FREE BOUNDARY PROBLEMS AND TRANSONIC SHOCKS FOR THE

wn

ABSTRACT. We establish the existence and stability of multidimensional transonic shocks
(elliptic-hyperbolic shocks), which are not nearly orthogonal to the flow direction, for
the Euler equations for steady compressible potential fluids in unbounded domains in
R™,n > 3. The Euler equations can be written as a second order nonlinear equation of
mixed elliptic-hyperbolic type for the velocity potential. The transonic shock problem
can be formulated into the following free boundary problem: The free boundary is the
location of the multidimensional transonic shock which divides two regions of C%® flow,
and the equation is hyperbolic in the upstream region where the C2® perturbed flow is
supersonic. In this paper, we develop a new approach to deal with such free boundary
problems and establish the existence and stability of multidimensional transonic shocks.
We first reformulate the free boundary problem into a fixed conormal boundary value
problem for a nonlinear elliptic equation of second order in unbounded domains and then
develop nonlinear techniques to solve this nonlinear elliptic probiem. Our results indicate
that there exists a solution of the free boundary problem such that the equation is always
elliptic in the unbounded downstream region, the uniform velocity state at infinity in the
downstream direction is uniquely determined by the given hyperbolic phase, and the free
boundary is C%%, provided that the hyperbolic phase is close in C?© to a uniform flow.
We further prove that the free boundary is stable under the C%® steady perturbation
of the hyperbolic phase. Moreover, we extend our existence results to the case that the
regularity of the steady perturbation is only C!+1, and we also introduce another simpler
nonlinear approach to deal with the existence and stability problem when the regularity
of the steady perturbation is C3% or higher.

1. INTRODUCTION

We are concerned with the existence and stability of multidimensional steady transonic
shocks, which are not nearly orthogonal to the flow direction, in inviscid compressible po-
tential flows. The Euler equations for such fluid flows consist of the conservation law of
mass and the Bernoulli law for velocity, and can be formulated into the following non-
linear second-order equations of mixed elliptic-hyperbolic type for the velocity potential
p: QCR" > R:

div (p(|Dy|*) D) = 0, (1.1)
where the density p(q?) is
1
p(q?) = (1 - 6¢%)>7 (1.2)
with 6 = 77_1 > 0 for the adiabatic exponent vy > 1.

The second-order nonlinear equation (1.1) is elliptic at Dy with |[Dyp| = ¢ if
(@) +24°0' (%) > 05 (1.3)
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and is hyperbolic if
p(a®) +24°p'(¢*) < 0. (1.4)

Some efforts were made in solving the nonlinear equation (1.1) of mixed elliptic-hyperbolic
type in [4, 13, 16, 31, 34], [9, 10, 19, 22, 27, 33, 35|, and the references cited therein. A
similar problem was considered in [5] for the two-dimensional transonic small-disturbance
(TSD) model.

In [6], we developed a nonlinear approach by combining an iteration scheme with a fixed
point technique to establish the existence and stability of multidimensional transonic shocks
that are nearly orthogonal to the flow directions.

In Sections 3-4, we develop a new, different approach to deal with other difficulties for
more general multidimensional transonic shock problems, especially including the essential
non-orthogonality of transonic shocks to the flow direction; such situations arise in several
important physical problems.

In this paper, we focus on multidimensional transonic shocks near planar transonic shocks
in R",n > 3; multidimensional transonic shocks near spherical transonic shocks will be
handled in [8]. Such a transonic shock problem can be formulated into the corresponding
free boundary problem: The free boundary is the location of the multidimensional transonic
shock which divides two regions of C?% flow in R"”, and the equation is hyperbolic in the
upstream region where the C*® perturbed flow is supersonic.

One of the main ingredients in our new approach is to employ a partial hodograph trans-
form to reduce the free boundary problem into a conormal boundary value problem for the
corresponding nonlinear elliptic equation of divergence form in the half space. In order to
solve the conormal boundary value problem in the unbounded domain, our strategy is to
first construct solutions in a series of half balls with radius R, then make uniform estimates
in R, and finally send R — oco. To achieve this requires delicate apriori estimates. We first
obtain a uniform bound in a weighted L°°-norm by employing a comparison principle and
identifying a global function with the same decay rate as the fundamental solution of the el-
liptic equation with constant coefficients which controls the solutions. Of course, this decay
rate is the same as for the fundamental solution of the Laplace equation. Then, by scaling
arguments, we obtain the uniform estimates in a weighted Hoélder norm for the solutions.
Thus we obtain the existence of a solution in the half space and the algebraic rate of decay
of this solution at infinity. For such decaying solutions in the half space, a comparison prin-
ciple holds, which implies the uniqueness for the conormal problem. Finally, by a gradient
estimate, we show that the limit function is a solution of the multidimensional transonic
shock problem. We further prove that the multidimensional transonic shock solution is
stable with respect to the C*“ supersonic perturbation in Section 5.

In Section 6, we extend the existence results to the case that the regularity of the steady
perturbation is only C*!, and we also introduce another simpler nonlinear approach to deal
with the existence and stability problem when the regularity of the steady perturbation is
C? or higher.

We remark that the case n = 2 exhibits special features, different from the case n > 3,
and requires a different approach, which will be a part of the content of our forthcoming
paper [8].

2. MULTIDIMENSIONAL TRANSONIC SHOCKS IN THE WHOLE SPACE

In this section, we first set up the multidimensional transonic shock problem near planar
transonic shocks in R™ and present the main theorems of this paper.

A function ¢ € WH*(Q) is a weak solution of (1.1) in an unbounded domain € if

(i) [Dp(x)| <1/VE  ae.
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(if) For any w € C§°(Q),

r
/ p(|Dp>) Dy - Dw dz = 0. (2.1)
Q

We are interested in weak solutions with shocks. Let Q1 and Q~ be open subsets of 2
atnQ =0, Qtun- =0,

and S = 90T NQ. Let o € WH>() be a weak solution of (1.1) and be in ¢ € C?(QF) N

C(%) so that Dy experiences a jump across S that is an (n — 1)-dimensional smooth

surface. The requirement ¢ € WH>°(Q) yields curl(Dy) = 0 in the sense of distributions,

which implies
D,p" =D,o~ on S,

where D, p* := Dp* — (Dp*-v)v are the tangential gradients of ¢ in the (n— 1)-dimensional

tangential space on the £ sides of S, respectively, and v is the unit normal to S from €~
to Q. Then we simply write D,¢ := D,p* on S and assume

et =¢p~ on S. (2.2)

Thus, we use (1.1), (2.1), and (2.2) to conclude the Rankine-Hugoniot jump condition on S:

(D4 D v -0 23)

where the bracket denotes the difference between the values of the function along S on the
QF sides of S, respectively. We can also write (2.3) as

p(IDeT?)e) = p(IDe™|*)p,  on S, (2.4)

where pF = DT - v are the normal derivatives on the Q% sides, respectively.

The function )
®(p) == (1-6p*)* p, (2.5)
defined for p € [O, v/ 1/9] , satisfies

lim ®(p) = lim ®(p) =0, ®(p)>0 forpe (o, \/170), (2.6)
p—0+ p—/1/0—
0<®'(p) <1 on (0,psonic), and & (p) <0 on (psom-c, 1/0), (2.7)
lI)H (p) < 0 on (prsonic]y (28)
where
Psonic = 1/(9 + 1) (29)

is the sonic speed.
Suppose that ¢(z) is a solution satisfying

1 . . _
|Dp()| < psonic = \/ﬁ m Q+; [Do(x)| > psonic in Q7 (2.10)
and
Dp*-v>0 onS, (2.11)

besides (2.2) and (2.3). Then () is a transonic shock solution with transonic shock S
dividing subsonic region QT and supersonic region Q~ and satisfying the physical entropy
condition (see Courant-Friedrichs [11]; also see Dafermos [12] and Lax [21]):

p(ID¢~[*) < p(|Dg*|?)  along S, (2.12)
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which implies, by (2.11), that the density increases in the flow direction. Note that equation
(1.1) is elliptic in the subsonic region and is hyperbolic in the supersonic region.
Let (z',z,) be the coordinates in R", where z' = (z1,...,7,_1) € R"! and z,, € R.
Fix Vp € R", and let
polz) :=Vo -z, x€R"

1T ~ 171 ~ /— L e o ciiliami e (e it o)
i | 0| c \U Psomc} Ucbp |V0| c u}sgmc, 1/ Vo)), then PYolT) 18 a subsonic (résp. supersoiic)

solution in R™, and Vy = Dy is its velocity.
Let Vj € € R"! and q0 > 0 be such that the vector V"

’
myo _ - . PG T, I N 4
1 11€11, Ublllg l;IlB proper l;lt:b UJ. lUIlLLlUIl \4 d) we conciude 1roin {
au

unique g, > 0 such that

(‘/OI qg—) satisfies |‘/0+| < Psoniic-
) \ 11 1 - _
V4 } C

~ > W o) RV IS Py I
V)—(4£.9) tnat viere exists

L i

(L =0(V5I* + a0 1) a5 = (1 = 0(IV5|* + lag ")) ** 4o - (2.13)
The entropy condition (2.12) implies ¢; > g . By denoting Vy~ := (V{,qy ) and defining
functions ¢F (z) := Vi -2 on R”, then ¢l (resp. g ) is a subsonic (resp. supersonic)

solution. Furthermore, from (2.4) and (2.13), the function

. _ (V@ zeQ, ={zeR" : z, <0}
o— + — 0 ’ 0 n ’
%@%—mm@ﬂ@ﬁ%@”—{xgnL zeQf ={reR" : z, >0}

is a flat transonic shock solution in R”, Qf and Qg are respectively its subsonic and
supersonic regions, and S = {z, = 0} is a transonic shock. Note that, if Vj = 0, then
the velocities VOﬂE are orthogonal to the shock S and, if Vj # 0, then the velocities are not
orthogonal to S.

The multidimensional transonic shock problem near ¢o(z) with Vj = 0 has been handled
in Chen-Feldman [6, 7]. In this paper, we develop a new, nonlinear approach to handle
with the case Vj # 0 in the whole space R"™. We first study perturbations of the uniform
transonic shock solution (2.14) in the whole space R™,n > 3, in Sections 3-5. In order to
state our problem, we first introduce weighted Holder seminorms and norms on unbounded
domains. Note that later we consider our fixed boundary value problems on the subsonic
region O+, which is expected to be close to the half-space Qf = {z,, > 0}.

Let D = {x,, > f(2')}, where f(2') is a Lipschitz function. For z = (2',z,) € D, let
6y = 1+ |z| and, for z,y € D, let (5“, = 14 min(d,,d,). Let 8 € R, a € (0,1), and k a
nonnegative integer. We define

[l = sup (85| D*u(a)])
ze€D

[u]){)p = sup (6k+a+ﬂ|l) (@) - Dtu (y)|> , (2.15)

" R

(2.14)

”qu 0D — Z[[U]]J ;0;D>

j=0

lullihp = lullid.o + [ulliro-

We study the existence and stability of multidimensional transonic shocks near the plane
transonic shock (2.14) under small perturbations of the supersonic flow. It suffices to pre-
scribe the perturbed supersonic flow only near the unperturbed shock surface So = {x,, = 0}.
Thus, we introduce a domain ©; := R"~! x (=1, 1) and focus our discussion on the domain
Q:=R"1! x(-1,00).

Problem A. Given a supersonic solution ¢~ (z) of (1.1) in Q; satisfying that, for some
a >0,

le™ — w5 llSg. <o, (2.16)
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with ¢ > 0 small, find a transonic shock solution ¢(z) in € such that 9~ C Q; and
o) =9 (z) in @7, where Q7 :=Q\ QT and QT :={z € Q : |Dy(z)| < Psonic}-

Remark 2.1. Note that, since n > 3, our assumptions imply that the perturbation is not
only small in C>%, but also “localized”, i.e., has an appropriate algebraic decay at infinity.

One of our main results of this paper is the following.

Theorem 2.1. Lel i('v’d,qar)i € (0, psonic) and qg € (psomc,l/v/é) satisfy (2.13), and let
wo(x) be the transonic shock solution (2.14). Then there exist positive constants oo, C1, and
C> depending only on n, v, a, |Vy|, and qar such that, for every o < oy and any supersonic
solution o~ () of (1.1) satisfying the conditions stated in Problem A, there exists a unique
solution p(z) of Problem A satisfying

le = @3 13 < Cao, (2.17)
with QF defined in Problem A. In addition,
OF = {z, > f(a')} (2.18)
where f : R"™1 = R satisfies
1SS s < Coo, (2.19)

that is, the shock surface S = {(z',x,) : =, = f(2'),2’ € R" "1} is in C** and converges
at infinity, with an appropriate algebraic rate, to the hyperplane Sy = {x,, = 0}.

Furthermore, we have the following stability theorem.

Theorem 2.2. There exist a nonnegative nondecreasing function ¥ € C([0,00)) satisfying
U(0) = 0 and a constant oo depending only on n, v, a, |Vy|, and qf such that, if o < oo
and smooth supersonic solutions ¢~ (x) and ¢~ (z) of (1.1) satisfy (2.16), then the unique
solutions p(x) and @(x) of Problem A for ¢~ (x) and ¢~ (x), respectively, satisfy

1o = FollSrmes < ¥ (ko™ = 67158 ) (2.20)
where f,(z') and fs(z") are the free boundary functions (2.18) of p(x) and @(x), respectively.

The proof of these theorems is obtained first by reducing Problem A to a free boundary
problem for a nonlinear, uniformly elliptic equation and then by develop partial hodograph
transform techniques to solve the free boundary problem.

3. FREE BOUNDARY PROBLEMS AND A PARTIAL HODOGRAPH TRANSFORM

In this section, we first extend ¢~ to the whole space R, then formulate the transonic
shock problems into free boundary problems, and finally reformulate the free boundary
problems into fixed conormal boundary value problems for a nonlinear elliptic equation.

3.1. Extension of ¢~ to the Whole Space R". Since ¢~ satisfies (2.16) in the domain
0 :=R" ! x (=1,1), then we use a standard extension procedure to extend ¢~ to R™ so
that the extension (still denoted) ¢~ is in C*%(R") and satisfies

le™ — w5 I8 R < C(n,a)o, (3.1)
supp(p” — ¢y ) C R x (=2,2). (3.2)

We fix this extension operator with the properties described above.
Consider the function

g=div(p(|De~")Dp™)  inR™ (3.3)
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Since ¢~ () satisfies (1.1) in R"~! x (—1,1), then, from (3.1)-(3.2), we have that g satisfies

g€ C*(R"),
lgll§s i < Co, (3.4)
..... (N~ (PBn=1 71 Ny 1 /-1 (_o9 _1))
Duyy\y}L \].‘, /\\l,b}}u\l‘, /\\ Al, J.}}
Define .
F(z', xy) :/ g(x',s)ds  in R™. (3.5)
0
Then, from (3.4) and (3.5), we have
F F, € C*R"),
1
1N Rt 1) € Co
sup  ((1+ |x'|)"+1|F(:c’,:cn)|) < Co, (3.6)
(z',z,)ER™

I, 15, < Co,

F=0 inR"'x(-1,1).

From now on, we use the extended function ¢~ = ¢~ (z), and C' may denote a different
constant at each occurrence, depending only on the data, i.e. on n, v, a, |Vj|, and q(J{ ,
unless otherwise is specified.

3.2. Free Boundary Problems. Similarly to [6, 7], we first reformulate Problem A into
a free boundary problem.

Problem B. Find ¢ € C(R") such that
(i) In R™,
P (3.7
(ii) ¢ € C?*(Q+F) with @t = { < ¢}, the noncoincidence set;
(iii)  is a solution of (1.1) in Q;
(iv) The free boundary S = 907 is given by the equation z,, = f(z') for 2’ € R"! so
that OF = {z,, > f(2')} with f € C**(T"1);
(v) The free boundary condition (2.3) holds on S.
For the motivation of this reduction, see [6, 7]. Note that Problem B is not equivalent to

Problem A in general, but a solution of Problem B satisfying (2.17), (2.18), and (2.19) is a
solution of Problem A, provided that o is sufficiently small.

3.3. Partial Hodograph Transform. We attempt to find a solution ¢ of Problem B,
which satisfies (2.17)—(2.19). Let ¢(z) be such a solution. Define a function u in Q* by

u(@) = ¢~ (z) = p(2).
Then (2.17) and (3.1) imply

- )
lu= (g5 = a§)zally s < Co. (3.8)
In particular, if ¢ is sufficiently small,
do —do
0< 22— <u, () <2(qy —qf) forany ze€QF. (3.9)

2
Now we show that u(z) is a solution of a boundary value problem for a uniformly elliptic
equation. From (2.17) with sufficiently small o, ¢(z) satisfies (1.1) in Q1 and (2.4) on S.
Then, using (3.3), we see that u(z) is a solution of the following problem:
div (A(z, Du)) = —g in QF,
A(z,Du)-v=0 on S,
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where
A(z, P) = p(|D¢™ (x) = PI*)(Dy™ (x) = P) = p(|D¢™ (x)*) Dy~ (), (3.10)

for x € QF and P € R". Note that, from (2.18) and (2.19), for sufficiently small o, the free
boundary S lies within the domain Q; = R"™! x (=1,1). Then, by (3.6), the function F
defined by (3.5) vanishes on S, and thus we can rewrite the boundary value problem as the
following conormal boundary value problem:

div (A(z, Du) + F(x)e,) =0 in QF, (3.11)
(A Y-\ o TN ) . N P, q 79 10\
\A\.’L’.L/'Uz} -+ I k.l/)b'n} UV =UvU o1l o, kO.lé)
where e, = (0,...,0,1). Equation (3.11) is uniformly elliptic on u if ¢ is sufficiently small,

which follows from (2.16) and (3.8) since

£ P R RO YN NIt 4l a1 PRUR JEY (SRR o 11 (D 11N (9 1)
10 S0I111€ COILSLalIlls Cg alld U > U. INOLE ullatu ulle €aK 10r11l OI Pprovieinl (9.11)—(9.14) 15
— 1 n
+(A(at:,Du) + F(x)ey) - Dndz =0 for any n € Cy(R"). (3.13)
Q

Since ¢ = ¢~ on S, it follows that
u=20 on S. (3.14)
Now we make the change of variables. Define a mapping ® : O+ — R” by
(@', 20) = (¥, yn) = (@', u(@’, 20)).
The nondegeneracy property (3.9) implies that the map ® is one-to-one on QF and, from
(3.9) and (3.14),
®(0") =RY, ®(S) =0RY,
i.e. the free boundary S is mapped to the fixed boundary OR . Also, by (3.9), there exists
a function v € C**(R'}) such that, for (2/,2,) € QF and y, > 0,
w(z', xn) = Yn if and only if  v(z',yn) = zn. (3.15)
Thus
@71(?/7 yn) = y,) v(yla yn))
Differentiating the identity w(z',v(z',y,)) = yn, which holds for any (z',y,) € R, we
find
vy, >0 in RY,
and .
Dyu=——Dyw, Uy, = —, (3.16)

Vyn, Ty,
where the left-hand and right-hand sides are taken at the points (z',z,) and ®(z',x,),

respectively. In particular, (3.9) implies
1

0< =) <y, < prpr for any z € QT. (3.17)
From this and (2.17), we get
llv = vollys o < Co, (3.18)
where
vo(y) = f/iﬂ (3.19)
9o — 4o

Now, since u(z) is a solution of the conormal boundary value problem (3.11)—(3.12) in
QF, then v(x) is a solution of the corresponding problem in R’ . In order to show that this
problem has also a conormal structure, we make the change of variables x — y = ®(z) in



8 GUI-QIANG CHEN AND MIKHAIL FELDMAN

the weak form (3.13) of problem (3.11)—(3.12). In order to do that, we in particular need
to change variables in the test function 7. For that, we note that the function ¥(y) :=
no® 1(y) =n(y',v(y' yn)) satisfies 1y € C*(R") and, if = 0 on R" \ Bg, then ¢ =0 on
R \ Bg, for some Ry, i.e., ) = 1/~)|ﬁ for some 1) € C3(R™). Similarly, for any ¢ € C} (R™),

there exists n € C( =no® ! and 5(z) = 1) o ®(x) for z € QF. We
differentiate the 1dent1ty 17( ) ( (w xn)) and use (3.16) to obtain

Vyn Yyn
Dx/T] = Dyl'gb - 'Uy Dyrv, Ny, = i. (320)

Yn vyn

Now, in (3.13), we make change of variables x — y = ®(x), use (3.16) and (3.20), note
that the Jacobian of @' is J®~!(y) = v, (y), and write A(z',z,,p',p,) for A(z,p) and
F(z',z,) for F(z) to obtain

1 1 ) — /
/ <A(ylv v, —_Dy"U7 —) + F(yl7 U)€n> : ( UynDy d) wynDy v > dy =0
1 /Uyn Uyn wyn

for any v € C} (R"™). This can be written as

/ (B(y',v, Dv) + F(y', v)e,) - Dipdy =0  for any ¢ € C§ (R"), (3.21)
where, for y' €e R" !, z e R, P = (p/,pn) € R ! x Ry,
!/
. . 1
Bl(ylvzvp)zAz(yl Zy_p_v_)p'n for i:l,...,n—l,
Pn Pn
(3.22)
I
1
B"(y',z,P)=A" z,—— — Ay 2, ——, —)p;
< )= ' Pn pn Z Pn’ Pn )P
Thus, v(z) satisfies the conormal boundary value problem:
div (B(y',v,Dv) + F(y', v)e,) =0 in R, (3.23)
B"(y',v,Dv) + F(y', v) =0 on OR. (3.24)

Conversely, let v(y) is a solution of (3.23)—(3.24) satisfying (3.18) with Co sufficiently
small depending only on the data so that (3.17) holds. Then a function u(z) can be defined
on

QF = {(z',v(2",y,)) : ' € R" L gy, >0} (3.25)
such that (3.15) holds. Clearly, u(x) satisfies (3.8) and (3.9). Making the change of variables
z =® 'y in (3.21), we see that u(x) satisfies (3.13) and thus (3.11)—(3.12). Then

_f o) —u(z) for z €O,
pla) = { wo(x) otherwise

is continuous in R™ and satisfies (2.17). Thus, ¢(z) is a solution of Problem A if ¢ is so
small that (2.17) implies that, in QT

(a) ¢ is a solution of the non-truncated equation,

(b) ¢ is subsonic.

Moreover, from (3.25) and (3.17), Q7T satisfies (2.18) with f(2') = v(2',0). Thus, from
(3.18), it follows that (2.19) holds.

Furthermore, if o is small, depending only on the data, and ¢; and 5 are two solutions
of Problem A satisfying (2.17). Then both functions uy = ¢~ — ¢y, for k = 1,2 satisfy
Oz, ur > (g5 —qg)/2 > 0, and thus functions vy, € CQ’O‘(R_i), k = 1,2, are defined by (3.15)
and satisfy (3.18) with C' depending only on the data. Note that v; is not identically equal
to ve if 1 is not identically equal to ¢s.
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Therefore, we have

Proposition 3.1. Assume that o is small, depending only on the data. Let ¢~ (z) be a
supersonic solution of (1.1) satisfying the conditions stated in Problem A. Assume that
problem (3.23)—(3.24), defined by (3.10) and (3.22), has a unique solution v € C**(R%)
satisfying (3.18) with Co sufficiently small, depending only on the data. Then there exists
a unique solution ¢ of Problem A satisfying (2.17). Moreover, (2.18) and (2.19) hold for ¢,
and the function u := ¢~ — @ is related with v by (3.15).

By Proposition 3.1, in order to solve Problem A, it suffices to establish the existence and
uniqueness for the conormal boundary value problem (3.23)—(3.24) satisfying (3.18). First,
note that (3.23) is elliptic in a neighborhood of function vo(y) defined by (3.19), that is,
there exist A > A > 0 such that

AEP? < Z (Y2, P)&&; < AJ¢P? (4.1)

3,j=1

for any £ € R™. From (3.22), we compute

i Pl
ZB W,z P)&&; = ZAZ,J e (]

i,j=1 4,j=1
where
Go6-Pe i=l.m-1 =
Dn Dn
Since (3.11) is a uniformly elliptic equation for u satisfying (3.8) with small o, it follows that,
if P is sufficiently close to Dvy = q%en, then (4.1) holds with constants depending
o o

only on the data.

We will modify B(y’,z, P) away from a neighborhood of (y,v(y), Dvg) to obtain a uni-
formly elliptic equation globally.

Note that vo(y) is a solution of the problem of form (3.23)—(3.24) with By(P) which
corresponds to the supersonic solution ¢ (y), i.e. Bo(P) is defined by (3.22) with Ay (P),
defined by (3.10) with ¢ instead of ¢~. Then Fy = 0, and Ay and By depend only on P
since ¢, is a linear function.

Since we are interested in estimate (3.18), we introduce the function

w(y) = v(y) —vo(y)

and rewrite (3.23)-(3.24) in terms of w. Using the fact that vo(y) is a solution of the
conormal boundary value problem defined by By(P), we find that w(y) satisfies

div (N (y, w, Dw)) = 0 in RY,
N"™(y,w, Dw) =0 on ORI,

where
N(y,z,P) = B(y',vo(y) + 2, Dvy + P) — By(Duvo) + F(y', ).
From the ellipticity of B(y', z, P), it follows that (4.1) holds for ./\7(y, z, P) with the same
ellipticity constants, if |P| is sufficiently small.
Now we define a function N (y, z, P) as a modification of N'(y, z, P). Let n € C°(Ry)

be such that
1

aw={5 W iS5n 0=, (42)
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where the small constant € > (0 will be chosen below. Introduce the following notations

X(y,2,P):= (y',v0(y) + 2z, Dvo + P),
Lo(P) = Bo(Dvo) + DPB()(D’U()) - P.

Now we define the modification o
Ny, 2, P) = DpBo(Dvo) - P+ (IP]) (B(X(y,2,P)) = Lo(P)) + F(y',v0(y) + z)en. (4.3)
Note that
N(y,z,P)=N(y,z,P) if |[P|<e. (4.4)
We will also use the function
M(y, 2, P) = DpBo(Dvo) - P +n(|P|) (B(X(y, 2, P)) = Lo(P)) - (4.5)

Obviously, N'(y, z, P) = M(y, 2, P) + F(y',v(y) + 2)e,. We note the following properties
of N(y,z, P) and M(y,z, P).

Proposition 4.1. There exist £g,0q, and A > X > 0 depending only on the data such that,
if e =9 in (4.4) and o < o9, then

(i) N is uniformly elliptic:

NP < Z ./\/;j (y,2, P)&i& < A€ for every y € R%, 2 € R, P,¢ € R™;  (4.6)

i,j=1

(ii) The following estimates hold:

! ! g
N 9,2 P+ MU 0,2 P < € (15T + 1P (1)
n -1
i i )
3 W .P) = By, (D) < © (i +1P1) Xoaea(PD. @49
n—1 n )
Vo, 2, P) + Y D Ny (9,2, P)| + [N} (y, 2, P)|
i=1 j=1
Co
< . .
=15 |y+zen|n+1 X[O,ZEO](|P|)7 (4 9)
N. € C(RE x R xR"), (4.10)
“ . Co
¢ < - -7 . . .
|Mz(y>Z,P)| + i]zz:l |My] (yaz,P)| ST17 |y T Z€n|n+1 X[O’zeo](|P|), (4 ].].)
|Mz(y,z,P) _Mz(gvgvp)l + Z |M;](y,Z,P) _M;J(ga'%,P)'
ij=1
Co -2 S12\ 5
< - g — 2 4.12
-1 + (Il’llIl(|y + Zenla |g + Eenl))n'i'l-l—a (|y y| + |Z Z| ) ) ( )

for everyy € R_i, z € R, and P € R", where X9 2:,)(-) is the characteristic function

of the interval [0, 2e¢], Dvg = #em and the constant C depends only on the data
o Y0
and is independent of €.
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nr 11 r 11 . g ' 1 1.1
vioreover, tie joilowrng esttimates noia.

|DEN (y, 2, P)| + |DpN (y, 2, P)| = [DEM(y, z, P)| + [DpM(y, 2, P)|

g
<C (1 — + |P|\ X10.2¢0] (I1P1), (4.13)
1T |y T+ <Cp Vi
2 2 CU
1D My z. P\l + 1D My 2z Pl < ———MM 5. (1PN (4.14)
1~y PGy <4 1= 2P/YI\T < 4 RENINEME \ )

T 1+ |y + ze, |n+

IDiPM(y’Z’P) —szM(]],Z,PH +| zPM(yvzij) - sz(g,é,P)l

LR

< - pea—
~ 1+ (min(|y + zeq|, |7 + Zenl))

e (ly =g + 12 = 2%) (4.15)

for every y € R_i, z € R, and P € R"™, where the constant C' depends only on the

data and &g.

Proof. We first prove (4.7). Denote
M = sup{[DHIQP)Q)| = Q € R, |Q| < |Dyy|+2c0 +0}
+sup {|D(p(|Q1)Q)| : @ €R", |Q| < |Dyy|+2e0+07}.
Clearly, M depends only on the data. Now, for y = (y', yn),
V(y,z,P)| < [B(X(y,2,P)) = Bo(Dvo)| X[0,25] (IP|) + (1 = (|1P|)) [DpBo(Dvo) - P|

+IF(y', vo(y) + 2)|
< M|Dy(y',2) = Doy (y',2)| X[o,2¢0] (|1P]) + C|P| + |F(y' s v0(y) + 2)|
Co o
< —_— 1(|P C|P|+ ———
Co
< — 4+ C|P|.
N AL ol

The estimate of |[M(y, z, P)| involves only the terms that do not contain F' in the above
inequalities, and thus we obtain the same estimate. Now (4.7) is proved.

From the definition,

Ny, (.2, P) = Bg, (Dvo) +1' (1P)) 2 IPI - (B'(X(y,2,P)) — (Lo)'(P))
+1(1P)) (By, (X (9,2, P)) = (Lo, (P))
= B(i)pj (DU()) + A1 + Az.
If 6o < 1Dl = W we use (2.16), (3.10), (3.19), (3.22), and (4.2) to estimate
0
[l < Xjo2eo (1P (|B’ (y,2,P)) = By(Dvo + P)| + |Bs(Dvo + P) — (Lo)'(P)|)
< X[OQ@O](lpl IDso (', v0(y) + 2) — Dy (¥, v0(y) + 2)| + | P[*)
o oegt
< P T ielP|) < Pp(—20 4 ip|).
< X (PDE (1+|y+z -+ alPl) < Oxnar (P (1o +1P))

We now estimate |As|:

| As|

IN N

IN

Oxpo.2ee) (1P]) (

Cxto2=0)(IP)) (| B, (X (0,2 P)) = Biy, (Dvo + P)| + | Bl (Dvo + P) = By, (Duo))
CX[O,zso](|P|) (|D<P (yl

o(y) + 2) — Doy (v, voly) + 2)| + | PI)

o
— +|P]].
14+ |y + zen| | |)
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This proves (4.8).
Now we prove (4.9). Note that
NI(y,z,P) = n(P)BNX(y,z,P)+ Fo,(y',vo(y) + 2) = A3 + As.  (4.16)

We estimate

LAl < (O (DB (X (s ~ PWI
4131 = UX[0,2e0]\I4 1) [P2\A\Y, 2, 47) )]
, GO T2
< OXpo2eo)([P]) |[D7¢™ (5, vo(y) + 2))|
o
S CX[G,Z‘&Q](!PD n+1’
L+ |y + zen|
and, by (3.6),
4 < Co Co
4 < <
L+ (@ vo(y) + 2)[" T~ 1+ |y + zen|" !
Thiia oatimate (4 Q) for A7 iq nraved The torm A1 ic actimatod cimilarly ginee o-(2) —
J.JJ.LI.D’ vovliliiave \ch.}} 1uUL ./\/z 1o lJl.UVbu A 110U uvlliin ./\/y" 10 vovuliiliauvou 0111111(4,1.1], oiive UU\y} _—
1
- —Yn. Fori=1,...,n—T1and j=1,...,n, we have
o — 4

Ni(y,2,P) =1 (|P|) B(X(y,z,P)),
Ny W, 2, P) =djn (|P]) B, (X (y, 2, P)),
where d; =1for j=1,...,n—1and d, = ﬁ Thus, N} and Ny , fori=1,...,n -1
0 0
and j = 1,...,n, are estimated similar to the term Az above. Thus, (4.9) is proved.
Note that (4.11) is also proved, since (4.11) follows from the estimates of the term A3
above, and these estimates hold for M? and M, for anyi,j =1,...,n.
Also, (4.16) implies (4.10) since all the terms on the right-hand side of (4.16) are contin-
uous.
Now we prove (4.12). We estimate

|MZ(y)Z>P) - MZ(Z))}:?P”
<n(|P|)|B.(X(y,2, P)) — B.(X(9, 2, P))|
< C|D*0™ (', vo(y) + 2) — D0~ (G5, v0(§) + )| X[0,250] (|2])
CO’ o
< : pea—
= 1+ (min(|y + zeal, |7 + Zen

We estimate [N} (y, 2, P) =Ny (4, %, P)| for i,j = 1,...,n, similarly. Thus, (4.12) is proved.
Estimates (4.13)—(4.15) are proved similarly to estimates (4.8)—(4.12), since the functions
M and DpM are of the same structure.
It remains to prove assertion (i). Since By(P) satisfies the ellipticity condition (4.1) at
P = Duvg with ellipticity constants A and A depending only on the data, then, from (4.8),
choosing sufficiently small g9 and o¢ := £] yields (4.6) with ellipticity constants A\/2 and 2A
for o < 0y, O

))rFite (ly =9I + 12— 21%) .

From now on, we assume that ¢ = g is chosen in the definition of A" and that o < ¢ so
that Proposition 4.1 holds.

Thus, in order to construct a solution of problem (3.23)—(3.24), it suffices to construct a
solution of the problem

div (M (y,w, Dw)) =0 in RY, (4.17)
N"(y,w, Dw) =0 on ORY, (4.18)
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which is sufficiently small in an appropriate norm if ¢ is small. In order to construct such
a solution, we will construct solutions in bounded domains

BE = RZ‘_HBR; with Br = {|z| < R},

and pass to the limit as R — co. The main goal is now to obtain the estimates independent
of R. More precisely, we consider following problems:

div (N (z,v,Dw)) =0  in B},

N™(z,w, Dw) =0 on Sf:={z, =0}n Bg, (4.19)
w = on 6BR n n+
Tamming AD Totow o (URENA 2D Be o cnliiting of (A 1O Thow  oF = Zo e 0t
LA .4 LICL W T L/\.L)R} v \.L}R} v w suvLwLeory j \LI.LU). L 1LC b, j U 5 S JJLLLCILLI/y
small,
w2, < Co. (4.20)
0,0,Bf —

Proof. We prove this lemma by constructing a comparison function that is derived {rom
the fundamental solution of the linear elliptic operator:

LV = Y Bj, (Dvo)Va,a;-

ij=1

Let D = (d;;) be the inverse matrix of (B(i)pj (0)). Then D is symmetric and strictly positive
definite. For x € R", denote

2

n
|£L’|D = Z dijl'i.’L’j

i,j=1

Then

1 1
ﬁlwl <lzlp < ﬁ|$|~
For z € R", we denote
¥ =1x+ Me,,

where e, = (0,...,0,1), and M > 2 will be chosen large enough below. Fix 7 = 1/2 and
consider the function

V(w):L(| L |$*|£_2+T>, (4.21)

5

where the constant L € (0, 1] will be chosen below.
Since, for z € R,

|z*|p > 1 for any z € B_E, (4.22)
by choosing M large depending only on A, then we have
0<V <1,  in Bf.

In particular,
1 2
<
1+|z+V(x)e,| — 1+ ||

for any z € B_E. (4.23)

Note that

TV = _LT("——TT)
|lz* 5"
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Now we use (4.8)—(4.9) and (4.23) to compute

(4.24)
div(N(z,V,DV)) = > Ni(2,V,DV)Veu, + Y Ni(z,V,DV)V,,
i,j=1 =1
+> N (z,V,DV)
=1
- 54 Tn‘ /Afi VOV V2 % SN » VRNV o \\ 17
= LV + ) (Np, (@, V,DV) = Bgp, (Do) | Vaia,
i,j=1

D U T AP N s omE 7 TN
+Y (Ni(z,V,DV)Vy, + N (z,V,DV))
i=1
T(n—2+471) L*C N LCo
|25 lz [ B+ =)
LCo n Co
[ (L Jzfmtt) T [t
where C depends only on the data. Since |z*| = |z + Me,| < |z| + M, we have
1 M M C\M
< St S T
Ltfof = M+ = 2% = |o*[p

IA

Also, since x,, > 0, we have |z*|p > v/ AM. Thus, using n > 3 and 7 = 1/2 yields
_Lr(n—2+71) L?c CL(M"™ + M" o CM"o

div (N(z,V,DV)) <

AT R F
Lr(n—2+71) L*C CLM™c CM"""a¢
- |2+ L e v A A A

Since n > 3 and 7 = 1/2, choosing M large depending only on n and the constant C in
the last estimate and using that L € (0, 1] lead to

T(n—2+71) Mg

div (V(z,V,DV)) < —L . 4.25
R S e e 2
Next, we estimate the boundary operator on {z, = 0}:
1
N™(z,V,DV) = N"(z,V,0)+ / N (2, V,sDV) Vi, vids (4.26)
0
n 1 '
= Z {B(}pj (Do) Vs, +/ (N, (@,V,sDV) — By, (Dvo))VmJ.ds}
=1 0
+N"(z,V,0).
Recalling that D = (dj;) is the inverse matrix of (B, (Dvo)), we get, on {z, = 0},
n n " .Z'* .’I?*
> Bg,, (Dwo)Ve,(2) = LY By, (Dvo)d (—(" - 2)# +(n=247)— ﬁ+r)
o = 51D |lz* |1
M M
= L{-n—2)——+(n— 2+7‘)7T>
( |z*[5 |2*| "
Lin-2) M

- 2 el
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| k| ~ INATY  TToieog +hic o acts ataa /A AN PR 41 PRVREE IO A D [ oy B N
|.,l, |D = V AWL). USIIZ U lb dllu eStimiates \(&.() (110L1L ullat, a4t vile poulldaly, £ — \.1/ sUJ,
Pa el TN AQYN LA A9 L L (A OR\ L1 1
1.C. |.L| = |.1, |}7 (%.0), alld (4.49), WE€ BEL 1101l (4.40) ullat

v n-2 M [ Co Co
z,V,DV)|, -0 < —L + + |DV| ) |DV|+
(n—2) M CLo CL? Co
< —L 9 | ok T2 + (1 1 lan\l.xIn—1 | ok 12N —2 + 11 |lpln
“ 171D LT | L]7) |47 | p |D R
P T/ (n—2) M CL \ CLM"o n CoM™
< L{-
/ (n — 2) .LV{ CL \ CL.LV{(}‘— CG’]‘V{”
< L (— ) .
= 2 lp M) T el el

Since n > 3, then, choosing M sufficiently large depending only on n and the constant C'
in the last expression (i.e. on the data) and using |L| < 1, we get
m o 9) AT 107 3.7 A4

{
A VD). o < _p\n—2) M CoM
(1': ) )lxtn 0 = 4 |£L’*|% I:B* %

(4.27)

In order to show that V' is a supersolution of the conormal boundary value problem, we
need to choose L € (0, 1] so that the right-hand sides in (4.25) and (4.27) are negative. Since
n >3, 7=1/2, and M > 1, the right-hand sides in (4.25) and (4.27) are negative if we
choose

L=CM"o,
where C depends only on n and the constant C' on the right-hand sides in (4.25) and (4.27).
Choosing o sufficiently small, we have 0 < L < 1 if o < 0y.

Now, by the comparison principle, Theorem B.1 (i) (for which the ellipticity of A/, (4.9),

(4.10), and (4.13) can be applied), we get

w<V in RY.
Similar argument shows that
w>-V  in Bj.
Then
lw| < V.

Since
CL Co

Vi< <
Vi< L+ |z|n=2 = 1+ |z|n=2
where the last inequality follows from our choice of L = C'g, then the lemma is proved. O

Proposition 4.3. If o > 0 is sufficiently small, then, for any R > 1, there exists a unique
solution w € C(Bf) N C%*(BE \ (0Bg N {z, = 0})) of (4.19) such that

llly, 3 | < Co, (4.28)
where C depends only on the data and is mdependent of R.

Proof. The existence of a solution w € C(Qg)NC** (B} \(0BrN{z, = 0})) of (4.19) follows
by combining the theory of mixed boundary value problems for linear elliptic equations of
[25] with the estimates for Dirichlet and oblique boundary value problems for nonlinear
elliptic equations of [17] and [26]. Note, in particular, that the barrier construction of [25,
Lemma 2] works for the nonlinear problem (4.19). Then the proof is a direct computation,
similar to Lemma 4.2.

Thus, it suffices to prove estimate (4.28). We will prove (4.28) by rescaling.
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First, note that, by Lemma 4.2, for sufficiently small o, we can rewrite (4.19) in the form:
NN VRN o1 NP
div(M(x,v, Dw)) + g(x',vo(x) + 1())(_4+ +wz,)=0 1 bp,
90 — 4o
M"(z,w,Dw) =0 on S® .= {z, =0}N Bg,
w=0 on dBRNRY,

=\ 0\ resp

Vo AA o1 L o 1O I 'l 1 /n PRSI I _ e T/ —
williere Jvi alia J are deilinea U_y KL.I: } all \ ) UDPUL 1V y (o] Ll, SI1ICce I K.,L 7-1‘7'7,) =
0 in R"! x [-1,1] and by (3.19), it fo llows that F(2',ve(z) + w(z)) = 0 in R x
-+ + +
[_ 9% —9% 90 qo Tif lw(z)l < Lin R« [— 40 =% 9o *qo 1. which can be achieved by (4.20)
L 2 ) 2 J 1]. |UJ\ }I : 2 111 AU L 2 ) J Wwillitll vall DT aullictvocu UJ \‘.I: AU)
and choosing o small.
XXT el ~. A ) A p) - it A 1 i1 11 1 r 11 r. At .
yve call assulne riv > 4. Dy l"I'()p()SlElOIl 4.1 wltlh tne cinoice or € = 60, tlie Iuncriois

M(z, z, P) and B(z,z, P) := g(z',vo(z )+z)( _1 F + pp) satisfy the conditions of Theorem
4o

A.1in Bf" with the constants A\, A, and M deDendmfz only on the data, and

i

MG+ 0)ly 0,5+ xr < Co, 1B+ 0)

, li,a,8+xr < Co.
Then, using Lemma 4.2, we can apply Theorem A.1 in B; to obtain
0l o, < Cllwllyg s +0) < Co
Thus, we get
w72, < Cliwlly g 5, < Co. (4.30)

2aB+/

Let 2° € B}, 72 \ B /2- Consider the following two cases:
Case 1. |2°] < 162%. Then, denoting p := [2°]/32, we get Bs,(z°) C Bj;. Rescale

W) = gl +2pm) (4.31)
for y € B1(0 ) : Bi. Then W € C%%(B;). For y € By and z = 2% + 2py € Bs,(2°), we
have Dw(z) = DW (y), and thus

0 = div,(M(z,w(z), Dw(x))) + g(z',vo(z) + w(:v))(ﬁ + w,, (z))
o —d
= v (V& + 20 20 (1), DW (1))
+g(2” + 2py, vo(2° + 2py) + 2pW(y))(ﬁ + Wy, (v)-

Thus, defining in B; x R x R",
Ay, 2, P) = N(" + 2py, 2p2, P),

1 4.32
B(y,z,P) = g(z° + 2py, vo(z° + 2py) + 2pZ)(ﬁ + pn), (4.32)
o — 4o
we see that W satisfies
div (A(y, W,DW)) + By, W,DW) =0  in B,.
Note that, since p = |2°|/32 > 1/64, we have
1
Blp< 1< |2° + py| < 33p  fory € By. (4.33)
Also, by Lemma 4.2, (4.31), and (4.33),
Co
WL (s, < e (4.34)



FREE BOUNDARY PROBLEMS AND TRANSONIC SHOCKS 17

Note that, since p = |z¢|/32 > 1/64, then, for sufficiently small o,

NT 1. i ikt A1 LT ORI SR, . R o PO I R A 3 D WV A (I I SR /A 90\
INOW, DY roposition 4.1 witil ule Clolice 01 € = €g, alld Dy \O.LJ:}, LI1€ 1UIlCLl1OIlS 1I1 KLJ: 04)
e d el il qtir ML A 1/ i1 111 D LV 4V i X\ A AL ]
Satlsly tile COndivloils O6 1 1neorein A.l\l} 111 uI1€ Dall D1 WILUL e COnstallls A, /1y, Vi, alld
My = ||Wllo,0,0(B,) depending only on the data, and
1420 <7 e B) <
z\"y "y 0,a,B1 xR > 1+pn> p 0,a,B1 x[—M1,M1]xR" = 1+pn+1‘
Thus, by Theorem A.1(i) and (4.34) and using p > &,
Co
||W||27asB1/2 < n—1"
p
Rescaling back, we get
1 Co
1+
~[wloo,8,0) + [W0,8,0) + Plw)o0,8,@0) + 2T (W0, 0) € — =7

Note that, for any = € Bs,(z?), there holds 1/128 < p/é, < 1. Thus, multiplying the last
estimate by p"~!, we obtain

[wl$" 3 o) < Co (4.36)

Case 2. |2°] > 1620. Let z = (2/,0) € 0B}N{z,, = 0}. Then |z| > [2°|—-2% > 15]|2°|/16.
Let p = [2°]/8. Then 2° € B} (z). Define W (y) for y € Bf by (4.31). Then W € C**(By)
and satisfies

div (A(y, W,DW)) + B(y, W,DW) =0  in Bf,

A"(y,W,DW) =0 on I'y:= 0B} Nn{z, =0},
where A(y, z, P) and B(y, z) are defined by (4.32) in B;". Note also that (4.33) and (4.34)
hold in Bj". Then, by Proposition 4.1, we use (4.35) to see that function (4.32) satisfies
the conditions of Theorem A.1 in B; with the constants A\, A, M, and My = [|[W||pe(p,)
depending only on the data. Moreover, using the fact that |2'| > [z|/2 for z € Bf(z) in
(4.7) and the other estimates of Proposition 4.1, we get

Co

”A(.alﬂo)”l,a,Bf—XR S 1 +pn

By (3.4),

_ Co
X+ 1P Bllo o, 5 x[— a1, 1) xmn < 1

+ pn+1 !
Thus, by Theorem A.1(ii),
Co
||W||2,a,B% < P
Rescaling back, we get

1

Co
;[w]o,o,B;(z) + Wl o Bt + oW o Bt + p1+a[w]2,a,BP+(z) <

pnfl'
Multiplying this estimate by p"~! and using that 1/128 < p/d, < 1 for every y € B;p(z),
we get

lw]|"2, < Co. (4.37)

aBJ(z) =
Estimates (4.30), (4.36), and (4.37) imply (4.28): Indeed, it only remains to estimate
|Dw(z) — Dw(y)|

—1+
% [z —yl*
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for z,y € BE/Q in the case > 2, |z| > |y|, and |z — y| > |x|/32. Then |z — y| > 4, /64. As
(4.30), (4.36), and (4.37) imply |Dw(z)| < Co /67! for any 2 € BE/z, we get

1 1
oo |Duz) ~ Du(y)| e BT T
Oz y ta < Coéy,~ ta v < (Co.
’ |z —yle oy
The uniqueness follows from the comparison principle, Theorem B.1(i). |

Theorem 4.1. There exist 0 > 0 and C depending only on the data such that, if o < oy,
there exists a unique solution w € C**(R™) of the problem:

div(N(z,w,Dw)) =0  in R,

N"(z,w, Dw) = 0 on {z, =0}, (4.38)
lllfoRy < oo
satisfying
—2
lwlly’s Ry < Co. (4:39)

Proof. Fix a sequence R; — oo as j — oco. Let
wg; € C(B,)NC**(Bf. \ (0Bg, N {z, = 0}))

be the solution of (4.19) with R = R, constructed in Proposition 4.3. By (4.28), a subse-
quence of up; converges in C*% (B—f{)) A further subsequence converges in C?'% (By;), etc.
By the diagonal procedure, we extract a sequence wg;, which converges in C?*% on every
compact subset of R?. The limit w is thus a solution of (4.38). By (4.28), the limit w

satisfies (4.39) with the same constant C as in (4.28).
The uniqueness follows from the comparison principle, Theorem B.1(ii). O

Corollary 4.1. Let o9 and C be as in Theorem 4.1, and o < 09. Then there exists a unique
solution of problem (3.23)—(3.24) satisfying (3.18).

This is because v is a solution of problem (3.23)—(3.24) satisfying (3.18) if and only if
w :=v — vo(y) is a solution of (4.38) satisfying (4.39).
Corollary 4.1 and Lemma 3.1 imply Theorem 2.1.

5. STABILITY OF FREE BOUNDARIES

In this section we prove Theorem 2.2.

For the supersonic perturbations ¢~ and ¢~ in Q satisfying (1.1) and (2.16), we define
their extensions (still denoted) ¢~ and ¢~ to the whole space as in Section 3.1, and consider
the corresponding functions g and § defined by (3.3), and F' and F' defined by (3.5) for ¢~
and ¢, respectively. Furthermore, we consider the solutions ¢ and ¢ of Problem A for ¢~
and ¢~ whose existence is provided by Theorem 2.1, the functions

u(z) =9 (z) —p(z) in QF(p),
a(z) = ¢ (z) — () in QF(Q),
and their hodograph-transform images v,o € C**(R") defined by (3.15). Our goal is to

prove that there exists a function ¥ with the properties described in Theorem 2.2 such that,
for any ; and ¢, as above,

~ -2 — ~— —1
o — ol R <@ (lle™ = &I (5.1)
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if ¢ > 0 is sufficiently small. Since f(z') = v(2',0) and f(z') = 6(a',0), estimate (5.1)
implies (2.20), thus Theorem 2.2.

If a function ¥ described above does not exist, then there exist ¢, and ¢, ,fork=1,---,
satisfying (1.1) and such that

50; Sa i g go,
— ap(n—1 1
low =@ Ismgy < 7. (5.2)
~ 1(n—2
llok = 0xll5 o gn > €> 0.

In order to derive a contradiction, we notice the following fact.

Lemma 5.1. Let £ > 0. A set Ky := {v € C**(RY}) : ||v||§”;Rn < M Y} is compact
in the space C*P(RT) with the norm || - ll2.8,m7 for 0 < B < a, where || - [[2,5,rr is the
non-weighted Hoélder norm.

Proof. Let v; € Ky for j =1,2,.... By astandard argument, we can extract a subsequence
(still denoted) v;, which converges in C?# on every compact subset of R . Denote the limit
1 mi ( ) -~ AT Ty . i 1 i1 i . N N .
by v. Then iiviiéljd,Rﬁr < M. It remains to show that [jv; — vll2,8,rr — 0 as j — oo.

Fix 0 < e < 1. Then ||vj||2’a’R¢\Bl/s(0) < Me*, and the same estimate holds for v. Also,
there exists jo such that, for j > jo, ||v; — v||2”37Rint(0) < g®. Then, for j > jo, we have

llvj — vll2,8,r7 < Ce”, and the assertion is proved. O
Denote
wi () = vg(z) — vo(x),
Wy () = () — vo()

By Theorem 4.1, both wy, and wy, satisfy (4.39). From (5.2),
i — i)y’ R = € > 0. (5.3)

Denote by Ag(z, P), Bi(z', z, P), and N (z, z, P) the functions (3.10), (3.22), and (4.3)
corresponding to ¢, for k = 1,2. Similarly, let flk(ac,P), Ek(x’,z,P), and Nk(x,z,P)
correspond to @5 . Each Ny, and wy, satisfy (4.17)~(4.18). The same is true for Ay and .

From (5.2), (4.39) (applied to wg, W), and Lemma 5.1, by selecting a subsequence (still
kept the same notation), we have

¢ 29 in C*E(RYL), (5.4)
¢ =+~ in C*E(RY), (5.5)
wy, > w  in C*2(RY), (5.6)
W —w  in C*2(RY), (5.7)

and ¢~ € C?%(1,) satisfies (2.16) with o < 09, and w and & satisfy (4.39). Also, both
w and w satisfy (4.17)—(4.18), where N is defined by the limiting function ¢~ through the
expressions (3.10), (3.22), and (4.3). Then, by Theorem B.1(ii), w = .
On the other hand, by (5.3),
lo = @Iy Ry > € >0. (5.8)

This contradiction leads to (5.1), and thus Theorem 2.2.
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6. PERTURBATIONS WITH LOWER AND HIGCHER REGULARITY

We now extend our results to the case that the regularity of the steady perturbation is
only C*1, and we also introduce another nonlinear approach to deal with the existence and
stability problem of multidimensional transonic shocks when the regularity of the steady
perturbation is C®% or higher.

6.1. Lower Regularity. If, instead of (2.16), we assume only

_ _ 1
le~ = @y Il g) <o, (6.1)

then we obtain a solution of Problem A, which belongs to C*® for o € (0,1). Precisely, if
we fix any a € (0, 1) then the existence part of Theorem 2.1 holds with estimates (2.17)

—2
lp = &gl e < Cio, (6.2)
and
118" R < Cao (6.3)

bt acc PRI I, PR,

I‘Ul LIIC plUUJ. we lllbb assulne S() c U bdblblylllg \U J.} dIlU l;IlUll ].UllUW l;IlU Sarne bLIlﬁlIlﬁ
as above. In particular, Theorem B.1 and Lemma 4.2 are obtained without changes in the
proofs. In Proposition 4.3, we do the same rescaling and use the Holder gradient estimates
of [24]. For the general o~ € C1! satisfying (6.1), we approximate ¢~ by ¢, € C? with the
same estimates (6.1) and then send a subsequence of the corresponding solutions ¢ and
their free boundary functions f,, to a limit, using Lemma 5.1 and estimates (6.2) for ¢y
and f,,.

6.2. Higher Regularity. If, instead of (2.16), we assume

- —j(n—1
le™ = @5 llsa, <o (6.4)
then we get the following stronger stability theorem.

Theorem 6.1. There ezist positive constants oo and C depending only on n, v, a, |Vy|,
and qi such that, if o < oo and smooth supersonic solutions ¢~ (x) and ¢~ (z) of (1.1)
satisfy (2.16), then the unique solutions p(x) and ¢(x) of Problem A for ¢~ (z) and ¢~ (),
respectively, satisfy

2) (=1
1o = Folly o mns < Clle™ = @71 ih (6.5)
where f,(2') and f;(2') are the free boundary functions (2.18) of p(x) and @(x), respectively.

In fact, in this case, problem (4.17)—(4.18) can be solved by using the implicit function
theorem as follows. _

Denote by C™(¥)(Q)) the set {u € C™*(Q) : ||u||£:)a o < 0o} with m a nonnegative
integer, a € (0,1), and x > 0. Obviously, for the case & = R" or @ = R}, the set
C™ (%) (Q) with norm || - ||7(§)a9 is a Banach space.

Consider the map ®, which assigns to (9=, w) € C>*=D(R") x C*>*("=2)(R%) the
left-hand sides of (4.17) and (4.18), where N is defined by ¢~ through the expressions (3.10),
(3.22), and (4.3). It is easy to see from Proposition 4.1 that ® is a C* map from

03’0"(”71)(1:{“) % CQ,a,(n72)(R—i)

to OO+ (RE) x CL*(W(R"~1), for which the higher regularity o= € C%*("+1)(RY)
is required. Also, from the definitions,

(5 ,0) = (0,0).
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In order to apply the implicit function theorem, it suffices to show that the partial Fréchet
derivative ®,, (g ,0) is invertible, that is, to show that the fixed boundary value problem
for the linear elliptic equation:

Z B DUO i =1 in i:

3,j=1

n
> By, (Dvg)W,; =h  on OR!

has a unique solution W € C**("=2)(RY) for any (¢, h) € CO*+D(RT)x CLo (M (R,
and W satisfies o o o
Wl rn < CUloarn + 1AL, gamt)-

To construct such a solution, we can repeat the argument of Section 4, that is, first construct
solutions in half-balls (with zero Dirichlet data on the half-sphere) and obtain estimates
independent of the radii by using the comparison function introduced in Lemma 4.2 to
obtain the weighted L*° estimates and then rescale as in Proposition 4.3 to obtain the
weighted Holder estimates, and finally send R — oo as in the proof of Theorem 4.1. The
uniqueness follows from the obvious comparison principle for solutions with zero limit at
infinity.

Now, from the implicit function theorem, there exist oy and p > 0 such that, for any
o~ € C3(=1)(R") satisfying

Hw—%mam<%, (6.6)
there exists a unique w € C>*("=2)(R7) with ||w||2 a, Rn < p such that ®(¢~,w) = 0 and,

moreover, the function ¥ which assigns w to ¢~ is a C’1 function from
— 3,0,(n—1 . — — -1
U:={p~ € C**" DR : o™~ ¢y 5l e < o0}

into C%®(n=2) (R_’j_) This implies the existence and uniqueness of solutions in Problem A
with o defined above and the stability in the form:

_ ~— —1
1o = FollS pnms < Clle™ = @7 l15 R (6.7)

where ¢~ and ¢~ are the extensions of the supersonic perturbations from {2; to R defined
in Section 3.1. Estimate (6.7) implies (6.5) by the linearity and continuity of the extension
operator.

APPENDIX A. LOCAL ESTIMATES FOR SOLUTIONS OF THE CONORMAL BOUNDARY VALUE
PROBLEMS

The following facts follow by combining some standard results on elliptic equations.
Theorem A.1. (i) Let B, := B,(0) C R™. Letu € C*(B1) be a solution of the
equation
div A(z,u, Du) + B(z,u,Du) =0 in Bj.
Assume also that
llullLo () < Mi. (A1)
Denote D := By x [-M;y,Mi] x R" and D, , := By x [-My,M;]. Assume that
A(z,z,P) and B(z,z, P) satisfy

IAC, - Pllo,a,p.,. < M(1+|P[) for any P € R",
[Doh, Ao D73, D Ao < 01 (42)
[|(1+ |P|2)_1B||07a7p <M forany P€R".
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Assume that A(zx, z, P) is elliptic, i.e., there exist A > X\ > 0 such that

o~ P\e.£. < Al£]2 for any £ R (» » Pl e D
<48 = 435 Joir S S AV ey S

1 9 5 £

—~~
W
~=

Ve

Ve12 « N7 At (o
& < 4, (@

Then u € CZ’O‘(Bl/Q) and there exists C depending only on n, A\, A\, M, M;, and «
such that

lull2,0,8,/2 < CllullLe=(s,) + 1Dz A( -, 0)llo,0.p, . + 11+ [PI*) 7' Bllo,a,n)-

(ii) Let Bf = B,.(0)N{x, >0} C R". Let u € C*(B;") be a solution of the conormal
boundary value problem:
divA(z,u, Du) + B(z,u,Du) =0 in B,

I (A 4N
A™(x,u, Du) =0 on Iy := 6Bl+ N {z, = 0}. (A4)

Let u(z) and A(z, z, P) satisfy all the assumptions of (i) above in the domains By,
Dt := Bf x [-Mi, Mi] x R", and D}, := Bf x [-M;y, My]. In addition, assume
that the function (x',z) — A((2',0), 2,0) satisfies

11+ 1P Ally a0 < M, (A5)

where D' := (By N {zy, =0}) x [-My,M1] x R™. Then u € CQ’O‘(BI"/Q) and there
exists C depending only on n, A\, A, M, My, and « such that
lullz,a,57, < Cllullpe(si) + DA )0, + IAC 0)lla; .
(@ +1PI*) ™" Bllo,a,p+),
where D, , == (By N {x, = 0}) x [-My, M;].

Proof. We sketch only the proof of assertion (ii) since the proof of (i) is similar. The
constant C' below depends only on n,\,A, M, M, and «, and may be different at each
occurrence.

Using condition (A.1) and the assumptions on A(z, z, P) and B(z, z, P), we can apply a
local version of the estimates in [24, Section 5] to obtain

IDully o, < C. (A.6)

Now we rewrite the equation in (A.4) in the nondivergence form:

n n
Z Aéj (z,u, Du)ug,o; + Z (AL(z,u, Du)uy, + AL (z,u, Du)) + B(z,u, Du) = 0.

i,j=1 i=1
Using (A.1)-(A.3), (A.5), and (A.6), we can apply the local estimates from the proof of [24,
Theorem 2] to obtain
lully o g+ < C. (A7)

3/4
Now, in B;“/B, we can rewrite the conormal boundary value problem as a linear problem:

n

Z i (2) Uz, + Zbi(fﬁ)um = f(z) in Bi",
i=1

4,j=1

Z Cl(m)u.’tz = g($) on Fo = (‘)B1+ N {:En = 0}7
=1
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where

Qi (iL') = A;Lol (:L'a u(x), Du(a:)),

fle) ==Y AL (z,u(x),0) — B(x,u(x), Du(x)),
=1
pl

ci(z) = / A" (z,u(z), tDu(z))dt,
0

g(z) = —A"(z,u(x),0).

From the ellipticity of A, condition (A.2), and estimate (A.7), we have
Z laijlly a5, + Z 1billo,a, 57, + Z leillya,m,, < C,
2,7 k3 1
Cn(ml70) > A

155, < C (IDAC O, + Wttty 1)

< C (I1DAC, O)llg o, + 11+ P12 B]
||g||l,a,B5/8ﬂ{mn=0} < C”A(" ‘70)”1,04,13;,2-

O,a,D‘*') ;

Now assertion (ii) follows from the standard linear estimates, see e.g. [17, Lemma 6.29]. O

APPENDIX B. COMPARISON PRINCIPLES FOR THE CONORMAL BOUNDARY VALUE
PROBLEMS

We now show the following comparison principles for the conormal boundary value prob-
lems.

Theorem B.1. (i) Suppose uy,us € C(B_E) NCY(B}), and

div A(z,u1, Duy) < div A(z,us, Dus) n BE,
A™(z,u1, Duy) < A™(x,us, Dus) on Tg:= 0B}, N{z, =0},
U > Us on I'y := 8B]; N{z, >0}

in the weak sense, i.e.,
/ A(z,u1,Duy)Dp(z)dz > / A(z,u2, Dus)Dyp(x)dx (B.1)
By By

for any nonnegative o € C* (B_];) satisfying o = 0 on I'y. Assume that
A,A.,DpA e CY (B, xR x R")

with “(AZ’DPA)”LOO(B;;XRXR") < M < oo and that the operator A is elliptic, i.e.,
(A.3) holds for all (z,z,P) € Bf; x R x R". Then

Uy > Us n BE.
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(i) Let n > 3. Suppose ui,us € CH*(R7Y) with ||uk||§na_i{)1 < My < oo for k= 1,2,

and
divA(z,u1, Duy) < div A(z,us, Dus) in RY,
A™(x,u1, Duy) < A™(x,us, Dus) on T'g:={z, =0}

in the weak sense, i.e.,

/ A(x,ul,Dul)Dgo(m)dmZ/ A(z,u2, Dus)Dyp(x)dx
./R"‘_*'_ ./R"_i_

for any nonnegative p € C}(R™). Assume that

A A D A~k D DN
ﬂ,[‘lz,L/PﬂCL/ \L)R)\J.\,/\].\; }

with |DpA(z,z, P)| + |(1 + |z|™)A.(z,2, P)| < M < oo, for some m > % and for
any (z,2,P) € B, x R x R™ with |z| + |P| < M. Assume that the operator A is
elliptic, i.e., (A.3) holds for any (z,z, P) € BE x R x R"™. Then

Uy > Us in RY.

Proof. (i). We follow and modify the proof of [17, Theorem10.7(ii)] to solve our conormal
boundary value problems. Let
W= Uy — Uj.
Then
w <0 on T,

and, from (B.1),

n

/B S a @ e+ S i@, | dr <0 (B.2)
=1

R \i,j=1
for any nonnegative o € C* (B_;g) satisfying ¢ = 0 on I'y, where
1
aij(z) = / A, (2, (1 = t)ui(z) + tus(z), (1 — t) Dur (z) + tDus(z))dl,
?

. (B.3)
bi(z) = /0 Al (z, (1 — t)uy (x) + tua(z), (1 — t)Duq (z) + tDus(z))dt.

Note that a;j,b; € C(Bf) with [[(aij,b:)l| o) < M, by the assumptions.
R
We need to prove that w < 0 in B},. By approximation, (B.2) holds for any nonnegative
¢ € WH2(BY}) satisfying ¢ = 0 on I'y. Thus, for any € > 0, we can substitute

wt
wt +¢

into (B.2) with wt = max(w,0). Then, repeating the calculations in [17, page 270], we

obtain
+
/ Dlog (1 + w—)
BT &
+

R
Since log (1 + w_) =0 on I'y, it follows from the Poincaré inequality that
€

wt
1 1+ —
Jrylos(0+5)

R
Letting ¢ — 0, we conclude w = 0 in B}, i.e., w < 0.

(p:

2
dz < C(A,\, M, R).

2
dz < C(A,\, M, R).
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(ii) Similar to the case of the half-ball, we consider the function w = us — uy. It satisfies

Also,
/ \
[$ s \
/ ;i ()W, Op, + bi(2)wy,. | de <0 (B.4)
Jan | 2 Q300 i (B.4)
T o\4,j=1 i=1
Lo s 1 mrndicn A~ — Y1/ NN —els nern o~ and L ana AL Ad Lo, /D 9) Nlndry 4L nd .. —
101 auy 1011 lt:gau\/t: k{/’ < L/C \1\, ), WIICLC u’l] alll U; alt Uucliiicu Uy \L) d} INOULE ullau u’l]) U; <
C(R"™) with

|aij ()| + (1 + |=|™)bi(z)| < M for any =z € R, (B.5)

by the assumptions.
By approximation, (B.4) holds for any nonnegative ¢ € W12(R") satisfying ¢ = 0 a.e.
on R% \ Bg(0) for some R > 0. Thus, for any € > 0 and R > 0, we can substitute

+
w 2

= ot yeh

into (B.4), where ng(z) =1 (%) with n € C2°(R") satisfying

n>0 in R",
n= 1 in Bl(O),
n=0 in R"™\ By(0).

Then

0<nr <1 in R7,
c .
|Dnr| < 7 I R", supp(Dnr) C B2r(0) \ Br(0),

R = 1 in BR(O)7
n=0 in R"™\ Byr(0).

Substituting ¢ defined above into (B.4), we use the summation convention to get

A

2 2
en en
+ ot R +ot R
<a’ijwz-wzjﬁ+bjw We, 7o 3
. i w i (wt 2
" (wt +¢) (wt +¢)

+ w* + w*
+2a;;w; MR(MR)z; pye—— + 0w NR(MR) e, m) dzr < 0.
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iy
[1og (14 45)[ [1og (14 45)[
A Dlog ([1+— | de <X [ n%|Dlog|14+ — )| dz
JBf | \ e /| Jrn \ e /|
- [ IDU’+12 da
N jRn R(wJr +¢)?
2
En
< [y (oot g )
C(n, M, A L " g (14 5|4
< -
(n )/BQR 1+|x|m w++ ‘ ng
+C(n,M,A) wh |[Dw'| 4 i jwt|? .
eR B2R\BR( wt +¢ 1+ |z|™ wt +6)
1 3 w2 :
< C(n,M,A) </ 2d$> / Dlog <1+) dz
Rn 1+|"'E| m Baogr £
C(n,M,A) 23
L Cn, M, A)

o Dt | )
w' | Dw" |+ ——— | dx
e’R Bar\Br ( 1+ |z|™

< C(n,M,m,A\) / Dlog (1 + > dz
Bar €

C(n, M, M, A) R" R"
+ 2R Rrn—2Rn—1 + RmR2(n—2)

where, in the last inequality, we used the following estimates:
M1 Ml

lw(z)| < T2 |[Dw(z)| < T (B.6)
Thus, we obtain
wt\ [? 1
/B;5 Dlog (1 + ?> de < C(n,m, M, My, A, \) (1 + m) .
Since n > 3, then sending R — oo yields
wt\ [?
/n Dlog (1—1—?) de < C(n,m, M, M, A, N\). (B.7)
il

Now we extend w to R"™ by the reflection w(z', —z,) := w(z’, z,,) for z,, > 0 and continue
to denote the extension by w. Then w € C%!(R"), and (B.6) holds in R™ (the estimate of
| Du| holds a.e.). Also, from (B.7),

n w+ 2
Dl 1+ —
o s (125
Now consider the functions
wt wt
v(z) := log <1 + ?> , vr(z) := nr(z)log (1 + ?>

in R", where R > 0 and npg is defined above. Then v € C*!'(R") and vg € C%!'(R"). Thus,
we use n > 3 to obtain

dx < C(n,m, M, My, A, N). (B.8)

(/n IvRIf—"zdx> B < C(n)/n |Dvg|*d. (B.9)
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Since

1 M,y 1

|v(z)| < ~wh(z) < — -

€ e 1+|z]
i d N~ T2/MN\ L. /M QY o a1 gt PRSI TSI I, R
ana v c L \I\, } Dy \D.O , WE USC UIIE SlIIlllal properuies 01 7/r as 11 LI1e €5SLlIates above
PR BN, SRR AR IS N A [ RN NPT MU, IR PR VS » 3 e ) NPT » T
ana 1 <~ o9 L0 5€€ Lllat ULlle 1C1L-Ilalld alld I'iglu-11and s1daes Ol \Dtﬂ) comverge, as 1 — 0, 1o
the left-hand and right-hand sides of the inequality

n—2

( |v|%dm) ' SC(n)/ |\ Do|2da,

\Y I / v Iy

respectively. Now, by (B.8),

wt
1 14+ —
oo (5)

Since this is true for any € > 0, we conclude that w™ = 0 in R?, i.e. w <0. O

2n
n—2

dx < C(n,m, M, My, A, )\).
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