FINITE ELEMENT APPROXIMATION OF A DEGENERATE STEFAN
PROBLEM WITH JOULE HEATING *

JOHN W. BARRETT! AND ROBERT NURNBERG !

Abstract. We consider a fully practical finite element approximation of the following degenerate
system
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electric potential, ¢. In the above p(u) is the enthalpy incorporating the latent heat of melting,
a(u) > 0 is the temperature dependent heat conductivity, and o(u) > 0 is the electrical conductivity.
The latter is zero in the frozen zone, v < 0, which gives rise to the degeneracy in this Stefan system. In
addition to showing stability bounds, we prove convergence of our finite element approximation in two
and three space dimensions. The latter is non-trivial due to the degeneracy in o(u) and the quadratic
nature of the Joule heating term forcing the Stefan problem. Finally, some numerical experiments are
presented in two space dimensions.
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1. INTRODUCTION

In situ vitrification (ISV) is a thermal treatment process that converts contaminated soil back into a durable
leach resistant product. In [7], this process is described as follows. Electrodes are inserted into the soil to the
desired treatment depth and a layer of electrically conductive material (a “starter path”) is placed between the
electrodes. Electric power supplied to the electrodes causes the conductive material to melt, thus melting the
surrounding soil. Electrical energy is transferred to the molten soil through Joule (resistance) heating, and the
soil continues to melt to the desired depth, at which time the power to the electrodes is discontinued. After
completion of the melt, the molten soil cools and solidifies. The product resulting from this ISV process is a
glass and crystalline mass, resembling natural obsidian. Hence the contaminated materials in the original soil
are now trapped in this resulting solid, which is leach resistant.

A simplified mathematical model of the steady state problem is considered in [6]. In this paper, we consider
the corresponding time dependent model studied in [11].

Let Q C RY, d = 2 or 3, be the spatial domain of interest, the region of soil, with boundary 692. For simplicity
in describing the finite element partitioning, we make the following assumption on 2 throughout:
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(A1) © takes the form of a rectangle minus two rectangular electrodes, if d = 2; and a cuboid minus two
cuboidal electrodes, if d = 3; see the figure below
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On noting the figure above, where I'1 represents the boundary of the +ive electrode, we define
19 :=T,uT_, T%:=00\I%, T%:=T,UuT,UTs;,  T%:=080\I%.

These correspond to parts of the boundary, where we will prescribe Dirichlet and Neumann conditions, respec-
tively, for the electric potential ¢ and the temperature u.

Then [11] proposes the following nonlinear degenerate parabolic system as a simplified model of the ISV
process:
(P) Find functions u, v, ¢ : Q x [0,T] = R such that v € p(u) for a.e. (x,t) € Qr and

% — V.(a(u) Vu) = o(u) |V ¢|> in Qp, (1.1a)
u=up on I'px(0,T], a(u) % =—y(u—uyn) on I'y x (0,77, (1.1b)
v(-,0) = v°(-) in Q, (1.1c)

V.(o(u)Ve)=0 in Qp, (1.1d)

$=¢ on F% x (0,77, o(u) g—i =0 on I‘ﬁ, x (0,T7; (1.1e)

where T' > 0 is a fixed positive time, Q7 := Q x (0,T] and v is the outward unit normal to 9Q. In (1.1a—e) up
and uy, v represent the I'}) trace and I'}; traces, respectively, of given functions

Up, un,y €W (Q) c C(Q), r>d; with ¥ e >0; (1.2a)
and ¢ represents the F% trace of a given function ¢ € C([0,T]; W5>(Q27)) satisfying
My < G (t) < (,1) < Gar(t) < My for ace. (z,t) € O, (1.2b)

where mgy, My € R Here ¢ is allowed to be time dependent in order to model the turning on and off of
the power supply to the electrodes. Furthermore, the enthalpy or heat content, v, is defined in terms of the
temperature and the given parameters: latent heat, A € R>o, and heat capacities, p+ € Rs¢; by

P+ S+ A if s>0,
p(s) == ¢ [0, A] if s=0, (1.3)
p—s if s<0.
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Here we have assumed, without loss of generality on rescaling, that zero is the phase change temperature. For
later use, we introduce the monotone function 7 : R — R, and its antiderivative ¥, defined for all s € R by
S
P(s):=p~'(s) and W(s):= / P(g)dg = 18 —Cy < U(s) < C35%; (1.4)
0

where C;()\, p+) € Rsg. Finally, a € C%'(R) is the given temperature dependent heat conductivity with
0<my <als) <M, VseR, (1.5)

and o € C%!(R) is the given temperature dependent electrical conductivity defined by

(o0 MP if s> M,,
o(s) := 1< g sP if s€[0,M,], where p > 2 and 0y € Rx. (1.6)
0 if s<0.

(P) models the combined process of heat conduction and electrical conduction in a body, which may undergo
a phase change as a result of heat generated by the current. The rate of energy generation associated with
electrical current flow, the so called Joule heating, is represented by the term o(u)|V¢|? on the right hand side
of (1.1a).

The fact that o(u) vanishes in the frozen zone, {u < 0}, gives rise to the degeneracy in this Stefan system.
Existence of a solution to (P) is non-trivial due to this degeneracy of o(u) and the quadratic nature of the Joule
term forcing the Stefan problem. Existence of a weak solution to the steady state version of (P) can be found
in [6], and to (P) in [11]. It is the goal of this paper to adapt the techniques in [11], in order to prove convergence
of a fully practical finite element approximation of (P). Although there is considerable numerical analysis on
the non-degenerate system; see e.g. [5], where error bounds for a fully discrete finite element approximation of
(P) with A =0, pxr =1, a(:) =1 and o(-) > ¢, > 0 are derived; we know of no numerical analysis on the
degenerate system (P). In addition, we believe that the techniques used here on this model problem will be
applicable to similar degenerate systems. Finally, we note that a related Stefan system modelling the artificial
freezing of water-saturated soil is studied numerically in [1]. There the Joule heating effect in (1.1a) is replaced
by a convection term v . Vu, where the velocity field v of the groundwater is coupled to the pressure ¢ through
Darcy’s law, v = o(u) V¢, and ¢ satisfies (1.1b) with the permeability o(-) vanishing in the frozen region.

This paper is organised as follows. In Section 2 we formulate a fully practical finite element approximation
of the degenerate system (P). In Section 3 we prove convergence in two and three space dimensions. Finally, in
Section 4 we present some numerical experiments in two space dimensions.

Notation and Auxiliary Results

Let D C RY, d =1, 2 or 3, with a Lipschitz boundary 9D if d = 2 or 3. We adopt the standard notation for
Sobolev spaces, denoting the norm of W™ 4(D) (m € N, ¢q € [1,00]) by || - |lm,q,p and the semi-norm by |- |m.q4,p-
We extend these norms and semi-norms in the natural way to the corresponding spaces of vector and matrix
valued functions. For ¢ = 2, W™?(D) will be denoted by H™(D) with the associated norm and semi-norm
written as, respectively, || - ||m.p and | - |, p. For notational convenience, we drop the domain subscript on the
above norms and semi-norms in the case D = Q2. Throughout (-,-) denotes the standard L? inner product over
Q. In addition we define

fn:= m;Q) (n,1) VneLY Q) and f.n:= mén) / ndr VneL'(k), (1.7)

where m(D) denotes the measure of D.
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We recall the following compactness result. Let XV and Z be Banach spaces with a compact embedding
X < Y and a continuous embedding ¥ < Z. Then any bounded and closed subset E of L?*(0,T; X) with
lim ¢ sup [In(-,- +60) = n(,)llL2(0,7-0:2) p =0 (1.8)
6—0 neE

is compact in L*(0,T;Y), see [9]. In addition, we note the following Egoroff type result; see [11, Theorem C].
If {zx}r>o is bounded in Lq( 0,7;Wh4(Q)) and precompact in L4(2r), then for each s € [1,q) there exists a

subsequence {71 l.onand a fnn tion z € q(n T, wh ‘1(0\\ such that for all ¢ > 0 there corresponds a function

VVVVVVVVVVV LR jjZu &= & ~ DRRAL LAl =

R

J. € L*(0,T; WH*(Q)) such that

zr; — z uniformly on {d. >0} asj — oo, (1.9a)

0 <V:(z,t) <1 forae. (z,t) € Qp and |1 - ) FIVellisp) <€ (1.9b)

Throughout C denotes a generic constant independent of h, 7 and d; the mesh and temporal discretization

parameters and the regularization parameter. In addition C(ay,---,as) denotes a constant depending on the

arguments {ab} —;. Furthermore -(%) denotes an expression with or mtho the superscript . Finally, we define
for any s € R

[s]+ := max{s,0}. (1.10)

2. FINITE ELEMENT APPROXIMATION

We consider the finite element approximation of (P) under the following assumptions on the mesh:

(A2) Let Q be given as in (Al). Let {T"}x>0 be a regular family of partitionings of Q2 into disjoint open
simplices k with h, := diam(k) and h := max,cn hy, so that Q = U,.c+%. In addition, it is assumed
that 7" is a (weakly) acute partitioning; that is for (a) d = 2, for any pair of adjacent triangles the
sum of opposite angles relative to the common side does not exceed 7; (b) d = 3, the angle between any
faces of the same tetrahedron does not exceed 7.

Associated with 7" is the finite element space
hi={xeCQ): x|, is linear V k € T"} ¢ H'(Q). (2.1)

Let J be the set of nodes of 7" and {p,}jcs the coordinates of these nodes. Let {x;}jcs be the standard
basis functions for S"; that is x; € S"* and x;(p;) = d;; for all 4,5 € J. We introduce 7" : C(Q) — S", the
interpolation operator, such that (7"n)(p;) = n(p;) for all j € J. A discrete semi-inner product on C(f2) is then
defined by

()" = /Qﬁh[m(x) ()] dz =Y mjm (p;) 12(p)), where  m; := (1, x;) > 0. (2.2)
jeJ

The induced discrete semi-norm is then |5, := [ (1,7)" ]2, where € C(Q0).
We note that the (weak) acuteness assumption yields that

/in.VdexSO i#j, VkeT" (2.3)

Let f € C%'(R) be monotone with Lipschitz constant Ly, then it follows from (2.3) and the inequality

(fl@) = F0)* < Ly (fla) = f(B) (a=b)  VabeR



FINITE ELEMENT APPROXIMATION OF A DEGENERATE STEFAN PROBLEM WITH JOULE HEATING b)

that for all y € S*

IVrr [ fOOI> de < Ly [ Vx.Va"[f(x)] da VeeTh (2.4)
K K
Furthermore, it is easily established, see e.g. [4, p.69], that for all x € 7" and for all y € S"
7 J ) o LY MYY D =7 A =M
(T = 7" O]lo,00, < P [V (T [£(X)]) and  |£(x) = £, 7" [F 0)lo,c0,x < P [V (7" [F0OD o, (2.5)
l EXL we lIlb[Uuu(,e
Hj,) () :={n € H'(Q) :n() = 6(,t) on T}, Hjo(Q):={neH(Q):n=00nTH};  (26a)
HYX(Q):={ne H'(Q) :n=7p on 'y}, H.o(Q):={ne H(Q) :n=00nT}H}. (2.6b)

In addition to 7", let 0 = to < t; < ... < ty_; <ty = T be a partitioning of [0,7] into possibly variable
time steps 7, := t, — th—1, n =1 = N. We set 7 := max,—1 N Tn. On noting (2.6a,b) and (2.1), we then
introduce

chn . ¢ ~ qh _ _hTT __ 1 ~ ch N T~ 17l O [0 70\
6 ‘TWXESTIXx=7m¢ onlpy, o¢0—1)(co cx=0on 'y CHyo(8); (2.7a)
Shi={xeS":x=r"ap onTY}, Sho={xe€S":x=00onT}H} C H} ((Q); (2.7b)
where an() = ¢(-, t,). Furthermore, given a re gularlzatlon parameter 0 € Rsq, we introduce, on recalling (1.6),
(1.7) and (1.5), the discrete (regulamzed) functions o, ol : S — L>°(Q) such that for all K € 7" and y € S"
300 e =0 + £ 7" [0 (1) d "(X) | = 7" [a(0)] (2.8)

o5 (x) |w: - [o(x an a’(x) |« = £, 7" [a(x)] . .

In order to guarantee the convergence of our finite element approximation, we make a final restriction on the
mesh.

(A3) In addition to the assumptions (A2), we assume that 7" is a partitioning of Q into generic right-angled
simplices (for d = 3 this means that all tetrahedra have two vertices at which two edges intersect at
right angles, see below for more details).

As a cube is easily partitioned into such tetrahedra, we note that domains  satisfying (A1) are easily
partitioned into such right-angled simplices. Let {e;}?_, be the orthonormal vectors in R?, such that the j*!
component of e; is d;;, 4, j = 1 — d. Given non-zero constants p;, i = 1 — d; let K({p;}&_,) be a reference
simplex in R? with vertices {p;}?_,, where Py is the origin and p; = p;—; + pie;, i =1 — d. Givena k € T"
with vertices {pj, }¢_,, such that pj0 is not a right-angled vertex, then there exists a rotation/reflection matrix
R, and non-zero constants {p;}¢_, such that the mapping R, : 7 € RY — pj, + R.Z € R? maps the vertex p;
to pj;, i = 0 — d, and hence & = &({p;}%,) to k. For all k € Th and n € C(g), we set

i(7) = 9(Re3) and GF"§)@) = (x)(Re3) VZER (2.9)

As RT = R!, we have for any 2" € S" and k € T" that

vt = R, VZ", (2.10)
where z = (21, 74)", V = (3%, 55)7, T = (#1,--,%4)" and V= (3% 35%)". From (2.9) and
(2.10), it follows for all k € T", n; € C(K) and i = 1 — d that

0 B NN
PrAd " 7)) = pi U (D3) T2 (B) — T (Bie1) 2 (Bi-1) ]

= (2/%)_1 (M @i-1) +mP:) [12(Pi) = 02(Pi-1)] + (2 (Pie1) + 72(Pi) [0 (Pi) = 11 (Pi-1)
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Therefore (2.11) yields for all K € 7" and 7; € C(k) that
V(@i 7)) = Ds@" i)V (7") + Dy (@) V (7"); (2.12)

where for any 2" € S* and k € T, f)s(ih) is the d x d diagonal matrix with diagonal entries

[Ds(2M)])ii := L ["(Biz1) + 2" (B3)] i=1-—d. (2.13)
On combining (2.9), (2.10) and (2.12), we have for all n; € C(Q) that
W(T‘rh[fn, /,nn]\ e D (ﬁn‘h/,rh\vfm'h/,nn\ -4 D (ﬁn‘h’fpn\vfm'hfrh\' f214\
AN L7 trsl) S\ Ly v\ 127 1 S\ 127 v \ [AVA \ )
where for any z" € S,
Dy(2") |a:= Ry D;GMRT  VreTh (2.15)

It follows from (2.15) and (2.13) that for all 2" € S* and for all K € T"

IDs (") [ 1P = 1Ds(Z") |& I < max [2"B) = max ["(p;,)* < (d+1) £,7"[(z")7], (2.16)
1=0—d 1=0—d
where || - || is the spectral norm on d x d matrices. Similarly to the above, it follows from (2.15), (2.13) and

(2.10) that for all 2" € S* and x € T" that
|Ds(2h) - 2" IlO,oo,n = |ﬁs(/2\h) - /Z\hI|0,oo,7€ < hg |§/Z\h|0,oo,7€ = hy |V2h|0,oo,na (217)

where 7 is the d x d identity matrix. It is the result (2.14) that requires the right angle constraint on the
partitioning 7" in (A3). We note that this assumption is not such a severe constraint, as there exist adaptive
finite element codes that satisfy this requirement, see e.g. [8].

For any given regularization parameter § € Ry, we then consider the following fully practical finite element
approximation of (P):
(P}") Forn > 1 find {®, U, Vi} € Si™ x S% x S" such that V;* € w*[p(U}")] and

(05 (U5 V@3, Vx) =0 VyeSt, (218a)

Vn n—1 h B _
(=) @ v v + [ 2 - ds

Tn T u

= (B (U VEE, D) VEE) ¥ x €Sk (218h)

where V¥ € S" is an approximation to v° and U = 7"[¢)(V)] on recalling (1.4).

Remark 2.1. (PfiZ '") decouples the updates of the electric potential and the temperature at each time level
and is a straightforward finite element approximation of (P), except that y Z has been replaced by D;(x) on
the right hand side of (2.18b). This choice, which is a simple modification of the standard approximation,
enables crucial a priori bounds for convergence to be easily demonstrated; see the proof of Theorem 2.3 below,
and in particular the bound (2.29). Although we are not able to establish the bounds in Theorem 2.3 for
the standard approximation, in practice the two approximations lead to numerical results that are graphically
indistinguishable, see Section 4.
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Below we recall some well-known results concerning S":
lim (2 = 7")nlly4 = 0 Vnew'(Q), qe(doo]; (2.19)
/ Y dz < |x|3 = / " [x* dz < (d + 2)/ x? dz Vyesh; (2.20)
Q Q Q
[ y2ds < [ [y ?ds < (d+1) [ x2ds < Cxl? Vxesh,: (2.21)
j Y —j LA — \ /J A —_ ATl A u,u \ J
Y Ty, Ty,
106 2") = 062" < 1T = 7" (x2")on < CRF™ [xlm 2" vzl xesh, m=0orl; (222
(I —7")(x 20,10y, < Chllxll[12"]x vzt xesh. (2.23)

Lemma 2.2. Let the assumptions (A2) hold and U}~ € Sk, Vi*=* € nh[p(U~1)]. Then for all § € (0,1) and
for all h, 7, > 0 there exists a unique solution {®3,Us,Vy'} to the n-th step of (Pg’T) such that

(oh (U1 VEF, VP < (0} (U 1) V[x"$"], VIn"$"]) < O, (2.242)
my < dy < B2 (x) < Py < My Ve where Gy =@, (tn) and Py = dpr(ty).  (2.24b)

Proof. Given UP™' € Sk, it follows immediately from (2.7a) and (2.8) that there exists a unique solution
1 € Sg’n to (2.18a). Existence and uniqueness of a solution {UF, Vj*} € S x S" to (2.18b) follows on noting
that p is a maximal monotone operator, see e.g. [3].

The bound (2.24a) follows immediately from choosing x = ®§ — " € 53,0 in (2.18a), applying a Cauchy-
Schwartz inequality and noting (2.8), (1.6), (2.19) and (1.2b). Choosing x = 7"[®} — urls € Sg,o in (2.18a),
on recalling (1.10) and noting (2.4), yields that

| o vt - Fs <o. (2.25)

Combining (2.25), (2.8), (1.6) and the fact that 7*[®} — @)+ € Sk, yields that 7*[®} — §y,]+ = 0 and

hence the second inequality in (2.24b). Similarly, choosing x = Wh[az - o7, € S(';’O in (2.18a) yields the first
inequality in (2.24D). O

Throughout this paper, we will assume that the initial data satisfies as h — 0
St U = 7" (V)] — u® := (%) strongly in H'(Q), VY — % strongly in L*(Q). (2.26)

For example if v € L>®(Q) and u° € HL(Q)NWL"(Q) C C(Q), r > d, with u® = 0 on a finite number of curves
(surfaces) if d = 2 (d = 3); then on setting U = 7"u® and VY (p;) € p(UQ(p;)) for all j € J, the first result in
(2.26) follows immediately from (2.19) and the second is easily established.

Theorem 2.3. Let the assumptions (A3) hold and U? € S, VO € n'[p(UY)] satisfy (2.26). Then for all
5 € (0,1), h > 0 and for all time partitions {1, }_, with 7, < C1,_1, n = 2 = N, the unique solution
{®2, U2, VPIN_| to (PFT) is such that

N N N
2 2 2 h 2 —1)2
s VR o+ (ER o+ 30 7 U3 + X 7 / AU s+ 30107 - U < 0. @2)

n=1 n=1



8 FINITE ELEMENT APPROXIMATION OF A DEGENERATE STEFAN PROBLEM WITH JOULE HEATING

Proof. Choosing x = U — n"up € S}, in (2.18b) yields that
(V3 = Vi L Uf = ap)* + 7 (U3~ VU, V[UF — n"up))
+Tn / ™y (U —an) (U} —p)] ds = 7, (02 (UP~ 1) V@F, Dy(UR — nhap) VOF). (2.28)
On noting (2.14), (2.18a), the fact that &7 — 7'g" € Shos (2.

8), (1.6), (2.24a,b), (2.16), (2.20), (2.19), (1.2b)
and a Poincare inequality; it follows for all x € Su,O that
(B (U1 V@Y, D, (x) VOR)| = |[(c2 (U1 V&2, Dy(x) Vg — Dy (@7 — 73" ) Vx|
0 7 0 S\AJ o0/l I\Y0 \*™ 9 7 0 S\AJ g S\* o0 o7 A/
< O [ID)lo 178" 1,00 + 1Do(@F = 7)o o I | < Clxl- (229)
Combining (2.28), (2.29), (2.8), (1.5), (2.19) and (1.2a) yields that
(Vr vl ur —ap)t + L (@MU vop,vup) + L, [ [y (U —an)?] ds
) 0 L) 2 ”\ \~0 J 0 0o/ 2 ”‘/Fu L7 \~0 ANV

<Cm,

N

1+ |7hap|? +/ ™y (@p —an)? ds] <Cm. (2.30)
I"u
It follows from the convexity of ¥, recall (1.4), that

k k
DV =V U =)t =3 (Ve = VeV —ap)t 2 D (R — (VT ) + (V) = Vi an)"
n=1 n=1
= [V, D" = (Vs ap)"] = [((V5), D" = (V{,ap)*']  k=1-N. (231)
Combining (2.30) and (2.31), and noting (1.2a), (1.4), (2.20) and (2.26), yields that

V), 1) — (VE, )" Zrn M (UPY VU, VUP) Zrn/ Tty (UF)?

- (V3 ap)" < C(T) [1+ [VP[3] < C(T)
The first four bounds in (2.27) then follow from (2.32) on noting (1.5), (1.2a) and (1.4).
Choosing x = Uy —

Ui~ € 8" in (2.18b), noting the monotonicity of p, (2.8), (1.5), (1.2a), (2.21), (2.29),
our time step constraint, bounds 2 and 3 in (2.27) and (2.26), yields that

<O+ ( V), " k=1-N. (232

N N N
DU U <YV VTR U U < C Y (an + DIUF - U
n=1

n=1
N
T) [1 + (Z Tn ai)

N 2
] (Z 7 U5 —U§‘1I%> < O(T); (2.33)

= (IU(?I% + [ wbpp) ds) . (231

[N

where

W=
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Hence the final bound in (2.27) follows immediately from (2.33). O

3. CONVERGENCE

Let
Us(t) := Z2=t Up + o=t ! t€ [ty 1,tn] n>1, (3.1a)
U (t) :=Up, Uy (t) =03t t€ (th_1,ty] n>1. (3.1b)

We note for future reference that

ATT_
ouyj

Us —Uf = (t—t2) o t€ (tn1,tn) n>1, (3.2)
where t :=t, and t;; :=t,_;. We introduce also
7(t) == 1y t€ (tp_1,tn] n>1. (3.3)

Using the above notation, and introducing analogous notation for Vs and @5, (Pg’T) can be restated as: Find
{®F,Us,V5} € L>(0,T;5") x C([0,T];S*) x C([0,T); S*) such that ®f(-,t,) € 527", n=1- N, V¢
T {p(UF)] and

T
| ehwpve; vod=o Ve L20,Ti k), (3.4a)
0

r

avs \" _ _
(G2x) +@ @) vuh 0+ [ #h@; - as| a

u
N

T
— [ @) Ve D0Vt ¥ x € 20,738k, (34D
0

Lemma 3.1. Let the assumptions of Theorem 2.8 hold such that 7, 6 — 0 as h — 0. Then there exists a
subsequence of {‘I>}',U5,V};}h, where {@}',Ug,%} solve (Pg’T), and functions

¢ € L®(Qr), u € L*(0,T; L*(Q)) N L*(0,T; H:(Q)), v € L>(0,T; L*()) (3.5)

and g € L*(Qr) such that v € p(u) for a.e. (z,t) € Qr and as h — 0

®f — ¢ weak-+ in L= (Qr), (3.6a)

[o2(U)]E Ve = g weakly in L*(Q7), (3.6b)
Us, Uf = u weak-+ in L°°(0,T; L*(Q)), (3.6¢)

Us, Uf = u weakly in L*(0,T; H'(Q)), (3.6d)

Us, Uf = u weakly in L*(0,T; L?*(09)), (3.6¢)

Vs = v weak-+ in L>(0,T; L*(Q)). (3.6f)
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If in addition 7, =7, n =1 — N(h), then as h — 0

Us, Uf = u
ag(Ué_) — o(u)
[l (U] = [o(uw))?

ah(Ué_) — a(u)

strongly in L*(0,T; LY(Q2)),
strongly in L*(0,T; LY(Q)),
strongly in L*(0,T; LY(Q)),
strongly in L*(0,T; LY(Q)),

qe(l,s),
q€(l,s),
g€(l,s),
q€(l,s);

(3.7a)
(3.7b)
(3.7¢)
(3.7d)

where s = o0 ifd =92 and
wnere s =00 Yy a = 2 ana

— G ifd—2
6 ifd=3.

)

Proof. Noting the definitions (3.1a,b), (3.3), the bounds (2.24a,b) and (2.27) imply that
h/rr—y1L +
125 17 0y + 1108 U512 VEF 207y + V3 10,7582
oUs

[a Vs
(947

1
2

+ + _
+ U} )“%W(O,T;L?(Q)) + U} )”%Q(OA,T;HI(Q)) +1I7 17200 < C(T). (38)

Furthermore, we deduce from (3.2) and (3.8) that

oUs

+ _
1Us = U ll72(05) < ”TW

200 S C(T)7. (3.9)
Hence on noting (3.8), (3.9), (2.19) and (1.2a) we can choose a subsequence {®}, Us, Vs}; such that the con-
vergence results (3.5) and (3.6a—f) hold.

In the next part of the proof we will establish the strong convergence results (3.7a,b). It follows from (2.18Db)
form=0—N—-¢ ¢e{l,...,N} fixed, that

m+{ Vn_vnfl h m+£
> ™ (75 — ,Ug”“—Ug”) == Y @ U VU VI - Uf)
n=m+1 n n=m-+1

[ Ay (U = ) (U - U] ds = @B 85, DU - UP) V)] (310)
r

u
N

Similarly to (2.33), we obtain from (3.10), on noting the monotonicity of p, (2.8), (1.5), (1.2a), (2.21), (2.29)
and (2.34), that

m-+£
U = U < (Vi =V Ut Ui < ¢ Y (an + D) UPT - U
n=m++1
4
=C Y Ttk (@mer + DU = UFs (3.11)

k=1

Summing (3.11) for m = 0 — N — £ yields, on noting the uniform time step assumption, (2.27) and (2.26), that

N—¢ l N—¢

l 2 4
E T|U5m+_U§n|h§C§ TE Tam-i—klUgn+ - Us"h
m=0 k=1 m=0

2

£ N—¢
<C>H» 71 [Z Tal g <C(T)lr. (3.12)
k=1 m=0

2 [N—¢
PRCERET

m=0
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Combining (3.12), (2.2), (2.20) and (3.1b) yields that
T—0
| w0 - vE @l at < c@)e; (3.13)
0

for # = £7. It is a simple matter to generalise (3.13) to arbitrary 6 € (0,7) with 8 = p7, p € (0,N); see
e.g. [2, Lemma 3.2]. This yields (3.13) for all 8 € (0,T). It follows from this and (3.6d), on noting (1.8), that
(3.7a) holds.

Furthermore, we have from (1.6) that for q € [2, s)

llog (Uy) = o)l r20,m;0a(2)) < o3 (Us) = o(Us Mlz20,75292)) + C U5 = ullz20,7529(0)) - (3.14)

It follows from (2.8), (2.5), an inverse inequality and (2.4) that for all x € 7" and t € (0,7T)

v/ __hr _/rr—\1\1d hl
[VAT10(WUs )110,q,% ]

)

8+ hix |7 (o (U I o e [V (7" [0 (U5)))

0,00,k

n_hy \ /TT—\114
105 \Us ) — 0 WUs )lo,q,s

)

==

<,
0+

IN

IA
aQ O

—

gﬁ] <C[5+R2VU 13, ]. (3.15)

From (3.15) and (3.8) we have that
_ _ 2 _, 2 2
o2 (U5) = o (U lz2(o,rizaay < O(T) [5 +hE U5 | zQ(O,T;Hl(Q))] <o) [s+ni]. (3.16)

Combining (3.14) and (3.16), and noting (3.7a) and our assumption on ¢, yields the desired result (3.7b). The
result (3.7¢) follows immediately from (3.7b), and the result (3.7d) follows similarly to (3.7b).

It remains to be shown that v € p(u) for a.e. (z,t) € Qp. It follows from the monotonicity of p and as
Us = 7'[1)(Vs)] that

/Q () = V) (07— Us) + (x" — D) p(Va)] dedt >0 Ve L3(Qr). (3.17)

Furthermore, it follows from (2.5) that

(7" = DY (Vs)llL2@r) < ChIUslln2(0,7:m1 ) - (3.18)

Combining (3.17) and (3.18), on noting (3.8), (3.7a) and (3.6f), yields that as h — 0
[ 6 -vm-wdsarz0  v¥yeron
Qr

and hence that v € p(u) for a.e. (z,t) € Qr due to the monotonicity of p. O

We now adapt the arguments in [10,11] in order to show that {¢,u,v} is indeed a weak solution of (P),
(1.1a—e).
Let A be defined by

A={feC""(R): sup|f(s)|<oc and inf{s€R:f(s)#0}>0}. (3.19)
seR

Furthermore, for any w € L*(0,T; H'(Q)) let X,, C L>®(2r) be defined by

Xy :={p € L®Qr) : f(w)p € L*(0,T; H'(Q)) V fe A}. (3.20)
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Lemma 3.2. Let the assumptions of Lemma 3.1 hold. It follows that the subsequence {@;r, Us,Vs}n in Lemma
3.1 is such that for all f € A

fU)@f — f(u) g weakly in L*(0,T; H*(Q)) ash — 0. (3.21)

In particular, ¢ € X, .

Proof. Let f € A with Lipschitz constant Ly, sup,cp |f(s)] < My and ¢y := inf{s € R : f(s) # 0} > 0. We
have, on noting (3.7a), that

NF(UT) = flu)llz2iqn <L WUT —ullp2ig,y =0 ash =0 (3.22)
s \~¢ 7 JANTSNLE N ) = J 19 =3 \ 7

Combining (3.22) and (3.6a) yields that
FUN)F — f(u) o weakly in L?(Q7) ash — 0. (3.23)

It follows from (3.8) that

IV (U5 ) 5 M2@r) < IVIFU @S 20y + I1F(Us) VO llL2(0r)

Nl=

< Li U5 |lp20,75m2 9)) 185 | Lo 27y + My (/ IVOS|* da dt)

Ug >cy

b=

< C(My, Ly, T)

1 +/ |VeF|? dz dt| . (3.24)
Ué_ >cyr

Moreover, if Uy (x) > ¢y for some x € &, then there exists a j € J such that p; is a vertex of k and Uy (p;) > cy.
Hence it holds that

o} U5 ) L= xlos(U )] > gy as(es) > gy oles) > 0. (3.25)
Combining (3.24), (3.25) and (3.8) yields that
1£(U;) @ |2 0,11 ) < Cleg, My, Ly, T) . (3.26)

The desired result (3.21) then follows from (3.23) and (3.26). Finally, on noting (3.5), (3.20) and (3.21), we
have that ¢ € X,,. O

Lemma 3.3. Let the assumptions of Lemma 3.1 hold. Then the limit g in (3.6b) is such that

g= [U(u)]% V¢ a.e. onP, :={(x,t) € Q7 :u(z,t) > 0}. (3.27)
Proof. The proof is similar to the proof in [10, Lemma 3.4]. It follows from (3.6d), (3.7a) and (1.9a,b) that
given £ > 0, there exists a . € L'(0,T; Wh1(Q)) satisfying (1.9b), with s = 1, and a further subsequence of
the subsequence {®},Us, Vs}p, in Lemma 3.1 such that

U; — u uniformly on {d. >0} ash—0. (3.28)

Now fix f € A with ¢y :=inf{s € R: f(s) # 0} > 0. It follows immediately from (3.28) that, for h sufficiently
small,

Uy >1c¢ on {J. >0}N{u>cs}.
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Subsequently, we choose fi € A such that f; = 1 on [$¢f,00). Now (3.6b) combined with (3.7¢), Lemma 3.2,

[o(u)]2 V. f(u) € L°(Qr) and a density argument implies that

Repeating the above for any f € A, we have that
g9 f(u) = [0(uw)]? Vo i, f(u) ae.onQr YV feA.

Now letting ¢ — 0, and noting (1.9b), yields that

gf(w) =[o(wW)]2 Ve f(u) ae.onQp VfeA.
This implies the desired result (3.27). O

With just the weak convergence (3.6b); it is not possible to pass to the limit A — 0 on the right hand side of
(2.18b), and hence prove convergence of (Pf; '™} to (P). Therefore the following lemma plays a crucial role.

Lemma 3.4. Let the assumptions of Lemma 3.1 hold. Then the subsequence {‘I’}_,Ua,v(s}h in Lemma 3.1 is
such that

[a(’;’(Ué_)]% V& — g strongly in L>(Qr) as h — 0, and g=0onQr\P,. (3.29)

Proof. The proof is similar to the proof in [11, Lemma 2.5]. Choosing x = ®} — 7rh$+ in (3.4a) yields, on noting
(3.7¢), (3.6b), (2.19), (1.2b), the notation (3.1a,b), 7 — 0 as h — 0, (3.27) and as o(u) = 0 on Qp \ P,, that

/ ol (Uy) V&) |? de dt = / ol (U7 )VEF . V[r" '] dodt
QT QT
- [a(u)]% g.Vodrdt = / o(u)Veo.Vodrdt ash—0. (3.30)
Qr P,

Similarly, it follows on choosing 7"n* in (3.4a), where n* € L*>® (O,T;Hé’o(ﬂ) N W (Q)), and noting (3.7¢),
(3.6b), (2.19), (3.27), a density argument and o(u) = 0 on Qp \ P,, that

/ [a(u)]% g.Vndzdt = / o(u)Ve.Vndedt=0  VneL*0,T; Hé,O(Q)) . (3.31)
Qr P,

Next, we observe on noting the restriction p > 2 in (1.6) that

/0 [a(q)]_% dg=0c0 = Ve>0,3aunique u(e) € (0,¢) s.t. /E[o(q)]_% dg=1. (3.32)

Let fu. € A be defined by

1 if s>¢, 0 if s>¢,
fue(s) =14 [llo(@)]"% dg if s € [ue], = fi.(s)=Ko(s)]" 2 if s€ (ue), (3.33)
0 if s <pg; 0 if s< p.
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Choosing n = fy, - (u) (¢ — ¢) in (3.31) and recalling (3.33), we obtain that

[ otu)yve. V(6 - </>>dxdt—hm/ (W) V. V(b = ) fu (u) dadt

JP,

= —lim [0(u)]? V. Vu(p— @) dedt =0. (3.34)

=0 J{u<u<e}np,

Combining (3.6b), (3.30) and (3.34) yields that
f [ s ) .
j |g|‘ drdt < 11m / UJ ) |V<I' |‘ drdt = / o(u) |Vo|® dzdt. (3.35)
Qr P,

This together with (3.27) implies that g = 0 on Q7 \ P,. Therefore it follows from this, (3.35), (3.6b) and (3.27)

that

f 1 . o
| 1] vef g drdi =0 ash 0,
Qr

and hence the dnc;rad rognult (2.920) [
11l 1CHC0 LT UOSLICU 105ULL \J.47 ). -

1 u

Theorem 3.5. Let the assumptions of Lemma 3.1 hold. Then there exists a subsequence of {@;r, Us, Vs }h, where
{®F,Us,Vs} solve (PZ’T), and functions {¢,u,v} satisfying (3.5) such that as h — 0 the following hold: (3.6a—

f), (3.7a-d), (3.29) and (3.27). Furthermore, we have that {¢,u,v} fulfil ¢ € X, ¢ = ¢ on (1"% NP, x (0,77,
v € p(u) for a.e. (x,t) € Qr; and they satisfy

/ o(u)Ve¢.Vndedt =0 vV e L*0,T; HéO(Q)) , (3.36a)
P.

T
—/ U@dxdt—/von(m‘,O)dx+/ a(u)Vu.Vndxdt+/ / v(u—Tan)ndsdt
op Ot Q Qr o Jry

= / o(u) Ve ndedt Ve L*(0,T; HL o(Q)) N H'Y(0,T; L*(Q)) N L™(Qr) with n(-, T) = 0.
i (3.36b)

Proof. The desired result (3.36a) follows immediately from (3.31). Similarly to the proof of (3.21), we have for
all f € A, recall (3.19), that

fu)®F — f(u)¢ weakly in L*(0,T; H'(Q)) as h -0 => weakly in L*(0,T; L*(992)) as h — 0. (3.37)
As &f = %" on 9 and 7 — 0 as h — 0, it follows from (3.37) and (2.19) that ¢ = ¢ on (') N P,) x (0, 7).
We now consider (3.36b). For any n € H*(0,T; H} ,(2) N W>°(Q)) with (-, T) = 0, we choose x = "7 in

(3.4b) and now analyse the subsequent terms. Firstly (2.22), the embedding H*(0,T; X) — C([0,T]; X), (3.8)
and (2.19) yield that
n

[ G (02
/OT (Wea(at )) (m,6<a:"))h

< Ch|[Vsllpe(o,msn200) 170l o, i1 9)) < C Rl o,7,w15 (9))- (3.38)

dt + (Vs(-,0),7"n(, 0))‘

< dt

+ | (Vs(-,0),7"n(-,0)) = (Vs(-, 0), 7"n(-,0))" |
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Furthermore, it follows from the embedding H'(0,T; X) < C([0,T]; X), and (3.8) that

N )
) dt‘ ,0), (I = 7")n(-,0))]

C”%”LOOOTL?(Q 1z _Wh)W”Hl(o,T;Hl(Q))SCH( -t 77||H1 (0,T;H(Q)) . (3.39)

Combining (3.38), (3.39), (2.19) and (3.6f) yields that

T
/0 (86‘?,77 77) dt — —/O (U, %) dt — (v°,n(-,0)) ash — 0. (3.40)

Moreover, it holds on noting (2.23), (2.19), (1.2a), (2.14), (2.16), (2.20) and (3.8) that

vy (U —an)n] — (7"y) (U — 7"an)7"n) ds dt

|7Th[ Ua —“N)W]HLl OTHl(Q Jr|7r 7|Ooo||U5 -7 UN||L2(0TH1 () ||7r nllz2 OTHl(Q))]

nrr+ - mw

<C
- 1 1 1 1 1 VE Y
S OnRgYle Vs " UNIIL2 (0,T;H(Q)) ||7T "7||L2(0TW1°°(Q) S Oz, m;wiee(Q)) - (3.41)

[||7r gl
i

m

In view of (3.8), (2.8), (1.5), (2.19), (1.2a) and (2.17) we deduce that

T

/ oy ) VL ay it +| [ (@h ;) UV~ 5
0 0

(m"y) (U — n"an) (I — 7"y ds dt

u
N

T
+ /O (o3 U2 VI = 7" T + ((x"n) T = Dy(x"n)) ][04 (U5 )] VF) dt

C [”(I - ﬂ-h)n”Loo(O’T;WI,oo(Q)) +h ||7Th77||Loo(0’T;W1,oo(Q)):| . (342)

Combining (3.4b), (3.40), (3.41), (3.42), (2.19), (3.29), (3.27), (3.7¢c,d), (3.6d,e), (1.2a) and the denseness of
HY(0,T; Wh(Q)) in L2(0,T; HY(Q)) N H'(0,T; L*(Q)) N L () yields the desired result (3.36b). ]

4. NUMERICAL RESULTS

Before presenting some numerical results in two space dimensions, we briefly state algorithms for solving
the resulting system of algebraic equations for {®},U§, V" } arising at each time level from the approximation
(P?’T). As (2.18a) is independent of {U§*, V*}, we first solve the resulting linear equation to obtain ®}. To this
end we employ a preconditioned conjugate gradient method.

Adopting the obvious notation, the system (2.18b) can be rewritten as: Find {U},V}} € R7 x R such that

MVE+7m A" U =r  and V3 € p(U3); (4.1)
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05

‘vvlr\ere AT and An—1 are Svmmofr;n T x T matricoe 7 -— H T with antriog
Nere M anag A T ymmerric g X g matrices, J T, Wil CIIUTIES
h 1 h 1 [
o— . . n—i .__ n—
Mz’j = (X'l?XJ) s Ai]‘ = (0‘ (Ua )VXmVXJ + 'YXz X]] ds

._J

and r:=MV}"'+seR”, s;:= (o (U Hyvaer, D (XJ)V<I>”) / "y TN x;] ds.

'y

A modified version of the standard SOR, algorithm to solve (4.1), with a global convergence proof, can be found
in [3]. We briefly describe the method here. Given U, ?’0, for each j =1 — J one has to solve

My [V +m AN UM =75, VM) € p(lUS)) (4.2a)

where Ej depends on r, Q?’k_l and already computed entries of Qg’k . On obtaining the unique [Q?’k] ; from
the simple nonlinear scalar equation (4.2a), we perform a relaxation step

[Us"); = Wk [UPH); + (1 — k) [Up*; (4.2b)

where w¥ = 1 if UM, - Uy <0 and wh = w € (0,2) otherwise, and set

Tn A;'lj_l [Q?,k]J

(4.2c)
Mj;,

7
Vi) =

For the iterative algorithm (4.2a-c) we set for n > 1, {U°, V;*} = {U*~!, V"~'} and adopted the stopping
criterion
|‘/;§n7k n k— 1|O 0o < tOl

with tol = 1078,

We chose €2 to be the domain (—32,2) x (=3,4)\ {[-2,-1]x[0,3]U[£,1] x [0,3]} and for simplicity
partitioned the domain into uniform right-angled isosceles triangles. An example triangulation of {2 can be seen
in Figure 1. Obviously, a more accurate approximation can be obtained by using a finer mesh in the vicinity of
the non-convex angles of (2 in order to approximate better the generated local gradient singularities in ¢ and
u. The boundary data was chosen to be

up = —1, uny =1, vy =1, and ¢==+1lonTly.



FINITE ELEMENT APPROXIMATION OF A DEGENERATE STEFAN PROBLEM WITH JOULE HEATING 17

| | |
boU UL

|
L

The initial data v° to (P) was chosen such that u® = 1 (v°) had the form
u’(z) := min{—1+ B(x),1}, where B € H, o(Q) N W"*(Q) with 8(x) > 0 (4.3)

and u® = 0 on a curve. We then set U = n"u® and V?(p;) € p(UQ(p;)) for all j € J with V(p;) = 1 A
if U2(pj) = 0. (4.3) models an initial temperature distribution between —1 and 1; satisfying the Dirichlet
boundary conditions on u. In particular, we implemented, on recalling that = (x1,x2) with z; the horizontal
variable,

2 : 1
(i) Blz)= {20 max{zy — £,0} if |21 S 1 and (i) Blx) := 20 max{i —r(x),0},
0 otherwise;

where r(z) := ($ 2} + 22)2. (4.3)(i) gives rise to a strip between the two electrodes as the initial conducting
region, {u® > 0}, see the first plot in Figure 2; whilst (4.3)(ii) gives rise to an elliptical region, see the first plot
in Figure 5. For the other data (1.3), (1.5) and (1.6) to (P) we chose pr =A=1,a=1, M, =1,p=2. In all
the experiments below we plot the contour V(,z,t) = 0 at different times ¢ in order to see the evolution of the
conducting region.

Our first experiment shows the evolution of a conducting strip between the electrodes, i.e. u® is given by
(4.3) (i), without (09 = 0) and with (o9 = 5) the effect of Joule heating, respectively, until T = 5.

For the experiment with og = 5 we investigated convergence of our approximation by starting with h = \3/—25,
T =6 = 2 x 1072, see Figure 2, and successively halving the parameters h, 7 and J and checking agreement
between the contours on successive meshes. We are satisfied that the results obtained for the choice h = %,
7 =38 =5 x 1073 show a converged solution, see Figure 3. For the above crude and fine choices of h we chose
w = 1.7 and 1.85, respectively, for the iterative algorithm (4.2a—c). The plot for ¢t = T is very close to a steady
state. In Figure 4 we repeat the experiment with the fine mesh parameters in the case of no Joule heating
(o0 = 0) being present, with all remaining parameters fixed as before. Again, the plot for ¢ = T is very close to
a steady state. Comparing Figures 3 and 4, we see the effect of Joule heating on the conducting/molten region.

Our second experiment, see Figure 5, is with all parameters, including the mesh parameters, the same as for

Figure 3; that is, with Joule heating being present (0 = 5), but now with the initial data (i¢) in (4.3) as opposed
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FIGURE 3. (g¢ = 5) Contour plot for Vs(z,t) = 3 at times ¢ =0, 0.1, 0.3, 0.5, 0.6, 5.
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FIGURE 4. (o¢ = 0) Contour plot for Vs(z,t) = % at times t = 0, 0.1, 0.3, 0.5, 0.6, 5.

to (i). We note that the quasi steady states in Figures 3 and 5 are very similar, despite very different initial
data. Furthermore, we note that the approximation with D4 () in (3.4b) replaced by x yielded graphically
indistinguishable results throughout.
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