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Very high order methods, such as ENO/WENO methods [20, 30, 18],
Runge-Kutta Discontinuous Galerkin Finite Element Methods [11] and
ADER methods [54, 45, 46, 58], use high order (e.g. fifth order) polyno-
mial reconstruction of the solution and a lower (first) order monotone flux
as the building block. In this paper we propose to use second order TVD
fluxes, instead of first-order monotone fluxes, in the framework of such
methods. We apply the principle to the finite-volume ENO, WENO and
MPWENO schemes. We call the new improved schemes the ENO-TVD,
WENO-TVD and MPWENO-TVD schemes respectively. They include
both upwind and centred schemes on non-staggered meshes. Numeri-
cal results suggest that our schemes are superior to the original schemes
used with first order monotone fluxes. This is especially so for long time

evolution problems containing both smooth and non-smooth features.

Key words: upwind, centred, weighted ENO, Godunov, HLLC, WAF
flux, FLIC flux, ADER




1. INTRODUCTION

We are concerned with improved very high order methods for solving hyperbolic con-

servation laws. Hyperbolic conservation laws arise in areas as diverse as compressible gas-

Developing such methods is a formidable task since solutions can contain complex smooth

structures interspersed with discontinuities. A successful numerical method should resolve

high order methods cannot achieve this dual task. Over the last twenty five years or so
remarkable progress has been made in designing nonlinear methods which can circumvent
Godunov’s theorem b
class of Total Variation Diminishing (TVD) methods [19, 42]. Pioneering examples include
the Godunov-Kolgan scheme [23, 24, 25], SHASTA Flux Corrected Transport (FCT) algo-
rithm [5, 6, 7] and MUSCL-type methods [60, 61, 65, 4, 12]. For a review of the TVD
methods see [28, 51].

TVD methods avoid oscillations by locally reverting to first order of accuracy near dis-
continuities and extrema and are therefore unsuitable for applications involving long time
evolution of complex structures, such as in acoustic and compressible turbulence. In these
applications extrema are clipped as time evolves and numerical diffusion may become dom-
inant. Uniformly very high order methods, both in time and space, are needed for such
applications. State-of-the art very high order methods include the class of essentially non-
oscillatory (ENO) [20, 40], weighted essentially non-oscillatory (WENO) [30, 18, 41, 29, 1, 33],
monotonicity preserving (MP) [41] and monotonicity preserving weighted essentially non-
oscillatory (MPWENO) schemes [1], Runge-Kutta Discontinuous Galerkin (RKDG) Fi-
nite Element Methods [9, 10, 11] and the Advection-Diffusion-Reaction (ADER) approach
[54, 44, 57, 37, 45, 59, 43]. All of these methods are capable of achieving at least third order
of accuracy both in time and space. ENO,WENO, MP, MPWENO and ADER schemes enjoy
an additional advantage over other methods: these schemes are essentially non-oscillatory.

That is, to the eye, the solution is free from spurious oscillations. The key idea in the r -



order ENO reconstruction procedure used in [20, 40] is to consider r possible stencils covering
the given cell (in one space dimension) and to select only one, the smoothest, stencil. The
reconstruction polynomial is then built using this selected stencil. The WENO reconstruc-

tion [30, 18, 1] takes a convex combination of all r stencils with non-linear solution-adaptive
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nuities. The MPWENO reconstruction [1] is a combination of increasingly high order (e.g.
9th order) WENO reconstructions and a monotonicity preserving (MP) constraint [41]. The

as compared to ENO and WENO schemes. However, the improvements in accuracy usually
more than compensate for the higher computational cost.

In the above-mentioned finite-volume methods the reconstruction polynomials P;(z) are
different from cell to cell. As a result, at each cell interface z;4,/2 between cells 7 and
i + 1 (in one dimension) the reconstruction produces two different values of the vector
pf conservative variables Q, namely the left extrapolated value Qf_i_l/2 = P;(2i41/2) and
the right extrapolated value Qﬁu/z = Piy1(%i41/2). A Riemann problem with initial data
composed of Qf+1/2 and Qﬁu/z is then posed. Godunov [14] suggested that the self-similar
solution of the local Riemann problem with initial condition consisting of the constant states
Qf+1/2 and Qﬁu/z be used to compute the numerical flux, setting in this way the basis for
upwind methods. In this case there is no reconstruction and Q£+1/2 = Q7, ﬁ1/2 = Q7.
The original first-order upwind Godunov scheme uses the exact solution of this problem.
Later, many researches, including Godunov himself [14], proposed to use the approximate
solutions in the construction of upwind fluxes. Examples of such fluxes include the Rusanov
flux [36], Osher-Solomon flux [13, 32], Roe flux [34], HLL flux of Harten et al. [21] and HLLC
flux of Toro et al. [47, 55, 56]. A distinguishing feature of upwind fluxes is that they explicitly
utilise information on wave propagation contained in the governing equations. Centred
fluxes, on the other hand, do not explicitly use wave propagation information. This makes
them very simple, efficient and applicable to problems where the Riemann problem solution
is not known or is too costly to be used. The Lax-Friedrichs flux [27] is probably the most
well-known first-order monotone centred flux. Other examples are the Godunov first-order

centred flux [51] (not monotone) and the FORCE flux of Toro [48, 51, 49]. However, there



is a price to be paid for the simplicity of centred fluxes: in general, the more sophisticated
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waves and large output times, provided complete Riemann solvers are used.

Usually, only lower order (first order) monotone fluxes are used as the building block for

WENO-TVD and MPWENO-TVD schemes respectively. There appear to be two candidate
fluxes that can be readily used as the building block for very high order schemes. These are

the fluxes of the Flux Limiter Centred scheme (FLIC) of Toro and Billett [50] and that of
the Weichted Averace Flux (WA scheme of Tors [52. 53. 511 Bosth Auxes achieve second
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order of accuracy in space and time without performing data reconstruction, and this appears
to be the key issue. The WAF flux is an upwind flux and can be used with any exact or

approximate Riemann solver available. We recommend using complete Riemann solvers that
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no (explicit) wave propagation information.

Numerical results suggest that the new methods proposed here improve upon the orig-
inal ENO, WENO and MPWENQO methods in terms of better convergence, higher overall
accuracy and better resolution of discontinuities in linearly degenerate fields, such as con-
tact discontinuities. This is especially evident for long time evolution problems and coarse
meshes.

The idea of using a second order TVD flux as the building block can in principle be
applied to other very high order methods, such as RKDG and ADER methods. See [58] for
application to the ADER approach in one space dimension.

The paper is organised as follows. In Section 2 we briefly review the framework for
constructing finite-volume ENO, WENO and MPWENO schemes. In Section 3 we review
the fluxes to be used as the building block in the methods. Numerical results are presented

in Section 4 and conclusions are drawn in Section 5.
2. THE NUMERICAL SCHEME

In this section we review the construction of high order finite-volume schemes for hyper-
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vative variables and F(Q) is the physical flux vector.
There are essentially two ways to discretise (1). The first way is to develop fully discrete

one-step) schemes. Consider a control volume in & — ¢ space [@;_1/2, Ti1/2) X [t",¢"1!], of
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over the volume we obtain
rTiL1/2 +1 ptntl
n n _
[ Q™) = Q)] det [ [F(QGis 2 0) ~ F@riajn, )] de = 0. (2
Ti—1/2
Mhic vagiiléa 30+ +bha £A11~ ey mirrmaninal anharaa
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S AN - 1 o
QT =Q; - Az |[Fiti2 — ¥iciya], (3)

where Q7 is the space average of the solution in the cell [i_1/2, Zi11/2] at time " and the

numerical flux F;;/; is the time average of the physical flux at the cell interface z;y,

1 Tit1/2 1ttt
Q' = E/a;‘ Qz,t")dz, Fipipp = At Jin F(Q(zit1/2,1)) dt. (4)

i—1/2
Examples of very high order fully discrete schemes include ENO schemes [20] and ADER
schemes [54, 44, 57, 45, 37, 58, 43].

Another way to discretise (1) is to keep the time variable ¢ continuous and consider semi-
discrete schemes. Integrating (1) with respect to z only we obtain the following system of

ordinary differential equations (ODE):

d 1
%Qz(t) = _E (Fi—}—l/Q - Fz’—l/?) = Lz’(Q), (5)
where Q;(t) is the space average of the solution in the cell [z;_1/2,%iy1/2] at time ¢ and
Fit1/2 = F(Q(%i41/2,1)) is the numerical flux at @ = ;1/, and time ¢:
1 Tiy1/2
Qi(t) = A—/ Q(z,t)dz, Fipro = F(Q(ziy1/2,1)) (6)
T Jmi_yy2
Note that the numerical flux of the semi-discrete scheme (6) is different from that of the

fully discrete scheme (3). In current ENO and WENO schemes the numerical solution of (5)



is advanced in time by means of a TVD Runge-Kutta method [39]. Usually the following
third order TVD Runge-Kutta method is used [40, 18, 1] (here we dropped the index 7)

QO (n+1/3) 0" 1 A+ LIQOM
A W Al ),

3 1 1
QU = —Qr 4+ QU 4 AtL(QUHYY), (7)
~ 47 T4 47T 8 W
Q= fgrg 2 o 2 A L(Que,

3 3 3

Semi-discrete finite-volume ENO and WENO schemes are reported in [8, 30, 22, 38]. We note
that one can also consider semi-discrere finite-difference schemes [40, 18, 41, 1], which work
with point-wise values rather than cell averages. Here we consider finite-volume schemes

only. We remark that using only the first (Euler) step of the Runge-Kutta method (7) and

43 Tt o 3an L1l Aignnata 6 ~ndan coh o
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The numerical flux at the cell boundary z;;,/, is defined as a monotone function of left

and right extrapolated values Q£+1/27 Qﬁlﬂz

Fz’+1/2 = F(Qz’+1/2(t)) = Fz‘+1/2(Q£+1/2a in—l/?)' (8)

These extrapolated values are obtained from cell averages by means of a high order poly-
nomial reconstruction such as ENO [20, 40], WENO [30, 18], MP [41] or MPWENO recon-
structions [1]. For example, for a scalar function ¢(z) the fifth order WENO reconstruction

defines the left extrapolated value ‘LL+1 /2 as
qZ'L_|_1/2 = Wovg + w11 + Wavg, (9)

where vy, is the extrapolated value obtained from cell averages in the k' stencil Sy = (1 —

kyi—k+1,i—k+2)

1

vy = 6(_%-{-2 + 5qiy1 + 2qi),
1

vy = 6(—%’—1 + 5¢; + 2¢i+1), (10)
1

vy = 6(2%_2 — 7gi-1 + 11g;),

and wy, are nonlinear WENO weights given by

(o%h] (07] (0%}
woz —’ :—’ = —’
ag + a1 + ay ap + oy + g ap + oy + ag
3 3 1
Qg = o] = Qg =

10(10-6 + 150)?’

5106 + 15,)?’

7

10(1076 + 15,)?"



The smoothness indicators IS5} are [18]

13 1
IS0 = 154 = 2641 + iv2)” + 736 — 4gi1 + iv2)’,
13 1
IS, = —(gi-1—2¢; + (Zi+1)2 + —(gi-1 — (_72'+1)2a
12 4
13 1
IS5, = E(%_Q — 2¢i—1 + %’)2 + Z(C]z’—z —4q;i1 + %’)2-

The right value qu-l/z is obtained by symmetry. It can be shown that if ¢(z) is smooth in the
L

7

1.th
v

linear, weight. Otherwise wy = O(Az?) so that the (oscillatory) values from stencils contain-

ing discontinuities are assigned nearly zero weights [30, 18]. For systems the reconstruction
is carried
to each characteristic field [20, 30, 18]. It can shown that the use of conservative variables
(in a component-wise manner) in the reconstruction results in oscillations even for simple
test problems [20, 33].

The description of the scheme is complete when a proper non-oscillatory flux (8) is chosen.

In the next section we review possible centred and upwind fluxes which can be used.
3. FLUXES

In this section we review different non-oscillatory fluxes that can be used as the building
block in the semi-discrete ENO/WENO with TVD Runge-Kutta time stepping. We first
briefly review some conventional monotone first order centred and upwind fluxes which are
commonly used in the framework of the finite-volume WENO schemes. Then we review

fluxes associated with fully-discrete second-order TVD schems, which will then be used as

the building block for the high-order ENO/WENO schemes.
3.1. Centred fluxes for first-order and second-order TVD schemes

Centred (or symmetric) fluxes contain no explicit wave propagation information (no
upwinding). This makes them simple, efficient and applicable to very complex equations but
also very diffusive as compared to upwind fluxes. In particular, waves associated with linearly
degenerate fields, such as contact waves, shear waves and vortices, are poorly resolved.

It should be noted that although centred fluxes formally do not require any explicit

information about wave propagation this information is still needed for enforcing a stability

8
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g \ AT/

where S7 is the maximum propagation speed in the cell [z;_y/, Z;41/2) at time level n. We

take it to be a bound of the eigenvalues of the Jacobian matrix A(Q?)

[ m/asT2
)

P
Probably the most well-known centred monotone flux is the Lax-Friedrichs flux [27] given

by

= [uf| +af, ai =

1 1 Ax
74-1/2(Q74-1/27 7+1/2) = :(F7+1/2 + F7+1/2) - :A_( il/z - £+1_/2)7
4 Z AT ! ! (13)

Fz-l—l/? F(Qz-l-l/?) Fz+1/2 F(Qz+l/2)
The Lax-Friedrichs flux is commonly used in the design of some (but not all) high order

centred methods [31, 29]. In the limiting case of piece-wise constant data Qf_i_l/2 = Q7,
ﬁl/z = QP this flux leads to a monotone first-order accurate fully discrete scheme.
A flux, associated with a second order scheme is the two-step Lax-Wendroff flux:
R LW
2+1/2(Qz+1/27 Qi+1/2) = F( i+1/2)7 (14)

i+1/2 = §(Qz+1/2 + Qz-l—l/?) 2 E(Fﬁlﬂ - F£+1/2)-
In the limiting case of piece-wise constant data the intermediate state Q£+le/2 is obtained by
integrating (1) over the control volume [z;, z;41] X [t", 1" + At/2] and using the integral form

of the conservation law. The result is

" LAt "
Z+1/2(Qz+1/27 ﬁ1/2) = F( £+ml//2)7 z-|-1/2 (Q + Qz-l—l) QE(FZ'H - Fz’ ) (15)

Expression (14) is a generalisation of (15) to higher order reconstructions. When used in
the fully discrete scheme given by (3) flux (15) leads to a linear (oscillatory) second-order
accurate method in space and time.

The flux of the First-Order Centred Scheme (FORCE) [48, 51, 49] is derived as the

deterministic version of the staggered-grid Random Choice Method:

1 Ax
1 <F2+1/2 +2F(Q1 o) + Fiby o — N —(Qf, ) — QZ'L+1/2)> ;

(16)

Fﬁq}/%zCE(QfH/za Qﬁlﬂ)



where Q] , is given in (14). It turns out that the above flux is an arithmetic mean of the
Towv Taiadniale and To Wnen don T Anvne Whan 110 A i tha £l Alcanatas cobharma given by
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accurate method. It can be shown [48, 51, 49] that the numerical viscosity of the FORCE
flux is smaller than that of the Lax-Friedrichs flux.

Now the idea is to substitute the use of the first order centred flux by some high order but
non-oscillatory flux such as the flux of a Total Variation Diminishing (TVD) method. Most of

h
s
[}

Thus, they cannot be used with the WEF
constraint to boundary extrapolated values Qf+1/2, qu/z would conflict with the sought
high order accuracy of the scheme. To our knowledge the only centred second order non-
oscillatory flux which does not need any constrains on Qf+1/2, Qf{-l/? is the flux of the Flux
Limiter Centred (FLIC) scheme [50, 51]. This flux achieves second order of accuracy in
space and time without performing data reconstruction. Thus, it can be used directly with
boundary extrapolated values. In the limiting case of the piece-wise constant data the FLIC
flux leads to a second-order centred fully discrete scheme.

The FLIC flux is a flux-limited version of the Law-Wendroff scheme using the FORCE

flux as the lower-order monotone flux:
FIHS = FION T + oo (I, — FLATET), (17)

where ;415 is a flux limiter. There are several possible choices of the flux limiter ¢4/ [50,

51]. Here we use the limiter which is analogous, but not equivalent to the compressive

SUPERBEE limiter of Roe [35] and is given by [50, 51]:

0, r <0
2r, 0<r< %
p(r) = . (18)
17 9 S r S 1
min (2790g + (1 - 909)74)7 r>1

where r = r;41/7 is the flow parameter and ¢, is given by
0, =(1=CFL)/(1+CFL). (19)

10



Here C'F'L is the Courant number used to choose the time step, see (12). For the Euler
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Recall that Eﬁu/z and E{jl_l/2 are obtained from the reconstruction step. Then we compute

the single flux limiter

(L;11/90 = MIN (@(TL. o). m(rR. 5 ,nﬂ
reTifa \T\ Z-f-l/é/?r\ Z-f-l/é//
and annlv i o all componente of the i~ i n (17)
allu ClelJl‘y 1LV LU aill \.,UJ.J.J.J_JUJ.J.CJ.J.UD Ul UullT 11UA 111 \.Ll}.

3.2. Upwind fluxes for first-order and second-order TVD schemes

Upwind fluxes utilise information on local wave propagation explicitly. Godunov [14] first
introduced the idea of using the self-similar solution Q.(z/t) of the local Riemann problem
with inital conditions (Qf_l_l/Q, Qﬁl/z) to compute the upwind numerical flux. The use of the
Riemann problem incorporates the physics of wave propagation into the numerical method
and leads to more accurate results as compared to centred fluxes. The original Godunov

scheme uses the exact Riemann solver and the flux is given as

Ffﬁ%( f+1/2a Qﬁl/z) = F(Q.(0)).

When used in scheme (3) this flux leads to a first order monotone upwind scheme.
For our upwind methods we specialise the presentation of the schemes as applied to the

one-dimensional compressible Euler equations for a gamma-law gas

N\

9Q + 0,F(Q) = 0
Q = (;07 m, E)T
F(Q) = Qu+ (0, p,pu)”

p=(y—1D(E - zpu?)

where p, u, p and E are density, velocity, pressure and total energy, respectively; m = pu is

momentum and v is the ratio of specific heats.

11



will involve a double iterative procedure. Later, many researches, including Godunov himself
[14], proposed to use approximate solutions in the construction of upwind fluxes [36, 13, 32,
34, 21, 47, 55, 56]. When used in (3) these fluxes give the first order upwind Godunov scheme

with an approzimate Riemann solver.

methods [30, 64, 22, 38], RKDG methods [9, 10, 11, 64] and even centred staggered WENO
methods [33] (under the name of the Lax-Friedrichs flux). Assuming that an estimate S+
for the maximum signal speeds for waves emerging from the Riemann problem solution with

data QL and QF = is known, the Rusanov flux is defined as

v +J. and ‘92+l /2 FEEMTTESY . VIR EEAAS T AR e
1 1
FﬁUf/gz = 2(F2+1/2 + Fﬁlﬂ) - §S$-1/2(Qﬁ1/2 - Qz’L+1/2)' (22)
We note that explicit schemes with the stability condition (11) require that
Az
+
Si-|-1/2 < E

In the limiting case Sz‘-l-|-1/2 = Az /At the upwind Rusanov flux (22) reduces to the centred
Lax-Friedrichs flux (13).

Another well-known and popular upwind flux, the HLL flux [21], assumes a two-wave
structure of the Riemann problem solution and disregards all other waves, such as waves
associated with linearly degenerate fields. For the Euler equations these are the contact and
shear waves. As a result, the resolution of contact discontinuities is very poor and similar to
that of centred fluxes. The same applies to the Rusanov flux. Therefore, it is recommended
to use the upwind fluxes with all waves in the Riemann problem solution included. Here
we use the HLLC flux [47, 55, 56] which is an improved variant of the HLL flux [21] in
that it contains the middle (contact) wave in the Riemann problem solution. We remark
that the HLLC flux does not use linearisation of the equations and works well for low-density
problems, performs well at sonic points, no entropy fix is needed. See [62, 63] for applications
to Space-Time Discontinuous Galerkin Finite Element Methods, [17] for the MHD equations
and [3] for implicit methods for compressible viscous and turbulent flows.

An updated version of HLLC for the 3D Euler equations is found in [51]. Assuming a
three-wave structure with speed estimates given by 52_1_1/2, 52_1_1/2 and 52_1_1/2 the HLLC flux

12



is given by
if 0< Sk

szfl,/z = F£+1/2 + Sz'L—i—l/2(Q;f—£l/2 - Qﬁ.—lﬂ)? if S@'LJ.-l/2 <0< S:+1/2v
RN = (23)

H/2 T ) R _wR L GR (R (R \ i ax 0 CR
Lit1/2 = oo T 21 2\p1/2 = Mipa/2), U 2441/ SV S Oipq/2s
R : R
Fi+1/27 it 02> S¢+1/2a
where
1
Diy1/2
K
~xK /SZ+1/2 i+1/2\ K
Wit12 = 102—}—1/2 \S - ) Vit1/2
i+1 /') z’+1_/2/
K
Wit1/2
Elil/'z K +1/2
3 * 249 % z
& W — U; S + = [ R
L K ( i+1/2 z+1/2)[ i+1/2 TR SE el ) ]

for K =L and K = R.
The wave speeds SZ‘L+1/2a Th1/2 and Sﬁq/z must be estimated. We use the pressure-velocity

estimates of Sect. 10.5.2 of [51]. For the Rusanov flux one can then take
St = max(|52+1/2| |S+1/2|)

Another way of estimating wave speeds can be found in [2].

Finally, we propose to use a second order upwind TVD flux as the building block in the
high order ENO/WENO/MPWNO schemes. It appears as if the only upwind flux which does
not impose any constrains on the boundary extrapolated values is the flux of the Weighted
Average Flux (WAF) method, a second order TVD method.

The WAF method [52, 53, 51] defines an intercell flux as

t2
FIAF — / / ) da dt 24
2T, —t1 Ty — Ty It ! (24

A special case, and the one we use here, is the formula

1 Az/2 "
Fliih = — /_ oy P Qivaya( 17+ A1/2)) . (25)

Assuming further that Q,,/, is the solution of the conventional piece-wise constant Riemann

problem with initial data Qf+1/2 and Qﬁl/z we may write
1
FZW+f/Z; 5 (F2+1/2 + F2+1/2 Z CkAFH.l/za (26)
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where ¢, = Sgit is the Courant number associated with wave k of speed S}, in the solution of

the Riemann problem. Flux (26) gives a linear (oscillatory) second order accurate scheme.

A non-oscillatory, TVD, version is given by

wWAF _ 2l | pR .\_l
£it1/2 Witz T Fay1/2) = 5

DO | —

where A is a WAF flux limiter related to a conventional flux limiter By [42] via
Ak =1- (1 - |Ck|)Bk (28)

Here we use the WAF limiter that is equivalent to the compressive SUPERBEE limiter of
Roe [35] and is given by (we omit index k) [51]

1, r <0,
1=2(1—lc))r, 0<r <1
p(r) =9 ll; 3 <r<l, (29)
1=2(1—|e)r, 1<r<2,
2)e| — 1, r> 2.

The flux limiter depends on a flow parameter r*) which refers to wave k in the solution of

the Riemann problem and is the ratio

Aq(k)

i—1/2

k
qu(+)1 /2

k
Aq2(+?3/2

k
qu(+)l /2

, if ¢ >0,

, if ck<0,

where ¢*) is a suitable variable depending on the problem being solved. This variable must
change across each wave family in the solution of the Riemann problem. Aql(f_)l /2 denotes
the jump in q across wave k in the self-similar solution Q11/2({/7) in the Riemann problem
with data (Qf+1/27 Qﬁ_lﬂ) at cell interface 2;41/2. For the Euler equations the choice ¢ = p
(density) usually gives very satisfactory results.

The WAF method can be used with any Riemann solver available. It is recommended
to use complete Riemann solvers, that is those including all waves in their structure. In this

paper we utilise the HLLC Riemann solver (23).
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3.3. TVD fluxes and TVD Runge-Kutta schemes
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schemes, such as the third-order scheme (7), using a scheme of the form

which th soht_hand
WIliCil U a

._‘.
3
E

uiclL U.)/PC DUCPPlllE’ aodullicu
Variation Diminishing), that is
TV(Q) < TV(Q). (32)

Our fully discrete second-order TVD schemes discussed earlier can also be expressed in
the form (31), with

Ay _ L [RTVvD _ @rvD
LQ) = Az {Fz+2 Fz’—% } ’ (33)

where F?_i_V%D is either the centred FLIC flux (17) or WAF flux (27).

It is easy to verify that given a TVD Runge-Kutta scheme based on a forward Euler type
stepping of the form (31), (33) the corresponding Runge-Kutta scheme remains TVD if the
operator L is given by (33). For example, for the third-order scheme (7) we have

V(Q"h) <TV(Q), (34)
which is easily verified, namely

V@) = 1V (5004 5[0+ AL )

< STVIQY) 4 STV(QU)
(35)
< SIVIQY) + LTV + S TV(QY)

= TV(Q").

It is important to realise that in the case of no reconstruction (piece-wise constant rep-
resentation of the solution inside a cell) the original WENO schemes with first order fluxes
as the building block reduce to a first order monotone scheme whereas the WENO-TVD

schemes presented here reduce to a second order TVD scheme.

15



A o anr wrn oA dnnce gnna | PR I P St aa ~ ~ ~

€ uI1is S€C VE aQdress SOIINC IIPICITIICIILatiOll ISSUES. vy IICIl 1011 COIl-
totna atvanag chaclra i+ oy ha hanafiaiol 4 1100 chonaatanicdio nnaicctiaong in +tha avaliiotdian ~F
Lalils SLTO1g SMOCKS it Iflay PE€ DEICIICial 1O USE CillaraCi€risiiC Projecuioils il vil€ evaluaviolnl O1

known that the use of compressive limiters in TVD schemes affects, in an adverse manner,

smooth parts of the solution, the effect known as squaring. However, in the framework of
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This will be become apparent in the numerical results shown in the next section.

The computation of the ratio r in (20) and (30) requires special attention when the

whara = ia o armall naaits N AN a
VIIETE € 1S a SiTiall PpOSitive nuiiniper. ror 1 v v e

e, say,
experience shows that the robustness of the methods does not depend too crucially on the
way this step is handled, while accuracy does. For the computations reported in this paper,
the following procedure was applied:

N . esign(1, X), of [X][<e¢,
S X = (36)

X, otherwise,

T =

where we take ¢ = 107%. From (36) it can be easily seen that for nearly uniform flow r &~ 1,
leading to second order accuracy, the correct behaviour of a TVD scheme. It seems to us as
if the implementation of TVD criteria in the context of the construction of very high-order

methods may require some further investigations.
4. NUMERICAL RESULTS

In this section we compare numerical results of the new schemes proposed here with those
of the corresponding original schemes. The new schemes differ from the original schemes of
[40, 18, 1] in that they use second order TVD fluxes whereas the original schemes employ
only first order monotone fluxes. Here we choose Lax-Friedrichs (13) and HLLC fluxes
(23) as the representatives of first-order monotone centred and upwind fluxes and the FLIC
(17) and WAF (27) fluxes as the representatives of second-order centred and upwind TVD
fluxes respectively. We consider spatially third order ENO, spatially fifth order WENO and
spatially ninth order MPWENO schemes with these fluxes. For the time discretization we
use, throughout, the third order TVD Runge-Kutta method (7) and therefore the formal
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accuracy of these schemes is third. For brevity in the rest of the paper when referring to the
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space we pay more attention to the fifth order WENO schemes with the reconstruction given
by (9); these are original WENO-LF and WENO-HLLC schemes and new WENO-FLIC and
WENO-WAF schemes. We also include the results of basic second order TVD schemes,
namely the WAF and FLIC schemes.
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fluxes. In this paper for the WENO-TVD schemes (WENO-FLIC and WENO-WAF) we
use the compressive limiters given by (18) and (29). For the basic TVD schemes (FLIC
and WAF) we use smooth limiters, namely the van Leer limiter [61] for the WAF scheme

and +the analagaiia (ot ppord JIp e
allu ullco CbJ.J.CbJ.CbsULLD \I v cqwbuwbcwv

in our numerical experiments the compressive limiters give more accurate results than the
smooth limiters when used in the WENO-TVD schemes but show undesirable squaring of
the smooth parts of the solution when used with second order TVD schemes. This behaviour

MUY crbornac acane: o +ad rith AvrereaTn T Trece e Tin it ang e e 11 1eon ~xrr
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of

An important issue is the choice of the Courant number, which defines the time step. The
WENO schemes are linearly stable for Courant numbers up to unity [18]. However, for solu-
tions with discontinuities smaller Courant numbers are usually used, typically in the range
of 0.2-0.6. For larger Courant numbers, e.g. 0.9, the WENO schemes become oscillatory in
some of our numerical experiments. The same observation applies to other schemes with
Runge-Kutta time discretisation, e.g. finite-difference ENO [40] and MPWENO [1] schemes.
It is argued [1] that this behavior of the WENO schemes is due to the combination of the
lower order time discretisation and higher order spatial reconstruction. In this paper we use
CFL=0.4 for the WENO schemes throughout, where CFL denotes the maximum Courant
number for each time step, see (12). For the MPWENO schemes we use CFL=0.3, which is
consistent with the requirement of the monotonicity constraint [41] used in this scheme. For
all calculations made with the WAF and FLIC schemes we use CFL=0.95 throughout.

In the numerical experiments we use very large output times, corresponding to hundreds
of thousand of time steps. We remark that there is no point in using expensive and com-
plex very high order methods for short-time propagation problems since for such problems
conventional TVD schemes often give acceptable results while being much faster and sim-

pler. The sophistication of very high order methods can be justified only for very long time
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for solutions containing delicate features such as contact discontinuities. Of course, all

convergent methods will give the same results in the limit of zero cell size. The point is that
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particularly on very coarse meshes.
4.1 Scalar linear advection
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fluxes with compressive limiters influence the convergence properties of the WENO-TVD

schemes.
4.1.1. Example 1: smooth solution

We solve

dq+ Dug = 0, (37)

with the initial condition

q(z,0) = sin*(rz) (38)

defined on [-1,1] and periodic boundary conditions. We use output times ¢ = 1 and ¢ = 1000.
Tables 1 and 2 show convergence rates and errors in different norms for cell averages of the
solution for the TVD, WENO and WENO-TVD schemes.

We observe that for the output time ¢t = 1 original WENO schemes and new WENO-TVD
schemes converge with approximately forth order of accuracy. The use of the compressive
SUPERBEE-type limiters in the WENO-TVD schemes degrades neither the convergence
rate nor the size of the error. This result is very satisfactory as it shows that second order
TVD fluxes with compressive limiters can be used in the higher order methods (higher than
second order) without affecting the convergence properties. In fact, on coarse meshes we
observe some gains in accuracy.

The situation is different for the second, much larger, output time ¢ = 1000. The WAF,
WENO-HLLC and WENO-TVD schemes are seen to converge much better than the centred
FLIC and WENO-LF schemes. For the latter schemes the mesh refinements from 20 to 160

cells have virtually no effect on the size of the error. In fact, for these meshes the second
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order (only first order in Lo, norm) upwind TVD scheme WAF is more accurate than the
third order (fifth order in space) WENO-LF scheme. This is surprising because for smooth

solutions the higher order schemes, such as WENO schemes, are believed to produce much
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4.1.2. Example 2: solution containing discontinuities

Now we solve equation (37) for the following initial condition [18, 41, 1]

exp (In2 (z + 0.7)2/0.0009), —0.8 <z < —0.6,
1, —0.4 <2< -0.2,
q(z,0) =4 1 — |10z — 1], 0.0<2z<0.2, (39)
(1 _ 100~ _ N K\2\1/2 NA<c e NA
\.L .LUU\»(/ U.U} } 9 Ut > o > U.U,
0, otherwise,

and periodic boundary conditions. This time the solution is a combination of a discontinuous
square pulse and several continuous but narrow profiles. This is the type of problems for
which WENO schemes have to be used with smaller CFL numbers than allowed by the
linear stability analysis; e.g. CFL=0.2-0.4 are used in [18, 41, 1]. We compute the solution
at the output times ¢ = 20 (short time evolution) and ¢ = 2000 (long time evolution). For
the second output time the initial profile is propagated 1000 times over the spatial domain;
when CFL number of unity is used, it corresponds to 2 x 10° time steps.

Table 3 shows convergence studies for cell averages of the solution in the L; norm; in
this norm all schemes should converge with first order of accuracy. We observe that for
the small output time ¢t = 20 (10 periods) all schemes converge with first order of accuracy
except the WENO-LF scheme, which suffers a loss of convergence rate as the mesh is refined.
The situation is again very different when we consider the second, much larger output time
t = 2000 (1000 periods). The WENO-LF scheme converges very poorly; the mesh refinement

from 400 to 1600 cells has virtually no effect on the size of the error. All other schemes achieve
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error is more than 3 times smaller that that of the WENO-HLLC scheme and 2 times smaller
than that of the WAF scheme. We also remark that overall, for the second output time,
upwind me

Figs. 1-6 depict graphical results of various methods for the output time ¢ = 2000 on
the mesh of 200 cells. In all figures the continuous line corresponds to the exact solution
and symbols correspond to the numerical solution. We observe that the centred FLIC and
WENO-LF schemes produce unacceptable results of virtually the same accuracy; namely the
ny of the features present in the exac
WAF scheme performs better but still the accuracy is very poor. A surprising observation is
that the accuracy of the second order TVD scheme WAF is overall higher than that of the
fiftth order WENO-LF scheme. Other WENO schemes, namely the WENO-HLLC, WENO-
FLIC and WENO-WAF schemes produce much more accurate results. In particular, the
new centred WENO-FLIC scheme is significantly more accurate than the original WENO-
LF scheme. Overall, for the given mesh the WENO-WAF is the most accurate scheme.

Figs. 7-12 depict graphical results of various methods for the output time ¢ = 2000 on the
finest mesh of 1600 cells. We see that on this mesh the WAF scheme outperforms the FLIC
scheme and original WENO-LF and WENO-HLLC schemes, compare Figs. 10 with Figs. 7,
8 and 11. In particular, WAF provides better resolution of the discontinous square pulse. As
before, the WENO-LF scheme is the least accurate scheme. As expected, the WENO-TVD
schemes produce the most accurate results for all parts of the solution, including the square
pulse. These observations are in good agreement with the convergence study of Table 3. We
remark that there are some oscillations in the result of the WENO-FLIC scheme on the finest
mesh; these may be related to the way the flow parameter r, given by (20), is computed. A
similar effect was observed for the forth order ADER-WAF scheme in [58].

The numerical results for the linear advection equation with constant coefficient lead
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this statement applies not only to the WENO-LF scheme but also to other modern centred
schemes with the Lax-Friedrichs flux, such as those presented in [31, 26]. However, we expect
the centred WENO (CWENO) scheme of Qiu and Shu [33] to produce results similar to those
of the WENO-HLLC scheme when applied to the linear advection equation with constant
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which coincides with the upwind Godunov flux in the linear scalar case.

The new ENO-TVD and MPWENO-TVD schemes show similar improvements over the
original ENO and MPWENO schemes. For the MPWENO schemes these improvements in
general are smaller than for ENO and WENO schemes, as one would expect. We omit the

results here.
4.2 The Euler equations of gas dynamics

We now assess the performance of different schemes for the one-dimensional Euler equa-

tions for a y-law gas (21), with v = 1.4 in all the results shown here.

4.2.1. Ezxample 1: Stationary contact discontinuity.

Consider the following initial condition [51] defined on [0, 1]:

(1.4,0.0,1.0), z <1,
(1.0,0.0,1.0), = >

Y

[ R

which corresponds to an isolated stationary contact discontinuity. A mesh of 50 cells is
used. On this mesh at ¢t = 0 the discontinuity is positioned at the cell interface. We run the
schemes until the steady state solution is reached.

Table 4 shows the errors of different schemes in the L; norm, the number of time steps
needed to achieve the steady state solution and the number of cells across the contact
discontinuity. Figs. 13 - 15 depict graphical results for the WENO-LF, MPWENO-LF
and WENO-FLIC methods. We observe that the methods with complete upwind fluxes
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solver used in these schemes recognises the middle (contact) wave in the Riemann problem
solution. A surprising observation is that the schemes with the centred FLIC flux resolve
the contact discontinuity exactly. This is due to our choice of total energy as the quantity
for the flow parameter r in (20). Recall that total energy is continuous across the contact
discontinuity. Therefore r = 1 and the FLIC flux reduces to the Lax-Wendroff flux. From
the Rankine-Hugoniot conditions for the st

flux is continuous across the stationary discontinuity. It is obvious that in this situation the

Lax-Wendroff flux does not introduce any perturbations to the discontinuity. As a result,
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the discontinuity as time evolves. The reason for this is that the vector of conservative
variables is not continuous across the stationary contact discontinuity and at each time step
the Lax-Friedrichs flux introduces a perturbation to the exact profile. This perturbation is
proportional to the density jump across the discontinuity. However, the smearing becomes

smaller as the spatial order of the scheme increases.

4.2.2. Ezxample 2: Shock/turbulence interaction problem.

We compare the performance of different schemes on a problem with a rich smooth
structure and a shock wave. We use the following test problem [58], which is a variation of

the shock/turbulence problem proposed in [18, 1]. The initial condition defined on [—5, 5] is

(1.515695,0.523346, 1.80500), = < —4.5,
(pyu,p) = (41)
(14 0.1sin207z,0.0,1.), x> —4.5,

which consists of a right-facing shock wave of Mach number 1.1 running into a high-frequency
density perturbation. The flow contains physical oscillations which have to be resolved by
the numerical method. We compute the solution at the output time ¢ = 5, which is more
than ten times larger than that of the standard shock/turbulence problem of [1]. Figs. 16-21
show results of the TVD, original WENO and new WENO-TVD schemes on a mesh of 2000
cells. In all figures the continuous line corresponds to the reference solution and symbols

correspond to the numerical solution. The reference solution is obtained by applying the

fifth order ADER5-WAF scheme [58] on a fine mesh of 5000 cells and is shown by the solid
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line on all figures.

Figs. 16-18 d
schemes. We see that the FLIC and WENO-LF schemes produce very inaccurate results. In
particular, the undisturbed region ahead of the shock wave is poorly resolved by the WENO-
LF scheme. The WENO-FLIC scheme offers much better accuracy. The improvement over
the WENO-LF is most remarkable since these centred schemes differ only in the flux used,
namely the Lax-Friedrichs flux (first order) versus the FLIC flux (second order TVD).

Figs. 19-21
WAF scheme to the WENO-HLLC scheme and to the WENO-WAF scheme. Note that the
undisturbed region ahead of the shock wave is well resolved by all these upwind schemes.
The WENO-WAF scheme produces the most accurate solution, which is very close to the
reference solution.

Comparing the numerical results of the centred (Figs. 16-18) and upwind (Figs. 19-21)
schemes we observe that the upwind schemes are clearly superior. On the given mesh the
second order (only first order in the L., norm) WAF scheme outperforms not only the FLIC
scheme but also the fifth order WENO-LF scheme. We also note that the WAF scheme
with the SUPERBEE limiter is even more accurate for this problem; the result is omitted
here. The most accurate centred scheme, the WENO-FLIC scheme, only approaches the
accuracy of the upwind WENO-HLLC scheme and is much less accurate than the most
accurate upwind scheme, the WENO-WAF scheme.

Another way of interpreting the results of Fig. 18 and Fig. 20 is this: by using a centred
TVD flux as a building block for very high order methods one approaches the accuracy of
the corresponding method used with a first order monotone upwind flux based on a complete
Riemann solver. The attaraction of the centred second-order TVD flux is that it is simpler
and more general than a good upwind flux, such as the HLLC, for example. However, the
differences in accuracy between the centred-based and upwind-based are still clearly visible.
See also Figs. 23 and 24 for ENO schemes and Figs. 27 and 28 for MPWENO schemes.

It should be noted that when the mesh is sufficiently refined the WENO-LF scheme
outperforms, to the eye, the TVD WAF scheme with the van Leer limiter. When the more
compressive SUPERBEE limiter is used, the WAF scheme still compares well with the

WENO-LF scheme.
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of 2000
TVD schemes on the coarser mesh of 1000 cells. We again observe that the schemes with

the Lax-Friedrichs flux are the most diffusive whereas the schemes with the WAF flux are

remarkable that for this test problem the influence of the choice of the flux is equally large
for schemes with least accurate (3th order ENO) and most accurate (9th order MPWENO)
reconstructions.

We note that the shock wave here is rather weak and cannot be used to test the robustness
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4.3 Computing times and efficiency of the schemes

All calculations have been run on a personal computer with Athlon-XP 17004 processer

(1.533 Ghz clock frequency). We use Compaq Visual Fortran Compiler 6.0 with full optimi-

wn

on the mesh of 2000 cells and given CFL numbers. The timings for ENO schemes are similar
to those of WENO schemes and thus omitted. We note that the efficiency of the schemes
depends on the hardware, compilers, coding and other factors. Therefore, our results may
be different from those of other researchers. As expected, the TVD schemes are the fastest
schemes. The fastest WENO scheme, WENO-LF, is around ten times slower than the TVD
schemes. We note that our timings agree well with those presented in [18], where Jiang
and Shu show that a single step of the Runge-Kutta time method of the WENO scheme is
3-4 times more expensive than that of a typical TVD scheme with MUSCL reconstruction
in characteristic variables and a two-step Runge-Kutta method. This translates into 4.5-6
times difference in speed when the same CFL number is used because the WENO schemes
use a three-step TVD Runge-Kutta method (7) as compared to a two-step Runge-Kutta
method used by a TVD scheme. Also, the WENO schemes need smaller CFL numbers,
here we use CFL=0.4 for the WENO schemes and CFL=0.95 for the TVD WAF scheme.
Furthermore, the FLIC and WAF methods should be faster than a typical TVD scheme
used for comparison in [18] because i) they are one-step methods, thus only one flux eval-

uation is needed per time step per cell interface, as compared to two flux evaluations in
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the scheme with the Runge-Kutta time stepping; ii) they do not need any characteristic

projections/reconstruction. All these factors result in the difference in speed tabulated in

Table 5
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DIUCL1 15 L1IC llllPlUVClllC 1ud 111 a\,\,ula\,y UVCL ULIT VV IUIN\UJ- LD DbllClllC, LILId auululvllal bUlllPL{_
tational cost is not significant.
mi XXTTANT LAY YXTA T 1 M 1 an(7 1 i1 i 1 XXTTANT Y TTT T Y 1 mi
T'he WENO-WAF scheme is around 30% slower that the WENO-HLLC scheme. This

is due to the use of the more expensive WAF flux instead of the first order HLLC flux in
each step of the Runge-Kutta method. However, again this difference in speed is more than

L A i et reie e 4 31 o i A
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compensated

For the given CFL numbers the MPWENO scheme is around 2.5 times slower than the
corresponding WENQO scheme when the same flux is used. This is due to the much more
costly reconstruction procedure used. We note that the MPWENO-WAF scheme is only
10% slower than the MPWENO-HLLC scheme; therefore it is worth using the WAF flux
with this scheme. Balsara and Shu [1] point out that the 9*" order WENO reconstruction
alone is around three times more expensive than the fifth order WENO reconstruction. On
top of that one has to add the computational cost of applying the monotonicity-preserving
bounds developed in [41] and a smaller CFL number as compared to the WENO scheme.
On the other hand, for the Euler equations , there are other steps in the method, such as
flux evaluation and characteristic projections; therefore the difference in speed between the
WENO and MPWENO schemes for the CFL numbers used is only around 2.5 times. For the
numerical results presented this difference is more than compensated by the improvements

in accuracy associated with the higher order reconstruction.
5. CONCLUSIONS

In this paper we have proposed to use a second order TVD flux, rather than a first
order monotone flux, as the building block for constructing very-high order methods and
have applied the idea to finite-volume ENO, WENO and MPWENO schemes. We call the
new schemes the ENO-TVD, WENO-TVD and MPWENO-TVD schemes. As the building
block we consider the centred FLIC flux and upwind WAF flux together with compressive
SUPERBEE-type limiters. Both upwind and centred new schemes use the same reconstruc-

tion and time discretisation as do the original upwind finite-volume schemes.
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schemes with the FLIC flux resolve stationary contact discontinuities ezactly.

The numerical results of the proposed schemes for the linear advection equation with

AAAAAAAAA Al ariginal cehemes writh Brat Aarder monatane centred and 1inwvrind Hiives ecane
bUllCDPUll 115 Ullslll 1 DULITIIITD VWI1Ull 111DV UIUCL 11IVIIVLUVIIC LCLILLICU allu LLP Vil llLLACD, CDPC_
cially for long time evolution problems containing both smooth and non-smooth features. In
addiFion o1t nitmericeal rectd o laosd siq 44 halicve that 4o MUN) cobarnae hath candead BT TOY
auUulivivull, vul HUlIlICLICal IC5ULLS ICau Uus LU DCLICVE Lllatu LIlC 1V 1J SCLCIIICS, DULLL CCLILICU ' v

and upwind WAF, are not to be ruled out when compared with the very high order centred
schemes using the Lax-Friedrichs flux as the building block. We show that the schemes with
the Lax-Friedrichs flux are not suitable for long time evolution problems due to excesive nu-
merical diffusion. The above-mentioned differences in accuracy between upwind and centred
order and second order fluxes exist for schemes o
Future work will include extensions of the present results to multidimensional WENO

schemes as well as to other high-order methods such as the Runge-Kutta Discontinuous

Galerkin methods [9, 10, 11].
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vergence study for various schemes as applied to the model equation
dition (38) at output time ¢t = 1. Schemes: second order WAF an
L=0.95 and spatially fifth order WENO and WENO-TVD used with CF
Method N L., error L., order L, error L, order
FLIC 20 1.17 x 1071 7.33 x 1072
40  3.81 x 1072 1.62 2.27 x 1072 1.69
80 1.59 x 1072 1.26 6.04 x 1073 1.91
160 6.44 x 1073 1.31 1.54 x 1073 1.97
320 2.59 x 1073 1.32 3.87 x 107* 1.99
640 1.03 x 1072 1.33 9.49 x 10~° 2.03
WAF 20 4.74 x 1072 3.46 x 1072
40 1.84 x 1072 1.36 6.73 x 1073 2.36
80 7.67 x 1073 1.26 1.92 x 1073 1.81
160 3.10 x 1072 1.31 4.84 x 10~* 1.99
320 1.22x10°° 1.34 1.15 x 107*  2.07
640 4.75 x 1074 1.37 2.92 x 107° 1.98
WENO-LF 20 1.64 x 107! 1.49 x 107!
40 1.61 x 1072 3.35 1.64 x 1072 3.19
80 2.11 x1073 2.93 1.79 x 1073 3.20
160 1.09 x 10~* 4.27 7.32 x 107° 4.61
320 3.66 x 107 4.90 3.47 x 1076 4.40
640 3.51 x 1077 3.39 3.31 x 1077 3.48
WENO-HLLC 20 1.22 x107! 1.05 x 107!
40 8.84 x 1073 3.78 8.00 x 1073 3.72
80 1.49 x 1073 2.57 9.81 x 10~* 3.03
160 5.64 x 107° 4.72 4.18 x 107° 4.55
320 3.00 x 1076 4.23 2.80 x 1076 3.90
640 3.29 x 107" 319  329x107"  3.09
WENO-FLIC 20 1.21 x 107! 1.07 x 107!
40 8.98 x 1073 3.75 7.12 x 1073 3.91
80 1.48 x 1073 2.60 7.81 x 107* 3.19
160 3.29 x 107° 5.49 2.84 x 107° 4.78
320 2.74 x 1076 3.59 2.62 x 1076 3.44
640 3.22x107"  3.09  3.28x107"  3.00
WENO-WAF 20 6.98 x 1072 6.52 x 1072

40 6.18 x 1073 3.50 6.27 x 1073 3.38
80 1.10 x 1073 2.49 6.44 x 10~* 3.28
160 3.41 x 107° 5.01 3.02 x 107° 4.42
320 2.77 x 1076 3.62 2.61 x 107© 3.53
640 3.22 x 1077 3.09 3.28 x 1077 3.00

33



Table 2: Convergence study for various schemes as applied to the model equation (37) wit
initial condition (38) at output time ¢t = 1000. Schemes: second order WAF and FLIC use
with CFL=0.95 and spatially fifth order WENO and WENO-TVD used with CFL=0.4
Method N L., error L., order L, error L, order
FLIC 20 5.62x10°t 6.52 x 107!
40  6.09 x 107! -0.11 6.52 x 107! 0.00
80 6.17 x 1071 -0.02 6.47 x 107! 0.01
160 4.07 x 107! 0.60 4.05 x 107* 0.67
320 1.94 x 1071 1.07 1.65 x 107! 1.30
640 8.34 x 1072 1.22 6.07 x 1072 1.44
WAF 20 5.77 x 1071 6.66 x 107!
40 6.05 x 107! -0.07 6.47 x 107¢ 0.04
80 3.89 x 1071 0.64 3.58 x 107! 0.85
160 1.68 x 107! 1.21 1.22 x 107! 1.55
320 7.04 x 1072 1.25 5.05 x 1072 1.28
640 2.56 x 1072 1.46 1.53 x 1072 1.72
WENO-LF 20 5.62 x 107! 6.52 x 107!
40  6.05 x 107! -0.11 6.47 x 107* 0.01
80 3.29 x 1071 0.88 3.05 x 107! 1.09
160 4.17 x 1071 -0.34 4.10 x 1071 -0.43
320 3.54 x 1073 6.88 2.86 x 1073 7.16
640 3.48 x 10~* 3.35 3.31 x 10~* 3.30
WENO-HLLC 20 5.62 x 1071 6.52 x 107!
40 5.68 x107"  -0.01  6.00 x 107"  0.12
80 2.10 x 107! 1.44 1.74 x 1071 1.79
160 8.49 x 1072 1.30 5.66 x 1072 1.62
320 2.93 x 1073 4.86 2.59 x 1073 4.45
640 3.29 x 1074 3.15 3.29 x 10~* 2.98
WENO-FLIC 20 5.62 x 107! 6.52 x 107!
40 4.98 x 107! 0.17 5.13 x 107! 0.35
80 1.57 x 107! 1.67 1.34 x 107! 1.94
160 2.38 x 1072 2.72 1.82 x 1072 2.88
320 2.68 x 1073 3.15 2.60 x 1073 2.81
640 3.22 x 1074 3.06 3.28 x 10~* 2.98
WENO-WAF 20 5.62 x 107! 6.52 x 107!
40  4.68 x 107! 0.27 4.78 x 1071 0.45
80 1.51 x 107! 1.63 1.34 x 107! 1.83
160 2.37 x 1072 2.67 1.86 x 1072 2.85
320 2.69 x 1073 3.14 2.54 x 1073 2.87
640 3.22 x 1074 3.06 3.28 x 10~* 2.98
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Table 3: Convergence study for various schemes as applied to the model equation (37) with
initial condition (39) at output times ¢ = 20 and ¢ = 2000. Schemes: second order TVD
FLIC and WAF used with CFL=0.95 and spatially fifth order WENO and WENO-TVD
used with CFL=0.4.

Scheme N t =20 t = 2000

200 1.92 x 107! 6.19 x 107!
400 1.03 x 107*  0.90 5.78 x 1071 0.10
800 5.50 x 1072 0.90 4.13 x 1071 0.48

ayava o onn 2 N AN N TR 1

FLIC

1600 2.90 x 107~ 0.92 2.36 x 107+ 0.81
200 1.00 x 101 5.52 x 10~1
WAF 400 5.27 x 1072 0.93 3.47 x 1071 0.67
800 2.68 x 1072 (.98 1.86 x 10~*  0.90
1600 1.43 x 1072 0.90 9.81 x 1072 0.93
200 1.42 x 1071 6.41 x 107!
WENO-LF 400 6.86 x 1072 1.05 6.21 x 1071 0.05
00 4.12 x 1072 0.76 5.82 x 1071 0.09
1600 3.06 x 1072 0.43 518 x 1071 0.17
WENO-HLLC 200 1.13 x 1071 4.16 x 107!
400 4.95 x 1072 1.19 4.00 x 1071 0.06
800 2.34 x 1072 1.08 3.28 x 1071 0.29
1600 1.26 x 1072 0.89 1.66 x 10~* 0.98
WENO-FLIC 200 9.53 x 1072 3.26 x 107!
400 4.16 x 1072 1.20 1.74 x 10~ 0.91
800 1.97 x 1072 1.08 9.10 x 1072 0.93
1600 1.02 x 1072 0.95 5.03 x 1072 0.86
WENO-WAF 200 8.76 x 1072 3.12 x 107!

400 3.95 x 1072 1.15 1.55 x 107t 1.01
800 1.90 x 1072 1.06 8.52 x 1072 0.86
1600 9.90 x 107*  0.94 4.55 x 1072 0.90

35



Table 4: Convergence study for various schemes as applied to the Euler equations (21) with

initial condition (40). Schemes: FLIC and WAF used with CFL=0.95, ENO and WENO

m TYYXTTANT

Scheme N. of time steps Ly error  N. of cells across the discontinuity
FLIC 1 0 0
WAF 1 0 0
ENO-LF 2134 3.69 x 1073 35
ENO-HLLC 1 0 0
ENO-FLIC 1 0 0
ENO-WAF 1 0 0
WENO-LF 1482 3.48 x 107° 20
WENO-HLLC 1 0 0
WENO-FLIC 1 0 0
WENO-WAF 1 0 0
MPWENO-LF 1109 3.06 x 1072 8
MPWENO-HLLC 1 0 0
MPWENO-FLIC 1 0 0
MPWENO-WAF 1 0 0

Table 5: Computing times of various schemes as applied to the Euler equations (21) with
initial condition (41) on the mesh of 2000 cells.

Scheme CFL number Computing time
FLIC 0.95 5s
WAF 0.95 5s
WENO-LF 0.4 52s
WENO-HLLC 0.4 60s
WENO-FLIC 0.4 58s
WENO-WAF 0.4 80s
MPWENO-LF 0.3 172s
MPWENO-FLIC 0.3 180s
MPWENO-HLLC 0.3 182s
MPWENO-WAF 0.3 212s
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Figure 1: Computed (symbols) and exact (line) solutions for equation (37) with initial
condition (39) at output ¢ = 2000. Method used: second order TVD FLIC, CFL=0.95 and

/\ {—

Figure 2: Computed (symbols) and exact (line) solutions for equation (37) with initial
condition (39) at output ¢ = 2000. Method used: spatially fifth order WENO-LF, CFL=0.4
and N=200.

Figure 3: Computed (symbols) and exact (line) solutions for equation (37) with initial con-

dition (39) at output ¢t = 2000. Method used: spatially fifth order WENO-FLIC, CFL=0.4
and N=200.
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Figure 5: Computed (symbols) and exact (line) solutions for the linear advection equation
(37) with initial condition (39) at output ¢ = 2000. Method used: spatially fifth order

WENO-HLLC, CFL=0.4 and N=200.

Figure 6: Computed (symbols) and exact (line) solutions for the linear advection equation
(37) with initial condition (39) at output ¢ = 2000. Method used: spatially fifth order

WENO-WAF, CFL=0.4 and N=200.
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Figure 7: Computed (symbols) and exact (line) solutions for equation (37) with initial
condition (39) at output ¢ = 2000. Method used: second order TVD FLIC, CFL=0.95 and

R
WAV WA
/N VNV

Figure 8: Computed (symbols) and exact (line) solutions for equation (37) with initial
condition (39) at output ¢ = 2000. Method used: spatially fifth order WENO-LF, CFL=0.4
and N=1600.
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Figure 9: Computed (symbols) and exact (line) solutions for equation (37) with initial con-
dition (39) at output ¢t = 2000. Method used: spatially fifth order WENO-FLIC, CFL=0.4
and N=1600.
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condition (39) at output ¢t = 2000. Method used: second order TVD WAF, CFL=0.95 and

N=1600.
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Figure 11: Computed (symbols) and exact (line) solutions for the linear advection equation

(37) with initial condition (39) at output ¢ = 2000. Method used: fifth order WENO-HLLC,
CFL=0.4 and N=1600.
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Figure 12: Computed (symbols) and exact (line) solutions for the linear advection equation
(37) with initial condition (39) at output ¢ = 2000. Method used: spatially fifth order

WENO-WAF, CFL=0.4 and N=1600.
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solutions for the Euler equations (21)
WENO-LF, CFL=0.4 and N=50 cells
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Figure 14: Computed (symbol) and reference (line) solutions for the Euler equations (21)
with initial condition (40). Method used: ninth order MPWENO-LF, CFL=0.3 and N=50

cells.

Figure 15: Computed (symbol) and reference (line) solutions for the Euler equations (21)
with initial condition (40). Method used: fifth order ENO-FLIC, CFL=0.4 and N=50 cells.
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Figure 16: Computed (symbol) and reference (line) solutions for the Euler equations (21)
with initial condition (41) at output time ¢ = 5. Method used: second order TVD FLIC,
CFL=0.95 and N=2000 cells.
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Figure 17: Computed and reference (line) solutions for the Euler equations (21) with initial
condition (41) at output time¢ = 5. Method used: spatially fifth order WENO-LF, CFL=0.4
and N=2000 cells.
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Figure 18: Computed and reference (line) solutions for the Euler equations (21) with initial
condition (41) at output time ¢ = 5. Method used: spatially fifth order WENO-FLIC,
CFL=0.4 and N=2000 cells.
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Figure 19: Computed (symbol) and reference (line) solutions for the Euler equations (21

Hh o initial candition (41 o+ a1ifniit fime + — 5 Math er TVD WAF
VVlUJ.J. 1111U1€bl bUllbLlUlUll \“I.L} au UL,LUIJL,LU LviL1I© v — J. 1V1iCu CL VvV 1/ VVDL,

CFL=0.95 and N=2000 cells.
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Figure 20: Computed (symbol) and reference (line) solutions for the Euler equations (21)
with initial condition (41) at output time ¢ = 5. Method used: spatially fifth order WENO-
HLLC, CFL=0.4 and N=2000 cells.
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Figure 21: Computed (symbol) and reference (line) solutions for the Euler equations (21)
with initial condition (41) at output time ¢ = 5. Method used: spatially fifth order WENO-
WAF, CFL=0.4 and N=2000 cells.
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Flgure 22: Computed (symbol) and reference (line) solutions for the Euler equations (21

iith initial condition (AT a4 A1 wout timet = 5. Method used: spatially third order E‘?\Tn T D
UleJ. CullL \“I.L} au vuu lJL,LU iviCuliivu L,LDCLL DJ_JCUU ‘)/ 11U viucClL —1iL

CFL 0.4 and N=2000 cells.
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Figure 23: Computed (symbol) and reference (line) solutions for the Euler equations (21)
with initial condition (41) at output time ¢ = 5. Method used: spatially third order ENO-
FLIC, CFL=0.4 and N=2000 cells.
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Figure 24: Computed (symbol) and reference (line) solutions for the Euler equations (21)
with initial condition (41) at output time ¢ = 5. Method used: spatially third order ENO-
HLLC, CFL=0.4 and N=2000 cells.
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Figure 25: Computed (symbol) and reference (line) solutions for the Euler equations (21)
with initial condition (41 at outpnt time + = 5 Method n1sed: apatially +hird order ENOLZ
VVivull l1lilvial CUlIuUluvivlL \'_I.L} U ULLUPLLU LlLLIC ¢ — J. lViCUullvuu uoncu. DP@Ulall‘y Ullllu UIUCTL 1JINV\

WAF, CFL=0.4 and N=2000 cells.
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Figure 26: Computed (symbol) and reference (line) solutions for the Euler equations (21)
with initial condition (41) at output time ¢ = 5. Method used: spatially ninth order
MPWENO-LF, CFL=0.3 and N=1000 cells.
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Figure 27: Computed (symbol) and reference (line) solutions for the Euler equations (21)
with initial condition (41) at output time ¢ = 5. Method used: spatially ninth order
MPWENO-FLIC, CFL=0.3 and N=1000 cells.
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ns for the Euler equations (21)
h initial nditi (A1) at 1t ti 4 5 Method used: spatiallx h order
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MPWENO-HLLC, CFL=0.3 and N=1000 cells.
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Figure 29: Computed (symbol) and reference (line) solutions for the Euler equations (21)
with initial condition (41) at output time ¢ = 5. Method used: spatially ninth order
MPWENO-WAF, CFL=0.3 and N=1000 cells.
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