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Abstract

The Discontinuous Galerkin (DG) method provides a powerful tool for approx-
imating hyperbolic problems. Here we derive a new space-time DG method for
linear time dependent hyperbolic problems written as a symmetric system (in-
cluding the wave equation and Maxwell’s equations). The main features of the
scheme are that it can handle inhomogeneous media, and can be time-stepped
by solving a sequence of small linear systems resulting from applying the method
on small collections of space-time elements. We show that the method is stable
provided the space-time grid is appropriately constructed (this corresponds to
the usual time-step restriction for explicit methods, but applied locally) and
give an error analysis of the scheme. We also provide some simple numerical
tests of the algorithm applied to the wave equation in two space dimensions
(plus time).

1 Introduction

The Discontinuous Galerkin (DG) method was first proposed in 1973 [13] for
approximating the scalar neutron transport equation. Since then the method
has been analyzed (see [11, 10] for an analysis of the original method) and
extended to a wide range of applications. In particular, for time dependent
problems, the usual approach is to use a method of lines by first using the DG
scheme to approximate the problem in space and then to apply an appropri-
ate time-stepping scheme to the resulting system of differential equations. A
particularly powerful combination is to apply the DG method in space and a
Runge-Kutta scheme in time to obtain an RKDG scheme (see [1]). This phi-
losophy has been used by Hesthaven and Warburton [7] to implement a high
order (up to 10th degree piecewise polynomials in space) RKDG scheme for
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Maxwell’s equations. Furthermore, the method uses a tetrahedral spatial grid
to provide good geometric approximation. The spatial DG approach can also be
used to couple blocks in pseudospectral codes (see [2] for Maxwell’s equations).
In addition, finite volume schemes can be viewed as low order DG schemes,
and this observation is used to prove convergence results for an explicit finite
volume method for first order systems in [16].

One disadvantage of the RKDG and explicit finite volume approaches is
that the time step is governed by the smallest elements in the mesh via a CFL
condition. For grids that are refined to fit geometric features or to control error
in the discrete solution, such methods can become very time consuming.

The explicit time step (or CFL) constraint can be avoided. For example,
Hughes and Hulbert [9] suggest using a space time grid formed by the tensor
product of a spatial grid and a time grid. A DG scheme in space and time
is then applied to obtain an implicit discretization of a hyperbolic problem
necessitating the solution of a large linear system at each timestep.

Methods such as those discussed above using DG in space can easily incor-
porate spatially varying coefficients resulting from an inhomogeneous medium.
This is desirable since such media often arise in practice. For example, acoustic
waves impinging on a penetrable object such as the human torso (i.e., waves due
to an ultrasound source) encounter differing acoustic properties in the body.

Our goal is to obtain a semi-explicit method for time-stepping the acoustic
wave equation or Maxwell’s equations written in symmetric hyperbolic form.
By semi-explicit, we mean that only matrix problems derived from smali or
local collections of elements need to be solved. In addition, we want to be able
to take time-steps controlled by a local CFL condition (i.e., larger time-steps
for larger elements). Finally, we want the method to handle inhomogeneous
media.

The approach we take is motivated by the work of Falk and Richter [5] who
proposed an explicit discontinuous Galerkin method for symmetric hyperbolic
systems with smooth coefficients. In particular, we extend their space-time
discontinuous Galerkin method to one which generates a piecewise polynomial
approximation over individual simplices, as opposed to more the complex poly-
hedra used in [5]. We then show how this extension allows us to treat a class of
inhomogeneous medium problems involving discontinuous coefficients, and how
it can be timestepped by solving only local problems with a locally determined
stabilty constraint.

The layout of the paper is as follows. In the next section (Section 2), we
give details of the symmetric system we propose to solve and present the discon-
tinuous Galerkin method. In Section 3 we discuss our mesh assumptions and
briefly comment on how to generate an appropriate mesh using an advancing
front technique for unstructured grids analyzed in [4]. Next, in Section 4 we
derive some stability estimates for the discrete problem, and prove existence
and uniqueness of the discrete solution. We then prove various error bounds
for the solution in Section 5. Some of these bounds require more specialized
assumptions (satisfied by the grids we use) than those outlined in Section 2.
The symmetric Friedrichs system imposes boundary data via an auxilliary ma-
trix function on the boundary. In Section 6 we show how to construct a fairly



general class of boundary matrices for the acoustic wave equation which will be
the example used in our numerical experiments in Section 7. Finally, in Section
8 we summarize our experience with this method and future plans.

2 Symmetric Hyperbolic Systems

Suppose € is a bounded Lipschitz polyhedral domain in RY, N > 1, and let
u denote an m-vector function of position x €  and time t € (0,7] (i.e.
u(x,t) € R™) which satisfies the symmetric hyperbolic system

N
Lu=Aui+ Y Ajus, +Bu=f inQp=Qx(0,T] (1)
j=1

Here the subscripts ¢ and z;
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matrices, all assumed to be to be symmetric and independen o
In addition, we assume that A is positive definite and piecewise constant over
a polyhedral subdivision of €2, that Aj, j =1,..N are constant, and that B is

positive semi-definite with entries in L>(€2). These assumptions are motivated
by the problems we wish to solve, in acoustics and electromagnetism, and a
desire to avoid nonessential details in our analysis.

On a (hyper)planar surface S in the space-time domain with normal n =
(ng,n1,...,nn)7, the quantity Mu,

N
M=mA+Y njA;, (2)
j=1

plays the role of a flux across S in the direction of n. Taking S to be the
interface where A is discontinuous, we have n; = 0 and M becomes

N
D = Z njAj,
j=1

which is well-defined on S apart from sign (corresponding to the two possible

orientations of n) since the A;’s are continuous. Accordingly, we require that

the jump in w across the interface, denoted [u], satisfy D[u] = 0. It follows that

[u” Du] = 0 also. For the applications of interest to us, D is singular on such

interfaces (characteristic surfaces); thus discontinuous solutions are anticipated.
We augment the symmetric system (1) by the initial condition

u=uy fort=0andx e (3)
where ug is a given function, and by boundary conditions of the form
(D—N)u=g onlx(0,7T]. (4)

Here I' denotes the boundary of Q, D is formed as above using the components
of the spatial unit outward normal n, = (ny,ng,...,ny)7 € RY toT, Nis a



piecewise constant m x m matrix function of position, and g is an appropriate
given vector function (for a discussion of boundary conditions for the wave
equation see Section 6). The matrix N is chosen so that (4) is equivalent to
whatever is the desired boundary condition. It is not unique, but for Friedrichs’
theory of symmetric hyperbolic systems [6], it must satisfy the following two
conditions,

N+N' > 0 onlx(0,7], (5)
ker(D — N) + ker(D+N) = R™ onT x (0,T]. (6)

Of these conditions, only the first is used directly in our finite element analysis.
In this analysis, we shall assume f € (L?(Q7))™, uo € (L*(2))™, and g €
(LAD))™.

The initial-boundary value problem (1),(3),(4) satisfies an energy equality.
Writing Q@ = Uleng where A is constant in each €y, suppose g =0 and f = 0.
Then multiplying the equation (1) by u’ and integrating over 7, we obtain

L N
0 = Z/ u’(Aus + Y Ajuy, + Bu)do
/=1 Q[X[O,T] jzl
1 Lor
- = / (u"(T) Au(T) — u” (0)Au(0)) dV + ) / / u'DudA | dt
2 Q =170 ()
+/ u” Bu do.
Qr

Applying the jump condition D[u] = 0, integrals over interior surfaces I'(£)
cancel one another. Thus using the boundary condition (4) and collecting terms,
we obtain

/QuT(T)Au(T) v+ /OT (/FuTNudA> dt+2/QT u! Budo
- /Q uT(0) Au(0) dV.

Since the symmetric part of N is positive semi-definite and B is positive semi-
definite, we obtain the basic energy inequality

/ o (T) Au(T) dV < / u” (0) Au(0) 4V,
Q Q
which our finite element method will preserve.

The discontinous Galerkin method we propose in this paper uses a family
of regular finite element meshes {73, },>0, each consisting of (N + 1)-simplices
of maximum diameter h covering the space-time domain Q7. We denote the
diameter of a simplex K € 7, by hx and the diameter of its largest inscribed
sphere (or hypersphere) by px. The condition that {7} is regular means that
there exists a constant C' independent of K and 75, such that

hx

— < (C for all K € 15, and all 7.
PK



To facilitate construction of a numerical scheme with high order accuracy in
the vicinity of discontinuities, we require all discontinuities in A and N to lie on
element boundaries (not possible for the method of [5], which requires element
boundaries in the interior of 27 to be inflow or outflow, as described below).
We denote the boundary of a space-time element K by I'(K) and its unit

=

outward normal by n = (: ) here n, is the spatial part of the normal. It

— —/ T\ /TN 7o\

[i(K) =T(K) \T(K), (8)

and e tend these deﬁmtlons to more general polyhedra in the obvious way. In
di

(u,v)g = /u-’udV, (u,v)g = /u-'udA, (9)
JK Js

where S consists of one or more faces of I'(K). Also, we denote the HP(K) and
HP(S) norms by || - ||p,x and | - |, 5, with p omitted when it has value zero.

The following integration by parts identity, valid for differentiable functions
4 and v, underlies our method:

(Lu,v)k = —(u, Lv)k + 2(Bu,v) + (u, Mo)p(g), (10)

where M is as in (2). We decompose M into a sum M = MT + M~ of symmetric
matrices where M7 is positive semi-definite, and M~ is negative semi-definite.
In general this decomposition is not unique, but we adopt the rule that if
M itself is semi-definite, then we always take one of the summands M* to
be zero. In the case where M is indefinite, a classical way to obtain such a
splitting is to write M = Q(A* + A7)Q” where @ is an orthogonal matrix of
eigenvectors of M and AT and A~ are diagonal matrices having, respectively,
the positive and negative eigenvalues of M on the main diagonal. Then we
take Mt = QATQ”T and M~ = QA~QT. Although this choice is sufficient for
theoretical purposes, other choices of M and M~ are possible provided the
null spaces of Mt — M~ and M are identical. The best choice of M* for wave
propagation is an open problem [8], and we shall describe the splitting used in
this paper for the acoustic wave equation in Section 6 (only in the case n; = 0
since that is all our algorithm will require).

Since M is piecewise constant on element boundaries under our mesh as-
sumptions, we may categorize the faces of K as follows:

e M is negative definite (so M = M~). The set of all faces in I';(K) on
which M is negative definite is called the “inflow boundary” for K and
denoted T'jp(K).

e M is positive definite (so M = MT). The set of all faces in I';(K) on which
M is positive definite is called the “outflow boundary” for K and denoted
Cout (K).



e M is indefinite. The set all faces of I';(K) on which M is indefinite is
denoted Tjpq(K).

We note that on I'.(K), M reduces to D which for our applications is always
indefinite, though it need not be so in general. In addition, we extend the
definitions of I'iy, I'oyt, and T'jng to a union of simplices in the obvious way, e.g.,
Iin (K7 U K3) is the portion of I'(K; U K2) where M is negative definite.

On an element K, we define the fundamental bilinear form for the method

by

ar(u,v) = —(u,Lv)g +2(Bu,v)x + (u, M o), k)
_ 1
+(Uext, M V)1, (k) + 5(('\' + D)u, v)r, (k) (11)
where u,v € (H'(K))™ and ey is the value of w on the adjoining simplices
exterior to K. Equivalently, using (10) we may write this as

ag(u,v) = (Lu,v)k + (M™ (Uext — ©), V)1, (k) + %((N = D)u,v)r, (k). (12)

if a face of I'(K) lies on the initial ¢ = 0 surface then wuey; is given by the initial
data (3). On K, an exact solution u € (H'(K))™ of (1),(3),(4) together with
the interface condition D[u] = 0 satisfies

1
ak(u,v) = (f,v)Kk — 5(97”)1“5([() (13)
for all v € (HY(K))™.

The numerical scheme is now obvious. Let P,(K) denote the set of polyno-
mials of maximum degree at most p in (¢,z1,---,xy). We seek uy such that
up|k € (Pp(K))™ for each element K € 75, and such that

axc (1) = (F 0n)ic — 30, 08)r, ) (14)

for all vy, € (P,(K))™. At t =0, wp ey is taken to be the (L?(Q))™ projection
of ug (this can be computed element by element). If the initial data is smooth,
the interpolant can alternatively be used.

3 The Space-Time Grid

In general, use of (14) with an arbitrary space-time grid will result in a cou-
pled system of equations over the entire space-time region that must be solved
simultaneously. However, for an appropriately generated mesh, the solution
procedure can be reduced to a semi-explicit process, involving a sequence of
local problems on small groups of elements termed “macroelements”. Our ad-
ditional mesh requirements are as follows:

e The simplices in 75, can be grouped into non-overlapping macroelements
{K?}, each a union of a uniformly bounded (independent of h) number



of simplices, with the property that the macroelements can be ordered
explicitly with respect to domain of dependence. By this we mean the
macroelements can be ordered K1, K, ... such that

Din(Ki) C Tin(Q7) U Doyt (Uj<i K).

(Thus T (K = () for each macroelement.) In oceneral. a snace-time mes
(Thus I' ¢ (K) = 0 for each macroelement,. ) In general, a space-time mesh
which admits such an ordering will admit many such orderings, but the
solution is independent of the choice of the ordering.

e The mesh is locally quasi-uniform in the sense that the ratio
max g - hi ~/ ming hg is bounded away from zero and infinity, inde-
pendent of K and the mesh 7, to which K belongs.

Since the solution on a given element is only coupled to other elements via
indefinite surfaces (I'j,q(K)) or inflow boundaries (I'j,(K)) we see that the
ordering assumption implies we can solve the discrete problem successively first
on K, then on Ko, etc.

Note that the assumption of an explicit ordering imposes a CFL like time
step restriction. A face is an outflow face of an element K if M = M™ there.
Since M = An; + D and A is positive definite, we see that a face with normal
(ng,n1,...,ny) will be an outflow face if n; is suffiently close to +1. The time-
stepping scheme chooses the elements in order to satisfy the explicit ordering
assumption with a time-step that keeps the grid regular (so very flat elements
are avoided).

We also make two additional stipulations on the mesh that we shall use in
our analysis:

e The eigenvalues A(M) of M are uniformly bounded away from zero on
all inflow and outflow boundaries. This, together with the upper bound

A(M) < \/p(A)2 + 2 p(A;)?, will imply that our error estimates in terms

of weighted norms involving M are equivalent to standard Sobolev norms.

e For each simplex K C K, I',(K) consists of at most one face, and I'(K)
has a nonempty intersection with T'y, (K) U Tyt (K).

We now address the question of how to generate a desirable grid which
satisfies the assumptions we have imposed. One possible approach would be to
produce a regular and quasi-uniform grid of the entire space-time domain at the
start of the algorithm. Indeed this is the way we have presented the method so
far. However such a grid would be expensive to store (in 3 + 1 dimensions for
example) and the ordering assumption given above would be difficult to satisfy
using a standard mesh generator.

Instead of pre-computing the grid on the entire space-time region we de-
velop the space-time grid macroelement by macroelement during the solution
procedure using an advancing front approach termed “tent-pitching”. This
method was used by Falk and Richter [5] for uniform grids and developed for
non-uniform grids by Ungér and Sheffer [15] and Erickson et al. [4]. We follow
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Figure 1: Here we show a sequence of grid fronts to explain the tent pitching
algorithm. The top panel shows the current grid front (in one space dimension
plus time). The lowest vertex is chosen to be moved forward in time (lightly
shaded point). Panel (b) shows the vertical tent pole erected at the lowest
vertex (the algorithm ensures that this vertex can move past the lowest of its
neighbors). In panel (¢) we show the macroelement consisting of two triangles
in space-time meeting at the tent pole. After solving the discrete equations
on this macroelement the solution is now known on the upper part of the grid.
Hence the macroelement can be deleted and the the updated grid front is shown
in panel (d) ready for the next vertex to be moved ahead.



the latter paper and now give a brief description of the procedure (for a cartoon
of the steps of the method when N =1 see Fig. 1).

In the present paper we shall only show two space dimensional results.
Thus we first generate a grid for @ C R? using the MATLAB PDETool mesh
generator. This forms the spatial grid at ¢ = 0 (so at the start all vertices are
assigned time ¢ = 0). At any step of the algorithm we store a space-time grid
front which has the same connectivity as the original mesh at ¢ = 0 but with
vertices at possibly different times (see Fig. 1 a). The space-time grid front is
then updated as follows. Using the “lowest vertex first” criterion from [4] we
choose a vertex having the lowest time and create an edge forward in time from
that vertex to a new vertex in the space-time grid (erect a tent-pole — see Fig.
1 b). A space-time macroelement is then formed by all the tetrahedra whose
vertex set includes the vertices of the tent-pole and the vertices of a triangle
in the current space-time mesh touching the base of the tent-pole (see Fig. 1
c). The height of the tent-pole is chosen so that the faces of the macroelement
meeting at the top of the tent-pole are outfiow. In general one would like to
take the tallest tent-pole consistent with having all upper faces as outflow (in
particular so that the uniformity condition on A(M) is satisfied), but it is easy
to see that, in higher dimensions, this can prevent tents from being erected at
surrounding vertices. Therefore the tent-pole must be chosen short enough to
allow surrounding tents to be erected and we follow the criterion of [4]. Once
the macroelement is formed, the finite element solution can be computed on
the macroelement. The solution is then known along the outflow surface of the
macro-element so it is recorded, the space-time front is updated by replacing
the vertex at the base of the tent-pole by the one at the top (moving ahead in
time) and the macroelement is discarded (see Fig. 1 d.). Thus only the space-
time grid front and the solution on this front are stored within the algorithm,
so reducing memory needs compared to an implicit method over the whole
domain. Note that the length of the tent-pole (the local time-step) is governed
by the geometry of the elements meeting at its base (and the local parameter
values of the hyperbolic system) and the time-step is not dictated globally by
the smallest elements in the mesh.

Clearly this method produces macroelements having a number of tetrahedra
equal to the number of triangles meeting at a vertex (bounded uniformly in A
since the initial spatial grid is regular). All the external faces meeting at the
bottom of the tent-pole are inflow and all the faces meeting at the top of the
pole are outflow (or boundary) faces. Indefinite faces all have n; = 0 and so
M = D there. Note that it is proved in [4], Theorem 3 that the resulting
space-time grid is regular.

4 Uniqueness and Stability

In this section we derive some stability results for the discontinuous Galerkin
method, and show that there exists a unique solution to the discrete problem
(14). Our most basic result is:



Lemma 1 If u|x € (HY(K))™ for all K € 13, the following equality holds on
Dﬂf’;] Dlﬂmﬂfn* V am *hﬂ Q’Y\n(‘ﬂ_*’lmﬂ fr‘naoh
each element K in the space-time mesh.
1
ag(u,u) = =
K( ’ ) 9

.21 2T\ ) YA = PN 2 NP 1 /1N
(u), VI (U] (k) T4 (DU, U)K T \NU, U)T (K) § (19)

where [u] = Uexy — u.
e~ ~ L

D
I 1rool

Using (11) with w and v interchanged and (12) we get

ar(v,u) +ag(u,v) = 2(Bv,u)g + (v, M u)p,(x) + (Vext, M~ Uext )1, (k)

_<(vext - ’U), M_(uext - u)>FZ(K) + (NU’U>F5(K)-

Taking ©4 = v comp e proof.

We now wish to analyze the bilinear form over a macroelement K. We
define
ap(u,v) = Z ak(u,v)
KCcK

and enumerate the elements in the macroelement by K7, Ky, .. .. For a pair of
elements K; and K; in K we define

Iij = T(K;) NT(K;),
G(K) = UKi,Kij(Fi’j'

Thus G(K) is the set of internal, or hidden, faces of K. Assuming T'; ; # 0, the
matrices D for K; and K; on I'; ; have the opposite sign. The same is also true
of n A, for discontinuities in A are confined to vertical interelement boundaries
where n; = 0. Thus on I'; ; the corresponding matrices M;, M; for K; and K;

must satisfy
M; +M; = 0. (16)

If the splittings of M; and M; are consistent on I'; ;, which we shall always
assume to be the case, then on I'; ; we have

M +M; =0, M7 +M;=0. (17)

Thus
Mj—M;:Mj—M; (18)
We now define a matrix M on I'(K) U G(K) by
M=M"-M". (19)

Note that M is well-defined on G(K) in view of (18), as well as on macroelement
boundaries, and that it is positive definite on I'(K) and positive semi-definite
on G(K).

We can now prove the following stability result for a single macroelement.

10



Lemma 2 Ifulk € (HY(K))™ for all elements K € 11, then for each macroele-

uuuuuuuuuu

1 r/ A 4 \ / A 4 \ i A hl A 4T T\
3 VU MUy T (Ut MUext)ry () T (U] MU, (Ryue k)
+2(Bu,u); + (u, N“>re(f<)} . (20)

Proof
Adding (15) over the elements K of K we obtain

(/ A \ ./ AA— \ /T 1 ro 1\
e MT ) oy o+ (et M ttes ), iy = (ul, M T, )

Z {(u% Mz—'i—uih‘i,j + <uj’ Mz'_uj>Fi,j - <[u]7 M;[“])H,j
i€ G(K),i<j

/ \ 1
ar-\u,u = =
g, u) 9
+

+2 (Bu,w) i + (Nw,w)p ) } (21)
Now using the equalities in (16)—(18) we see that that
(ui, Mj“’i)l—‘i,j + <U’J> Mi_uj>f‘i,j — ([ul, Mj_[uDFi,j
+ <uj7 M;'I—ujh_'i,j + <ui7 Mj_’u’i>ri,j - ([u’]v M;[U’DD,]
= ([u], (Mj - Mz_)[u‘])l“”
Use of this equality in (21) and the definition of M completes the proof.

One more equality is needed before presenting the discretization of the
method. This provides an expansion for the general bilinear form on a macroele-
ment.

Lemma 3 Ifulk, vk € (HY(K))™ for all K € 13,, then for each macroelement

ap(u,v) = — Z (u, Lv)k + (u, M) iy
KCcK
_<'U'exta M'Uext>pin(f() + (Uext7 M[”Dpin(f()

D DR (L IR ) I N VI CORSEn)

r; ;e G(K),i<j

1
+2 (Bu,v); + 5((N + D)Ua’U>re(f<)'

Proof .
We add (11) over the elements in K to obtain
CLR-(U, ’U) = - Z (u7 ‘C'U)K +2 (Bu7 ’U)f( + <u7 Mv)l"out(f()
KCK

11



Fi,jEG(K) 1<j
+<u], M;”j)l_‘i,j + (ui7 Mj_vj>ri,j}
= — Z (u, LY) g + 2 (Bu,v); + <u’Mv>Fout(f()

KCK
1
—(Uext, MUext + (v — Uext)>rin(f() + §<(N + D)anre(f()
| \ [ /ae. NT..\ L Jas . M~ (s 1 (o _ as \\
. W\ VI Ug) 1 5 T \Uyg, Vip U5 T Uy Yg)Ils;

]
—I—(’u,j,IVI vj)p —I—(’U,Z,IVI v + (v —vz))p”f

Cancelling the obvious terms using (16)-(18) produces the desired result.
We can now prove the following basic existence and uniqueness result.

Lemma 4 Under the assumptions on the data and mesh given in Section 2,
there exists a unique discrete solution wuy to (14).

Proof

Because of the explicit coupling among macroelements, we may show wuy is
well-defined over 27 by showing it is well-defined over a single macroelement
K. When applied over K C K equations (14) can be formulated as a set of
linear algebraic equations A = b for a set of nodal values @ defining wy, in K,
and b depends on f in K, g on T'.(K), and U ext ON Din(K). To show that @ is
well-defined, we show that this linear system has only the trivial solution & = 0
if b = 0. This is equivalent to showing that if

ax(up,vp) = 0 forall v, € (Py(K))™ and K C K,
Up,ext = 0 on Fin(K)a
then uy, =0 in K.

Summing ax (up,vs) = 0 over K C K and applying the result of Lemma 2
we obtain

(un, Muh>1“0ut(f() + ([unl, M['U'h])nn(f()uG(f()
+2 (Bup, up) g + (un, Mup)p, () =0

Since all the terms on the left hand side are nonnegative, we conclude that
up = 0 on Doy (K), Mup] = 0 on Tjn(K) (implying up = 0 on Tjy(K)),
and M[uy] = 0 on G(K). Also, under the assumption that B is symmetric
we can see that Buj = 0. Hence Lu) = Aup; + Z@IL Ajup, 4, and under
the assumption that A is constant on K we conclude that Luj, € (Py—1(K))™.
Further, our control over [uy] implies that for each K C K, M~ (wp ext —up) =0
on I';(K). From (12) we therefore obtain

1
(Lup,vp) K + 5((N — D)up,vp)r k) =0  for all vy, € (Pp(K))™.

12



By assumption, I'.(K) consists of at most one face. Let f* denote this face
if T.(K) # 0, otherwise take f* to be an arbitrary face of I'(K). Then define
w, € (Pp(K))™ by

It is easy to se and that it satisfies (Luy, wy)x =

N € / b t = hy ¥ h) K
| Lup % (since Luy, € (Pp—1(K))™) and (N — D)up, wp)r, (k) = 0. By taking
vy, = wy, above, we thus conclude that Lup =0 in K.

Now by assumption, for each simplex K C IN( ['(K) has a nonempty inter-
section with T, (K) or Ty (K). Assuming the former, it is always possible to
construct a simplex K’ C K with one inflow face f’ C I'in(K) NTin(K) (where
up, = 0) and all other faces outflow. We claim w;, vanishes identically on K.
For if there is a point P € K’ such that up(P) # 0, then f’ and P define
another simplex K” C K’ with inflow face f’ and all other faces outflow, and
(see (10)):

~ 1 A 4
0= (Lup, un) g = 5{(Mun, Un)rou, (5c7)-

This implies u;, = 0 along Iy (K”), in particular at point P. Since wuy|x is the
extension of the polynomial u,|gs to all of K, we conclude that wj; vanishes
identically in V

AUTLILILQLLY 111 A%

As a footnote to the above proof, we infer that |lu| ; can be bounded
in terms of |“h,ext|rin(f()’ | fll 7, and |g|Fe([~(. Taking into account the proper

scaling of these norms (which may be seen by a piecewise affine mapping of K
into a reference macroelement, as in Lemma 3.2 of [5]), we obtain

lunllz < € (\/hic(wnexilry, ) + 19l i) + Bl Fllz) (22)

where hj = maxy -z hi, and C is independent of K and uy,.

5 FError Estimates

In this section we prove the main theorem of this paper, an error estimate for
our discontinuous Galerkin method. Let €; denote a collection of macroele-
ments {K} C 7, such that iy (€) C Tin(Qr) = Q x {t = 0}. Thus uy, can
be computed first in €y, then in Qp \ Q;, without violating any domain of
dependence requirements.

Theorem 1 Suppose the solution w of the continuous problem (1)-(4) is such
that u|x € (HPTL(K))™ for all elements K € 1y, that the discrete solution wy,
of (14) is chosen to be the L?(Y) projection of the initial data, and that Q; is a
space-time domain as described above. Then there is a constant C' independent
of t, T, w and uyp, such that

lu — uhl%out(ﬂt) + Z {|[u B uh]ll%in(ff) + |M1/2[u B uh”é(ff)}

RCQt
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HIBY2 (w = wp)l[B, + (N + N2 (w = up)f g,

Do |

<C Y g el k- (23)
KeQy

Remarks. Of course the above estimate implies that if the true solution is
smooth enough, the error bound is O(hp“/ 2) This is an optimal estimate for

the error on surfaces in the mesh (e.g., on ', (€2;)) but the interior estimate
is non-optimal.

The choice of the projection as initial data for the discrete problem is not a
computational challenge since it can be computed element by element. In fact

we can also use the interpolant if the initial data is smooth enough.
If u has reduced regularity, we can obtain a lower order approximation using
error estimates for the appropriate generalized interpolant used in the upcoming

proof.

Proof

Subtracting (14) from (13), we get that az(u — uy,v,) = 0 for all v, such
that vp|x € (Pp(K))™ for each element K C K. Let wy, be any piecewise
polynomial such that wy|x € (P,(K))™ for each K (we shall shortly say how
to choose wy) and let e, = wy, — uy,. Then

Gk(eh,’vh) = a}}'(wh —U,Uh) (24)
for all v, such that v,|x € (P,(K))™. In particular,
aj(en en) = ag(wy, — u, ep).

Using the conclusion of Lemmas 2 and 3,

1
2 {<eh, Men)r,, (k) ~ (€nexts Menext)r, () + (len], Mlenlr, (kyuai )}
1
+(Bep,en) g + §<eh7Neh> I.(K)
_ Z wp—Uu £eh)K + <wh -—u 'Meh>1_‘out( K)
KCK

_<(wh - u)extaMeh,ext>rin(f() + ((wh )extaM[ehD o(K)
+ Z {((wh - 'u')jv Mz'_((eh)i - (eh)j)>ri,j

I, €G(K), i<j
+{(wn — w)i, M} ((en); — (en))rs, b

F2(Blwy —u),en) + 3 (N + D) — ), en)y, i) (25)

We can immediately simplify this expression by making a suitable choice of
the function wy. If To(K) # 0, we let f* = T'.(K) (recall we have assumed
that each element meets the boundary on at most one face). Otherwise we just

14



select f* to be some face on I'j,
requiring that

Then, on K, we define wy, € (P,(K))™ by
for all &, € (P (K))™ (96)
vl all '+’h < \.l p_l\.l).}} ) \AJU}
(27)

/ (u—wp) - ¢, dA=0 forall ¢, € (P,(f"))™.

J

This is the same definition as used in [5] and hence wy, is an optimal order
generalized interpolant. Since we have assumed that the matrices A and A;, j =
1,..., N are constant on each element, and since B is assumed to be symmetric,

we have

nyjr

KCK

-\
>
KCK

(wh —u,Aep +

)
)

-

Ao 0
A3€h,x; Y,

1

J

where the last equality follows from (26). Using (27) and the face that D and

N are constant on each face we have
1

2

((N+ D)(wp — u), eh)re(f{) =0.

Furthermore, completing the square, and defining e = u — uy, we obtain

1
§<eh7 Meh)

1—‘out (K)

In the same way
1

2
1

2
Using these results (25) becomes

1

2

(€exts Meext)pin(f() +

+(Bey,en); + >

+((wp — u)extvM[ehDr

>

r;;e G(K), i<j

in(k)
)i

+

+((wh

+(B(wp, — u), eh)f(.

DN | =

1
_<eh) Neh>

1
§<wh —_ U,M(wh - Iu'))Fout(f{)

— u)i, M

J

(wp, — U7M9h>pout(f()

(eh,exta Meh,ext)pin(f() + <(wh - 'U')exta Meh,ext)pin(f()

((wp,

in

Ie(K)

1

= 5 {(wn = e, M(wp — )ext)

{{(wn —w)j, M7 ((en)i — (€n)))r.,

(en); — (en))r,, }

15
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{<67M6>rout(k) - <eextaM6ext>rin(f() + ([eh]aM[ehDrin(f{)ua(f{)}
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Now suppose {2, is a space-time domain as described before Theorem 1. Adding

the above estimate we obtain
- )
il
5 1 <e7 Me>r‘out(Qt) <eeXt7 M6ext> 1n(Qt) + Z eh M[eh]>Fm(k)UG(k) ?
\ If; t /7

1
—I-\behaeh)ﬂt (eha Neh)Fe(Qt)

1 1
= Slwn —u, M(wh = u))r, ) = 5{(Wh = Wext, M(wh — W)ext )Ty ()

i wy, — Wext, Mlen])r, (7
Kooy
+ Z {{(wn —u)j,M; ((en)i — (en);))r,

I e G'(f(), 1<J

+{(wp, — u)i, M ((en); — (eh)i»ri,j} }
+(B(wy, — u), en)q, (29)

Using the Cauchy-Schwarz and arithmetic geometric mean inequality, we see

wen + Y (lenl, MlenDr, (kyuai)

that for any ¢ > 0
1
5 {(e’Me>F0ut(Qt) - (eextaMeext>1" ( }

RCQt
1
+(Ben, en)o, + 5 (en, Nen)r, (o)

1 1
g M (wn w00 — 5IMY (0~ wenlf )

IA

€
+ Z { M1/2 h—u)extliin(k)‘i‘ilj\/ll/?[ ]|2 f()

1 _
+ Y S M) o — w)lR + Sl MD) el
Fi,]‘EG(f(), 1<J

I( 2w = wilf,, + S1(-M7) e h]I%m}}

1 €
o B2 wn — )y, + 5 1B enl?,. (30)

Choosing € = 1/2 we obtain

1 1
§<e’Me>Fout(Qt) + 1 Z ([eh]aM[ehDrm(k)Ug(i{)
kCQg

3 1
+Z||Bl/2€h||?zt + §<eh7 Nen)r, (o)

1 1
§<eexta Meext)l"in(ﬂt) + §|M1/2(wh - u)|12_‘out(9t)

IA

16



1 i/9 5 X 0 r i/9 5
—ilMl/z(UJh - ’U«)ext|f‘in(Qt) + L i |Ml/z(wh — U)ext|f—xin(I§-)
Kca, \

> {IEMD) R =)+ 1M -l }
Iy €G(K)i<j ’
+IBY? (wh — w) - (31)

Now the error in wy, satisfies the estimate
2p+2
lwn — ul% + hiclwn — U|12“(K) < Chy ”u||129—|—1,K7 (32)

where the constant C' is independent of K, 73,, and w. Therefore, if the solution
u is sufficiently regular and the discrete initial data is chosen as the L?(Q)
projection of the true initial data, we obtain a bound €'Y o, h?\f’“ ”"‘HEH,K
for the right hand side of (31). The desired result now follows using the triangle
inequality and the equivalence of unweighted and M-weighted L? norms on

inflow and outflow boundaries.

We now focus on obtaining an interior error estimate for wy,. Toward this
end, we partition the macroelements in 73, into “layers” L, ..., L, and subdo-
mains {2; = Uj<;L; subject to the following conditions:

e Iin(L;i) C Tin(Qr) UTout(2i-1)
e Iin(K) NTin(K') = 0 for all macroelements K, K’ C L;.

In other words, we may first compute uy, in parallel, in the macroelements
comprising Ly, then in Lo, etc. The trivial option of choosing layers to be
individual macroelements is of no interest to us. In fact, the usefulness of
the concept derives from the possibility of choosing layers consisting of large
numbers of macroelements, indicative of a high degree of parallelism in the
coupling among elements.

Theorem 2 Suppose that Qp = U™, L; where the layers L; are as described
above, that h; = maxgcr,; hi is the “width” of layer L;, and that the conditions
of Theorem 1 hold. Then there is a constant C' independent of w, up, and 7,

such that
m
2p+1
lu —upllf, <C (Z hi) Z hit T wllp k-

=1 KcQr

Remarks. If the tent-pitching algorithm is applied over Qp starting from
a quasi-uniform spatial mesh of size h at ¢ = 0, the resulting space-time
mesh will be quasi-uniform of size h and have m = O(h™!) layers of width
h. Then >, h; will be uniformly bounded, and we get an estimate ||u —
uplla, < O(RPT1/2) for uy, which, though suboptimal, is typical for discon-
tinuous Galerkin methods. As we shall see shortly, numerical results suggest
that an optimal convergence rate is seen in practice for uniform grids. It is
also possible to achieve a uniformly bounded sum ", h; for certain piecewise
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quasi-uniform mesh refinement schemes, though here too we would expect the

resulting O(\/ZKCQT I"L%éﬂ'1||uh||12)+1 ) estimate for uj to be overly conserva-
tive.

o

b 5 YUY R PERIL Y /1 AN 1., 11 1 1 790\ I I 1 N 1
Froor1: ror up satistying (14) we nave the bound (44) 10r (|Up|| g - nalogously,

using (24) we have
lenl < C (hileneal?, ) +h%7%)

where v satisfies
|lag(wh —w,vp)| < vgllvnll -

From (12) we get

ag(wp —w,v;) < C Y (lwp —ullix - lvallx + [wn — wlr) - orlr)

KCK
+ IM™ (wp, — W)ext |1 (i) - |'Uh|1"i(K))
- fyh /1p|| 1" . 1—1/ Inoa— 7 \ ! \ " 1
= U2 klitlp+1,k Ry IV A{Wh = Wext |1y(K) )~ 1VRl
KCK

mi...
1 11us

X (Bl M 0 = e ) ) 3)
KCK

Summing (33) first over K C L;, then over i € {1,...,m}, and using (32) again,
we get

leall, < € (hlenanl e

2p+2 -
+ Z (hlg)—’— ||’U,h||127+1’K + hK|M (wh - u)ext|12"i(K)> )’
KCL;

then
m
2p+2
lenllt, < C | D hilenetlty, o+ Y bR llulpyx
i=1 KCQr

Application of the triangle inequality inequality and (32) then gives

m
2p+2
|u — Uh||322T <C Zhi|u - uh,GXt@‘in(Li) + Z h}? ||U||;2)+1,K - (34)

Now Ty (L;) C Tin(27) U Tous(2i—1), so via Theorem 1:

2 2p+1 2p+1
u—wnexilt, ) C D b uli g <C Y0 AP lulpi k-
KCQi—1 KcQr

Substituting into (34), we get the desired bound directly.
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6 Acoustic wave equation

Our computational results to be presented in Section 7 are for the acoustic wave
equation in R?. We next show how to write, in a standard way, this equation
as a symmetric system. More interestingly, we show how to construct a family
of matrices N that includes the usual Dirichlet and Neumann boundary condi-
tions as well as the impedance boundary condition (often used as an absorbing
boundary condition). The extension to 3D is obvious.

Let a, € L*°(R2) be bounded (almost everywhere) functions such that
a > ag > 0 almost everywhere in €2 where «q is a constant, and 8 > 0. Then let

~ denote a 2x 2 symmetric matrix function of position such that v € (TOO(O\\QXQ

! &Sy AT UAL LLGQUL 1A 1UuaaLuial UL AU SULLL Vi

( we also assume that « and Y
ral mesh of Q). Then we seek

1110, Lioegy 4 11CT11 WO 8Os

~

is bounded and llIllIOI'IIlly posmve definite on §

re niecewise constant with respect to a polvhe

PACLCWIST COLSYQRILY vl 1OSPTLY VO & pLLY LT

approximate the function u that satisfies

auy + Pug =V - (7_1Vu) in €,

2
ed

o

subject to suitable boundary conditions which we shall detail shortly. This
equation may be translated into the symmetric hyperbolic formulation as fol-
lows. Let the vector variable u be defined by

u = Ut
"\ 'Vu )

Then we see that the components of u satisfy

auiy + fu; = V'(UQ ),

us

8 Uu9 _
’}’a ( us > = V’U,l.

These equations can be written as a symmetric hyperbolic system by writing

6 0 0
A:(%P), B=[0 00|, (35)
7 000
and
0 -1 0 0 0 -1
A= -1 0 0], A= 0 0 0
0O 0 O -1 0 O
Then the boundary matrix D is
0 —ny —ng
D=| -ny 0 0 . (36)
—n9 0 0
This has eigenvalues Ay = 1, A3 = 0 and A3 = —1. Computing the eigenvectors
and using the fact that |[n| =1 we have
1 -1
Dt = 5 n1 (—l,nl,nz),
n2
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L 1
_ 1
D = —5 s (1,77,1,71,2),
Nno
\ T4 /
and then D = Dt 4+ D~ D7 is positive semi-definite and D™ is negative semi-

definite. In order to allow more general boundary conditions, it proves useful

to generalize D™ and D~ slightly. Note that if

ko]

[0 0 0\
S:(OIO)
\0 0 1/

and if ¢ > 0, then %SDS = D so that D = %SD*‘S + %SD_S and the
matrices Df = 1SD*S and D; = 1SD~S are also a valid splitting of D
(since the above is not a similarity transformation, this ciaim has to be checked
as follows). Direct calculation shows that

1 o
Df = oyl (—o,n1,m9),
no
mn— —
D, = —%\/u}\o , M1, N2) ,

and D = D} + D, . The null-space condition is satisfied and the definiteness
of the splitting is maintained if o is strictly positive. In fact the non-zero
eigenvalue of D} is (02 + 1)/(20) and of D, is —(0? +1)/(20). We can then
define the following matrices

1 1
Lt =——(-o,n1,m3) and L~ =-—=(0,n1,n2)

V20 V20
so that Df = (LY)TL* and D; = —(L7)TL~.
Given a function g € L?(I") we would like to implement the impedance type
boundary condition

oug +ng - (Y 1Vu) = Q(—ou +ng - (v V) + vV20g. (37)

This class of boundary conditions is fairly general. With the choice Q) = —1 we
obtain the Neumann boundary condition

me- (771Va) = 20"l
while with the choice Q = 1 we obtain the condition that
1
Ut = \/—2—09
which is essentially a Dirichlet boundary condition. When Q = 0 we obtain the
classical impedance boundary condition

ous +ng - (Y 1Vu) = V20g.
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For an appropriate choice of o depending on the wave speed in the medium
adjacent to the boundary, this is the lowest order Engquist-Majda absorbing
boundary condition [3].

Using the definition of u and the matrices L™ and L~ we see that (37) can
be written

=D -2(D, +Q(L7)"L"), (38)

so that (D — N)u = 2(D, + Q(L™)"LT)u = —2(L)Tg. Thus we choose the
vector data for the symmetric system to be g = —2(L")%g.

Using (38), the eigenvalues of N + N”" are (0,0,20(Q + 1),2(1 — Q)/0o) so
N + N%' is positive semidefinite if Q| < 1 which is sufficient to include the
standard boundary conditions and in this case (5) is satisfied. In addition

(when n; #0)

n 0
ker(D + N) = span o |, —no ,
0 n1
0 n1(Q —1)
ker(D — N) = span -ny |, o(1+Q) ,
nq 0

so that in this case the kernel condition (6) is also satisfied. The kernel condition
can also be checked when ny = 0.

Note that when Q = 1 and o = 1 the choice of N in (38) reduces to the one
used by Falk and Richter for the Dirichlet boundary condition:

2 —ni1 —ng
N=| n 0 0
no 0 0

7 Numerical results in two dimensions

For this paper our numerical experiments are confined to two space dimensions
(we hope to move to three space dimensions shortly). Since Maxwell’s equations
and the wave equation are identical in two dimensions, our examples are for the
wave equation. In all the tests we take o = 1.

7.1 Wave propagation

The first example is a simple verification of the order of convergence of the
scheme in the case of vanishing initial data (the example is, having rescaled
time, from Section 5.1 of [12]). The domain is © = [0,2]2. The exact solution
is

f(t—k-a)
u=| —kf(t—k-x) (39)
—kof(t — k- )
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Figure 2: Relative discrete (L?(Q2))? error as a percentage against the mesh size
h for the simple Gaussian plane wave problem. Note that when p = 0 we expect
and observe O(h!'/?) error. But when p = 1 we see O(h?) and when p = 2 we
see O(h3) whereas our theory predicted O(h3/2) and O(h®/?) respectively. This
better than expected convergence rate is often seen for DG methods on uniform
grids.

where k = (cos(1),sin(1))” and
{ exp(—10(s—1)2)—exp(—10) 0<s5<?2

1—exp(—10)
0 otherwise.

fls) =

The initial data is u(t = 0) = 0 and we impose the exact solution as Dirichlet
data via @ = 1 on 092 and ¢ = 1 on all faces. Using a uniform n x n grid of
squares subdivided into right triangles in space, and allowing the program to
create an unstructured grid in time we obtain the results shown in Figure 2.
In practice we use the unstructured scheme to discretize n space-time slabs of
width 2/n and compute the relative discrete (L?(€2))? norm error defined by

_ Nlur(®) —un(@®)llo
lur(®) o

where u; is the standard interpolant of w from the finite element space. In
this example the error is measured at t = 2. Apart from the case of piecewise
constants (p = 0) we see convergence at the rate O(hP'!) (this improved rate
of convergence is known to occur for DG methods on a uniform triangular grid
[14] - but because of the timestepping we have a non-uniform tetrahedral grid).

Err(t)

7.2 Standing wave

In this example, we have vanishing boundary data, but non-zero initial data.
In addition, the time integration is carried out over a longer period than in the
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Figure 3: Relative discrete (L?(Q2))? error as a percentage against the mesh size
h for the standing wave problem. The error is computed at a final time ¢t = 4
for p = 1,2. We see O(h?) and when p = 2 we see O(h3) convergence.

previous example. The domain is again Q = [0,2]?. The exact solution is now

cos(0t) sin(mzy/2) sin(mza/2)
u= | 7/(20)sin(dt) cos(mz1/2)sin(nze/2)
/(20) sin(0t) sin(7z1/2) cos(mxa/2)

with 6 = m/+/2 which satisfies zero Dirichlet data on 99 (implemented with
Q =1,0=1and g =0). Results for a uniform n x n spatial mesh subdivided
into right triangles are shown in Figure 3, and for p = 1,2 (the case p = 0 does
not produce an acceptable accuracy for the meshes and final time used in this
case). Again we see convergence at a rate O(hP+1) for p = 1,2.

7.3 Penetrable cylinder

Our final test uses a non-uniform spatial grid and a variable sound speed as is
usually encountered in practice. We wish to approximate the function u that
satisfies (1) in R? x (0,7) and which models an acoustic wave interacting with
an inhomogeneous scatterer. In particular we assume that the coefficients «
and 7 in the 2D analogue of (35) satisfy v = 1 in R? and

oo if|z| <a,
| ay  if |z] > a.

For the numerical experiments we choose a = 0.25, a3 = 4 and as = 1. To
complete the description of the system, we define

w— u) if || < a,
Tl uw®  if x| > a.
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A U w

and a known incident ﬁeld enoted u’ so that u® = u®s Lyl The incident
field satisfies the acoustic symmetric system with @ = a9 in all space and is
such that u’(z,0) = 0 for |x| < a (i.e. it vanishes in the neighborhood of the
cylinder at ¢ = 0). The scattered field u®$ has compact support in space at
each time and in particular u(?*(x,0) = 0 for all . On the interface |z| = a,
our jump conditions are

(oW

DuV) = Du??® + Dy’

with D as in (36). Thus [ui] = 0, [ug,u3] - » = 0 (equivalently, u; and the
normal component of Vu are continuous). The incident field is taken to be a
plane wave of the form (39) with k = (1,0)” and

_ ( (1 —cos(4m(s —1))) ifl<s<3/2,
Is) = { 0 otherwise . (40)

This completes the specification of the acoustic scattering problem. In order
to compute an approximate solution for long times we would need to use an

a}\an}nnw boundarv condition or other truncation condition on an a11v1"1ary

QISUL LS VUUWLUGL Y VULILIVIL U Uvilr vl UabQ@uaUir CULULLIVLL Ul Qi QUALLIG

boundary. Since we do not wish to discuss absorbing boundary conditions here
we approximate the scattering problem for short time as follows. We compute
on the domain shown in Figure 4 and compute the total field both inside and
outside the scatterer. Due to the symmetry of the problem only half of the
problem needs to be computed provided a homogeneous Neumann boundary
condition (Q = —1) is used on the lower edge.

The field is introduced at the left boundary via a non-homogeneous Neu-
mann boundary condition and the remaining boundary conditions are homoge-
neous Neumann conditions (all @ = —1). The incident field propagates to the
right until it is scattered by the cylinder. We record the field at various vertices
in the computational domain. This field approximates the true scattered field
until spurious reflections from the outer boundary pollute the result.

Before presenting the results of the computation, we briefly sketch how to
derive an exact solution to the underlying scattering problem. In particular
we shall only seek to approximate the first component u; of the problem. By
eliminating the remaining components from the symmetric system we see that
u1 satisfies the wave equation

1 82U1

cﬁw = AUl in RQ X (0, OO),

where c is given by
c={ 1/ /oy if |z| < a,
/ooy if || > a.
The decomposition of the field u into exterior and exterior fields, and into
scattered and incident fields implies that ug ) = u§2)s + u}. The incident field
satisfies the wave equation with ¢ = 1/,/a27y in all space and is such that
ut (x,0) = ui,t(:c,()) = 0 for || < a (i.e. it vanishes in the neighborhood of
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Figure 4: The mesh for the scattering problem. The scatterer is the semi-circle
shaded in the grid. The outer boundary is taken far enough from the scatterer
to allow the computation of the scattered field near the scatterer for a short
time. The incident field is introduced along the left boundary. The output
points are marked by a dot and labeled.

the cylinder at t = 0). The scattered field u?)s has compact support at each
time and in particular u?)s(m, 0) = ufzs(m, 0) = 0 for all . On the boundary
|| = a the continuity conditions imply that

uf = ul i, (41)
9 1y _ 0 @, 0,
aril T e + ar L (42)

where r = |&|. Taking the Fourier transform in time (transformed variables are
denoted by 7) using

U (z,w) = /00 ui(x, t) exp(iwt) dt

—0
we see that
2
AalY + ‘;’—ag” = 0 forr<a,
1
2
Aﬂgz)s + w_/ag?)s = 0 forr>a.

C2
We are thus lead to define the wavenumbers k1 = w,/a1y and ko = w,/as7y.
Using cylindrical polar coordinates we have the expansion (using the fact that
ﬂ?)s is a scattered field)

ﬂgl) = Zaan(klr)exp(inH),
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P = N7 b, HY (kyr) exp(ind),

n
n=ox

where J,, and H}Ll) are respectively the Bessel function of order n and Hankel
function of first kind and order n.
Since the incident field is taken to be a plane wave we have

uj = f(t - w1)

for f given by (40) (since ca = 1). The Fourier transform of the incident field is

f

127"1 = Q(kg) exp(ikgxl)

and using the Jacobi-Anger expansion this may be written

o0
@f = d(ky) Y i"Jn(kor) exp(—ind).

n=—oo

Using this expansion, the jump conditions (41)-(42) provide a system of equa-
tions for determining the coefficients {a,} and {b,}. The inverse Fourier trans-
form of 4; then gives the relevant fields at any point in space. Of course it
is necessary to truncate the expansions of each field, and compute the Fourier
transforms numerically.

This example falls outside the theory presented in this paper because the
scatterer has a curved boundary which we approximate by a polygon. This
introduces extra error into the solution which should be analyzed in the future.
However the advantage of this example is that it is a standard model problem
in scattering theory with an exact solution. Hence we feel that it is interesting
to present the numerical results.

Although our theory only proves convergence of the method in the L?(£2)
norm, we present the first component of the total field u; at four points in the
domain chosen to be triangle vertices in the grid. The field value at each point
is found by averaging the field from the surrounding triangles. The coordinates
are as follows (see Fig. 4):

A (0.375,0) B (0.0149,0.3871)
C (-0.4231,0) D (0,0)

Results are shown in Fig. 5 for the mesh in Fig. 4 and for p = 1,2 (we do not
show the results for p = 0 since the mesh is too coarse in that case). These
results show that our method can provide a good approximation in the presence
of an inhomogeneous medium.

8 Conclusion

We have shown how to construct a space-time discontinuous Galerkin method
for linear symmetric hyperbolic systems that can be time-stepped by solving
only local discrete problems. Furthermore the method can take different time-
steps in different parts of the domain (the maximum size of the timestep depends
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Figure 5: Time trace of the first component of the solution at the points A,
B, C and D in Figure 4. The duration of the trace is truncated to remove
pollution from reflections from the outer boundary. The results for p = 2 are
almost indistinguishable from the series solution.
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the method can handle discontmuous material properties and rather general
boundary conditions.

Disadvantages of the method are that it is dissipative due to upwinding
across inter-element boundaries and that tent-pitching carries a significant over-
head in time. The success of the method from [7], which is also dissipative in
much the same way as is our scheme, suggests that dissipation is not necessarily
fatal. Dissipation is less obvious for higher order versions of the scheme, and
can be monitored a posteriori as the computation progresses (but we have not
done this here). The speed of the method is aiso adversely influenced by the
need to tent-pitch each vertex. This could be handled by precomputing the
macroelements used to advance the space-time grid front for a single standard
time-step from  to t+dt (if di ~ h we will need to store a mesh of O(h~?) space-
time elements for a quasi-uniform grid) and so avoid repeated tent-pitching. In
addition it mav be desirable to nse the original Falk and Richter method [R] on

addition it may be desirable to use the original Falk and Richter method [5] on
macroelements where the parameters of the hyperbolic system are constant.
Obviously the main question is whether our scheme can be used efficiently

in three space dimensions plus time. The handling of a four dimensional tent-

n1h‘hpr] o“mr] is in p‘m‘nmh]p anQl}‘\]Q (see [Zﬂ\ and efforts to 1mn]pmp‘nf the scheme

in this case are now underway.
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