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AC losses in type-II superconductors induced by
nonuniform fluctuations of external magnetic field

Leonid Prigozhin and Vladimir Sokolovsky

Abstract

Magnetic field fluctuations are inevitable in practical applications of superconductors and it is often necessary
to estimate the AC losses these fluctuations induce. If the fluctuation wavelength is greater than the size of a
superconductor, known estimates for an alternating uniform external magnetic field can be employed. Here we
consider the opposite case and analyze, using a model critical-state problem, penetration of spatially nonuniform
fluctuations into type-II superconductors. Numerical simulation is based on a variational formulation of the Bean
model. The analytical solutions, found in a weak penetration limit, are used to evaluate AC losses for two types of
fluctuations: the running and standing waves. It is shown that for spatially nonuniform fluctuations the losses are
better characterized by the fluctuation penetration depth than by the fluctuation amplitude. The results can be used
to estimate the AC losses in flywheels, electric motors, magnetic shields, etc.

Index Terms

Hard superconductors, Bean model, AC losses, penetration depth, nonuniform field fluctuations, asymptotic
solution.

I. I NTRODUCTION

The possible range of currents and magnetic fields as well as the economic gains of implementation of type-II
superconductors in power transmission lines, current leads, fault current limiters, magnetic shields, bearings, etc.
are often limited by AC losses and the necessity to remove the generated heat out of the system. Thus, application
of bulk high-Tc superconductors in flywheel systems and magnetic bearings is promising because of no friction
between the moving parts and, hence, no energy losses by friction. However, rotating permanent magnets used in
such devices always produce somewhat irregular magnetic field; moving field irregularities cause hysteretic losses
and relaxation of levitation property [1].

The mathematical models, used to analyze magnetization of type-II superconductors and to evaluate AC losses,
involve highly nonlinear partial differential equations that have been solved mostly for superconductors in a uniform
alternating external magnetic field (see [2]–[6] and the references therein). In many practical situations, however,
the external magnetic field is not exactly uniform and can be better presented as a superposition of a uniform
part and spatiotemporal fluctuations with the characteristic length scale less than the size of a superconductor. The
fluctuations are often stochastic but, for example, in the case of a flywheel system, are induced by rotation of
permanent magnets and may be approximated by a running wave. If there are no moving parts as, e.g., in the case
of magnetic shields or transformers, nonuniform magnetic field fluctuations in the form of a standing wave can,
probably, serve as a better approximation.

Our aim is to study the penetration of nonuniform magnetic field fluctuations into a hard superconductor and
to evaluate the accompanying AC losses. We start with a convenient for numerical simulations variational general
formulation of the Bean critical-state model (section II), then consider the simplest geometric configuration, a
superconductive slab placed between two parallel sheets of external current. Even in this simplest case the problem
becomes nontrivial if the external current and, hence, also the external magnetic field, are nonuniform. We assume
the external field fluctuations are induced by a given current in the form of either a running or a standing wave and
solve, first, the magnetization problems numerically (section III). Simple physical arguments allow us to find also
asymptotic analytical solutions for small fluctuations (section IV). We further extend these solutions by presenting

L. Prigozhin is with the Department of Solar Energy and Environmental Physics, Blaustein Institute for Desert Research, Ben Gurion
University of the Negev, Sede Boqer Campus, 48990 Israel (e-mail: leonid@cs.bgu.ac.il)

V. Sokolovsky is with the Physics Department, Ben Gurion University of the Negev, Beer Sheva, 84105 Israel (e-mail:
sokolovv@bgumail.bgu.ac.il)



2

them as the zero-order terms of consistent asymptotic expansions, find the first order corrections (appendices I and
II), and, finally, determine the asymptotic AC losses for small fluctuations (section V). We analyze the dependance
of the leading AC loss term on the first order correction to current density distribution.

II. VARIATIONAL FORMULATION OF THE BEAN MODEL

Let a superconductor occupying domainΩ ⊂ R3 be placed into magnetic fieldHe(r, t) induced by a given
external current with the densityJe(r, t) (herer = {x, y, z} and Je = 0 in Ω). In accordance with the Faraday
law, an alternating magnetic flux induces electric field and, hence, an eddy current inside the superconductor. In an
ordinary conductor, the vectors of the electric field and current density are related by the linear Ohm law. Type-II
superconductors are, instead, characterized in the Bean critical state model [7] by a highly nonlinear current-voltage
relation which gives rise to a free boundary problem.

Let us assume
E = ρJ (1)

and employ the usual Bean model relations determining the effective resistivity of a superconductor,ρ(r, t),
implicitly. Namely, the Bean model states that the effective resistivity is nonnegative,

ρ(r, t) ≥ 0, (2)

the current density cannot exceed some critical value,

|J(r, t)| ≤ Jc, (3)

and, if the current density is subcritical, the resistivity is zero:

|J(r, t)| < Jc → ρ(r, t) = 0. (4)

Since no current is supposed to be fed into the superconductor by an electric contact, the current density insideΩ
should satisfy the zero divergence condition and have a zero normal component at the domain boundary∂Ω:

∇ · J = 0 in Ω, Jn = 0 on ∂Ω. (5)

To derive a variational formulation of the magnetization problem, we define the setK of possible current densities,

J ∈ K =



Φ(r, t)

∣∣∣∣∣∣

∇ ·Φ = 0 in Ω,
Φn = 0 on ∂Ω,
|Φ| ≤ Jc in Ω



 ,

and express the electric field via the vector and scalar magnetic potentials,

E = −∂tA−∇ψ. (6)

We further eliminate the scalar potential by multiplying (6) byΦ− J, integrating overΩ, and making use of the
zero divergence condition for functions from the setK,

(E,Φ− J) = − (∂tA,Φ− J) , (7)

for J,Φ ∈ K. Here (u,v) =
∫
Ω u · v dΩ is the scalar product of two functions.

SinceE andJ satisfy the current-voltage relations of the Bean model, the scalar product on the left side of (7)
is nonpositive for anyΦ ∈ K. Indeed, using (1)-(4) we obtain:

E · J = |E||J| = |E|Jc ≥ |E||Φ| ≥ E ·Φ. (8)

Up to the gradient of a scalar function, determined by the gauge and also eliminated by the scalar product with
Φ − J, the vector potential is a convolution of the Green function of Laplace equation,G(r) = 1/4π|r|, and the
total current densityJ(r, t) + Je(r, t):

A = µ0G ∗ (J + Je)



3

(it is assumed that the magnetic permeability of superconductor is equal to that of vacuum,µ0.) We arrived at the
following variational formulation of the magnetization problem:

Find J ∈ K such that
(G ∗ ∂t{J + Je},Φ− J) ≥ 0 for any Φ ∈ K,

J|t=0 = J0(r),
(9)

whereJ0 ∈ K is a given initial distribution of the current density.
The problem (9) is an evolutionary variational inequality with a nonlocal operator and has a unique solution

[8]. This inequality is written for the induced current density alone: the effective resistivityρ has been used
to derive the inequality (8) and then excluded. It has been shown [8] that, in the Bean model,ρ(r, t) is the
Lagrange multiplier related to the current density constraint (3). Of course, the same inequality may be written as(
G ∗ ∂tJ + 1

µ0
∂tAe,Φ− J

)
≥ 0 for any Φ ∈ K, whereAe is the external vector potential; such formulation can

be more convenient in some cases.
We note that, although the variational formulations where the solution is sought as an extremal point of some

functional are much more familiar, the variational inequalities do appear in many problems of mechanics and
physics containing a unilateral constraint or a non-smooth constitutive relation (see [9]). The methods for numerical
solution of variational inequalities are well developed [10]. Nevertheless, solution of (9) in the general 3d case is
certainly a challenging problem not only because of huge number of finite elements needed: the nonlocal operator
of convolution leads to a dense matrix of the discretized problem, and the zero divergence condition (5) is not so
easy to account for numerically, although the edge finite elements and tree-cotree decomposition can be helpful (see
[11], [12]). Similar difficulties are typical also of other formulations of the magnetization problem [2], [13]. That is
why the magnetization problems were solved mainly for one and two-dimensional configurations. Below, we use a
model 2d problem to simulate the penetration of nonuniform magnetic field fluctuations into a hard superconductor
numerically and to calculate the AC losses asymptotically for weak penetration.

III. T WO TYPES OF FIELD FLUCTUATIONS

To simulate the penetration of magnetic field fluctuations into a superconductor, let us consider the simplest
possible configuration: a superconductive slab−l ≤ x ≤ l placed between two sheets of external current at
x = ±a, a > l (Fig. 1).We assume the external current is parallel toz-axis, Je = Jeez. Having in mind, e.g.,
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Fig. 1. Infinite slab between two parallel sheets of current.

a superconductor moving along the axis of a solenoid with slightly nonuniform winding, we present the external
currentJe as a sum of its uniform componentIe and a wave moving along they-axis with the velocityv:

Je = [Ie + ie sin{k(y − vt)}] [δ(x + a)− δ(x− a)]. (10)

We will also consider the standing wave of magnetic field induced by the current

Je = [Ie + ie sin(ky) sin(2πft)] [δ(x + a)− δ(x− a)]. (11)
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If the sheet current density were uniform, the Bean model equations for slab magnetization could be solved easily.
It is more difficult to analyze the magnetization in a nonuniform magnetic field induced by the external currents
(10) or (11), and we will use a 2d reformulation of the variational inequality (9) and the numerical method proposed
in [4] for cylinders of arbitrary cross sections in a perpendicular magnetic field. The method can be employed for
any distribution of external currents. Taking the cylinder cross section to be a rectangle,−l ≤ x ≤ l, L ≤ y ≤ L,
we model the development near the slab surfaces of critical current zones that shield the fluctuating component of
external magnetic field.

The shielding current inside the superconductor is directed along thez-axis and does not depend onz, J =
J(x, y, t)ez, so the conditions (5) are satisfied automatically. We may redefineΩ to be the cylinder cross section
and solve a 2d problem in this domain. One should, however, be cautious: the eddy current running in the positive
z-axis direction has to return back (no transport current is applied; see [4] for solution of problems with transport
current). As a trace of the 3d zero-divergence conditions (5), the condition

∫

Ω
J(x, y, t) dΩ = 0

has to be satisfied for allt. The set of admissible (scalar) current densities becomes

K =
{

Φ(x, y, t)
∣∣∣∣ |Φ| ≤ Jc in Ω,

∫

Ω
Φ dΩ = 0

}
.

The variational inequality (9) can also be rewritten for scalar current densities,

Find J ∈ K such that
(G ∗ ∂t{J + Je},Φ− J) ≥ 0 for any Φ ∈ K,

J |t=0 = J0(r),
(12)

whereG(r) = − 1
2π ln |r| is now the Green function of Laplace equation inR2 andr = {x, y}.

To solve the problem numerically, we use first the finite difference discretization in time and obtain, for each
time layer, the stationary variational inequalities

Find J ∈ K such that (G ∗ {J + Je − Ĵ − Ĵe}, Φ− J) ≥ 0 for any Φ ∈ K,

where Ĵ , Ĵe are the values from the previous time layer. It can be shown that these variational inequalities are
equivalent to the optimization problems

min 1
2(G ∗ J, J) + (g, J),

J ∈ K
(13)

whereg = G ∗ {Je − Ĵ − Ĵe}. The convolutionG ∗ Je can be calculated analytically:

1
µ0

Ae = G ∗ Je = −Iex− ie
k

e−ka sin{k(y − vt)} sinh(kx) (14)

1
µ0

Ae = G ∗ Je = −Iex− ie
k

e−ka sin(2πft) sin(ky) sinh(kx) (15)

for currents (10) and (11), respectively, and−a < x < a.
We finally discretize the optimization problems (13) in space by means of the piecewise constant finite elements,

take care of the integral constraint
∫
Ω J dΩ = 0 using the Lagrange multipliers technique, and solve the resulting

finite-dimensional optimization problems with the remaining constraints by a point relaxation method (see [4], [14]
for the implementation details).

Let us assume only an alternating part of the external current is present andIe = 0. A permanent field would
not change the picture qualitatively and, although in applications the stationary component is often much stronger
than fluctuations1, the constant part causes no energy losses. We present the results of two simulations. In both
cases we assume the superconductor is initially in the virgin state,J0 = 0.

1Note that strong permanent component makes the relative changes of magnetic field small. This justifies the use of field-independent
critical current density for simulating the penetration of fluctuations. Otherwise, the Kim model [15] or its modification can be employed.
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Fig. 2. Running wave. Penetration of the magnetic field induced by an external currentJe = ie(t) sin{k(y− vt)}[δ(x− a)− δ(x + a)]ez

into a cylindrical superconductor with the cross sectionΩ = {−l ≤ x ≤ l, −L ≤ y ≤ L}. The wave amplitudeie grows linearly from zero
at t = 0 to its maximal valueie0 at t = t0 and then remains constant. The physical parameters:l = 1/k, L = 10/k, a = 1.1/k, t0 =
4/kv, ie0 = Jc/k. Shown fort = [0.8, 1.6, 3.2, 5.6, 16.0]/kv are: the boundaries of plus- and minus critical current zones, the magnetic
field lines, and the cylinder cross section. The parameters of numerical scheme:50×500 regular mesh of piecewise constant finite elements,
time step0.8/kv.

In our first example (Fig. 2) the external current is given as a running wave,Je = ie(t) sin{k(y − vt)}[δ(x −
a)− δ(x + a)], with the amplitudeie(t) growing from zero to its maximal value and then remaining constant. The
magnetic field penetrates from the surface of the superconductor where alternating domains of plus- and minus
critical current densities appear and start to follow the wave. The shape of these domains stabilizes and, after an
initial transient period, they completely occupy a near-surface zone of a constant depth and move through this zone
with the wave velocityv.

The second example (Fig. 3) illustrates another typical situation: here the magnetic field fluctuations are induced
by the external current in the form of a standing wave,Je = ie sin(ky) sin(2πft)[δ(x − a) − δ(x + a)]. At
t = 0 domains of plus- and minus critical current densities, shielding the external magnetic field, appear at the
superconductor surface and start to propagate inside. When the external field reaches its maximal strength att = T/4,
the propagation stops (hereT = 1/f ). As the field becomes weaker, the boundary of the critical current regions
does not, however, retreat. Instead, similarly to the case of an alternating uniform external field, to compensate
the decreasing external field there appear surface domains of the opposite critical current densities. These domains
propagate inside, sweep out the previous ones att = 3T/4, and the process becomes periodic.

IV. A SYMPTOTIC SOLUTION

Let an infinite slab−l ≤ x ≤ l be placed into a magnetic field produced by the sheet current (10) or (11). We
want to find the established periodic in time distribution of induced current density. It follows from (12) that the
time-periodic part of current density we are interested in does not depend on the permanent part of external current.
We setIe = 0 again just to simplify the consideration; this is not a limitation of the method employed.

It is not difficult to find a distribution of surface current density,is(y, t), such that the currentis(y, t)[δ(x +
l)− δ(x− l)] shields the superconductor from the external field. Clearly, complete shielding occurs if the magnetic
vector potential of this current,As, compensates the external magnetic potential inside the superconductor,

Ae + As = 0
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Fig. 3. Standing wave. The external magnetic field is induced by the currentJe = ie sin(ky) sin(2πft)[δ(x − a) − δ(x + a)]ez. Here
l = 1/k, L = 10/k, a = 1.1/k, ie = Jc/k. Shown fort = [0.24, 0.44, 0.56, 1.00, 1.12]/f are: the boundaries of plus- and minus
critical current zones, the magnetic field lines, and the cylinder cross section. Regular finite element mesh50× 500, time step0.04/f .

for −l < x < l. Using expressions (14) and (15), we find that the shielding would be achieved if we set

is = −e−k(a−l)ie sin{k(y − vt)}, (16)

is = −e−k(a−l)ie sin(ky) sin(2πft) (17)

for the running and standing waves, (10) and (11), respectively.
We now assume that the depth∆ to which fluctuations penetrate into the superconductor is much smaller than the

fluctuation wavelength,k∆ ¿ 1, interpret the shielding surface currents as the integrals of bulk current densities
across a narrow penetration zone, and find the asymptotic distribution of bulk current density inside this zone
analytically. First, let us note that for eachy the surface currentis(y, t) reaches its extremal values when the whole
penetration zone (see Figs. 2 and 3) is occupied by the critical current density of the same sign. Therefore, the
penetration depth can be calculated as∆ = max(is)/Jc, which gives∆ = e−k(a−l)ie/Jc for the running wave and
∆(y) = e−k(a−l)ie| sin(ky)|/Jc for the standing wave. We see that for both wave types the fluctuations may be
regarded small if

ν = k∆0 ¿ 1, (18)

where∆0 = iee
−k(a−l)/Jc.

If, at time t, the currentis(y, t) is neither maximal nor minimal, the penetration zone−l ≤ x ≤ −l + ∆
(where ∆ = ∆0 for the running wave and∆ = ∆0| sin(ky)| for the standing wave) contains regions of plus-
and minus critical current densities. The near-surface region−l < x < −l + σ(y, t) appears at the time when
∂tis(y, t) = 0 and, as it propagates inside, the current density there isJcsign{∂tis(y, t)}. The rest of the penetration
zone,−l + σ(y, t) < x < −l + ∆, is occupied by the critical current density of the opposite sign. Comparingis
with the integral of current density across the penetration zone, we find the moving boundaryσ(y, t):

σ(y, t) =
1
2

(
∆ +

is(y, t)
Jc

sign{∂tis(y, t)}
)

. (19)

Near the slab surfacex = +l the current density distribution is antisymmetric.
Simple physical arguments were used above to obtain the asymptotic solutions for weak penetration: postulating

the solution structure, we spread the shielding surface current into a bulk current in the near-surface zone. In a
similar way, weak penetration of alternating uniform field into a perpendicular circular cylinder has been studied in
[16], [17]. Although the chosen surface current would have shield the superconductor from the external magnetic
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field completely, spreading this current into the bulk makes shielding imperfect. As will be shown below, the
remaining field is of the orderO(ν). We will now extend our arguments and present the obtained asymptotic
solutions as zero order terms of consistent asymptotic expansions.

A. Running wave

It is not difficult to see that the asymptotic distribution of current density inside the penetration zone−l ≤ x ≤
−l + ∆0, obtained forν = k∆0 ¿ 1, can be presented as

J = −JcS(k(y − vt)−Ψ0(ς/∆0)), ς = x + l ∈ [0,∆0], (20)

whereS(z) = sign(sin(z)) is a 2π-periodic step-function andΨ0(u) = arcsin(1− 2u).
Let us now look for the current density

J = −JcS(k(y − vt)−Ψ(ς/∆)), ς = x + l ∈ [0,∆] (21)

where

∆ = ∆0(1 + r1ν + r2ν
2 + ...), (22)

Ψ(u) = Ψ0(u) + νΨ1(u) + ν2Ψ2(u) + ... (23)

are such that the current (21), jointly with the opposite one near another superconductor surface, shield the external
magnetic field.

We partly solve this problem in Appendix I by showing first that the vector potential produced by the zero-order
approximation (20) to current density compensates the potential of external current inside the superconductor (but
outside the penetration zone) up to theO(ν) terms; hence the external magnetic field inside the superconductor is
shielded up to the same order inν. We find then the first order corrections,r1 andΨ1, ensuring shielding of the
magnetic field up to the second order,O(ν2).

It turns out (see Appendix I) that a nonsingular functionΨ1 can be found only ifr1 = −1
2 , so the penetration

depth becomes

∆ = ∆0(1− 1
2
ν + O(ν2)).

It is further shown that the external magnetic field is shielded up to the second order inν if

Ψ1(ς/∆) =
M∑

m=0

amU2m(1− 2ς/∆), (24)

whereUn(τ) = sin((n + 1) arccos(τ))/ sin(arccos(τ)) are the Chebyshev polynomials of the second kind,

am = − 1
π

(
1

4(m + 1)2 − 1
+

1
4m2 − 1

)
, (25)

andM satisfies the conditions
ν ln(M + 1) ¿ π

if M > 1 (or ν ¿ π if M = 0, 1) and
e−(2M+3)ν

2M + 1
. O(ν).

The first of these conditions ensures that|νΨ1| ¿ 1, the second provides for theO(ν2) shielding of magnetic field.
The conditions are easy to satisfy and, usually, only a few terms of the series are needed. Thus, in the examples
in Fig. 4, we usedM = 1 for ν = 0.2 andM = 0 for ν = 0.4.
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Fig. 4. Penetration of the running wave fluctuations. Domains of plus- and minus critical current densities (numerical solution) and their
asymptotic boundaries: ”- -” – zero order approximation, ”—” – first order approximation. Left:ie = 0.25Jc/k and ν = 0.2; right:
ie = 0.5Jc/k andν = 0.4. In both cases,l = 0.5/k, a = 0.7/k, L = 2π/k. Different scales in x and y.

B. Standing wave

We find first a correction to the asymptotic penetration depth∆(y) = ∆0| sin(ky)|. Let us choose a moment
when the external field is the strongest, e.g.,t = T/4, so that for eachy the induced current density is

J = −JcS(ky), (26)

in the whole penetration zone0 ≤ ς = x + l ≤ ∆(y) (and is opposite in the zone near another slab surface). We
will now assume that

∆(y) = ∆0(| sin(ky)|+ νΨ1(ky) + ν2Ψ2(ky) + ...) (27)

and find a correctionΨ1(s) that ensures better shielding of the external field for this moment of time.
It can be shown (see Appendix II) that the magnetic field is shielded up to the second order inν if

Ψ1(s) = − 1
π

sign(sin(s))[2 sin(s) + sin(2s) ln(| tan(s/2)|)]. (28)

Equations (26), (27), and (28) give the asymptotic distribution of current fort = T/4. It is now easy to obtain the
solution for any time moment. Let, for example,T/4 < t < 3T/4. Then the closest to the surfacex = −l part of the
penetration zone is occupied by the current density+JcS(ky). We can present this as a superposition of the current
density−JcS(ky) in the whole penetration zone and the current+2JcS(ky) in the part of this zone near the surface.
Up to the second order terms, the current−JcS(ky) shields the external currentie sin(ky)[δ(x+a)−δ(x−a)], so the
opposite current density+2JcS(ky) has to shield the external currentie(sin(2πft)−1) sin(ky)[δ(x+a)−δ(x−a)].
This means that the boundary between the two zones must be

∆̃(y, t) =
∆(y)

2
(1− sin(2πft)). (29)
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In Fig. 5, we compare the numerical and asymptotic solutions for two values of parameterν. As in the running
wave case, these solutions are close.

−J
c

+J
c

Fig. 5. Penetration of the standing wave fluctuations. Notations and parameters as in the previous figure.

V. AC LOSSES

Let the external magnetic field be periodic in time, e.g., induced by a periodic current densityJe(r, t), andT its
period. Then there establishes a periodic induced current density in the superconductor,J(r, t). Suppose this latter
function was found and it is needed to calculate the energy losses,

P =
1
T

∫ T

0

∫

Ω
J ·E dΩdt =

1
T

∫ T

0

∫

Ω
ρJ2 dΩdt.

This would be an easy task for a usual conductor with the known resistivity. However, for type-II superconductors
ρ(r, t) is an effective resistivity caused by the movement of magnetic vortices and is not knowna priory. Mathe-
matically, in the Bean model, this is a dual variable excluded by transition to the variational formulation; accurate
calculation ofρ (or E) in the general case is difficult. To avoid this complication, we employ a method based on
the magnetic potential representation of electric field (6) and similar to those suggested in [17], [18] but applicable
to nonuniform external fields.

SinceJ satisfies the zero divergence conditions (5), for any gauge holds

P =
1
T

∫ T

0

∫

Ω
J ·E dΩdt = − 1

T

∫ T

0

∫

Ω
J · ∂tA dΩdt = −µ0

T

∫ T

0

∫

Ω
J ·G ∗ ∂tJ dΩdt− 1

T

∫ T

0

∫

Ω
J · ∂tAe dΩdt.

It is easy to see that ∫ T

0

∫

Ω
J ·G ∗ ∂tJ dΩdt =

∫ T

0

d

dt

{
1
2

∫

Ω
J ·G ∗ J dΩ

}
dt = 0
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due to periodicity ofJ. Hence we obtain

P = − 1
T

∫ T

0

∫

Ω
J · ∂tAe dΩdt

and, since the time period of the productJ · ∂tAe is T/2, we can also write

P = − 2
T

∫ t0+T/2

t0

∫

Ω
J · ∂tAe dΩdt (30)

for arbitrary time momentt0.

A. AC losses for running wave

Clearly, only half of the slab may be considered due to symmetry and we can now use (30) withΩ = (−l, 0)
andT = 2π/kv to find the asymptotic AC losses for small fluctuations. Obviously, the value of integral (30) must
be the same for ally and equal to the rate of AC losses per unit of slab surface. We neglect the second order terms
in (22), (23) and assume

Ψ = Ψ0 + νΨ1, ∆ = ∆0

(
1− ν

2

)
. (31)

To simplify computations, let us takey = 0, so that (21) gives

J |y=0 = JcS(kvt + Ψ(ς/∆)), ς = x + l ∈ [0, ∆],

and chooset0 = −Ψ(0)/kv. For smallν the functionΨ(ς/∆) is close toΨ0(ς/∆) and monotonically decreases
for ς ∈ [0,∆]. Therefore,kvt0 + Ψ(ς/∆) changes monotonically from zero atς = 0 to kvt0 + Ψ(1) = −π at
ς = ∆. Indeed, sinceΨ1(0) = Ψ1(1), we have

Ψ(1) = Ψ0(1) + νΨ1(1) = −π + Ψ0(0) + νΨ1(0) = −π + Ψ(0). (32)

Hence, fory = 0 the whole penetration zone att = t0 is occupied by the current density−Jc. For t0 < t < t0+T/2
there is a+Jc-current-density zone propagating inside and sweeping out the−Jc zone att = t0 +T/2. The moving
boundary between the two zones is determined by the conditionkvt + Ψ(ς/∆) = 0. Taking this into account we
rewrite (30) as

P = −2Jc

T

∫ ∆

0

{
−

∫ −Ψ(ς/∆)/kv

−Ψ(0)/kv
∂tAedt +

∫ −Ψ(1)/kv

−Ψ(ς/∆)/kv
∂tAedt

}∣∣∣∣∣ x = −l + ς
y = 0

dς =

−2µ0ieJc∆
kT

e−ka

∫ 1

0
[2 sin Ψ(u)− sinΨ(1)− sinΨ(0)] sinh

(
−kl + ν

∆
∆0

u

)
du,

sinceAe(x, y, t) is given by (14). Note thatsinΨ(1) + sin Ψ(0) = 0 because of (32); alsoiee−ka = Jc∆0e
−kl.

Substituting∆ andΨ from (31) we obtain

P =
4µ0J

2
c ∆0

k2T
P0,

where, up to the higher order terms,

P0 = −νe−kl

(
1− 1

2
ν

) ∫ 1

0
sin{arcsin(1− 2u) + νΨ1(u)} sinh(−kl + νu)du

= −ν2

2
e−kl

[
−1

3
cosh(−kl) + sinh(−kl)

∫ 1

−1
Ψ1

(
1− τ

2

)√
1− τ2dτ

] (33)

Hereτ = 1− 2u andΨ1 is given by (24) as a finite series of the Chebyshev polynomials. We see that the leading
AC loss term depends on the first order correction to solution (20). Since

∫ 1

−1
U2m(τ)

√
1− τ2dτ =

{
π
2 m = 0,
0 m > 0
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only the first term of the series (24) gives input into AC losses. We find

P0 =
ν2

2
e−kl

[
1
3

cosh(−kl)− a0π

2
sinh(−kl)

]
=

ν2

6

and, finally, the asymptotic losses for weak penetration,

P =
2µ0J

2
c ∆0

3k2T
ν2 =

2
3
fµ0J

2
c ∆3

0, (34)

wheref = 1/T is the frequency of fluctuations. Note that the expression obtained would coincide with the well
known formula for hysteresis losses caused by fluctuations of spatially uniform external magnetic field (incomplete
penetration),P = 2

3fµ0H
3
0/Jc, if we rewrite this latter formula not for the fluctuation amplitudeH0 but using the

penetration depth∆0, equal toH0/Jc for the uniform field.

B. AC losses for standing wave

To estimate the average asymptotic AC losses per unit of slab surface we modify slightly the formula (30) to
calculate the density of these losses,

P (y) = − 2
T

∫ 3T/4

T/4

∫ ∆(y)

0
∂tAeJdς dt,

whereT = 1/f , then average over half the fluctuation wavelength,

〈P 〉 =
2
λ

∫ λ/2

0
P (y)dy,

whereλ = 2π/k. AssumingT/4 < t < 3T/4 and 0 < y < π/k we get J = +Jc for 0 < ς < ∆̃(y, t) and
J = −Jc for ∆̃(y, t) < ς < ∆(y), where∆(y) = ∆0(| sin(ky)|+ νΨ1(ky) + O(ν2)) and∆̃(y, t) is given by (29).
SubstitutingIe = 0, x = −l + ς into the vector potential (15) and integrating, we obtain

P (y) = −2Jc

T

∫ 3T/4

T/4

{∫ e∆(y,t)

0
∂tAedς −

∫ ∆(y)

e∆(y,t)
∂tAedς

}
dt =

4
k2

µ0fJ2
c ∆0P0(y),

where

P0(y) = e−kl sin(ky)


cosh(−kl) + cosh

(
−kl + ν

∆(y)
∆0

)
−

sinh
(
−kl + ν ∆(y)

∆0

)
− sinh(−kl)

ν∆(y)
2∆0


 . (35)

For 0 ≤ y ≤ π/k we have∆(y)/∆0 = sin(ky) + νΨ1(ky) + O(ν2) and, up to the higher order terms,

P0(y) = e−kl

[
ν2

6
sin3(ky) cosh(kl) + ν3

(
1
3
Ψ1(ky) sin2(ky) cosh(kl)− 1

12
sin4(ky) sinh(kl)

)]
.

Except for the points very close toy = 0 or π/k, where the term containingΨ1(ky) dominates but the losses are
negligible,

P (y) ≈ 2
3k2

µ0fJ2
c ∆0ν

2 sin3(ky)e−kl cosh(kl) =
2
3
µ0fJ2

c ∆3
0(y) sin3(ky)

1 + e−2kl

2
. (36)

This is close to the density of losses in an alternating uniform field ifkl ¿ 1 and is twice smaller ifkl À 1,
provided the penetration depth is the same. Finally, we find the asymptotic average AC losses per unit of slab
surface for the standing wave fluctuations:

〈P 〉 =
4(1 + e−2kl)

9π
µ0f∆3

0J
2
c . (37)

We see that in this case the leading asymptotic AC loss term is determined by the zero order approximation to
current density distribution and does not depend on the first order correction as in the running wave case.



12

VI. D ISCUSSION

Magnetic field fluctuations are inevitable in most practical applications of superconductors. In this work we used
the Bean critical state model to study the effect of spatially nonuniform fluctuations of the external magnetic field.
Although solutions have been obtained only for two model situations, they help to understand qualitatively the effect
of nonuniform fluctuations in general. The asymptotic estimates, derived for small spatially nonuniform fluctuations
using a general gauge-invariant formula for AC losses, are the main result of our work.

For an alternating uniform magnetic field the AC losses in a superconductor are usually expressed via the ampli-
tude of field variations. This is inconvenient if the external field is nonuniform. Typically, as for the configurations
considered in our work, both the magnitude and direction of the external field depend on position, time, problem
geometry, and the fluctuation wavelength. It seems difficult to relate the losses to any specific characteristic of this
field. The lack of a universal direct relation between the external field at the surface of a superconductor and AC
losses becomes even more apparent if we consider, for example, a hollow superconductive cylinder with a long coil
placed into its hole [19]. An alternating coil current induces the shielding current in the superconductor because the
magnetic flux changes. Nevertheless, had the superconductor been removed, the same coil current would produce
no magnetic field outside the coil at all.

Because of this reason the formulas for AC losses in this work are presented in terms of the depth to which
fluctuations penetrate into the superconductor. To determine this depth and the induced current density asymptotically
for small fluctuations, we found first the shielding surface current. Spreading this current into the bulk and taking
into account the current density constraint, we were able to obtain the zero order approximation to current density
which was then further improved.

Such an approach is not limited to slab configuration and the two types of fluctuations considered above. Thus,
using the method derived recently by Bhagwat and Karmakar [20], one can find the surface current shielding a
cylinder of an arbitrary given cross section placed into a uniform external magnetic field. This makes possible
to extend, following the scheme used in our work, the asymptotic solution for cylinders in alternating uniform
transverse field [16], [17] to cylinders with non-circular cross sections (in this case the penetration is weak if its
depth is much smaller than the characteristic cross section size).

The results obtained enable one to estimate AC losses in superconductors of magnetic bearings and levitation
systems, where the typical configuration is similar to that of a running wave fluctuations of external field near the
surface of a thick slab (kl À 1, one-sided action of a nonuniform external field). Suppose we can remove the
superconductor and measure the tangential component of field fluctuations at the position of slab surface. Let us
approximate this component by a running wave with an amplitudeHt. By the method of images, surface current
shielding these fluctuations has the amplitude2Ht. This can be used to estimate the penetration depth,∆0 ≈ 2Ht/Jc.
The losses can now be approximated using the formula (34) derived for the running wave fluctuations.

Numerical simulations based on a variational reformulation of the critical-state model helped us to envision
solution structures and to control accuracy of asymptotic solutions. The asymptotic solutions, obtained at first by
means of simple physical arguments, were presented as zero-order terms of a consistent asymptotic expansion.
Finding the first order correction allowed us to improve these solutions. It has been shown that the correction
ensures shielding of external magnetic field up to the second order,H/He ∼ O(ν2), and (see Figs. 4, 5) provides
for a satisfactory approximation for small parameter values up toν ∼ 0.4. For both the running and standing wave
fluctuations, the maximal penetration depth∆max is smaller than the value∆0 given by zero order approximation:
we found∆max ≈ ∆0(1− ν

2 ) in the first case,∆max ≈ ∆0(1− 2ν
π ) in the second one.

Expressed via the penetration depth, AC losses for running wave fluctuations (34) are given by exactly the same
formula as AC losses for uniform field fluctuations. We cannot expect such a coincidence also for standing wave
fluctuations, since the penetration zone depth is not constant in that case. However, the local losses (36) are close
if kl ¿ 1, which simply means that, locally, the long-wave limit is similar to the uniform fluctuations case. If
the wavelength is shorter, the losses can be at most twice smaller than in the uniform case for the same local
penetration depth. Using the average penetration depth,〈∆〉 = 2∆0/π, we can present the average losses (37) as
〈P 〉 = 2

3Cµ0fJ2
c 〈∆〉3, whereC = π2(1 + e−2kl)/12. Since0.82 ≤ C ≤ 1.64, the average losses are also close to

AC losses in the uniform field case.
For standing wave fluctuations, the leading AC loss term is determined by zero order approximation to current

density distribution, i.e., an approximation that is comparatively easy to find. This is similar to the case of uniform
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field fluctuations considered earlier in [17]. It is, therefore, surprising that the situation is different for the running-
wave type of fluctuations: here knowledge of the first order correction to such a solution is necessary. Neglecting
this correction would cause an error of the same order as the AC loss value itself.

To explain this discrepancy, let us note that the expressions (33) and (35) for AC losses for running and
standing waves, respectively, have different structures. In (35), the small parameter appears only in a combination
ν∆(y)/∆0 = νΨ(y), whereΨ = Ψ0 + νΨ1 + ... We can writeP0(y) = F(y, νΨ(y)) and check that the function
F(y, u) satisfiesF(y, 0) = Fu(y, 0) = 0. HenceP0(y) = ν2

2 Fuu(y, 0)Ψ2
0(y) + O(ν3); the main term does not

depend onΨ1.
In the running wave case, the dependance on small parameter is different because the penetration depth and

the shape of the free boundary are separated. The equation (33) can be written asP0 = νF(ν, Ψ), whereF is a
functional andΨ = Ψ0 + νΨ1 + ... as in the previous case. Expanding we getP0 = νF(0, Ψ0) + ν2[Fν(0, Ψ0) +
(FΨ(0,Ψ0), Ψ1)]+O(ν3). HereFΨ is the Fr̀echet derivative, the first term turns out to be zero, and so the leading
term depends onΨ1.

In both cases, however, the leading term of AC losses is proportional to∆3
0, which corresponds toP ∼ H3

dependance known for the uniform field fluctuations. The next approximation would lead to a deviation from cubic
law. In the frame of the Bean model, such deviation can be due to the shape of a superconductor being different from
that of a slab [6], [19], heating caused by AC losses [6], or, as in the present case, because of spatial non-uniformity
of the external field.

APPENDIX I

The vector potential of the current (21) and the opposite one nearx = +l can be written as

Ai = µ0G ∗ J =
µ0Jc

4π

∫ ∞

−∞

∫ ∆

0
S(k(y′ − vt)−Ψ(ς/∆)) ln

(
(x + l − ς)2 + (y − y′)2

(x− l + ς)2 + (y − y′)2

)
dς dy′.

Changing the variables,u = ς/∆, s = k(y′ − vt)−Ψ(u), and using the Taylor expansion we obtain:

Ai =
µ0Jc

4kπ
∆0(1 + r1ν + ...)

∫ ∞

−∞
S(s)

∫ 1

0
ln

(
[k(x + l)− ν ∆

∆0
u]2 + [k(y − vt)− s−Ψ(u)]2

[k(x− l) + ν ∆
∆0

u]2 + [k(y − vt)− s−Ψ(u)]2

)
du ds =

=
µ0h0

2kπ

[
A0 + A1ν + O(ν2)

]
. (38)

Here
h0 =

ie
2

e−k(a−l) (39)

is introduced as a characteristic magnitude of external field fluctuations at the surface of the superconductor and

A0 =
∫ 1

0
D(x, y, t, u)du, A1 =

∫ 1

0
uF1(x, y, t, u)du +

∫ 1

0
Ψ1(u)F2(x, y, t, u)du + r1A0,

where

D =
∫ ∞

−∞
S(s) ln

(
[k(x + l)]2 + (Γ− s)2

[k(x− l)]2 + (Γ− s)2

)
ds,

F1 = −2
∫ ∞

−∞
S(s)

(
k(x + l)

(Γ− s)2 + [k(x + l)]2
+

k(x− l)
(Γ− s)2 + [k(x− l)]2

)
ds,

F2 = 2
∫ ∞

−∞
S(s)(Γ− s)

(
− 1

(Γ− s)2 + [k(x + l)]2
+

1
(Γ− s)2 + [k(x− l)]2

)
ds,

Γ = k(y − vt)−Ψ0(u).

To calculate the integrals we present the periodic functionS as the Fourier series,

S(s) =
∞∑

n=1

bn sin(ns), bn =
{

4
πn n = 2m + 1,
0 n = 2m
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and obtain

D = 4π
∞∑

n=1

bn

n
e−nkl sinh(nkx) sin(nΓ),

F1 = 4π
∞∑

n=1

bne−nkl sinh(nkx) sin(nΓ), F2 = −4π
∞∑

n=1

bne−nkl sinh(nkx) cos(nΓ).

We further obtain

A0 = 4π

∞∑

n=1

bn

n
e−nkl sinh(nkx)[αn sin(nk(y − vt))− βn cos(nk(y − vt))],

wherebn = 0 for all evenn and, for oddn,

αn =
∫ 1

0
cos(nΨ0(u))du =

{
π/4, n = 1,
0 n > 1 βn =

∫ 1

0
sin(nΨ0(u))du = 0.

Hence,
A0 = 4πe−kl sinh(kx) sin(k(y − vt)). (40)

Similarly,

A1 =4π
∞∑

n=1

bne−nkl sinh(nkx)[γn sin(nk(y − vt))− δn cos(nk(y − vt))]

+ r14πe−kl sinh(kx) sin(k(y − vt)),

(41)

where all even series terms are zero and, for n odd,

γn =
∫ 1

0
u cos(nΨ0(u))du−

∫ 1

0
Ψ1(u) sin(nΨ0(u))du, (42)

δn =
∫ 1

0
u sin(nΨ0(u))du +

∫ 1

0
Ψ1(u) cos(nΨ0(u))du. (43)

We can now substitute the expressions (40) and (41) into (38), use (14) withIe = 0, and calculate the total magnetic
field inside the superconductor but outside the penetration zone. We see thatA = Ae + Ai = µ0h0

2kπ (νA1 + O(ν2)).
Therefore, up to the second order terms,

Hx =2νh0{r1e
−kl sinh(kx) cos(k(y − vt))+

∞∑

n=1

nbne−nkl sinh(nkx)[γn cos(nk(y − vt)) + δn sin(nk(y − vt))]},

Hy =− 2νh0{r1e
−kl cosh(kx) sin(k(y − vt))+

∞∑

n=1

nbne−nkl cosh(nkx)[γn sin(nk(y − vt))− δn cos(nk(y − vt))]}.

This proves that the current density (20) shields the external field up to the first order inν and is a zero order
approximation. To nullify the first order terms of magnetic field we will now try to satisfy the conditions

γn =
{ −r1/b1 n = 1,

0 n > 1,
and δn = 0, (44)

for odd values ofn. SinceΨ0(u) = arcsin(1−2u), we denoteτ = 1−2u and expresssin(nΨ0(u)) andcos(nΨ0(u))
in (42), (43) via the Chebyshev polynomials of the first and second kind,

Tn(τ) = cos(n arccos τ), Un(τ) = sin((n + 1) arccos τ)/ sin(arccos τ),

correspondingly, forτ ∈ [−1, 1]. It can be shown that, for n odd,

sin(n arcsin τ) = (−1)
n−1

2 Tn(τ), cos(n arcsin τ) = (−1)
n−1

2 Un−1(τ)
√

1− τ2.
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Defining ψ1(τ) asΨ1(1−τ
2 ) = Ψ1(u) and calculating the integrals of known functions, we obtain

γn = 1
2(−1)

n−1
2

(∫ 1
−1

1−τ
2 Un−1(τ)

√
1− τ2dτ − ∫ 1

−1 ψ1(τ)Tn(τ)dτ
)

=

1
2(−1)

n−1
2

({
π/4 n = 1,
0 n > 1

}
− ∫ 1

−1 ψ1(τ)Tn(τ)dτ

)

δn = 1
2(−1)

n−1
2

(∫ 1
−1

1−τ
2 Tn(τ)dτ +

∫ 1
−1 ψ1(τ)Un−1(τ)

√
1− τ2dτ

)
=

1
2(−1)

n−1
2

(
dn +

∫ 1
−1 ψ1(τ)Un−1(τ)

√
1− τ2dτ

)
,

wheren is odd and

dn =
1
2

[
1

(n + 1)2 − 1
+

1
(n− 1)2 − 1

]
.

We can now rewrite the conditions (44) as
∫ 1

−1
ψ1(τ)Tn(τ)dτ =

{
π
4

(
1
2 + r1

)
n = 1,

0 n > 1
(45)

∫ 1

−1
ψ1(τ)Un−1(τ)

√
1− τ2dτ = −dn (46)

and use them to determineψ1(τ) andr1. Let us presentψ1 as the sum of its even and odd parts,ψe
1 andψo

1. Since
functionsTn are odd for odd n, even for even n, and orthogonal on[−1, 1] with the weight1/

√
1− τ2, condition

(45) means thatψo
1(τ)

√
1− τ2 = cT1(τ) whereT1(τ) = τ and

c =
π

4

(
1
2

+ r1

)/∫ 1

−1

T 2
1 (τ)dτ√
1− τ2

=
1
2

(
1
2

+ r1

)
.

Thusψo
1 = cτ/

√
1− τ2 and is singular atτ = ±1 if c 6= 0. Since the expansion (38) is valid only for|νΨ1(u)| ¿ 1,

we need a nonsingular function and must set

r1 = −1
2

to makec = 0. This determines the first order correction to the penetration depth:

∆ = ∆0(1− 1
2
ν + O(ν2)).

The functionψ1 becomes even and we can expand it into a series of the Chebyshev polynomials of the second
kind containing only the polynomials of even orders:

ψ1(τ) =
∞∑

m=0

amU2m(τ). (47)

The polynomialsUn are orthogonal on[−1, 1] with the weight
√

1− τ2, so the coefficients of this series are easily
found from the condition (46):

am = −d2m+1

/∫ 1

−1
U2

2m(τ)
√

1− τ2dτ = − 1
π

(
1

4(m + 1)2 − 1
+

1
4m2 − 1

)
.

We have now satisfied the conditions (44) but there appears a contradiction: although the series (47) converges for
τ ∈ (−1, 1), ψ1 becomes infinite atτ = ±1. Indeed, at these pointsU2m = 2m + 1 andam ≈ −1/2πm2 for big
m. Since the conditions (44) were derived under assumption|νΨ1(u)| ¿ 1, the function determined by this series
cannot be accepted as the first order correction toΨ0.

The computations, however, were not in vain and this singularity can be eliminated, if we take only a finite
number of terms and define

ψ1(τ) =
M∑

m=0

amU2m(τ). (48)
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It can be shown that in this case|ψ1(τ)| < ln(M + 1)/π for all M > 1 and |ψ1(τ)| < 16/15π for M = 0 or 1.
Thus, the assumption remains valid provided that

{
ν ln(M + 1) ¿ π if M > 1,
ν ¿ π if M = 0, 1.

(49)

It is easy to see that conditions (44) forγn are still satisfied for alln, whereas the conditions forδn hold only for
n ≤ 2M + 1. For n > 2M + 1 we have

δn =
1
2
(−1)

n−1
2 dn ≈ 1

2n2
(−1)

n−1
2 .

The non-compensated magnetic field inside the superconductor has, up to the second order inν, the components

Hx = 2νh0

∞∑

n=2M+3

nbnδne−nkl sinh(nkx) sin(nk(y − vt)),

Hy = 2νh0

∞∑

n=2M+3

nbnδne−nkl cosh(nkx) cos(nk(y − vt)).

For |x| < l−∆0 we havee−nkl cosh(nkx) < e−nν , e−nkl| sinh(nkx)| < e−nν ; alsonbn = 4/π for odd n. Hence,

|Hx|, |Hy| . νh0
4
π

∞∑

m=M+1

e−(2m+1)ν

(2m + 1)2
< νh0

4
π

e−(2m+3)ν

∫ ∞

M

dm

(2m + 1)2
< νh0

2e−(2M+3)ν

π(2M + 1)

which proves that the field can be madeO(ν2) if

e−(2M+3)ν

2M + 1
. O(ν). (50)

This means that the first order correction toΨ0(u) may be chosen asΨ1(u) = ψ1(1− 2u), whereψ1(τ) is given
by (48) andM satisfies the conditions (49) and (50).

APPENDIX II

The vector potential of the current (26) can be written as

Ai =
µ0Jc

4π

∫ ∞

−∞

∫ ∆(y′)

0
S(ky′) ln

(
(x + l − ς)2 + (y − y′)2

(x− l + ς)2 + (y − y′)2

)
dς dy′.

Changing the variables,u = ς/∆(y′) ands = ky′, we obtain

Ai =
µ0Jc

4kπ

∫ ∞

−∞
S(s)∆(s/k)

{∫ 1

0
ln

(
[k(x + l)− ν ∆(s/k)

∆0
u]2 + (s− ky)2

[k(x− l) + ν ∆(s/k)
∆0

u]2 + (s− ky)2

)
du

}
ds

with S(s)∆(s/k) = ∆0(sin(s) + νΨ1(s)S(s) + ...). Integrating inu and expanding we get

Ai =
µ0h0

2kπ
[A0 + A1ν + O(ν2)],

where the characteristic amplitude of fluctuationsh0 is defined by (39),

A0 =
∫ ∞

−∞
ln

(
[k(x + l)]2 + (s− ky)2

[k(x− l)]2 + (s− ky)2

)
sin(s) ds = 4πe−kl sin(ky) sinh(kx),

A1 =
∫ ∞

−∞
Ψ1(s)S(s) ln

(
[k(x + l)]2 + (s− ky)2

[k(x− l)]2 + (s− ky)2

)
ds−

∫ ∞

−∞

{
k(x + l)

[k(x + l)]2 + (s− ky)2
+

k(x− l)
[k(x− l)]2 + (s− ky)2

}
sin(s)| sin(s)| ds.

(51)
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Obviously,Ψ1 should be aπ-periodic and even (because of symmetry) function. To calculate the integrals in (51)
we presentΨ1(s)S(s) and | sin(s)| sin(s) as the Fourier series,

Ψ1(s)S(s) =
∞∑

n=1

an sin(ns), | sin(s)| sin(s) =
∞∑

n=1

bn sin(ns),

wherebn = − 8
πn(n2−4) for odd n, bn = 0 for evenn, and the coefficientsan are unknown. Integrating, we find

A1 = 2π
∞∑

n=1

(
2
n

an + bn

)
e−knl sin(nky) sinh(nkx).

Up to O(ν2), the total magnetic potential can be written as

A = Ae + Ai = ν
µ0h0

2kπ
A1 = ν

µ0h0

k

∞∑

n=1

(
2
n

an + bn

)
e−knl sin(nky) sinh(nkx).

To make zero theO(ν) terms of magnetic field inside the superconductor, it is sufficient to satisfy the conditions

an = −n
bn

2
=

{ 4
π(n2−4) n = 2m + 1,

0 n = 2m.

This gives

Ψ1(s)S(s) =
∞∑

m=0

a2m+1 sin({2m + 1}s)

and so, up to the second order terms, the penetration depth can be presented as

∆(y) = ∆0{| sin(ky)|+ νV (ky)sign[sin(ky)]},
where the series

V (s) =
4
π

∞∑

m=0

sin({2m + 1}s)
(2m + 1)2 − 4

can be summed up analytically. Let us denotez = eis,

U(s) =
4
π

∞∑

m=0

cos({2m + 1}s)
(2m + 1)2 − 4

,

and consider the complex function

W =U(s) + iV (s) =
4
π

∞∑

m=0

z2m+1

(2m + 1)2 − 4
=

1
π

∞∑

m=0

z2m+1

[
1

2m− 1
− 1

2m + 3

]
=

1
π

[
1
z
− z +

(
z2 − 1

z2

) ∞∑

m=1

z2m−1

2m− 1

]
=

1
π

[
1
z
− z +

(
z2 − 1

z2

) ∞∑

m=1

∫ z

0
z2m−2dz

]
=

1
π

[
1
z
− z +

(
z2 − 1

z2

)∫ z

0

dz

1− z2

]
=

1
π

[
1
z
− z +

(
z2 − 1

z2

)
1
2

ln
(

1 + z

1− z

)]
.

Sincez − 1/z = 2i sin(s), z2 − 1/z2 = 2i sin(2s), andRe
[
ln

(
1+z
1−z

)]
= − ln(| tan(s/2)|), the imaginary part of

W is
V (s) = − 2

π
sin(s)− 1

π
sin(2s) ln(| tan(s/2)|).
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