : W 1,q

B,p(Ω) → Sp(T ) such that

(Ihp
inhomu)|b = u|b ∀b ∈ B.

Furthermore, there exists a constant C > 0 depending only on γ and q such that for
all elements K ∈ T and all edges e ∈ E(T )

‖u− Ihp
inhomu‖Lq(K) +

hK

pK
‖∇(u− Ihp

inhomu)‖Lq(K) ≤ C
hK

pK
‖∇u‖Lq(ω4

K),

‖u− Ihp
inhomu‖Lq(e) ≤ C

(
hK

pK

)1−1/q

‖∇u‖Lq(ω4
e).

Remark 2.5. The dependence on the domains ω4
K , ω4

e is not optimal. A careful
inspection of the proof allows slightly sharper bounds. For example, for elements K
such that ω4

K ⊂⊂ Ω we can replace ω4
K with ω1

K .

2.2. Proofs.

2.2.1. Proof of Theorem 2.1. Theorem 2.1 is proved using the ideas of the
partition of unity method, [32], which is based on the following result:

Lemma 2.6. Let T be a γ-shape regular triangulation triangulation of a domain Ω ⊂
� 2 satisfying (M1)–(M3). Let q ∈ [1,∞], and let p be an arbitrary polynomial degree
distribution. Assume that for a given u ∈ W 1,q(Ω) a function uV ∈ SpV −1(T |ωV ) is
given for each V ∈ N (T ), where pV is defined in (1.8). Then there exists C > 0
depending solely on γ such that the function ũ :=

∑
V ∈N (T ) ϕV uV ∈ Sp(T ) and

‖u− ũ‖Lq(K) ≤ C
∑

V ∈N (K)

‖u− uV ‖Lq(K),

‖∇(u− ũ)‖Lq(K) ≤ C
∑

V ∈N (K)

[
‖∇(u− uV )‖Lq(K) +

1

hK
‖u− uV ‖Lq(K)

]
,

‖u− ũ‖Lq(e) ≤ C
∑

V ∈N (e)

‖u− uV ‖Lq(e).

Proof. We start by ascertaining ũ ∈ C(Ω). This follows easily from the support
properties of the functions ϕV ∈ C(Ω), namely, ϕ|Ω\ωV

≡ 0, together with uV ∈
C(ωV )∩L∞(ωV ). In order to see ũ ∈ Sp(T ) we have to make sure that (ϕV uV )◦FK ∈
ΠpK (K̂) for all K ∈ T |ωV for all V ∈ N (T ). This follows easily from ϕV ∈ S1(T )
and uV ∈ SpV −1(T |ωV ). The essential ingredient for proving the estimates is the
observation that

∑
V ∈N (K) ϕV ≡ 1 on K for every K ∈ T and

∑
V ∈N (e) ϕV ≡ 1 on e

for every e ∈ E(T ). The bounds on (u − ũ)|K then follow from the observation that
(u− ũ)|K =

∑
V ∈N (K) ϕV (u− uV ), where the sum extend over at most 4 terms, and

from the bounds (1.5) on the functions ϕV .

Lemma 2.7. Let T a γ-shape regular triangulation of a domain Ω ⊂ � 2 satisfying
(M1)–(M4). Assume that the polynomial degree distribution p satisfies (1.7). Then
for each vertex V there exists a bounded linear operator IV : L1(ωV ) → SpV −1(T |ωV ),
and there exists a constant C > 0 that depends solely on γ such that for each u ∈
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W 1,q(ωV ), each K ∈ T |ωV , and each edge e ∈ E(T |ωV )

‖u− IV u‖Lq(K) +
hK

pK
‖∇(u− IV u)‖Lq(K) ≤ C

hV

pV
‖∇u‖Lq(ωV ),

‖u− IV u‖Lq(e) ≤ C

(
hV

pV

)1−1/q

‖∇u‖Lq(ωV ).

Proof. Consider a patch ωV . Condition (M4) provides the patch map FV : ω̂V → ωV

and Lemma 1.5 gives ûV = u|K ◦ FV ∈ W 1,q(ω̂V ) together with

‖ûV ‖Lq( �ωV ) ≤ Ch
2/q
V ‖u‖Lq(ωV ), ‖∇ûV ‖Lq( �ωV ) ≤ Ch

1−2/q
V ‖∇u‖Lq(ωV ).

Let Ŝ be a square such that ω̂V ⊂⊂ Ŝ and denote by E : L1(ω̂V ) → L1(Ŝ) the
universal linear extension operator of [38]. We then have the existence of a constant
Cq > 0, which depends solely on q ∈ [1,∞] and ω̂V , such that

‖EûV ‖Lq( �S) ≤ Cq‖ûV ‖Lq( �ωV ), ‖EûV ‖W 1,q( �S) ≤ C‖ûV ‖W 1,q( �ωV ).

Choosing N = b(pV − 1)/2c in the approximation result Theorem A.3, we obtain

a bounded linear operator J1,N : L1(Ŝ) → QN ⊂ PpV −1 that reproduces constant
functions and satisfies

(pV + 1)‖v − J1,Nv‖Lq( �S) + ‖∇(v − J1,Nv)‖Lq( �S) ≤ C‖v‖W 1,q( �S) ∀v ∈ W 1,q(Ŝ).

We next define the operator JpV : L1(ω̂V ) → PpV −1 by

JpV v := v + J1,N ◦E(v − v), v :=
1

|ω̂V |

∫

�ωV

v(x) dx.

JpV is a bounded linear operator on L1(ω̂V ), and we obtain for W 1,q-functions:

(pV +1)‖v−JpV v‖Lq( �ωV ) +‖∇(v−JpV v)‖Lq( �ωV ) ≤ C‖v−v‖W 1,q( �ωV ) ≤ C‖∇v‖Lq( �ωV ),

where in the last estimate we employed the second Poincaré inequality. Applying this
operator to the pull-back ûV , we obtain

(pV + 1)‖ûV − JpV ûV ‖Lq( �ωV ) + ‖∇(ûV − JpV ûV )‖Lq( �ωV ) ≤ C‖∇ûV ‖Lq( �ωV )

≤ Ch
1−2/q
V ‖uV ‖Lq(ωV ).

Returning to the patch ωV , we observe that the function upV defined on ωV by
upV = (JpV ûV ) ◦ F−1

V is an element of SpV −1(T |ωV ) (this is due to the fact that
elementwise FV is the composition of an affine map and the element map) and

(pV + 1)h
−2/q
V ‖uV − upV ‖Lq(ωV ) + h

1−2/q
V ‖∇(uV − upV )‖Lq(ωV ) ≤ Ch

1−2/q
V ‖ûV ‖Lq(ωV ).

This leads to the desired bound on elements K ∈ T |ωV . For the bound on an edge
e ∈ E(T |ωV ), we employ a trace theorem on ω̂V before transforming back to ωV .
Checking the steps of the construction, we see that the map uV 7→ upV is linear and
that it is at the same time a bound linear map L1(ωV ) → PpV −1.
The constant in the last estimate does depend on the reference patch ω̂V . We observe,
however, that for a given (upper bound on) γ, only finitely many reference patches

9



have to be considered since only finitely many elements can abut on a vertex (cf.
Lemma 1.3). This concludes the argument.
Proof of Theorem 2.1: The proof of Theorem 2.1 now follows from combining Lem-
mata 2.6 and 2.7. For each vertex V , we construct the local approximation IV u ∈
SpV −1(T |ωV ) with the aid of Lemma 2.7. The operator Ihp : L1(Ω) → Sp(T ) is then
defined as

Ihpu =
∑

V ∈N (T )

ϕV IV u,

where the vertex shape functions ϕV ∈ S1(T ) have the support properties of (1.5).
The operator Ihp maps indeed into Sp(T ) since IV u ∈ spV −1(T |ωV ). By inspection,
we observe that Ihp : L1(Ω) → Sp(T ) is a bounded linear operator. Its approximation
properties, when applied to W 1,q-functions, follow from Lemmata 2.6 and 2.7. 2

2.2.2. Proof of Theorem 2.3. We modify the approximation operator of The-
orem 2.1 so as to enforce homogeneous Dirichlet boundary conditions. Since we need
the trace theorem to hold, the operator is now defined on W 1,q(Ω) instead of L1(Ω).
The construction of this operator is again patch oriented. The difference is that we
will change the definition of the linear maps IV for V ∈ N (B). Here, we defined

N (B) :=
⋃

b∈B
N (b). (2.12)

We first analyze the prototypical situation on a boundary reference patch:
Lemma 2.8. Let q ∈ (1,∞). Let ω̂ = ωbdy,M,j for some M ∈ �

and j ∈ {1, . . . , 2M}
and denote by T̂ the triangulation of ω̂. Denote by Γ0 the edge of ω̂ lying on the x-axis
and by ΓM the edge lying on the y-axis (cf. Fig. 2.1). Let ΓD be either Γ0, ΓM or
Γ0 ∪ΓM ∪{0}. Denote W 1,q

ΓD ,0(ω̂) = {u ∈ W 1,q(ω̂) |u|ΓD = 0}. Then for every p ∈ �
0

there exists a bounded linear map Ip : W 1,q
ΓD ,0(ω̂) → Sp(T̂ ) ∩W 1,q

ΓD ,0(ω̂) such that

(p + 1)‖u− Ipu‖Lq( �ω) + ‖∇(u− Ipu)‖Lq( �ω) ≤ C‖∇u‖Lq( �ω), (2.13)

where the constant C > 0 is independent of p and u ∈ W 1,q
ΓD ,0(ω̂).

Proof. We will demonstrate the result for the case ΓD = Γ0 ∪ΓM ∪{0}, the other two
cases being handled similarly. The construction of Ip is done in two steps: First, we
let Jp : L1(ω̂) → Pp be the linear operator of the proof of Lemma 2.7. It satisfies for
u ∈ W 1,q(ω̂)

(p + 1)‖u− Jpu‖Lq( �ω) + ‖∇(u− Jpu)‖Lq( �ω) ≤ C‖∇u‖Lq( �ω).

In particular, from the multiplicative trace inequality (see, e.g., [20, Thm. 1.6.6]) and
the fact that u|ΓD = 0 we get

‖Jpu‖Lq(ΓD) = ‖u− Jpu‖Lq(ΓD) ≤ C(p + 1)−(1−1/q)‖∇u‖Lq( �ω),

‖Jpu‖W 1−1/q,q(ΓD) = ‖u− Jpu‖W 1−1/q,q(ΓD) ≤ C‖∇u‖Lq( �ω),

The function Jpu does not, however, satisfy homogeneous boundary conditions on
ΓD. This is corrected in a second step by an element-by-element construction using
appropriate polynomial liftings. To that end, we enumerate the edges of T̂ emanating
from the origin in a counterclockwise fashion as depicted in Fig. 2.1. Likewise, the

10
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Fig. 2.1. Numbering of elements and edges of a boundary reference patch for M = 3.

elements are labeled Ki, i = 0, . . . , M − 1. Next, we observe that the functions
u0 := (u − Jpu)|Γ0

= (Jpu)|Γ0
and uM := (u − Jpu)|ΓM = (Jpu)|ΓM are polynomials

of degree p. Additionally, we note that each edge Γi, i = 0, . . . , M , is homeomorphic
to the reference interval Î = (0, 1) by means of an affine map γi : Î → Γi, which
we may choose to satisfy γi(0) = 0 for i ∈ {0, . . . , M}. We then define a function
z ∈ C(∪M

i=0Γi) by

z ◦ γi(x) := u0 ◦ γ0(x), x ∈ Î , i = 0, . . . , M − 1,

z ◦ γM (x) := uM ◦ γM (x).

Clearly, for i ∈ {0, . . . , M} we have

‖z‖Lq(Γi) ≤ C
[
‖u0‖Lq(Γ0) + ‖uM‖Lq(ΓM )

]
≤ C(p + 1)−1+1/q‖∇u‖Lq( �ω).

We next define for each element Ki the set

Γi,i+1 := Γi ∪ Γi+1 ∪ {0} ⊂ ∂Ki, i = 0, . . . , M − 1. (2.14)

We then ascertain

‖z‖W 1−1/q,q(Γi,i+1) ≤ C‖Jpu‖W 1−1/q,q(ΓD) ≤ C‖u‖W 1,q( �ω).

This follows easily from the fact that for two edges Γi, Γj with i 6= j we have the
characterization (see, e.g., [28, Thm. 1.5.2.3])

‖z‖q

W 1−1/q,q(Γi∪Γj∪{0}) ∼ ‖ẑi‖q

W 1−1/q,q(Î)
+ ‖ẑj‖q

W 1−1/q,q(Î)
+

∫ 1

0

|ẑi(x) − ẑj(x)|q
xq−1

dx

where we wrote ẑi = z ◦ γi, ẑj = z ◦ γj . Here, the constants hidden in the ∼-notation
depend solely on Γi, Γj , and q. We finally construct with the aid of Proposition B.7

a function Z ∈ S4p(T̂ ) such that Z|Γi = z|Γi for all i ∈ {0, . . . , M} and

(p + 1)‖Z‖Lq(Ki) + ‖∇Z‖Lq(Ki) ≤ C
[
‖z‖W 1−1/q,q(Γi,i+1) + (p + 1)1−1/q‖z‖Lq(Γi,i+1)

]

≤ C‖∇u‖Lq( �ω), i = 0, . . . , M − 1.

11



We conclude the argument by noting that the map u 7→ Jpu+Z is linear and bounded.

Since Jpu + Z ∈ S4p(T̂ ), replacing p with bp/4c gives the desired result.
Proof of Theorem 2.3: The proof of Theorem 2.3 now follows by the same arguments
as that of Theorem 2.1. Merely for the patches ωV with V ∈ N (B) we replace the
local approximation IV u of Lemma 2.7 with the pushforward (IpV ûV )◦F−1

V of IpV ûV ,
where IpV ûV with ûV = u|ωV ◦ FV is defined in Lemma 2.8. 2

2.2.3. Proof of Theorem 2.4: Lifting results. The proof of Theorem 2.4
follows along the same lines as that of Theorem 2.3. The key difference is that
additionally appropriate (polynomial) liftings are required. Providing these is the
purpose of the present subsection.
We start with a “vertex lifting” result on boundary reference patches that yields the
correct value at a boundary vertex. Given a collection of boundary edges B̂ of the
reference patch ω̂, the spaces W 1,q

�B,p
(ω̂) on ω̂ are defined analogously to the way the

spaces W 1,q
B,p(Ω) are defined in (2.6). We then have:

Lemma 2.9. Let ω̂ = ω̂bdy,M,j for some M ∈ �
, j ∈ {1, . . . , 2M}, and denote by T̂

the triangulation of ω̂. Let p be a polynomial degree distribution on T̂ and assume
that

|pK − pK′ | ≤ k ∀K, K ′ ∈ T̂ .

Define p′ := min{pK − 1 |K ∈ T̂ } ∈ �
0 .

Let B̂ = {Γ0} or B̂ = {ΓM} or B̂ = {Γ0, ΓM} (cf. Fig. 2.1). Then there exists a
constant C > 0 that depends solely on ω̂ (i.e., on M , j) and k, q, and there exists a

bounded linear operator L : W 1,q

�B,p
(ω̂) → Sp′(T̂ ) such that

(Lu− u)(0) = 0, (2.15)

‖Lu− u‖W 1,q( �ω) ≤ C‖∇u‖Lq( �ω), (2.16)

‖(Lu− u) ◦ γb‖ �

W
1−1/q,q
l (Î)

≤ C‖∇u‖Lq( �ω) ∀b ∈ B̂, (2.17)

where γb : Î → b is the affine parametrization of b ∈ B̂ satisfying γb(0) = 0.
Proof. We employ ideas similar to those of the proof of Theorem 2.3. For simplicity
of notation, we consider the case B̂ = {Γ0, ΓM}; the other two cases are treated in a
similar fashion. We denote by γi : Î → Γi, i = 0, . . . , M , the affine parametrizations
of the edges Γi, which are assumed without loss of generality to satisfy γi(0) = 0. We
will construct Lu first on the edges Γi and in a second step define Lu on the elements
via appropriate liftings.
We write p = max{pK |K ∈ T̂ } ∈ �

. Choose b ∈ B̂. Without loss of generality,
we assume that b = Γ0. By assumption u ◦ γ0 ∈ Pp, so that we may define l0 :=
Zp,p′(u ◦ γ0), where the linear operator Zp,p′ : Pp → Pp′ is the polynomial extension
operator of Lemma C.2. We then have l0(0) = u(0) and additionally by properties of
Zp,p′ and the trace theorem

‖l0 − u|Γ0
◦ γ0‖ �

W
1−1/q,q
l (Î)

≤ C‖u‖W 1−1/q,q(Γ0) ≤ C‖u‖W 1,q( �ω), (2.18)

‖l0 − u|ΓM ◦ γM‖ �

W
1−1/q,q
l (Î)

≤ C‖u‖W 1,q( �ω). (2.19)

Next, we define

(Lu)|Γi = l0 ◦ γ−1
i , i = 0, . . . , M.

12



This gives (Lu)(0) = u(0). Furthermore, this definition of (Lu)|Γi in conjunction with
the bounds (2.18), (2.19) implies

‖Lu‖W 1−1/q,q(Γi,i+1) ≤ C‖u‖W 1,q( �ω), i = 0, . . . , M − 1,

where we abbreviate Γi,i+1 = Γi ∪ Γi+1 ∪ {0} as in (2.14). From the lifting result

Theorem B.4, there exists then a function Lu ∈ Sp′(T̂ ) with

‖Lu‖W 1,q( �ω) ≤ C‖u‖W 1,q( �ω). (2.20)

Furthermore, inspection of the construction of Lu reveals that u 7→ Lu is linear. Since
the operator Zp,p′ of Lemma C.2 satisfies Zp,p′1 = 1 and the lifting of Theorem B.4
likewise ensures that constant functions are reproduced (cf. Remark B.5), we conclude
L1 = 1. By a standard argument, we can therefore strengthen (2.20) to yield (2.16).
The estimates (2.17) are ensured by the way we defined (Lu)|Γi for i ∈ {0, . . . , M}.
Lemma 2.7 allows us to construct a lifting operator as follows:
Proposition 2.10. Let T be a γ-shape regular triangulation of a domain Ω ⊂ � 2

satisfying (M1)–(M4). Let B ⊂ E(T ) be a collection of boundary edges. Let q ∈
(1,∞) be given. Assume that the polynomial degree distribution p satisfies (1.7) and
additionally (2.11). Then there exists a constant C > 0 that depends solely on γ and

q, and there exists a bounded linear operator Ihp
lift : W 1,q

B,p(Ω) → Sp(T ) such that

(Ihp
liftu)|b = u|b ∀b ∈ B,

(Ihp
liftu)|K = 0 if ωK,B = ∅,

‖Ihp
liftu‖Lq(K) ≤ C

[
‖u‖Lq(ωK,B) + hK‖∇u‖Lq(ωK,B)

]
if ωK,B 6= ∅,

‖∇Ihp
liftu‖Lq(K) ≤ C

[
1

hK
‖u‖Lq(ωK,B) + ‖∇u‖Lq(ωK,B)

]
if ωK,B 6= ∅,

where, for an element K ∈ T , we define

ωK,B :=
⋃

V ∈N (K)∩N (B)

ωV . (2.21)

Proof. The lifting Ihp
liftu is constructed as the sum of u1 and u2. The term u1 is

constructed such that the correct behavior at the vertices of the triangulation is
ensured. In this way, the construction of the lifting is then reduced to an edgewise
construction, which defines u2.
Given u ∈ W 1,q

B,p(Ω), we construct u1 ∈ Sp(T ) patchwise as

u1 =
∑

V ∈N (T )

ϕV LV u,

where the patch operators LV are defined with the aid of Lemma 2.9 according to the
following rules:
(a) if V 6∈ N (B), then LV u = 0;
(b) if V ∈ N (B), then LV u is defined on the corresponding reference patch ω̂V as

(LV u) ◦ FV = Lû, where L is the operator of Lemma 2.9. Here, û = u ◦ FV and
the polynomial degrees p and p′ are defined as p = max{pK |K ∈ T |ωV } and
p′ = min{pK |K ∈ T |ωV } − 1.

13



By the choice of the polynomial degrees p′, we get u1 ∈ Sp(T ). Additionally, the
function LV u satisfies for V ∈ N (B)

(LV u)(V ) = u(V ),

‖LV u‖Lq(ωV ) ≤ C
[
‖u‖Lq(ωV ) + hV ‖∇u‖Lq(ωV )

]
,

‖∇LV u‖Lq(ωV ) ≤ C‖∇u‖Lq(ωV ).

Moreover, for edges b ∈ B and vertices V ∈ N (b) we have upon denoting by γb,V

the map γb,V : Î → b that is determined by the element maps and the condition
γb,V (0) = V the following bound:

‖(u− LV u) ◦ γb,V ‖ �

W
1−1/q,q
l (Î)

≤ Ch
1−2/q
V ‖∇u‖Lq(ωV ) ∀b ∈ B, V ∈ N (b).

For elements K with ωK,B = ∅, our construction implies (u1)|K = 0. For elements K
with ωK,B 6= ∅ we get

u1(V ) = u(V ) ∀V ∈ N (B),

‖u1‖Lq(K) ≤ C
[
‖u‖Lq(ωK,B) + hK‖∇u‖Lq(ωK,B)

]
,

‖∇u1‖Lq(K) ≤ C

[
1

hK
‖u‖Lq(ωK,B) + ‖∇u‖Lq(ωK,B)

]
,

‖(u− u1) ◦ γb‖ �

W 1−1/q,q(Î)
≤ Ch

1−2/q
b ‖∇u‖Lq(ω1

b ) ∀b ∈ B.

For the last estimate, we employed additionally Lemma C.3.
We now turn to the construction of u2. Since u1 and u coincide in the vertices that
lie on the Dirichlet boundary, we can proceed in an element-by-element fashion. For
elements K with E(K)∩B = ∅, we set u2|K = 0. For elements K with E(K)∩B 6= ∅,
we construct u2|K using the following considerations: We set BK = E(K)∩B, denote

by b̂ := F−1
K (b) the pull-back of an edge b ∈ BK , and construct with the aid of the

lifting result Theorem B.4 on the reference element K̂ the polynomial û2,K ∈ PpK

such that

û2,K |�b = ((u− u1) ◦ FK)|�b ∀b ∈ BK ,

û2,K |F−1

K (e) = 0 ∀e ∈ E(K) \ BK ,

‖û2‖W 1,q( �K) ≤ C
∑

b∈BK

‖(u− u1) ◦ Fb‖ �

W 1−1/q,q(Î)
≤ Ch

1−2/q
K ‖∇u‖Lq(ωK,B),

where Fb : Î → b denotes the parametrization of b determined by the element maps.
Pushing forward these estimates to the element K, the function u2|K := û2,K ◦ F−1

K

then satisfies

u2|b = (u− u1)|b, ∀b ∈ BK ,

u2|e = 0 ∀e ∈ E(K) \ BK ,

‖u2‖Lq(K) ≤ Ch
2/q
K ‖û2‖Lq( �K) ≤ ChK‖∇u‖Lq(ωK,B),

‖∇u2‖Lq(K) ≤ Ch
2/q−1
K ‖∇û2‖Lq( �K) ≤ C‖∇u‖Lq(ωK,B).

The sum u1 + u2 is an element of Sp(T ), it satisfies (u1 + u2)|b = u|b for all b ∈ B,
and we have the estimates

‖u1 + u2‖Lq(K) ≤ C
[
‖u‖Lq(ωK,B) + hK‖∇u‖Lq(ωK,B)

]
,

‖∇(u1 + u2)‖Lq(K) ≤ C

[
1

hK
‖u‖Lq(ωK,B) + ‖∇u‖Lq(ωK,B)

]
;
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inspection of the construction shows that the map u 7→ u1 + u2 is linear.

2.2.4. Proof of Theorem 2.4. We are now in position to prove Theorem 2.4:
Proof of Theorem 2.4: We employ the lifting operator Ihp

lift of Proposition 2.10 and

the approximation operators Ihp
hom, Ihp of Theorems 2.3, 2.1. We define

L := Ihp
lift ◦ (Id−Ihp) + Ihp,

Ihp
inhom := L + Ihp

hom ◦ (Id−L).

Ihp
inhom is a linear operator mapping into Sp(T ). We easily check that for u ∈ W 1,q

B,p(Ω)

(Ihp
inhomu)|b = u|b ∀b ∈ B.

It remains to check the approximation properties. Upon writing

(Id−Ihp
inhom) = (Id−Ihp

hom) ◦ (Id−L),

we see that the desired approximation follow from the approximation properties of
Ihp
hom together with stability properties of Id−L. These stability properties can be

inferred by writing

Id−L = (Id−Ihp
lift) ◦ (Id−Ihp)

and then observing that Proposition 2.10 implies

‖∇(u− Lu)‖Lq(K) ≤ C

[
1

hK
‖u− Ihpu‖Lq(ω2

K) + ‖∇(u− Ihpu)‖Lq(ω2
K)

]
≤ C‖∇u‖Lq(ω3

K).

Theorem 2.3 then implies

‖u− Ihp
inhomu‖Lq(K) +

hK

pK
‖∇(u− Ihp

inhomu)‖Lq(K) ≤ C
hK

pK
‖∇u‖Lq(ω4

K).

From this, the desired estimate for the edges follows. 2

Appendix A. Approximation results.

A.1. Polynomial approximation results on hyper cubes. The purpose
of the present section is to establish polynomial approximation in Sobolev spaces
W r,q(S), where S is a hyper cube. Similar results have been obtained in [2]. Our
present exposition ignores effects related to the behavior of polynomials near the end-
points of an interval. While in the one-dimensional situation a characterization of
the functions that can be approximated at a certain rate can be done using weighted
spaces, these results do not easily extend to higher dimensions. We refer to [25] for
an exposition of the results in one dimension and refer to [7, 8] where related results
for two-dimensional are proved.
We start by recalling a one-dimensional result on simultaneous trigonometric approx-
imation:
Lemma A.1. Let

�
be the one-dimensional torus and denote for r ∈ �

0 , q ∈ [1,∞]
in the standard way by W r,q(

�
) the set of functions with r weak derivatives whose

derivatives are in Lq(
�
). Denote by TN the set of trigonometric polynomials of degree

N ∈ �
. Then for each R ∈ �

and each N there exists a linear operator JR,N :
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L1(
�
) → TN and a constant CR > 0 (which depends solely on R) such that for all

r ∈ �
0 with 0 ≤ r ≤ R, all q ∈ [1,∞] and all u ∈ W r,q(

�
)

‖ (u− JR,N u)
(j) ‖Lq(

�
) ≤ Cr(N + 1)−(r−j)‖u(r)‖Lq(

�
), j = 0, . . . , r. (A.1)

Proof. Jackson type results of this form are well-known in approximation theory. The
linear operators JR,N , whose existence is ascertained in Lemma A.1 can be chosen as
in [25, Chap. 7, eqn. (2.8)]. The results concerning simultaneous approximation then
follows from combining Thms. 2.3, 2.7, 2.8 of [25, Chap. 7] and a check that the case
q = ∞ is included in the form stated in Lemma A.1. The details are worked out in
Proposition E.1 below.
As is well-known, trigonometric approximation result imply polynomial approxima-
tion results. For future reference, we formulate this in the following proposition.
Proposition A.2. Let I ⊂ �

be a bounded interval. Let R ∈ �
and q ∈ [1,∞]. Then

for each N ∈ �
0 there exists a linear operator JR,N : L1(I) → PN and a constant

C > 0 that depends only on R, q, I, such that for each 0 ≤ r ≤ R

‖u− JR,Nu‖W j,q(I) ≤ C(N + 1)−(r−j)‖u‖W r,q(I), j = 0, . . . , r. (A.2)

Furthermore, the linear operator JR,N may be constructed such that for 0 ≤ r ≤ R
and N ≥ R− 1

JR,Nu = u ∀u ∈ PR−1 (A.3)

‖u− JR,Nu‖W j,q(I) ≤ C(N + 1)−(r−j)|u|W r,q(I), j = 0, . . . , r. (A.4)

Proof. The proof for N = 0 is trivial; we will therefore assume N ∈ �
. We will obtain

the results for polynomial approximation from those for trigonometric approximation.
We construct for given u ∈ W r,q(I) the approximant JN u ∈ PN ; tracing the steps
of the construction then reveals that u 7→ JN u is in fact a linear operator. Without
loss of generality, we may assume that I is such that the closed interval I satisfies
I = [− cos ε, cos ε] for some chosen ε ∈ (0, π/2).
1. step: Define the interval Θ = (ε, π − ε). For every function v (defined on I) we
define a function vθ on Θ by vθ(θ) = v(cos θ). Then for every j ∈ �

0 , q ∈ [1,∞] there
exists a constant C > 0 that depends only on j, q, and ε, such that

C−1‖v‖W j,q(I) ≤ ‖vθ‖W j,q(Θ) ≤ C‖v‖W j,q(I). (A.5)

2. step: We construct a function ũθ on the torus
�

with the properties that a) ũθ = uθ

on Θ; b) ũθ is symmetric with respect to θ = 0; and c) ‖ũθ‖W r,q(
�
) ≤ C‖u‖W r,q(I).

To that end, we extend uθ to a function in W r,q(
�
) such that the extended function

(again denoted uθ) satisfies

‖uθ‖W r,q(� ) ≤ C‖uθ‖W r,q(Θ);

such an extension is constructed, for example, in [38]. Furthermore, using smooth
cut-off functions, we may assume that this extension satisfies supp uθ ⊂ [ε/2, π−ε/2].
We then define on the interval (−π, π) the symmetric extension of uθ by

ũθ(x) :=

{
uθ(x) if x ∈ (0, π)

uθ(−x) if x ∈ (−π, 0)
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By the support properties of uθ we then conclude

‖ũθ‖W r,q(
�
) ≤ C‖u‖W r,q(I).

3. step: From Lemma A.1, we get for the trigonometric polynomial JN := JR,N ũθ

‖ũθ − JN‖W j,q(
�
) ≤ CN−(r−j)‖u‖W r,q(I). (A.6)

We wish to approximate ũθ by a symmetric trigonometric polynomial. Since ũθ is
symmetric with respect to θ = 0, we get that the trigonometric polynomial J̃N defined
by J̃N (x) = JN (−x) also satisfies

‖ũθ − J̃N‖W j,q(
�
) ≤ CN−(r−j)‖u‖W r,q(I). (A.7)

Combining (A.6), (A.7), we conclude that the symmetric trigonometric polynomial

ĴN :=
1

2

(
JN + J̃N

)

satisfies

‖ũθ − ĴN‖W j,q(
�
) ≤ CN−(r−j)‖u‖W r,q(I). (A.8)

4. step: Since the symmetric trigonometric polynomial ĴN can be written in the form
ĴN (θ) = PN (cos(θ)) for a polynomial PN ∈ PN , we get the desired operator Jr,N and
the bound (A.2) from (A.8) and (A.5).
5. step: As a preparation to the final step, we ascertain for r ≥ 1

inf
v∈Pr−1

‖u− v‖W r,q(I) ≤ C‖u(r)‖Lq(I). (A.9)

We see this as follows: Since r ≥ 1, we note that W r,q(I) ⊂ Cr−1(I). Choosing an
arbitrary point x0 ∈ I and setting Tr−1u ∈ Pr−1 the Taylor polynomial of u ∈ W r,q(I)
about x0, we have (see, e.g., [25, Chap. 2, Prop. 5.5])

‖u− Tr−1u‖Lq(I) ≤ ‖u(r)‖Lq(I).

Furthermore, we have from, e.g., [25, Chap. 2, Prop. 5.6]

‖v‖W r,q(I) ≤ C
[
‖v‖Lq(I) + ‖v(r)‖Lq(I)

]
,

so that

inf
w∈Pr−1

‖v − w‖W r,q(I) ≤ ‖v − Tr−1u‖W r,q(I) ≤ C
[
‖v − Tr−1v‖Lq(I) + ‖v(r)‖Lq(I)

]

≤ C‖v(r)‖Lq(I).

6. step: It remains to show that JR,N can be chosen such that such that the properties
(A.3), (A.4) also hold.
We choose a linear operator Q : L1(I) → PR−1 such that Qv = v for all v ∈ PR−1.
Since the range of Q is finite dimensional, we get for any q ∈ [1,∞] the existence of
C > 0 such that for every 0 ≤ r ≤ R

‖Qv‖W r,q(I) ≤ C‖v‖W r,q(I).
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Therefore, for r ≥ 1 and 0 ≤ j ≤ r we get

‖u− (JR,N (u−Qu) + Qu)‖W j,q(I) = ‖u−Qu− Jr,N(u−Qu)‖W j,q(I)

≤ C‖u−Qu‖W r,q(I) ≤ C‖u(r)‖Lq(I).

Hence, since Qv = v for all v ∈ Pr−1 we get from (A.9)

‖u− (Jr,N (u−Qu) + Qu)‖W j,q(I) ≤ C inf
v∈Pr−1

‖u− v‖W r,q(I) ≤ C‖u(r)‖Lq(I).

We conclude that the operator u 7→ Jr,N (u − Qu) + Qu satisfies the desired bound
(A.4) for r ≥ 1. A direct calculation shows that it also satisfies the desired bounds
for r = 0. It maps into PN provided that N ≥ R− 1.
The one-dimensional operator JR,N of Proposition A.2 can be tensorized to yield
polynomial approximations of functions defined on hyper cubes.
Theorem A.3. Let d ∈ �

and Ii, i = 1, . . . , d be bounded intervals. Set I =
I1×· · ·× Id. Let R ∈ �

. Then for each N ∈ �
0 there exists a bounded linear operator

JR,N : L1(I) → QN(I) with the following properties: For each q ∈ [1,∞] there exists
a constant C > 0, which depends only on R, q, and I, such that for all N ≥ R − 1
and all 0 ≤ r ≤ R

JR,Nu = u ∀u ∈ QR−1, (A.10)

‖u− JR,Nu‖W l,q(I) ≤ C(N + 1)−(r−l)|u|W r,q(I), l = 0, . . . , r. (A.11)

Proof. The operator JR,N is taken as the tensor product of the one-dimensional ones
given by Proposition A.2. To simplify the notation, we will drop the indices R, N and
write J1, . . . , Jd to denote these one-dimensional operators and J to denote the tensor
product. From Proposition A.2 we obtain the following stability and approximation
results:

|Jiu|W l,q(Ii) ≤ C|u|W l,q(Ii), l = 0, . . . , r, (A.12)

|u− Jiu|W l,q(Ii) ≤ C(N + 1)−(r−l)|u|W l,q(Ii), 0 ≤ l ≤ r ≤ R, (A.13)

where i = 1, . . . , d,. These stability estimates then allow us to obtain approximation
results in the standard way. We illustrate the procedure for the case d = 2. Let α,
β ≥ 0 with α + β = l ≤ r. Then, since the operators ∂i and Jj commute if i 6= j, we
get

‖∂α
1 ∂β

2 (u− J1 ⊗ J2u)‖Lq(I) ≤ ‖∂α
1 ∂β

2 (u− J1u)‖Lq(I) + ‖∂α
1 ∂β

2 J1(u− J2u)‖Lq(I)

≤ ‖∂α
1

(
(∂β

2 u)− J1(∂
β
2 u)

)
‖Lq(I) + ‖∂α

1 J1∂
β
2 (u− J2u)‖Lq(I).

We consider the first term. The function v(·, x2) = ∂β
2 u(·, x2) is defined for a.e. x2 ∈ I2

and v(·, x2) ∈ W r−β,q(I1). Hence, we obtain from (A.13) for a.e. x2 ∈ I2

‖∂α
1 (v(·, x2)− J1v(·, x2))‖Lq(I1) ≤ C(N + 1)−(r−β−α)|v(·, x2)|W r−β,q(I1).

Substituting again the definition of v and integrating over I2 yields

‖∂α
1

(
(∂β

2 u)− J1(∂
β
2 u)

)
‖Lq(I) ≤ C(N + 1)−(r−β−α)|u|W r,q(I).
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By similar arguments (here, we additionally employ the stability result (A.12)) we
can bound

‖∂α
1 J1∂

β
2 (u− J2u)‖Lq(I) ≤ C(N + 1)−(r−α−β)|u|W r,q(I).

Combining these last two estimates and summing over all combinations of α, β with
α + β = l yields the desired bound. The fact (A.10) follows readily from the property
(A.3) of the one-dimensional operators.

Appendix B. Polynomial liftings. A general trace lifting operator of the form
(B.2) was studied for example in [26,30]. The subsequent observation that it also maps
polynomials to polynomials (cf. Proposition B.1) was the basis for polynomial liftings
from H1/2(∂K̂) to H1(K̂), where K̂ is the reference square or triangle, [4,13,31]. We
generalize these results to the Lq-setting. In principle, the techniques employed here
are applicable to three-dimensional problems as well, although they are technically
more involved. Polynomial lifting results for hexahedra, prisms, and tetrahedra are
available (in Hilbert space settings) in [9, 10, 14, 34].

B.1. The operator F [f ]. We recall the definition of the reference triangle T as

T = {(x, y) | 0 < x < 1, 0 < y < min (x, 1− x)}. (B.1)

The bottom side of T is denoted by Γ = {(x, 0) | 0 < x < 1}. We will view Γ as
embedded in

�
in the natural way. We choose α ∈ (0, 1) and define for a function

f ∈ Lq(
�
) the extension operator by

f 7→ F [f ](x, y) =
1

2αy

∫ x+αy

x−αy

f(t) dt. (B.2)

Proposition B.1. Let the extension operator be given by (B.2). Then f 7→ F [f ] is
linear and F [f ] ∈ Pp if f ∈ Pp. Furthermore, F [f ]|T depends only on the values of f
on Γ, and for each q ∈ (1,∞) there exists a constant C > 0 such that for functions f
defined on Γ the following bounds holds (provided that the right-hand side is finite):

‖F [f ]‖Lq(T ) ≤ C‖(x(1− x))1/qf‖Lq(Γ), (B.3)

‖F [f ]‖W 1,q(T ) ≤ C‖f‖W 1−1/q,q(Γ), (B.4)

‖(x− y)F [f/t]‖Lq(T ) ≤ C‖f‖Lq(Γ), (B.5)

‖(x− y)(1− x− y)F [f/(t(1−t)]‖Lq(T ) ≤ C‖f‖Lq(Γ), (B.6)

‖(x− y)F [f/t]‖W 1,q(T ) ≤ C

[
‖f‖W 1−1/q,q(Γ) + ‖ f(x)

x1−1/q
‖Lq(Γ)

]
, (B.7)

‖(x− y)(1− x− y)F [f/(t(1−t))]‖W 1,q(T ) ≤ C‖f‖ �

W 1−1/q,q(Γ)
. (B.8)

Here, we employed the shorthand f/t to indicate the function t 7→ f(t)/t and (x −
y)F [f/t] to denote the function (x, y) 7→ (x− y)F [f/t](x, y). Additionally, we have

‖F [f ]‖Lq(∂T ) ≤ C‖f‖Lq(Γ).

Proof. We first show (B.3). From (B.12) of Lemma B.2 below we bound for each fixed
x ∈ (0, 1)

∫ min(x,1−x)

y=0

|F [f ](x, y)|q dy ≤ C

∫ x+α min(x,1−x)

x−α min(x,1−x)

|f(y)|q dy.
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Integrating over x ∈ (0, 1) we get from Lemma B.3

‖F [f ]‖q
Lq(T ) ≤ C

∫ 1

y=0

y(1− y)|f(y)|q dy = C‖(x(1− x))1/qf‖q
Lq(Γ).

We now turn to the estimate (B.5). From (B.14) of Lemma B.2 we get

‖(x− y)F [f/t]‖q
Lq(T ) ≤

∫

T

∣∣∣∣
x− y

αy

∫ x+αy

x−αy

f(t)

t
dt

∣∣∣∣
q

dy dx ≤ C‖f‖Lq(Γ).

By symmetry we conclude

‖(1− x− y)F [f/(1−t)]‖Lq(T ) ≤ C‖f‖Lq(Γ).

Since

f(t)

t(1− t)
=

f(t)

t
+

f(t)

1− t

we can easily obtain (B.6).
It remains to obtain the bounds (B.4), (B.7), (B.8). We compute

∂xF [f ](x, y) =
1

2αy
[f(x− αy)− f(x + αy)] ,

∂yF [f ](x, y) =
1

2α

[
− 1

y2

∫ x+αy

x−αy

f(t) dt +
α

y
(f(x + αy) + f(x− αy))

]

= − 1

αy2

∫ x+αy

x−αy

f(t)− f(x) dt +
f(x)− f(x− αy)

y
+

f(x) − f(x + αy)

y
.

From the definition of the W 1−1/q,q-norm and the bound (B.11) of Lemma B.2 we get

‖∇F [f ]‖W 1,q(T ) ≤ C‖f‖W 1−1/q,q(Γ),

which shows (B.4). For the bound (B.7), we compute

∂x

(
(x− y)F [f/t]

)
= F [f/t] + (x− y)∂xF [f ],

∂y

(
(x− y)F [f/t]

)
= −F [f/t] + (x− y)∂yF [f ],

and

∂xF [f/t] =
1

αy

[
f(x + αy)

x + αy
− f(x− αy)

x− αy

]
,

∂yF [f/t] =
1

αy2

∫ x+αy

x−αy

f(t)

t
dt +

α

y

[
f(x + αy)

x + αy
+

f(x− αy)

x− αy

]

=
1

αy2

∫ x+αy

x−αy

f(t)

t
− f(x)

x
dt +

α

y

[
f(x + αy)

x + αy
− f(x)

x
+

f(x− αy)

x− αy
− f(x)

x

]
.

With (B.10) and Lemma B.3 we get

‖F [f/t]‖q
Lq(T ) ≤ C

∫ 1

x=0

∫ x+α min(x,1−x)

x−α min(x,1−x)

∣∣∣∣
f(t)

t

∣∣∣∣
q

dt dx ≤ C

∫ 1

x=0

x(1− x)

∣∣∣∣
f(x)

x

∣∣∣∣
q

dx

≤ C

∫ 1

x=0

∣∣∣∣
f(x)

x1−1/q

∣∣∣∣
q

dx. (B.9)
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With (B.13) of Lemma B.2, we can bound

∫

T

∣∣∣∣
1

y2

∫ x+αy

x−αy

f(t)

t
− f(x)

x
dt

∣∣∣∣
q

dx dy ≤ C
[
‖f‖q

W 1−1/q,q(Γ)
+ ‖f(x)/x‖Lq(Γ)

]
.

It remains to bound terms of the form
∥∥∥∥

x− y

y

(
f(x± αy)

x± αy
− f(x)

x

)∥∥∥∥
Lq(T )

.

Rearranging terms, we arrive at

∥∥∥∥
x− y

y

(
f(x± αy)

x± αy
− f(x)

x

)∥∥∥∥
Lq(T )

=

∥∥∥∥
x− y

x± αy

f(x± αy)− f(x)

y
− ±α(x− y)

x± αy

f(x)

x

∥∥∥∥
Lq(T )

≤ |f |W 1−1/q,q(Γ) + ‖f(x)

x
‖Lq(T ),

where we employed the observation | x−y
x±αy | ≤ 1 for 0 < y < x. The term ‖ f(x)

x ‖Lq(T )

is now controlled in the desired fashion as in (B.9).
It remains to show (B.8). By symmetry considerations we obtain analogous to (B.7)

‖(1− x− y)F [f/(1−t)]‖W 1,q(T ) ≤ C

[
‖f‖W 1−1/q,q(Γ) + ‖ f(x)

(1− x)1−1/q
‖Lq(Γ)

]
.

Since f(t)
t(1−t) = f(t)

t + f(t)
1−t , the desired bound (B.8) now follows easily.

The following lemma contains estimates of Hardy type:
Lemma B.2. Let a ≤ b, α ∈ (0, 1), T be defined as in (B.1). Then for q ∈ (1,∞)

∫ b

a

∣∣∣∣
1

x− a

∫ x

a

|g(ξ)| dξ

∣∣∣∣
q

≤
(

q

q − 1

)q ∫ b

a

|g(ξ)|q dξ, (B.10)

∫ b

a

∣∣∣∣
1

(x− a)2

∫ x

a

g(ξ)− g(a) dξ

∣∣∣∣
q

dx ≤
(

q

q − 1

)q ∫ b

a

∣∣∣∣
g(ξ)− g(a)

ξ − a

∣∣∣∣
q

dξ. (B.11)

Furthermore, for each x ∈ (0, 1) we have upon setting m := min(x, 1− x)

∫ m

y=0

∣∣∣∣
1

y

∫ x+αy

x−αy

g(t) dt

∣∣∣∣
q

≤
(

q

q − 1

)q

αq−1

∫ x+αm

x−αm

|g(y)|q dy. (B.12)

∫ m

y=0

1

y2

∫ x+αy

x−αy

|g(t)− g(x)| dt dy ≤ α2q−1

(
q

q − 1

)q ∫ x+αm

x−αm

∣∣∣∣
g(t)− g(x)

t− x

∣∣∣∣
q

dt.(B.13)

Finally, we have for some constant C > 0 that depends only on q and α:

∫

T

∣∣∣∣(x− y)
1

y

∫ x+αy

x−αy

g(t)

t
dt

∣∣∣∣
q

dx dy ≤ C‖g‖q
Lq(Γ), (B.14)

∫

T

∣∣∣∣
x− y

y2

∫ x+αy

x−αy

g(t)

t
− g(x)

x
dt

∣∣∣∣
q

dxdy ≤ C

[
‖g‖q

W 1−1/q,q(Γ)
+

∥∥∥∥
g(x)

x

∥∥∥∥
Lq(Γ)

]
. (B.15)

In all the above estimates, it is implicitly assumed that the right-hand side is finite.
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Proof. The first estimate is the well-known Hardy inequality, [29, Thm. 327]. For the
second estimate, we note

∫ b

a

∣∣∣∣
1

|x− a|2
∫ x

a

|g(ξ)− g(a)|
∣∣∣∣
q

dx =

∫ b

a

∣∣∣∣
1

|x− a|2
∫ x

a

|g(ξ)− g(a)|
|ξ − a| |ξ − a| dξ dx

∣∣∣∣
q

≤
∫ b

a

∣∣∣∣
1

|x− a|

∫ x

a

|g(ξ)− g(a)|
|ξ − a| dξ

∣∣∣∣
q

dx.

The result (B.11) now follows from (B.10). The bounds (B.12), (B.13) follow easily
from (B.10) and (B.11), respectively. To proceed further, we note that for x ∈ (0, 1)
we have

(1− α) x ≤ x− α min(x, 1− x) ≤ x + α min(x, 1− x) ≤ 1. (B.16)

We are now in position to prove (B.14). From (B.12) and (B.16) we get (again with
the abbreviation m = min(x, 1− x))

∫

T

∣∣∣∣
(x− y)

y

∫ x+αy

x−αy

f(t)

t
dt

∣∣∣∣
q

dx ≤ C

∫ 1

x=0

xq

∫ m

y=0

∣∣∣∣
1

y

∫ x+αy

x−αy

|f(t)| dt

∣∣∣∣
q

dy dx

≤ C

∫ 1

x=0

xq

∫ x+αm

t=x−αm

∣∣∣∣
f(t)

t

∣∣∣∣
q

dt dx ≤ C‖f‖q
Lq(Γ).

We now turn to the proof of the last inequality, (B.15). We employ (B.13) and obtain

∫

T

∣∣∣∣
x− y

y2

∫ x+αy

x−αy

f(t)

t
− f(x)

x
dt

∣∣∣∣
q

dy dx ≤ C

∫ 1

x=0

xq

∫ x+α(1−x)

t=x−α(1−x)

∣∣∣∣∣
f(t)

t − f(x)
x

t− x

∣∣∣∣∣

q

dt dx.

We next rewrite the integrand as

f(t)

t
− f(x)

x
=

f(t)− f(x)

t
− t− x

tx
f(x)

and arrive at

∫

T

∣∣∣∣
x− y

y2

∫ x+αy

x−αy

f(t)

t
− f(x)

x
dt

∣∣∣∣
q

dy dx ≤

C

∫ 1

x=0

xq

∫ x+α(1−x)

t=x−α(1−x)

t−q

∣∣∣∣
f(t)− f(x)

t− x

∣∣∣∣
q

+ C

∫ 1

x=0

xq

∫ x+α(1−x)

t=x−α(1−x)

|f(x)|q 1

|tx|q dt dx

≤ C

∫

Γ×Γ

∣∣∣∣
f(t)− f(x)

t− x

∣∣∣∣
q

dt dx + C

∫

Γ

∣∣∣∣
f(x)

x1−1/q

∣∣∣∣
q

dx.

This concludes the proof of the lemma.

Lemma B.3. Let α ∈ (0, 1). Then there exists a constant C > 0 that depends only
on α such that

∫ 1

x=0

∫ x+α min(x,1−x)

y=x−α min(x,1−x)

|g(y)| dy dx ≤ C

∫ 1

y=0

y(1− y)|g(y)| dy.
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1

1

1/2

y0

y1

y

x
y = (1− α)x

y = (1 + α)x − α

y = (1 + α)x

y = (1− α)x + α

Fig. B.1. Integration domain in Lemma B.3.

Proof. The integration domain is sketched in Fig. B.1. Interchanging the order of
integration, we get

∫ 1

x=0

∫ x+α min(x,1−x)

y=x−αmin(x,1−x)

|g(y)| dy dx =

∫ y0

y=0

∫ y/(1−α)

x=y/(1+α)

|g(y)| dx dy

+

∫ y1

y=y0

∫ (y+α)/(1+α)

x=y/(1+α)

|g(y)| dx dy +

∫ 1

y=y1

∫ (y+α)/(1+α)

x=(y−α)/(1−α)

|g(y)| dx dy,

where y0 = 1−α
2 and y1 = 1+α

2 . The result follows now by elementary calculations.

B.2. Polynomial lifting from the boundary.

B.2.1. W 1,q-stable liftings. The operator f 7→ F [f ] is the basic building block
for polynomial trace liftings.
Theorem B.4. Let K be the reference triangle (B.1) or the reference square. Let
Γ = Γ ⊂ ∂K be the union of (closed) edges of K. Let q ∈ (1,∞). Then there exists
a constant C > 0 with the following property: for each f ∈ C(Γ) such that f is a
polynomial of degree p on each edge contained in Γ, there exists a polynomial F ∈ Pp

if K is the triangle or F ∈ Qp if K is the square such that F |Γ = f and

‖F‖W 1,q(T ) ≤ C‖f‖W 1−1/q,q(Γ),

‖F‖Lq(T ) ≤ C‖f‖Lq(Γ).

Moreover, the mapping f 7→ F is linear.
Proof. We consider the case of a triangle. Three cases may occur:
Γ is a single edge: We may assume Γ = {(x, 0) | 0 < x < 1} and then choose F as
F [f ].
Γ consists of two edges Γ1, Γ2: The function F is defined in two steps. First, the
lifting operator F of Section B.1 is employed to construct a function F1 ∈ Pp with
F1|Γ1

= f |Γ1
and

‖F1‖W 1,q(T ) ≤ C‖f‖W 1−1/q,q(Γ1), ‖F1‖Lq(Γ2) + ‖F1‖Lq(T ) ≤ C‖f‖Lq(Γ1).

We have thus reduced the problem to one where f vanishes on one of the sides Γ1, Γ2.
Without loss of generality, we assume that Γ1 = {(x, 0) | 0 < x < 1/2} and f |Γ2

= 0
with Γ2 = {(x, x) | 0 < x < 1}. The mapping f 7→ (x − y)F [f/t](x, y) of Section B.1
then has the desired properties.
Γ = ∂K: After having constructed a lifting from two adjacent edges as in the above
construction, we may assume that f vanishes on two sides of T . Without loss of
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generality, we may therefore assume that f |Γi = 0 for i ∈ {2, 3}, where Γ1 is the third
side of ∂T given by Γ1 = {(x, 0) | 0 < x < 1}. The construction of a polynomial F
with the property F |Γ1

= f and F |Γi = 0 for i ∈ {2, 3} is then achieved with the
operator f 7→ (x− y)(1− x− y)F [f/(t(1−t))](x, y) of Section B.1.
The case of a square is proved similarly using the ideas of [4]. Note that in the case
of a square, the set Γ may be disconnected, i.e., it consists of two parallel edges of
K̂. In this event, we easily reduce the construction to the case where f vanishes on
one of the two edges and construct F ∈ Qp in the same way as the function U in the
proof of Lemma C.1.
Remark B.5. The lifting operator of Theorem B.4 is independent of p. Since for
p = 0 the constant function is reproduced, this operator reproduces constants for any
p ∈ �

0 .

B.2.2. Polynomial liftings with improved Lq-bounds. The basis of the
results of Section B.2.1 is the operator f 7→ F [f ] of Section B.1. We introduce a new
operator F̃ [f ] by

F̃ [f ](x, y) = (1− y)pF [f ](x, y). (B.17)

We note that, if f ∈ Pp, then F̃ ∈ P2p. Furthermore, F̃ [f ]|Γ = f , where Γ =
{(x, 0) | 0 < x < 1}. We also have
Lemma B.6. Let T be the reference triangle. Then there exists a constant C > 0
such that for every p ∈ �

the functions F̃ [f ], F1 := (x − y)F̃ [f/t], F2 := (x − y)(1−
x− y)F̃ [f/(t(1−t))] satisfy

p‖F̃ [f ]‖Lq(T ) + ‖F̃ [f ]‖W 1,q(T ) ≤ C‖f‖W 1−1/q,q(Γ) + Cp1−1/q‖f‖Lq(Γ),

p‖F1‖Lq(T ) + ‖F1‖W 1,q(T ) ≤ C‖f‖W 1−1/q,q(Γ) + C‖ f(x)

x1−1/q
‖Lq(Γ) + Cp1−1/q‖f‖Lq(Γ),

p‖F2‖Lq(T ) + ‖F2‖W 1,q(T ) ≤ C‖f‖ �

W 1−1/q,q(Γ) + Cp1−1/q‖f‖Lq(Γ).

Furthermore,

‖F̃ [f ]‖Lq(∂T ) ≤ C‖f‖Lq(Γ).

Proof. The lemma follows from Lemma B.9 below and the properties of the operator
F [f ] of Section B.1.
Proposition B.7. Let K be the reference triangle (B.1) or the reference square. Let
Γ = Γ ⊂ ∂K be a union of edges of K. Let q ∈ (1,∞). Then there exists C > 0
such that for every f ∈ C(Γ) that is a polynomial of degree p ∈ �

on each edge of K
there exists a polynomial F (if K is the reference triangle then F ∈ P3p, otherwise
F ∈ Q4p) such that F |∂Γ = f and

p‖F‖Lq(K) + ‖F‖W 1,q(K) ≤ C‖f‖W 1−1/q,q(Γ) + Cp1−1/q‖f‖Lq(Γ).

Furthermore, the mapping f 7→ F is linear.
Proof. The proof is similar to that of Theorem B.4. The appeals to Proposition B.1
are replaced with those to Lemma B.6.
Remark B.8. It is easy to see that in the statement of Proposition B.7 the statement
F ∈ P3p or F ∈ Q4p can be replaced with F ∈ Pdλpe or F ∈ Qdλpe for arbitrary λ > 1.
The constant C > 0 does depends on λ, however.
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Lemma B.9. K be the reference triangle (B.1) or the reference square. Set Γ =
{(x, 0) | 0 < x < 1} and let q ∈ (1,∞). Then there exists C > 0 such that for every
p ∈ �

and every function g ∈ W 1,q(K)

p‖(1− y)pg‖Lq(K) + ‖(1− y)pg‖W 1,q(K) ≤ C|g|W 1,q(K) + p1−1/q‖g‖Lq(Γ).

Proof. We express the function g for y > 0 as g(x, y) = g(x, 0)+
∫ y

t=0 gy(x, t) dt. Then

(1− y)pg(x, y) = [(1− y)py]
1

y

∫ y

0

gy(x, t) dt + (1− y)pg(x, 0).

Since

sup
y∈(0,1)

(1− y)py ≤ C

p
, (B.18)

we conclude with the Hardy inequality (B.10)

‖(1− y)pg‖Lq(K) ≤
C

p
|g|W 1,q(K) + p−1/q‖g‖Lq(Γ).

For the bound on the derivative of (1− y)pg, we write

∇((1− y)pg) = p(1− y)p−1g + (1− y)p∇g;

we treat the first term as above and for the second term we use |1− y| ≤ 1 on K.

Appendix C. One-dimensional extension operators. The liftings of Section B
can be applied for the construction of one-dimensional extension operators:
Lemma C.1. Let Î = (0, 1) and q ∈ (1,∞). Then there exists a bounded linear
operator Z : W 1−1/q,q(Î) → W 1−1/q,q(Î) with the following properties:

1.

∫ 1

x=0

|u(x)− Zu(x)|q
xq−1

dx ≤ C‖u‖q

W 1−1/q,q(Î)
;

2. if u ∈ Pp, then Zu ∈ Pp;

3. Zu(1) = 0 and

∫ 0

−1

|Zu(x)|q
(1− x)q−1

dx ≤ C‖u‖q

W 1−1/q,q(Î)
;

4. ‖Zu‖Lq(I) ≤ C‖u‖Lq(Î).

Proof. Let T be the reference triangle and identify Î with the edge of K̂ lying on the
x-axis. Consider the trapezoid

T̃ := {(x, y) ∈ T | 0 < y < 1/4}

and define Γ = {(x, x) | 0 < x < 1/4}. An elementary calculation reveals

‖F [u](·, 1/4)‖W 1,∞((1/4,3/4)) ≤ C‖u‖Lq(Î)

for some appropriate C > 0. Hence, the function

U(x, y) = F [u](x, y)− 4yF [u](x, 1/4)

satisfies

‖U‖W 1,q(T̃ ) ≤ C‖u‖W 1−1/q,q(Î), ‖U‖Lq(Γ) ≤ C‖u‖Lq(Î), U |y=1/4 = 0.
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Additionally, if u ∈ Pp, then U ∈ Qp. Defining Zu(x) for x ∈ (0, 1) by (Zu)(x) =
U(x/4, x/4) and appealing to the trace theorem concludes the proof.
Lemma C.2. Let Î = (0, 1), q ∈ (1,∞). Let k ∈ �

0 . Then there exists C > 0 such
that for every p ∈ �

0 with p ≥ k there exists a linear operator Zp,p−k : Pp → Pp−k

with the following properties:

Zp,p−k1 = 1,

(Zp,p−ku)(0) = u(0),

‖Zp,p−ku‖Lq(Î) ≤ C‖u‖Lq(Î),

‖Zp,p−ku‖W 1−1/q,q(Î) ≤ C‖u‖W 1−1/q,q(Î),
∫ 1

0

|(Zp,p−ku)(x)− u(x)|q
xq−1

dx ≤ C|u|q
W 1−1/q,q (Î)

.

In particular, therefore,

‖Zp,p−ku− u‖ �

W
1−1/q,q
l (Î)

≤ C‖u‖W 1−1/q,q(Î).

Proof. The key to this result is the following approximation result of [18, Cor. 3.7]:

inf
v∈Pp−k

‖u− v‖L∞(J) ≤ 12(4p)k−1|J |p−k+1‖u‖L∞(Î) ∀u ∈ Pp, (C.1)

where J ⊂ Î is an arbitrary subinterval of Î and |J | denotes the length of J . We
(arbitrarily) choose J = (0, 1/2), denote by Ip−k : C(J) → Pp−k the Gauß-Lobatto
interpolation operator and set

(Zp,p−ku)(x) = (Ip−ku)(2x).

By construction (Zp,p−ku) ∈ Pp−k. Additionally, the fact that the endpoint 0 of J
is an interpolation point implies (Zp,p−ku)(0) = u(0). In order to see the remaining
estimates, we see that (C.1) together with standard inverse estimates (see, e.g., [25,
Chap. 4, Thms. 1.4 and 2.6]) implies

‖u− Ip−ku‖W 1,∞(J) ≤ Cp2‖u− Ip−ku‖L∞(J) ≤ Cρp−k‖u‖L∞(Î) ≤ Cρ̃p−k‖u‖Lq(Î)

for some suitable C > 0 and ρ̃ ∈ (0, 1) that are both independent of p and u. In
particular, since u(0) = (Ip−ku)(0), we get

max
x∈J

|u(x)− (Ip−ku)(x)|
|x| ≤ ‖u′ − (Ip−ku)′‖L∞(J) ≤ Cρ̃p−k‖u‖Lq(Î).

From this and the triangle inequality, we can easily infer the estimates

‖Ip−ku‖Lq(J) ≤ C‖u‖Lq(Î),

‖Ip−ku‖W 1−1/q,q(J) ≤ C‖u‖W 1−1/q,q(Î),
∫ 1/2

0

|u(x)− Ip−ku(x)|q
xq−1

dx ≤ C‖u‖q

Lq(Î)
.

From this and the change of variables x 7→ 2x the desired bounds follow for Zp,p−k.
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Lemma C.3. Let Î = (0, 1) and q ∈ (1,∞). Then u ∈ W 1−1/q,q(Î) implies that the
function ũ : x 7→ xu(x) is in W 1−1/q,q(Î) and satisfies

∫ 1

0

|ũ(x)|q
xq−1

dx + ‖ũ‖q

W 1−1/q,q(Î)
≤ C‖u‖q

W 1−1/q,q(Î)

for some C > 0 that is independent of u.

Proof. The estimate ‖ũ‖W 1−1/q,q(Î) ≤ C‖u‖W 1−1/q,q(Î) follows from the smoothness of
the function x 7→ x. The remaining estimate follows by inspection.

Appendix D. Polynomial inverse estimates. The companion of polynomial
approximation results are inverse estimates. In the present section we generalize
some well-known one-dimensional inverse estimates to the higher dimensional case.
On the interval Î = (0, 1) we define

Φê(x) := x(1− x). (D.1)

Then there holds the following inverse estimate:

Lemma D.1. Let −1 < α < β, δ ∈ [0, 1] and Φê be defined by (D.1). Then there exist
C1, C2 = C(α, β), C3 = C(δ) > 0 such that for all p ∈ �

and all polynomials πp of
degree p

∫ 1

0

Φê(x)
(
π′p(x)

)2
dx ≤ C1p

2

∫ 1

0

π2
p(x) dx,

∫ 1

0

Φα
ê π2

p(x) dx ≤ C2p
2(β−α)

∫ 1

0

Φβ
ê π2

p(x) dx,

∫ 1

0

Φ2δ
ê

(
π′p(x)

)2
dx ≤ C3p

2(2−δ)

∫ 1

0

Φδ
êπ

2
p(x) dx.

Furthermore,

∫ 1

−1

(
π′p(x)

)2
dx ≤ C1p

2

∫ 1

−1

Φ−1
ê π2

p(x) dx if additionally πp(±1) = 0.

Proof. These one-dimensional results can be found in, e.g., [16, 17].

The weight function Φê in Lemma D.1 is characterized by Φê(x) ∼ dist
(
x, ∂Î

)
.

Lemma D.1 may be generalized to higher dimensions in different ways. In spectral
element methods, which are based on tensor product domains, it is natural to consider
weight functions that are tensor products of the one-dimensional weight function (see,
e.g., [12,17]). This approach is not suitable for hp-FEM as the case of simplices cannot
be handled. We therefore base our analysis on the following weight function:

ΦK̂(x) := dist
(
x, ∂K̂

)
(D.2)

where the domain K̂ is the reference square or the reference triangle. The two-
dimensional analog of Lemma D.1 reads as follows:

Theorem D.2. Let K̂ be the reference square or the reference triangle and let ΦK̂ be
given by (D.2). Let α, β ∈ �

satisfy −1 < α < β and δ ∈ [0, 1]. Then there exist C1,
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C2 = C = C(α, β), and C3 = C3(δ) > 0 such that for all polynomials πp ∈ Qp

∫

K̂

ΦK̂ |∇πp|2 dx dy ≤ C1p
2

∫

K̂

|πp|2 dx dy, (D.3)

∫

K̂

(
ΦK̂

)α
π2

p dx dy ≤ Cp2(β−α)

∫

K̂

(
ΦK̂

)β
π2

p dx dy, (D.4)

∫

K̂

(
ΦK̂

)2δ |∇πp|2 dx dy ≤ Cp2(2−δ)

∫

K̂

(
ΦK̂

)δ
π2

p dx dy. (D.5)

If additionally πp = 0 on ∂K̂, then
∫

K̂

|∇πp|2 dx dy ≤ C1p
2

∫

K̂

(
ΦK̂

)−1 |πp|2 dx dy. (D.6)

The basis of the proof of Theorem D.2 is the following quasi one-dimensional result
on trapezoids:
Lemma D.3. Let d ∈ (0, 1), a, b be given such that −1 + ad < 1 + bd and define the
trapezoid D by

D(a, b, d) := {(x, y) ∈ � 2 | y ∈ (0, d) and − 1 + ay < x < 1 + by}.

On D define the weight function

Φa,b,d(x, y) := min {|x− (−1 + ay)|, |x− (1 + by)|},

which measures the distance of the point (x, y) from the lateral edges of D. Let −1 <
α < β and δ ∈ [0, 1]. Then there exist C1 = C1(α, β, a, b, d), C2 = C2(δ, a, b, d) > 0
such that for all p ∈ �

and all polynomials πp ∈ Qp

∫

D(a,b,d)

Φα
a,b,d(x, y) π2

p dx dy ≤ C1p
2(β−α)

∫

D(a,b,d)

Φβ
a,b,d(x, y) π2

p dx dy,

∫

D(a,b,d)

Φ2δ
a,b,d(x, y) |∂xπp|2 dx dy ≤ C2p

2(2−δ)

∫

D(a,b,d)

Φβ
a,b,d(x, y) π2

p dx dy.

Proof. Lemma D.1 and a scaling argument imply easily the existence of C > 0
independent of y such that each fixed y ∈ (0, d) we have

∫ 1+by

−1+ay

(Φa,b,d(x, y))α π2
p(x, y) dx ≤ Cp2(β−α)

∫ 1+by

−1+ay

(Φa,b,d(x, y))β π2
p(x, y) dx.

Integrating this last estimate over y ∈ (0, d) completes the proof of the first estimate.
The second estimate is proved similarly.
Lemma D.3 is the basis for the proof of Theorem D.2.
Proof of Theorem D.2: Exemplarily, we will prove (D.4) and (D.5) for the case of the
reference triangle K̂ = T , since the remaining cases are proved using the same ideas
and techniques. For notational convenienc, we will also assume the reference triangle
T to be the equilateral triangle with side lengths 1 given by

T =
{
(x, y) | 0 < x < 1, 0 < y < min

(√
3x,

√
3 (1− x)

)}
. (D.7)

The basic idea of the proof is to cover K̂ by a few (in fact, ≤ 6) trapezoids and
exploiting that on each such trapezoid D, the distance to ∂K̂ is comparable to the
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distance to the lateral sides of D. Thus Lemma D.3 is applicable, and the desired
result follows from a covering argument.
For any s ∈ (0,

√
3), we denote by D(s) the trapezoid

D(s) :=
{
(x, y) ∈ T | y < sx

}
\

{
(x, y) ∈ T | y < s(x− 1

2
)
}
. (D.8)

For the proof of (D.4), choose s ∈ (
√

3
2 ,
√

3) and define two auxiliary trapezoids (see
Fig. D.1)

D1 := D(s), D2 := mirror image of D1 about the line y =
√

3
2 x.

Note that T ⊂ (D1 ∪ D2) ∪ Rπ/3(D1 ∪ D2) ∪ R2π/3(D1 ∪ D2), where Rπ/3, R2π/3

denote the rotation about the barycenter of the triangle T with angles π/3, 2π/3,
respectively. One can easily find an affine map F and constants a, b, d such that
F (D(a, b, d)) = D1, where the trapezoid D(a, b, d) is defined in Lemma D.3. We note
that for the function Φa,b,d of Lemma D.3, we have

ΦK̂ ◦ F ∼ Φa,b,d uniformly on D(a, b, d).

Hence, we obtain from Lemma D.3

∫

D1

Φα
K̂
|πp|2 dx dy ≤ Cp2(β−α)

∫

D1

Φβ

K̂
|πp|2 dx dy.

A similar estimate holds for D2 and the sets Rπ/3D1, R2π/3D1, Rπ/3D2, R2π/3D2.
Estimate (D.4) then follows by a covering argument.

The bound (D.5) is proved similarly. Choosing
√

3
2 < s < s′ <

√
3 we set

D1 := D(s), D′
1 := D(s′).

Using the same arguments as before, we conclude with the aid of Lemma D.3 that

∫

D1

Φ2δ
K̂
|~s · ∇πp|2 dx dy ≤ Cp2(2−δ)

∫

D1

Φδ
K̂
|∇πp|2 dx dy,

∫

D′
1

Φ2δ
K̂
|~s′ · ∇πp|2 dx dy ≤ Cp2(2−δ)

∫

D′
1

Φδ
K̂
|∇πp|2 dx dy,

where ~s = (s, 1), ~s′ = (s′, 1). We conclude, since ~s, ~s′ are linearly independent that

∫

D1∩D′
1

Φ2δ
K̂
|∇πp|2 dx dy ≤ Cp2(2−δ)

∫

D1∪D′
1

Φ2δ
K̂
|πp|2 dx dy

≤ Cp2(2−δ)

∫

T

Φ2δ
K̂
|πp|2 dx dy. (D.9)

Using the same arguments, the bound (D.9) also holds with D1, D′
1 replaced by D2,

D′
2, their mirror images with respect to the line y =

√
3

2 x. Similarly, the pairs D1,
D′

1, and D2, D′
2 may be replaced in (D.9) the sets obtained by rotating by π/3 and

2π/3 about the barycenter of T . As all these sets together cover the triangle T , we
may conclude the proof of (D.5). 2
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y = x/s + 1/2

D2

Fig. D.1. Trapezoids D1 = D(s) and D2 of the proof of Theorem D.2.

Remark D.4. The proof of Theorem D.2 is based on a) the quasi one-dimensional
result Lemma D.3 and b) a covering argument. The arguments of Theorem D.2 may
therefore be extended to arbitrary dimensions and to more general domains. Also
other one-dimensional inverse estimates in weighted Sobolev spaces could be treated
in this way.
Remark D.5. Polynomial inverse estimates on simplices in weighted Sobolev spaces
were recently obtained in [19]. While [19] provides sharp explicit bounds, the weights
employed are weaker than the weight function (D.2) considered here.

Appendix E. Approximation with trigonometric polynomials. The following
result can be obtained from combining Thms. 2.3, 2.7, 2.8 of [25, Chap. 7].
Proposition E.1. Let

�
be the torus and denote for r ∈ �

0 , q ∈ [1,∞] by W r,q(
�
)

the usual (periodic) Sobolev spaces. Denote by TN the set of trigonometric polynomials
of degree N .
Then for each R ∈ �

and N ∈ �
there exists a bounded linear operator JR,N : L1(

�
) →

TN and a constant CR (depending solely on R) with the following properties: For every
r ∈ �

0 with 0 ≤ r ≤ R and every q ∈ [1,∞] there holds for all u ∈ W r,q(
�
)

‖(u− JR,Nu)(j)‖Lq(
�
) ≤ CrN

−(r−j)‖u(r)‖Lq(
�
), j = 0, . . . , r. (E.1)

Proof. As the operator JR,N we take the averaging operator of Jackson type defined
in [25, Chap. 7, eqn. (2.8)], i.e.,

JR,N u(x) =

∫
�

[
(−1)R+1∆R

t (u, x) + u(x)
]
KN,R(t) dt,

KN,R(t) = λN,R

(
sin(mt/2)

sin t/2

)2R

,

where λN,R > 0 is such that
∫

� KN,R(t) dt = 1; m = bN/Rc+1 ∈ �
0 , and ∆R

t (u, x) =∑R
k=0

(
R
k

)
(−1)R−ku(x + kt) is the standard higher order forward difference.

By the proof of [25, Chap. 7, Thm. 2.3] these operators have the following properties:
There exists CR > 0, which depends solely on R, such that for u ∈ Lq(

�
) (if q ∈ [1,∞))

and u ∈ C(
�
) (if q = ∞)

‖u− JR,Nu‖Lq(
�
) ≤ CRωR(u, N−1)q , (E.2)
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where ωR(u, δ)q = sup|h|<δ ‖∆R
h u‖Lq(

�
) is the standard modulus of smoothness. Fur-

thermore, we have the following two elementary properties of the modulus of conti-
nuity (cf., e.g., [25, Chap. 2, eqns. (7.5), (7.12))]:

ωR(u, δ)q ≤ 2R−rωr(u, δ)q, 1 ≤ r ≤ R, δ > 0, (E.3)

ωr(u, δ)q ≤ δr‖u(r)‖Lq(
�
), if u ∈ W r,q(

�
), r ≥ 1. (E.4)

We now prove (E.1) by induction on r. We proceed as in the the proof of [25, Chap. 7,
Thm. 2.7].
1. step: The case r = 0. From

∫
� KN,R(t) dt = 1, we get

‖u− JR,Nu‖Lq(
�
) = ‖

∫
� (−1)R+1∆R

t (u, x)KN,R(t) dt‖Lq(
�
) ≤ 2R‖u‖Lq(

�
)

∫
� KN,R(t) dt

≤ 2R‖u‖Lq(
�
).

2. step: We assume that (E.1) has been proved for some r − 1 with 1 ≤ r ≤ R and
show that (E.1) also holds for r. We we first note that r ≥ 1 implies by Sobolev’s
embedding theorem W 1,q(

�
) ⊂ C(

�
) that any function u ∈ W r,q(

�
) is continuous.

Combining (E.2), (E.3), (E.4), we get

‖u− JR,Nu‖Lq(
�
) ≤ CRN−r‖u(r)‖Lq(

�
). (E.5)

Next, we consider the function u′ ∈ W r−1,q(
�
). Then by the induction hypothesis

the function S̃ := JR,Nu′ satisfies

‖
(
u′ − S̃

)(j)

‖Lq(
�
) ≤ CRN−(r−1−j)‖u(r)‖Lq(

�
), j = 0, . . . , r − 1.

Denoting by a0 the constant term of the trigonometric polynomial S̃, we define S :=
S̃ − a0 and estimate with [25, Chap. 7, eqn. (2.15)]

‖u′ − S‖Lq(
�
) ≤ 2‖u′ − S̃‖Lq(

�
).

We conclude

‖ (u′ − S)
(j) ‖Lq(

�
) ≤ 2CRN−(r−1−j)‖u(r)‖Lq(

�
), j = 0, . . . , r − 1. (E.6)

Since S has, by construction, vanishing mean, there exists a trigonometric polynomial
Ŝ ∈ TN such that Ŝ′ = S. We finally define the trigonometric polynomial R̂ =
JR,N (u− Ŝ). Since u ∈ W r,q(

�
) ⊂ C(

�
), we get from (E.2) and (E.6)

‖(u− Ŝ)− R̂‖Lq(
�
) ≤ Cω1(u− Ŝ, 1/N)q (E.7)

≤ CN−1‖u′ − Ŝ′‖Lq(
�
) ≤ CN−r‖u(r)‖Lq(

�
). (E.8)

Again, since u ∈ W r,q(
�
) ⊂ C(

�
), we conclude from [25, Chap. 7, Lemma 2.6] (here,

the estimate (E.7) is the required hypothesis) for the trigonometric polynomial R̂

‖R̂′‖Lq(
�
) ≤ Cω1(u− Ŝ, 1/N)q ≤ CN−1‖

(
u− Ŝ

)′
‖Lq(

�
) ≤ CN−(r−1)‖u(r)‖Lq(

�
).

(E.9)
Therefore, by the Bernstein inequality (see [25, Chap. 4, Thm. 2.5, 2.6])

‖R̂(j+1)‖Lq(
�
) ≤ N j‖R̂′‖Lq(

�
) ≤ CN−(r−1−j)‖u(r)‖Lq(

�
), j = 0, . . . , r−1. (E.10)
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We are now in position to prove the desired claim. We have to show (E.1). For j = 0,
this follows immediately from (E.5). For derivatives, we estimate for j = 0, . . . , r − 1
using the Bernstein inequality

‖ (u− JR,Nu)
(j+1) ‖Lq(

�
) ≤

‖
(
u− (Ŝ + R̂)

)(j+1)

‖Lq(
�
) + ‖

(
Ŝ + R̂− JR,N u

)(j+1)

‖Lq(
�
) ≤

‖ (u′ − S)
(j) ‖Lq(

�
) + ‖R̂(j+1)‖Lq(

�
) + ‖

(
Ŝ + R̂− JR,N u

)(j+1)

‖Lq(
�
)

‖ (u′ − S)
(j) ‖Lq(

�
) + ‖R̂(j+1)‖Lq(

�
) + N j+1‖Ŝ + R̂− JR,N u‖Lq(

�
).

We now combine the estimates (E.6), (E.10), and (E.8) to arrive at

‖ (u− JR,Nu)
(j+1) ‖Lq(

�
) ≤ CN−(r−1−j)‖u(r)‖Lq(

�
), j = 0, . . . , r − 1,

which yields (E.1).
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