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AC losses In type-Il superconductors induced by
nonuniform fluctuations of external magnetic field

Leonid Prigozhin and Vladimir Sokolovsky

Abstract

Magnetic field fluctuations are inevitable in practical applications of superconductors and it is often necessary
to estimate the AC losses these fluctuations induce. If the fluctuation wavelength is greater than the size of a
superconductor, known estimates for an alternating uniform external magnetic field can be employed. Here we
consider the opposite case and analyze, using a model critical-state problem, penetration of spatially nonuniform
fluctuations into type-ll superconductors. Numerical simulation is based on a variational formulation of the Bean
model. The analytical solutions, found in a weak penetration limit, are used to evaluate AC losses for two types of
fluctuations: the running and standing waves. It is shown that for spatially nonuniform fluctuations the losses are
better characterized by the fluctuation penetration depth than by the fluctuation amplitude. The results can be used
to estimate the AC losses in flywheels, electric motors, magnetic shields, etc.

Index Terms

Hard superconductors, Bean model, AC losses, penetration depth, nonuniform field fluctuations, asymptotic
solution.

I. INTRODUCTION

The possible range of currents and magnetic fields as well as the economic gains of implementation of type-I
superconductors in power transmission lines, current leads, fault current limiters, magnetic shields, bearings, et
are often limited by AC losses and the necessity to remove the generated heat out of the system. Thus, applicati
of bulk high-Tc superconductors in flywheel systems and magnetic bearings is promising because of no frictior
between the moving parts and, hence, no energy losses by friction. However, rotating permanent magnets used
such devices always produce somewhat irregular magnetic field; moving field irregularities cause hysteretic losse
and relaxation of levitation property [1].

The mathematical models, used to analyze magnetization of type-1l superconductors and to evaluate AC losse
involve highly nonlinear partial differential equations that have been solved mostly for superconductors in a uniform
alternating external magnetic field (see [2]-[6] and the references therein). In many practical situations, howevel
the external magnetic field is not exactly uniform and can be better presented as a superposition of a uniforr
part and spatiotemporal fluctuations with the characteristic length scale less than the size of a superconductor. Tl
fluctuations are often stochastic but, for example, in the case of a flywheel system, are induced by rotation o
permanent magnets and may be approximated by a running wave. If there are no moving parts as, e.g., in the ca
of magnetic shields or transformers, nonuniform magnetic field fluctuations in the form of a standing wave can,
probably, serve as a better approximation.

Our aim is to study the penetration of nonuniform magnetic field fluctuations into a hard superconductor and
to evaluate the accompanying AC losses. We start with a convenient for numerical simulations variational genere
formulation of the Bean critical-state model (section 1), then consider the simplest geometric configuration, a
superconductive slab placed between two parallel sheets of external current. Even in this simplest case the proble
becomes nontrivial if the external current and, hence, also the external magnetic field, are nonuniform. We assun
the external field fluctuations are induced by a given current in the form of either a running or a standing wave anc
solve, first, the magnetization problems numerically (section Ill). Simple physical arguments allow us to find also
asymptotic analytical solutions for small fluctuations (section V). We further extend these solutions by presenting

L. Prigozhin is with the Department of Solar Energy and Environmental Physics, Blaustein Institute for Desert Research, Ben Gurion
University of the Negev, Sede Boger Campus, 48990 Israel (e-mail: leonid@cs.bgu.ac.il)

V. Sokolovsky is with the Physics Department, Ben Gurion University of the Negev, Beer Sheva, 84105 Israel (e-mail:
sokolovv@bgumail.bgu.ac.il)



them as the zero-order terms of consistent asymptotic expansions, find the first order corrections (appendices | a
I), and, finally, determine the asymptotic AC losses for small fluctuations (section V). We analyze the dependance
of the leading AC loss term on the first order correction to current density distribution.

Il. VARIATIONAL FORMULATION OF THE BEAN MODEL

Let a superconductor occupying domdnc R? be placed into magnetic fielfil.(r,¢) induced by a given
external current with the density.(r,t) (herer = {z,y,z} andJ. = 0 in Q). In accordance with the Faraday
law, an alternating magnetic flux induces electric field and, hence, an eddy current inside the superconductor. In &
ordinary conductor, the vectors of the electric field and current density are related by the linear Ohm law. Type-II
superconductors are, instead, characterized in the Bean critical state model [7] by a highly nonlinear current-voltag
relation which gives rise to a free boundary problem.

Let us assume

E=p] Q)

and employ the usual Bean model relations determining the effective resistivity of a supercond@ctor,
implicitly. Namely, the Bean model states that the effective resistivity is nonnegative,

p(r,t) =0, ()
the current density cannot exceed some critical value,
()] < Je, )
and, if the current density is subcritical, the resistivity is zero:
[J(r,t)| < J. — p(r,t) = 0. 4)

Since no current is supposed to be fed into the superconductor by an electric contact, the current density inside
should satisfy the zero divergence condition and have a zero normal component at the domain h@gdndary

V-J=0inQ, J, =0 o0noN. (5)
To derive a variational formulation of the magnetization problem, we define th& sdtpossible current densities,

V-®=0 in €,
JeK=(®(rt) | ®,=0 onof,

|®| < J. in Q
and express the electric field via the vector and scalar magnetic potentials,
E=—-0,A — V. (6)

We further eliminate the scalar potential by multiplying (6) #y— J, integrating over?, and making use of the
zero divergence condition for functions from the #ét

(E,®-J)=—(A,®-1J), )

for J,® € K. Here(u,v) = [,u-vdQ is the scalar product of two functions.
SinceE andJ satisfy the current-voltage relations of the Bean model, the scalar product on the left side of (7)
is nonpositive for any® € K. Indeed, using (1)-(4) we obtain:

E-J = [E||J| = [E|J > |E|®| > E- &. ®)

Up to the gradient of a scalar function, determined by the gauge and also eliminated by the scalar product witl
® — J, the vector potential is a convolution of the Green function of Laplace equation,= 1/4x|r|, and the
total current density(r,t) + J.(r, t):

A = poG = (J +Je)



(it is assumed that the magnetic permeability of superconductor is equal to that of vaguuiVe arrived at the
following variational formulation of the magnetization problem:

Find J € K such that
(G*0{J+J.},2—-J) >0 forany® € K, 9)
J)i=0 = Jo(r),

whereJy € K is a given initial distribution of the current density.

The problem (9) is an evolutionary variational inequality with a nonlocal operator and has a unique solution
[8]. This inequality is written for the induced current density alone: the effective resisjivigs been used
to derive the inequality (8) and then excluded. It has been shown [8] that, in the Bean m@de),is the
Lagrange multiplier related to the current density constraint (3). Of course, the same inequality may be written a:

G * 0 + ﬁatAe, P — J) >0 for any ® € K, whereA. is the external vector potential; such formulation can
be more convenient in some cases.

We note that, although the variational formulations where the solution is sought as an extremal point of some
functional are much more familiar, the variational inequalities do appear in many problems of mechanics anc
physics containing a unilateral constraint or a non-smooth constitutive relation (see [9]). The methods for numerica
solution of variational inequalities are well developed [10]. Nevertheless, solution of (9) in the general 3d case is
certainly a challenging problem not only because of huge number of finite elements needed: the nonlocal operat
of convolution leads to a dense matrix of the discretized problem, and the zero divergence condition (5) is not st
easy to account for numerically, although the edge finite elements and tree-cotree decomposition can be helpful (s
[11], [12]). Similar difficulties are typical also of other formulations of the magnetization problem [2], [13]. That is
why the magnetization problems were solved mainly for one and two-dimensional configurations. Below, we use ¢
model 2d problem to simulate the penetration of nonuniform magnetic field fluctuations into a hard superconducto
numerically and to calculate the AC losses asymptotically for weak penetration.

[Il. TWO TYPES OF FIELD FLUCTUATIONS

To simulate the penetration of magnetic field fluctuations into a superconductor, let us consider the simples
possible configuration: a superconductive slab < x < [ placed between two sheets of external current at
x = +a, a > | (Fig. 1).We assume the external current is parallet4axis, J. = J.e,. Having in mind, e.g.,

e +++toeoee|l+++oeeoe + + +

+teo 00 +++Hoeeoeo +++0 00

Fig. 1. Infinite slab between two parallel sheets of current.

a superconductor moving along the axis of a solenoid with slightly nonuniform winding, we present the external
current.J, as a sum of its uniform componeft and a wave moving along thgaxis with the velocityw:

Je = [Ie + iesin{k(y — vt)}] [0(x + a) — d(z — a)]. (10)
We will also consider the standing wave of magnetic field induced by the current

Je = [Ie + icsin(ky) sin(27 ft)] [0(z + a) — 0(x — a)]. (11)



If the sheet current density were uniform, the Bean model equations for slab magnetization could be solved easily
It is more difficult to analyze the magnetization in a nonuniform magnetic field induced by the external currents
(10) or (11), and we will use a 2d reformulation of the variational inequality (9) and the numerical method proposed
in [4] for cylinders of arbitrary cross sections in a perpendicular magnetic field. The method can be employed for
any distribution of external currents. Taking the cylinder cross section to be a rectafgler <[, L <y < L,
we model the development near the slab surfaces of critical current zones that shield the fluctuating component ¢
external magnetic field.

The shielding current inside the superconductor is directed along-thés and does not depend enJ =
J(z,y,t)e,, so the conditions (5) are satisfied automatically. We may redéfite be the cylinder cross section
and solve a 2d problem in this domain. One should, however, be cautious: the eddy current running in the positiv
z-axis direction has to return back (no transport current is applied; see [4] for solution of problems with transport
current). As a trace of the 3d zero-divergence conditions (5), the condition

/J(:r,y,t)szO
Q

has to be satisfied for all The set of admissible (scalar) current densities becomes

K:{Cb(x,y,t) ’ngc in Q, /(I)dQ:O}.
Q

The variational inequality (9) can also be rewritten for scalar current densities,

Find J € K such that
(GxOf{J+ J.},®2—J) >0 forany® € K, (12)
Jli=0 = Jo(r),
whereG(r) = —5= In|r| is now the Green function of Laplace equationfif andr = {z,y}.

To solve the problem numerically, we use first the finite difference discretization in time and obtain, for each
time layer, the stationary variational inequalities

Find J € K such that (G {J +J. —J — J,},® —J) >0 forany® € K,

where f,fe are the values from the previous time layer. It can be shown that these variational inequalities are
equivalent to the optimization problems

min %(G*J,J)—i—(g,J),

JeK (13)
whereg = G« {J. — J— fe}. The convolutionG * J, can be calculated analytically:
1 e _ka . :
—Ae=GxJe=—I.x — %e kasin{k(y — vt)} sinh(kz) (14)
Ho
1 e _ka : :
lTAe =GxJ.=—Ix— %e ~a sin(2n ft) sin(ky) sinh(kz) (15)
0

for currents (10) and (11), respectively, anrd < x < a.

We finally discretize the optimization problems (13) in space by means of the piecewise constant finite elements
take care of the integral constraif J d©2 = 0 using the Lagrange multipliers technique, and solve the resulting
finite-dimensional optimization problems with the remaining constraints by a point relaxation method (see [4], [14]
for the implementation details).

Let us assume only an alternating part of the external current is preserdt and. A permanent field would
not change the picture qualitatively and, although in applications the stationary component is often much stronge
than fluctuation the constant part causes no energy losses. We present the results of two simulations. In botl
cases we assume the superconductor is initially in the virgin sfgte, 0.

INote that strong permanent component makes the relative changes of magnetic field small. This justifies the use of field-independer
critical current density for simulating the penetration of fluctuations. Otherwise, the Kim model [15] or its modification can be employed.
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Fig. 2. Running wave. Penetration of the magnetic field induced by an external ciligrent. (¢) sin{k(y — vt) }[d(z — a) — 6(z + a)]e.

into a cylindrical superconductor with the cross sectibe- {—I <z <!, —L <y < L}. The wave amplitudé. grows linearly from zero

at¢ = 0 to its maximal valuei.o att = ¢, and then remains constant. The physical parametersl/k, L = 10/k, a = 1.1/k, to =

4/kv, ico = J./k. Shown fort = [0.8, 1.6, 3.2, 5.6, 16.0]/kv are: the boundaries of plus- and minus critical current zones, the magnetic
field lines, and the cylinder cross section. The parameters of numerical scheémé&00 regular mesh of piecewise constant finite elements,
time step0.8/kv.

In our first example (Fig. 2) the external current is given as a running WAve; i.(t) sin{k(y — vt)}[0(x —
a) — d(z + a)], with the amplitudei.(t) growing from zero to its maximal value and then remaining constant. The
magnetic field penetrates from the surface of the superconductor where alternating domains of plus- and mint
critical current densities appear and start to follow the wave. The shape of these domains stabilizes and, after ¢
initial transient period, they completely occupy a near-surface zone of a constant depth and move through this zor
with the wave velocityv.

The second example (Fig. 3) illustrates another typical situation: here the magnetic field fluctuations are induce
by the external current in the form of a standing wave, = i, sin(ky)sin(27ft)[0(z — a) — d(z + a)]. At
t = 0 domains of plus- and minus critical current densities, shielding the external magnetic field, appear at the
superconductor surface and start to propagate inside. When the external field reaches its maximal strerifjfid at
the propagation stops (heflé = 1/f). As the field becomes weaker, the boundary of the critical current regions
does not, however, retreat. Instead, similarly to the case of an alternating uniform external field, to compensat
the decreasing external field there appear surface domains of the opposite critical current densities. These doma
propagate inside, sweep out the previous ondgs=a87'/4, and the process becomes periodic.

IV. ASYMPTOTIC SOLUTION

Let an infinite slab—! < x <[ be placed into a magnetic field produced by the sheet current (10) or (11). We
want to find the established periodic in time distribution of induced current density. It follows from (12) that the
time-periodic part of current density we are interested in does not depend on the permanent part of external currer
We setl. = 0 again just to simplify the consideration; this is not a limitation of the method employed.

It is not difficult to find a distribution of surface current density(y,¢), such that the current(y,t)[0(x +
) —o(x —1)] shields the superconductor from the external field. Clearly, complete shielding occurs if the magnetic
vector potential of this currentd;, compensates the external magnetic potential inside the superconductor,

Ac+A,=0
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Fig. 3. Standing wave. The external magnetic field is induced by the cuftert i. sin(ky) sin(27 ft)[6(x — a) — §(z + a)]e.. Here
l=1/k, L =10/k, a = 1.1/k, ic = J./k. Shown fort = [0.24, 0.44, 0.56, 1.00, 1.12]/f are: the boundaries of plus- and minus
critical current zones, the magnetic field lines, and the cylinder cross section. Regular finite elemesfmeg0, time step0.04/f.

for —I <z < I. Using expressions (14) and (15), we find that the shielding would be achieved if we set

iy = —e D5 sin{k(y — vt)}, (16)
is = —e P05 sin(ky) sin(2n ft) 17)

for the running and standing waves, (10) and (11), respectively.

We now assume that the depthto which fluctuations penetrate into the superconductor is much smaller than the
fluctuation wavelengthi A < 1, interpret the shielding surface currents as the integrals of bulk current densities
across a narrow penetration zone, and find the asymptotic distribution of bulk current density inside this zone
analytically. First, let us note that for eaghthe surface current(y, ¢t) reaches its extremal values when the whole
penetration zone (see Figs. 2 and 3) is occupied by the critical current density of the same sign. Therefore, th
penetration depth can be calculatedds- max(is)/J., which givesA = e*’“(“*l)z‘e/JC for the running wave and
A(y) = e *e=Dj |sin(ky)|/J. for the standing wave. We see that for both wave types the fluctuations may be
regarded small if

v=kAy <1, (18)

where Ay = i.e *@=0/ ],

If, at time ¢, the currentis(y,t) is neither maximal nor minimal, the penetration zoné < z < —[ + A
(where A = A for the running wave and\ = Ag|sin(ky)| for the standing wave) contains regions of plus-
and minus critical current densities. The near-surface regibr< « < —I + o(y,t) appears at the time when
dvis(y,t) = 0 and, as it propagates inside, the current density thefgsign{d,i,(y,t)}. The rest of the penetration
zone,—l + o(y,t) < x < —l + A, is occupied by the critical current density of the opposite sign. Comparing
with the integral of current density across the penetration zone, we find the moving bouridaty

o) = (&4 2 signii. (.0 ) (19)

Near the slab surface = +[ the current density distribution is antisymmetric.

Simple physical arguments were used above to obtain the asymptotic solutions for weak penetration: postulatin
the solution structure, we spread the shielding surface current into a bulk current in the near-surface zone. In
similar way, weak penetration of alternating uniform field into a perpendicular circular cylinder has been studied in
[16], [17]. Although the chosen surface current would have shield the superconductor from the external magneti




field completely, spreading this current into the bulk makes shielding imperfect. As will be shown below, the
remaining field is of the orde©(v). We will now extend our arguments and present the obtained asymptotic
solutions as zero order terms of consistent asymptotic expansions.

A. Running wave

It is not difficult to see that the asymptotic distribution of current density inside the penetration-Zcne <
—l+ Ay, obtained forr = kAy <« 1, can be presented as

J = —J.S(k(y —vt) — ¥o(s/Ag)), s=x+1€][0,Aq], (20)

whereS(z) = sign(sin(z)) is a2w-periodic step-function an@((u) = arcsin(1 — 2u).
Let us now look for the current density

J=—J.S(k(y —vt) — ¥(s/A)), c=xz+1€]0,A] (21)

where
A= N1 +rv+r?+.), (22)
U(u) = Uo(u) + v¥q(u) + 12Uy (u) + ... (23)

are such that the current (21), jointly with the opposite one near another superconductor surface, shield the extern
magnetic field.

We partly solve this problem in Appendix | by showing first that the vector potential produced by the zero-order
approximation (20) to current density compensates the potential of external current inside the superconductor (bt
outside the penetration zone) up to thév) terms; hence the external magnetic field inside the superconductor is
shielded up to the same orderin We find then the first order corrections, and ¥, ensuring shielding of the
magnetic field up to the second ordéx(v?).

It turns out (see Appendix I) that a nonsingular functin can be found only if; = —%, so the penetration
depth becomes

A= Aol - %y +002)).

It is further shown that the external magnetic field is shielded up to the second ordef in

M
Ui(s/A) =) amUam(1 - 25/A), (24)

m=0

whereU,, (1) = sin((n + 1) arccos(7))/ sin(arccos(7)) are the Chebyshev polynomials of the second kind,
1 1 1
= <4(m+1)21+4m21>’ (25)

vin(M+1) <7

and M satisfies the conditions

if M>1(orv<mif M=0,1) and
2M+3)v

e ( <0

The first of these conditions ensures that | < 1, the second provides for th@(1?) shielding of magnetic field.

The conditions are easy to satisfy and, usually, only a few terms of the series are needed. Thus, in the exampl
in Fig. 4, we usedV/ =1 for v = 0.2 and M = 0 for v = 0.4.
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Fig. 4. Penetration of the running wave fluctuations. Domains of plus- and minus critical current densities (numerical solution) and their
asymptotic boundaries: "- -” — zero order approximation, "—" — first order approximation. keft= 0.25J./k and v = 0.2; right:
ie = 0.5J./k andv = 0.4. In both cases] = 0.5/k, a = 0.7/k, L = 2= /k. Different scales in x and y.
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B. Standing wave

We find first a correction to the asymptotic penetration defthy) = Ag|sin(ky)|. Let us choose a moment
when the external field is the strongest, etg= 7'/4, so that for eachy the induced current density is

J = —J.S(ky), (26)

in the whole penetration zore< ¢ = x + 1 < A(y) (and is opposite in the zone near another slab surface). We
will now assume that
Aly) = Ao(| sin(ky)| + v W1 (ky) + 7 Va(ky) + ...) (27)

and find a correction?; (s) that ensures better shielding of the external field for this moment of time.
It can be shown (see Appendix Il) that the magnetic field is shielded up to the second ordér in

Uy(s) = —%Sigr‘(sin(s))[Q sin(s) + sin(2s) In(| tan(s/2)|)]. (28)

Equations (26), (27), and (28) give the asymptotic distribution of current fofl’/4. It is now easy to obtain the
solution for any time moment. Let, for examplg/4 < ¢ < 3T'/4. Then the closest to the surface= —[ part of the
penetration zone is occupied by the current densifyS(ky). We can present this as a superposition of the current
density—J.S(ky) in the whole penetration zone and the curredt/.S(ky) in the part of this zone near the surface.
Up to the second order terms, the current.S(ky) shields the external currefitsin(ky)[d(z+a)—d(z—a)], SO the
opposite current density2.J.S(ky) has to shield the external curreptsin (27 ft) —1) sin(ky)[0(z+a) —0(z—a)].

This means that the boundary between the two zones must be

Ay, t) = #(1 — sin(27 ft)). (29)



In Fig. 5, we compare the numerical and asymptotic solutions for two values of parameéerin the running
wave case, these solutions are close.

Fig. 5. Penetration of the standing wave fluctuations. Notations and parameters as in the previous figure.

V. AC LOSSES

Let the external magnetic field be periodic in time, e.g., induced by a periodic current d&ssity), and 7" its
period. Then there establishes a periodic induced current density in the superconHuctor,Suppose this latter
function was found and it is needed to calculate the energy losses,

1 (T 1 (T
P:—/ /J-Edet:—/ /pJ2det.
T Jo Ja T Jo Ja

This would be an easy task for a usual conductor with the known resistivity. However, for type-1l superconductors
p(r,t) is an effective resistivity caused by the movement of magnetic vortices and is not knpwory. Mathe-
matically, in the Bean model, this is a dual variable excluded by transition to the variational formulation; accurate
calculation ofp (or E) in the general case is difficult. To avoid this complication, we employ a method based on
the magnetic potential representation of electric field (6) and similar to those suggested in [17], [18] but applicable
to nonuniform external fields.

SinceJ satisfies the zero divergence conditions (5), for any gauge holds

1 T 1 T Lo T 1 T
P=— J-EdQdt = —— J -0 A dQdt = —— J -G * 0 JdQdt — — J -0 A dQ)dt.
T )y Jo T Jo Ja T Jo Ja T Jo Jo

It is easy to see that
T Td 1
//J-G*é)ﬁdﬂdt:/ —{—/J-G*JdQ}dtzo
0o Ja o dt 2 Jq
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due to periodicity ofJ. Hence we obtain

| T
P:—/ /J~atA€det
T Jo Ja

and, since the time period of the productd;A. is 7'/2, we can also write

P=-7] / J - 8A, dQudt (30)

for arbitrary time moment,.

A. AC losses for running wave

Clearly, only half of the slab may be considered due to symmetry and we can now use (30) wilh-/,0)
andT = 27 /kv to find the asymptotic AC losses for small fluctuations. Obviously, the value of integral (30) must
be the same for aly and equal to the rate of AC losses per unit of slab surface. We neglect the second order terms
in (22), (23) and assume

U= Uy + 00, A:Ag(l—g>. (31)

To simplify computations, let us takg= 0, so that (21) gives
Jly=0 = JeS(kvt + ¥(c/A)), <=z+1€][0,A]

and choose, = —V(0)/kv. For smallv the function¥(¢/A) is close to¥,(s/A) and monotonically decreases
for ¢ € [0, A]. Therefore,kvty + ¥(s/A) changes monotonically from zero at= 0 to kvtg + V(1) = —x at
¢ = A. Indeed, sincel';(0) = ¥,(1), we have

V(1) =¥o(1) + v¥(1) = =1 + ¥o(0) + vV (0) = —7 + ¥(0). (32)

Hence, fory = 0 the whole penetration zone @t ¢, is occupied by the current densityJ... Forty < ¢ < tg+71/2
there is a+.J.-current-density zone propagating inside and sweeping out thezone att = ¢ty +7'/2. The moving
boundary between the two zones is determined by the conditior- ¥(c/A) = 0. Taking this into account we

rewrite (30) as
2J U(s/A)/kv —¥(1)/kv
= / O Acdt + / O Acdt
0)/kv —W(s/A)/kv

o 2N0ieJCA
kT

since A.(z,y,t) is given by (14). Note thagin (1) + sin ¥(0) = 0 because of (32); alsg.e ™" = J.Age™
SubstitutingA and ¥ from (31) we obtain

ds =

z=-l+g
y=0

1 A
e ka / [2sin ¥(u) — sin ¥(1) — sin ¥(0)] sinh (kl + I/Au) du,
0 0

419 J2 Ao

pP=
k2T

P07

where, up to the higher order terms,

(33)

2

1 1
Py = —ve <1 — 2u> / sin{arcsin(1l — 2u) + v (u)} sinh(—kl + vu)du
0
1 ! 1—7
— _Tf“ [—3 cosh(—kl) + sinh(—kl)/ VA ( ) V1— T2d7}
-1

Herer =1 —2u and ¥, is given by (24) as a finite series of the Chebyshev polynomials. We see that the leading
AC loss term depends on the first order correction to solution (20). Since

/Uzm \/1—T2dT—{ m =0,

m >0
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only the first term of the series (24) gives input into AC losses. We find

V2 1 2
Py = ?e_kl 5 cosh(—kl) — Tsmh( ki)
and, finally, the asymptotic losses for weak penetration
P= S fuo A 34

where f = 1/T is the frequency of quctuations. Note that the expression obtained would coincide with the well
known formula for hysteresis losses caused by fluctuations of spatially uniform external magnetic field (incomplete
penetration),P = %fung’/Jc, if we rewrite this latter formula not for the fluctuation amplituéig but using the
penetration deptid\,, equal toH,/J. for the uniform field.

B. AC losses for standing wave
To estimate the average asymptotic AC losses per unit of slab surface we modify slightly the formula (30) to
calculate the density of these losses,

9 3T/4 rAy)
P(y) = ~T / O AcJds dt,
T/4

whereT = 1/ f, then average over half the fluctuation wavelength,

A/2
w =5 [ Pwa,

where A = 27 /k. AssumingT'/4 < t < 3T/4 and0 < y < w/k we getJ = +J. for 0 < ¢ < A(y,t) and
J = —J, for A(y,t) < s < A(y), whereA(y) = Ao(]sin(ky)| + v¥1 (ky) + O(12)) and A(y, t) is given by (29).
Substitutingl, = 0, x = —I + < into the vector potential (15) and integrating, we obtain

2J. [3T/4 (y:t) A(y) 4 )
P(y) =~ / O Aeds —/~ )8tAed§ dt = EMOfJC AOPO(?J)7

T Jrs 0 Ayt
where
A\ sinh (=l + v A2 ) — sinh(—k)
Py(y) = e M sin(ky) |cosh(—kl) + cosh <—kl +v A > — NG . (35)
0
A,

For0 <y < m/k we haveA(y)/A = sin(ky) + v¥;(ky) + O(v?) and, up to the higher order terms,

2
Py(y) = e [ - sin®(ky) cosh(kl) + v <;\I/1(ky) sin?(ky) cosh(kl) — %sirﬁ(k:y) sinh(kl))} .

Except for the points very close tp= 0 or = /k, where the term containing, (ky) dominates but the losses are
negligible,

9 ) 1 —2kl

P(y) & oz 0f J2 Bov? sin® (ky)e™ cosh(kl) = Spof JZA(y) sin3<ky>%.

This is close to the density of losses in an alternating uniform fieldl i 1 and is twice smaller ikl > 1,

provided the penetration depth is the same. Finally, we find the asymptotic average AC losses per unit of sla
surface for the standing wave fluctuations:

(36)

4(1 4 e—2kl)
97

We see that in this case the leading asymptotic AC loss term is determined by the zero order approximation t

current density distribution and does not depend on the first order correction as in the running wave case.

(P) = o fAJZ. (37)
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VI. DISCUSSION

Magnetic field fluctuations are inevitable in most practical applications of superconductors. In this work we used
the Bean critical state model to study the effect of spatially nonuniform fluctuations of the external magnetic field.
Although solutions have been obtained only for two model situations, they help to understand qualitatively the effec
of nonuniform fluctuations in general. The asymptotic estimates, derived for small spatially nonuniform fluctuations
using a general gauge-invariant formula for AC losses, are the main result of our work.

For an alternating uniform magnetic field the AC losses in a superconductor are usually expressed via the ampl
tude of field variations. This is inconvenient if the external field is nonuniform. Typically, as for the configurations
considered in our work, both the magnitude and direction of the external field depend on position, time, problen
geometry, and the fluctuation wavelength. It seems difficult to relate the losses to any specific characteristic of thi
field. The lack of a universal direct relation between the external field at the surface of a superconductor and AC
losses becomes even more apparent if we consider, for example, a hollow superconductive cylinder with a long co
placed into its hole [19]. An alternating coil current induces the shielding current in the superconductor because th
magnetic flux changes. Nevertheless, had the superconductor been removed, the same coil current would prodt
no magnetic field outside the coil at all.

Because of this reason the formulas for AC losses in this work are presented in terms of the depth to whict
fluctuations penetrate into the superconductor. To determine this depth and the induced current density asymptotical
for small fluctuations, we found first the shielding surface current. Spreading this current into the bulk and taking
into account the current density constraint, we were able to obtain the zero order approximation to current densit
which was then further improved.

Such an approach is not limited to slab configuration and the two types of fluctuations considered above. Thus
using the method derived recently by Bhagwat and Karmakar [20], one can find the surface current shielding
cylinder of an arbitrary given cross section placed into a uniform external magnetic field. This makes possible
to extend, following the scheme used in our work, the asymptotic solution for cylinders in alternating uniform
transverse field [16], [17] to cylinders with non-circular cross sections (in this case the penetration is weak if its
depth is much smaller than the characteristic cross section size).

The results obtained enable one to estimate AC losses in superconductors of magnetic bearings and levitatic
systems, where the typical configuration is similar to that of a running wave fluctuations of external field near the
surface of a thick slabk{ > 1, one-sided action of a nonuniform external field). Suppose we can remove the
superconductor and measure the tangential component of field fluctuations at the position of slab surface. Let
approximate this component by a running wave with an amplitigeBy the method of images, surface current
shielding these fluctuations has the amplit@dg. This can be used to estimate the penetration dexih: 2H;/ J..

The losses can now be approximated using the formula (34) derived for the running wave fluctuations.

Numerical simulations based on a variational reformulation of the critical-state model helped us to envision
solution structures and to control accuracy of asymptotic solutions. The asymptotic solutions, obtained at first by
means of simple physical arguments, were presented as zero-order terms of a consistent asymptotic expansi
Finding the first order correction allowed us to improve these solutions. It has been shown that the correctior
ensures shielding of external magnetic field up to the second diijéi, ~ O(v?), and (see Figs. 4, 5) provides
for a satisfactory approximation for small parameter values upt00.4. For both the running and standing wave
fluctuations, the maximal penetration deglh, ... is smaller than the valud, given by zero order approximation:
we foundA,ax = Ag(1 — %) in the first caseA 4. ~ Ao(1 — 2;”) in the second one.

Expressed via the penetration depth, AC losses for running wave fluctuations (34) are given by exactly the sam
formula as AC losses for uniform field fluctuations. We cannot expect such a coincidence also for standing wave
fluctuations, since the penetration zone depth is not constant in that case. However, the local losses (36) are clo
if kI < 1, which simply means that, locally, the long-wave limit is similar to the uniform fluctuations case. If
the wavelength is shorter, the losses can be at most twice smaller than in the uniform case for the same loc
penetration depth. Using the average penetration dépth— 2A,/m, we can present the average losses (37) as
(P) = 2CuofJ2{A)3, whereC = (1 + e~ 1) /12. Since0.82 < C < 1.64, the average losses are also close to
AC losses in the uniform field case.

For standing wave fluctuations, the leading AC loss term is determined by zero order approximation to curren
density distribution, i.e., an approximation that is comparatively easy to find. This is similar to the case of uniform
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field fluctuations considered earlier in [17]. It is, therefore, surprising that the situation is different for the running-
wave type of fluctuations: here knowledge of the first order correction to such a solution is necessary. Neglecting
this correction would cause an error of the same order as the AC loss value itself.

To explain this discrepancy, let us note that the expressions (33) and (35) for AC losses for running anc
standing waves, respectively, have different structures. In (35), the small parameter appears only in a combinatic

A(y)/Ao = v¥(y), where¥ = ¥, 4+ v¥; + ... We can writePy(y) = F(y,v¥(y)) and check that the function
F(y,u) satisfiesF(y,0) = Fu(y,0) = 0. Hence Py(y) = % Fuu(y,0)¥2(y) + O(+*); the main term does not
depend on¥;.

In the running wave case, the dependance on small parameter is different because the penetration depth a
the shape of the free boundary are separated. The equation (33) can be wrilgep-asF (v, ¥), where F is a
functional and¥ = ¥, + v, + ... as in the previous case. Expanding we §gt= vF (0, ¥o) + v2[F, (0, ¥g) +
(Fu(0,T0), ¥1)]+O(v3). Here Fy is the Fechet derivative, the first term turns out to be zero, and so the leading
term depends of;.

In both cases, however, the leading term of AC losses is proportionaftavhich corresponds td ~ H3
dependance known for the uniform field fluctuations. The next approximation would lead to a deviation from cubic
law. In the frame of the Bean model, such deviation can be due to the shape of a superconductor being different frol
that of a slab [6], [19], heating caused by AC losses [6], or, as in the present case, because of spatial hon-uniformif
of the external field.

APPENDIX |
The vector potential of the current (21) and the opposite one mear-I can be written as
qu/ / <(w+l—<)2+(y y))
A = poGxJ = S(k(y' — vt) A))l ds dy'.
Changing the variables, = ¢/A, s = k(y' — vt) — ¥(u), and using the Taylor expansion we obtain:

froJe > Lok + 1) = vl + [k(y — vt) — s — U(u)]? B
A; = o “Ao(1+rv+ .. )/ S(s)/o In ([k:(:z: T VAAOUP 7Y — \Il(u)]2> duds =

—0o0

= ’;‘;ﬂho (Ao + Ay + O] . (38)

Here

ho = %e—’“(“‘” (39)

is introduced as a characteristic magnitude of external field fluctuations at the surface of the superconductor anc

1 1 1
AO = / D(w,y,t,u)du, Al = / uFl(a?,y,t,u)du+/ \Ill(U)FQ(l',y,t,U)du—FTle,
0 0 0

e k(e + D + (T — 5)?
D‘/ﬁ“““( ; x—Z>]2+<r—s>2)ds’

B o0 k(x+1) k(x —1)
h= ‘2/_00 S(e) ((r T ket DE T T )2+ ke l)P) s

o0 1 1
B=2f Ser-s) (‘(r B R 7 ey AR S oy e m?) o
I'=k(y —vt) — Yp(u).

where

To calculate the integrals we present the periodic funcficas the Fourier series,

0 4
. = n=2m+1,
= g by sin(ns), b, = { &~ om
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and obtain .
b
D =47 e "M sinh(nkz) sin(nl
0 ¢ sinh(nkx) sin(nl),

n=1
= 47rZ bpe ™™ sinh(nkz) sin(nl), = —47rz bpe "™ sinh(nkz) cos(nl).
We further obtain
Ay = 47w Z M sinh(nkx)[ov, sin(nk(y — vt)) — B, cos(nk(y — vt))],

whereb,, = 0 for all evenn and, for oddn,

1 1
B [ 7m/4, n=1, B . B
ap = /0 cos(nWo(u))du = { 0 n> 1 Bn = /0 sin(nWo(u))du = 0.
Hence,
Ag = 4re M sinh(kz) sin(k(y — vt)). (40)
Similarly,

Ay =4n Z bpe” ™M sinh(nkz) [y, sin(nk(y — vt)) — 8, cos(nk(y — vt))]

(41)
+ T147T6 Lsinh(kz) sin(k(y — vt)),
where all even series terms are zero and, for n odd,
1 1
Yo = / wcos(nWo(u))du — / Uy (u) sin(nWo(u))du, (42)
0 0
1 1
on :/ usin(n\Ilo(u))du—i—/ Uy (u) cos(nWo(u))du. (43)
0 0

We can now substitute the expressions (40) and (41) into (38), use (14J.witld), and calculate the total magnetic
field inside the superconductor but outside the penetration zone. We seé that, + A; = g‘;!;o (VA1 + O(1?)).
Therefore, up to the second order terms,

H, —2uh0{rle*kl sinh(kx) cos(k(y — vt))+

Z nbpe” " sinh(nkz) [y, cos(nk(y — vt)) + 6, sin(nk(y — vt))]},

H, = — 2vho{rie ™ cosh(kx) sin(k(y — vt))+
Z nbpe” ™ cosh(nkz) [y, sin(nk(y — vt)) — 6, cos(nk(y — vt))]}.

n=1
This proves that the current density (20) shields the external field up to the first ordeand is a zero order
approximation. To nullify the first order terms of magnetic field we will now try to satisfy the conditions

o —rl/bl n = 1, .
’Vn—{ 0 n> 1, and ¢, =0, (44)

for odd values of.. Since¥y(u) = arcsin(1—2u), we denoter = 1—2u and expressin(nWo(u)) andcos(n¥o(u))
in (42), (43) via the Chebyshev polynomials of the first and second kind,

T, (1) = cos(narccosT), Upy(7) =sin((n + 1) arccosT)/sin(arccos7),

correspondingly, for € [—1,1]. It can be shown that, for n odd,

sin(n arcsin ) = (—1)%1Tn(7), cos(narcsint) = (—=1)"% Up_1(7)V/1 — 72.
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Defining ¢ (1) as ¥y (157) = \Ill(u) and calculating the integrals of known functions, we obtain

= 30T ([ U (VT = 72dr = [ (1) T(r)dr ) =
%(—n% ({ 3/4 Z;}’ }—f1¢1<r>Tn<T>dT)
60 = (1) (f r)dr + 111¢1<T)Un,1<7)md7):

L= (d +f1w1 Un1(r)VT=72r)

wheren is odd and

P 1 N 1
"2 (n+1)2-1 (n—12-1]°
We can now rewrite the conditions (44) as

/1 ¢1(7-)Tn(7‘)d7' _ { g (% + T’l) n = 17 (45)
1

n>1

1
/1 V1 (T)Up—1(7)V1 — 72d7 = —d, (46)

and use them to determing (7) andr;. Let us present); as the sum of its even and odd part$,and«9. Since
functionsT,, are odd for odd n, even for even n, and orthogonal-en, 1] with the weight1/+/1 — 72, condition
(45) means that){(7)v1 — 72 = ¢T'(7) whereT;(r) = T and

=ile )// Am i)

Thusy$ = er/v/1 — 72 and is singular at = +1 if ¢ # 0. Since the expansion (38) is valid only for?; (u)| < 1,
we need a nonsingular function and must set

1
r=—=
! 2

to makec = 0. This determines the first order correction to the penetration depth:
1
A=A(1- v+ 0(?)).

The functiony; becomes even and we can expand it into a series of the Chebyshev polynomials of the seconc
kind containing only the polynomials of even orders:

= Z am Uz (7). 47

The polynomialdJ,, are orthogonal offi—1, 1] with the weighty/'1 — 72, so the coefficients of this series are easily
found from the condition (46):

1
Qm = —d2m41 //1 UQZm(T)\/ 1—72dr = —% (4(m +11)2 ) + 4m21— 1> .

We have now satisfied the conditions (44) but there appears a contradiction: although the series (47) converges f

€ (—1,1), 11 becomes infinite at = +1. Indeed, at these points,,, = 2m + 1 anda,, ~ —1/27wm? for big
m. Since the conditions (44) were derived under assumptign (u)| < 1, the function determined by this series
cannot be accepted as the first order correctiof o

The computations, however, were not in vain and this singularity can be eliminated, if we take only a finite
number of terms and define

M
= Z am Uz (7). (48)
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It can be shown that in this cas$e, (7)| < In(M + 1)/= for all M > 1 and|y1(7)| < 16/15x for M = 0 or 1.
Thus, the assumption remains valid provided that

{Vln(M+1)<<7r if M >1,

v < if M =0,1. (49)

It is easy to see that conditions (44) fgt are still satisfied for alh, whereas the conditions fay, hold only for
n<2M + 1. Forn > 2M + 1 we have

1 n—1 1 n—1
6n:f—17dn~— —1)7=2".
The non-compensated magnetic field inside the superconductor has, up to the second mrtles Tomponents
H, = 2vhy Z nbpdpe ™ sinh(nkz) sin(nk(y — vt)),

n=2M+3
00

Hy, =2vhy Z nbydpe " cosh(nkax) cos(nk(y — vt)).
n=2M+3

For |z| <1 — A¢ we havee " cosh(nkz) < e, e k| sinh(nkz)| < e~™; alsonb, = 4/= for odd n. Hence,

4 oo o—(2m+1)v 4 0o dm 2¢—(2M+3)v
H,|,|Hy| < vho— — < h(2m+3)”/ <vh
|Hal, |Hy| S v °Wm§+l @m e <Vhoge @m0z ST T )

which proves that the field can be ma@g¢,?) if

67(2M+3)V
- <

SIS < O(v). (50)
This means that the first order correctiondtg(«) may be chosen a¥;(u) = ¥1(1 — 2u), wherew;(7) is given
by (48) andM satisfies the conditions (49) and (50).

APPENDIXII

The vector potential of the current (26) can be written as
‘ MoJ/ /A(y (x+1—-¢)2+(y—y)? de duf
o =l +w—y2) "

Changing the variables, = ¢/A(y’) ands = ky’, we obtain
1 k(x+1)— A(s/k) 2+ —k 2
O Y (e el L 4 PR
[k(x —1)+v Asio ul? + (s — ky)?

with S(s)A(s/k) = Ag(sin(s) + v¥i(s)S(s) + ...). Integrating inu and expanding we get

_ HoJe
Ai o dkrw

h
A, —/;360[1404—1411/4—0( 2,

where the characteristic amplitude of fluctuatidnsis defined by (39),

= - n [ (x—l—l)] (s )2 sin(s) ds = 4we " sin sinh(kx
o= [ (e i g ) ) e = e i ),
[k(z +D]?+ (s — ky)? B
(e )
(x+1) n (x—1)

P+ (s—ky)?  [k(z =D+ (s —ky)

Ay

Ui(s)S(s)
. (51)

.
/

- { [k(z +1) 5 } sin(s)| sin(s)| ds.
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Obviously, ¥'; should be ar-periodic and even (because of symmetry) function. To calculate the integrals in (51)
we presentl;(s)S(s) and|sin(s)|sin(s) as the Fourier series,

o0
= Z an sin(ns), | sin(s)|sin(s Z by, sin(ns)

whereb,, = — for odd n, b,, = 0 for evenn, and the coefficients,, are unknown. Integrating, we find

ﬂn(nz 4)

Ay =27 Z <an +b ) " sin(nky) sinh(nkz).

n=1

Up to O(?), the total magnetic potential can be written as

h ho ~—
MooA1 ,uoo

A=A+ A =v oy ’

2
( an + b > il sin(nky) sinh(nkz).
n

n=1

To make zero th&(v) terms of magnetic field inside the superconductor, it is sufficient to satisfy the conditions
4 —

ay, = —n—
2 0 n = 2m.

This gives

Uy(s)S(s) = Z agm+1 sin({2m + 1}s)

m=0

and so, up to the second order terms, the penetration depth can be presented as
A(y) = Ao{[sin(ky)| + vV (ky)signisin(ky)]},

where the series
4 2. sin({2m + 1}s)
Vis) = ZZ:O 2m+1)2—4

Uls) = 4 Z cos({2m + 1}s)

™= (2m+1)2—4"
and consider the complex function
4 & Z2mtl I o= omet [ 1 1
W=Uls) +iV(s) = mzo(2m+1) 1 %Zz [Qm—l 2m+3}
1 s 1\ = 22t 11 om2. | _
[Z—Z+<Z—’22)nlz::l2m1]—ﬂ_!2—2+(z —>Z/ dz| =

A= 3|

1_ N 2_i /z dz _l 1_ n 2_i 7111 1+2
PR o 1—22| 7|z TP T 2) 3 1-z)]°
Sincez — 1/z = 2isin(s), 22 —1/2% = 2isin(2s), and Re [ln (Hzﬂ = —In(| tan(s/2)|), the imaginary part of
W is 5 ]
V(s) = ——sin(s) — —sin(2s) In(| tan(s/2)|).
T

s
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