SHARP L' A POSTERIORI ERROR ANALYSIS FOR
NONLINEAR CONVECTION DIFFUSION PROBLEMS

ZHIMING CHEN AND GUANGHUA JI

ABSTRACT. We derive sharp L (L') a posteriori error estimates for initial
boundary value problems of nonlinear convection diffusion equations of the
form

o
= +divf(u) - A(w) = g,

which displays both parabolic and hyperbolic behavior in a way that depends
on the solution itself. The problem is discretized implicitly in time via the
method of characteristics and in space via continuous piecewise linear finite
elements. The analysis is based on the Kruzkov “doubling of variables” device
and the recently introduced “boundary layer sequence” technique to derive the
entropy error inequality on bounded domains. The derived a posteriori error
estimators have the correct convergence order in the region where the solution
is smooth and recover the standard a posteriori error estimators known for
parabolic equations with strong diffusions.

1. INTRODUCTION

A posteriori error estimates are computable quantities in terms of the discrete
solution and data that measure the actual discrete errors without the knowledge
of exact solutions. The adaptive finite element method based on a posteriori error
estimates initiated in [3] provides a systematic way to refine or coarsen the mesh
according to the local a posteriori error estimators on the elements. There are
considerable efforts in the literature devoted to the development of a posteriori
error analysis and efficient adaptive algorithms for various linear and nonlinear
parabolic partial differential equations (see e.g. [14, 16, 7, 5, 8] and the reference
therein).

Let Q is a bounded domain in Rd(d = 1,2,3) with Lipschitz boundary and
T > 0. In this paper, we consider the sharp a posteriori error analysis for the
following nonlinear convection diffusion equation

ou

(1.1) 5 +divf(u) — AA(uw)=¢ inQ

with the initial and boundary conditions

(1.2) ult=0 = uo, Ulaax(o,r) =0
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Here u = u(x,t) € R, with (z,t) € Q = Q2 x (0,T). We assume that the function f :
R — RY is locally Lipschitz continuous, the function 4 : R — R is nondecreasing
and locally Lipschitz continuous, g € L*(Q) and ug € L ().

Problems of the type (1.1) model a wide variety of physical phenomena including
porous media flow, flow of glaciers and sedimentation processes [19]. Our motivation
comes from the simulation of flow transport through unsaturated porous media
which is governed by the so-called Richards equation [2, 17]

88 OK(S)

where S is the volumetric water content, p is the pressure head, and K (S) is the
relative permeability. One of the widely used nonlinear constitutive relations for
S = S(p) and K = K(S) in the engineering literature, the so called van Genuchten-
Mualem formula, reads as follows

S(p) = (L+|ap/)™, K(S)=SY2(1—(1-8t/m)m)?

wherem =1—1/n, o > 0,n > 1 arc shapc constants which vary for different types
of porous media. For (1.3), the existence of weak solutions is considered in [2] and
the uniquencss of weak solutions is proved in [24] based on Kruzkov “doubling of
variables” technique. Entropy solutions for (1.1) are studied in [4] and [22]. The
mathematical techniques developed in [22] play an important role in the analysis
in this paper.

Our discretization of (1.1) is based on combining continuous piecewise linear
finite elements in space with the characteristic finite difference in time. The method
of characteristics originally proposed in [13, 26] is widely used to solve convection
diffusion problems in finite element community (cf. e.g. [17, 1, 16, 8, 18]). Given
U ,’:_1 as the finite element approximation of the solution at time t"~!, let 7,, and
V@' C HY(Q) be the time step and the conforming linear finite element space at the
nth time step, then our discrete scheme reads as following: find U;’ € V* such that

Ul? - Ul?_l n —n n
v +(VAU), Vv) = (§",v) VYveVy,
where g" = 71 ftt:_l gz, t)dt, U~ (z) = UP~H(X(t""')), and the approximate
characteristics X (¢) is defined by

dX/dt= f'(U; (X (@), X(") ==z

In the linear case when f(u) = vu, A(u) = eu for some small constant € > 0, L2(L?)
a posteriori error estimate is proved in [16] based on the duality argument.

The well-known Kruzkov “doubling of variables” technique originally appeared
in [21] plays a decisive role in the error estimation (both a posteriori and a priori)
for numerical schemes solving the Cauchy problems of nonlinear conservation laws
(see e.g. [10, 11, 12, 20] and the reference therein). It is also used recently in [23]
for the implicit vortex centered finite volume discretization of the Cauchy problems
of (1.1). The common feature of these studies is that the derived local a posteriori
error estimators is of the order v/ in the region where the solution is smooth, where
h is the local mesh size. This degeneration of the order of the local estimators may
cause over-refinements for the solution of (1.1) in the region where the diffusion
is dominant. We also refer to [15] for a different approach of a posteriori error
estimation for nonlinear conservation laws.



The basic assumption in this paper is that the diffusion is positive
A'(s) >0, VseR.

This assumption includes the Richards equation (1.3) and the viscosity regular-
ization of degenerate parabolic equations, for example, the regularized continuous
casting problem which is considered in [8]. The novelty of our analysis with respect
to the analysis in [11, 12, 20, 23] lies in the treatment of boundary conditions for
the a posteriori error analysis using the Kruzkov technique. This is achieved by us-
ing the recently introduced “boundary layer sequence” technique in [22]. The nice
consequence of the analysis in this paper is that our a posteriori error estimates
are able to recover the standard sharp a posteriori error estimators in the literature
derived for parabolic problem with diffusion coefficients bounded uniformly away
from zero (see Remark 5.8). Further remarks about the differences of the a pos-
teriori error estimates in this paper from those in [11, 12, 20, 23] can be found in
Remark 5.10.

The rest of the paper is organized as follows. In section 2 we set the notation and
briefly recall the definition of entropy solutions for (1.1). In section 3 we introduce
the discrete problem. In section 4 we derive the important entropy error inequality
by using boundary layer sequence technique. In section 5 we derive the a posteriori
error estimates and present several remarks. In section 6 we show a numerical
example for linear convection diffusion problems.

2. SETTING

Let Q be a bounded domain in R% with Lipschitz boundary. Defining B as the
set of all possible Lipschitz coverings of 92 in the sense that 9Q C UgepB, and,
in some local coordinates z = (z', z4), there exists a Lipschitz function z4 = p(2')
such that BNoQ ={z € B:zq = p(2")}, BNQ ={z € B: x4 < p(z')}. Given
T>0,let @ =90x(0,T). We start by stating the hypotheses concerning the data.

(H1) f: R — R% is locally Lipschitz continuous, f(0) = 0; f' is uniformly
Lipschitz continuous in R.
(H2) A:R — R is locally Lipschitz continuous, A(0) = 0; A’(s) > 0 for any
s € R, and A’ 0 A™! is uniformly Hélder continuous in R, i.e.
(A0 A7) (5) = (A0 A™H)(r)| < Cls — 7| Vs,r€R,

for some constant 0 < v < 1 and some constant C' > 0.
(H3) g € L=(Q), uo € L>(D).

We recall the following definition of entropy solutions to the problem (1.1)-(1.2)
in [22].

Definition 2.1. A function v € L*°(Q) is an entropy solution of the problem
(1.1)-(1.2) if:
(i) (regularity) we have
A(u) € L*(0,T; Hg (),

and, for every B € B, and any non-negative ¢» € C'°(B) we have (here z = (¢, z4),
zq = p(z') on BN ON)

(2.1) (—lule, sgn(u)(VA(u) — f(u))¢) € PM(Q)s,
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where DM (Q)2 is the set of divergence-measure vector fields in @) defined by
DM(Q)2 = {(w,v) € L*(Q) x L*(Q)? : 3 C > 0 such that

\ /Q (wr + vw>dwdt‘ < Cllglom@ Vo€ CEQ):

(ii) (entropy condition in the interior of Q) u is an entropy solution of the equa-
tion with test functions zero on the boundary, i.e.,

(2.2) - /Q o — k|31~ /Q sen(u — W)[f(u) — F(k) — VAw)] - Vo

< /Q sen(u — k)gé,

for any ¢ € Hi(Q),¢ > 0, for any k € R;
(iii) (énitial condition) the initial condition is assumed to be the limit in L' sense,

(2.3) esslim,; g+ / |u(z, t) — uo(z)|dx = 0.
Q

Note that since A’'(s) > 0 for any s € R by (H2), the entropy boundary condition
in [22] is satisfied trivially [22, Remark 1.2], and thus we have not included it in
above definition of entropy solutions for (1.1)-(1.2). The main implication of the
regularity property (2.1) lies in that it provides a proper meaning of the normal
trace of the vector (—|ule,sgn(u)(VA(u) — f(u))y) on the boundary. Since our
analysis does not involve properties of divergence-measure vector fields, we refer
the interested readers to [22] and the reference therein for further discussion on
divergence-measure vector fields. It is proved in [22] that (1.1)-(1.2) has a unique
entropy solution « in the sense of Definition 2.1. Another definition of entropy
solutions for (1.1)-(1.2) can be found in [4].

By taking k > esssupgu(z,t) and k < essinfqu(z, t) in (2.2), it is easy to see that
an entropy solution is also a weak solution of the same problem in the following
sensc.

Definition 2.2. A function u is a weak solution of the problem (1.1)- (1.2) if
du e L*(0,T; H-H(Q), f(u) € L*(0,T;L* (), A(u) € L*(0,T; Hg()),

and

T
(2.4) /0 (Oru, p)dt + /Q(—f(u) + VA(uw)) - Vodzdt = /Qg(pdxdt

for any ¢ € L?(0,T; H}(Q)) such that ¢(-,0) = ¢(-,T) = 0. The initial condition
is assumed to be the limit in L' sense as in (2.3). Here (-,) stands for either the
inner product in L?(2) or the duality pairing between H~!(2) and H3a ().

The existence of weak solutions follows directly from the existence of entropy
solutions. Since A is strictly increasing we know that the weak solution u of (2.4)
is also unique. By a straightforward application of the weak maximum principle we
have u € L*(Q) (cf. e.g. [22, Lemma 2.4]). Then standard theory for parabolic
equations implies that d;u € L?(Q). Consequently, by (1.1), AA(u) € L*(Q). We
summarize these results in the following theorem.
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Theorem 2.3. Let the hypotheses (H1)-(H3) be satisfied. Then there exists a
unique weak solution u to (1.1)-(1.2). Moreover, the following regularity results are
valid

u€L®(Q), Ouel*Q), AA)eL*Q).

We remark that if the domain {2 has a smooth boundary or € is convex, then
we can obtain the regularity u € L*(0,T; H*(Q)) by the standard regularity theory
for elliptic equations.

3. DISCRETIZATION

We now introduce the fully discrete problem, which combines continuous piece-
wise linear finite elements in space with the characteristic finite difference in time.
In fact, we use the method of characteristics to discretize the convection [13, 26,
17, 1, 16, 18]. We denote by 7, the n-th time step and set

th = ;Tiv Wn() = @('7tn)

for any function ¢ continuous in ("7!,#"]. Let N be the total number of time
steps, that is ¢V > T. If

(3.1) X (1) /dt = (X (D),8), X(") =
defines the forward characteristics in (¢"~1,¢"), then U(¢) = (X (¢),t) satisfies
(3.2) dU (t)/dt = Syu + f'(u) - Vu = Sy + divf(u).

The characteristic finite difference method is based on writing
i,n—l — X(tn_l), En—l(x) — u(jn—l’tn—l)’
for n > 1 and discretizing (3.1) by means of backward differences as follows:
dun Uun — Un—l u® — En—l

7 - = O +divf(u") = -

Therefore, the discretization in time of (1.1) reads

n n—1
(3.3) L oY AWM =§ inQ,
T'Il
where g"(z) = 7, ! j;t:_l g(z, t)dt. Since @™~ ! is well defined only for ! € Q, one
has to properly extend @”~! beyond the inflow boundary according to the boundary
condition imposed.

Let M™ be a regular triangulation of  into simplexes. The mesh M™ is obtained
by refinement/coarsening of M™~1, and thus M™ and M"~! are compatible. Two
meshes are compatible if one is the local refinement by bisection of the other. For
any K € M", hg stands for its diameter. We also denote B™ the collection of
boundaries ¢ of M™ in Q; h, stands for the size of ¢ € B™.

Let V™ indicate the usual space of continuous piecewise linear finite elements
over M"™ and V' = V"N H} (). Let UY € V™ be some discretization of the initial
function ug so that || wo— U} ||11(q) can be arbitrarily small when refining the initial
mesh M.



6 ZHIMING CHEN AND GUANGHUA IJI

Discrete problem. Given U}"! € V! then M™' and 7,_; are modified
to get M” and 7,, and thereafter U> € V* computed according to

Ul? - Ul?_l n -n n
@y (TU ) vap) v = @t wes,
where U1 = U2~ 1z 1), 2" = X(t" 1), and the approximate characteristics
X(t) is defined by

(3.3) dX/dt= f'(Uy (X (@), X(") ==z

The characteristics X (¢) satisfying (3.5) may not be computed exactly and it can
be calculated by multistep Euler method or Runge-Kutta method as suggested in
[1] or [16]. If the time-step size 7, is small enough (depending on the boundedness of
U ,7_1), then due to (H1) it can be easily proved that the approximate characteristics
do not cross each other (cf. e.g. [18]). In this paper, we will not elaborate on this
issue and simply assume this to be the case and still denote by X (¢) this approximate
characteristics. Further details on the application of the method of characteristics
to nonlinear convection-diffusion problem can be found in [17, 18].

We also remark that since A(:) is strictly monotone, (3.4) can be solved by
nonlinear SOR [8] if appropriate mass lumping is used for computing (U}, v) for
v € V", and the nonlinear relation A(U}') is enforced nodewise, i.e. to replace
(VA(UR), V) in (3.4) by (VI"A(UP), Vv), where I" : C(Q)) — V™ is the standard
finite element Lagrange interpolant. The a posteriori error analysis below can be
easily extended to cover these situations by including appropriate error indicators
for quadrature error. To avoid inessential complications, we will not consider the
extensions in this paper.

We conclude this section with some notation. Let the jump of VA(U}) across
some e € B™ be

[VAWU))e = (VAUR) |k, — VAUR) k) - ve
with the convention the unit normal vector v, to e points from K> to K; and so that
the jump [VA(UR)]e is well-defined. Let Uy, denote the piecewise lincar extension
of {UP}, that is Up(-,0) = U(+), and for all "~ < ¢t < ¢,

" —t -l

UrL() + t‘T— Up().

Un(-) =

Finally, we introduce the mesh-dependent norms

%
| B llL2(0) = ( > IIhKSOII%z(K)> ;1R ellz () = <Z hellwlliz(@)

Kemn eeBm

1

4. ENTROPY ERROR INEQUALITY
We start by introducing some notation. For any ¢ > 0, let
H.(z) = sgn(z) min(1, |2|/¢)

be the regularization of the sign function sgn(z). For any k € R, define the entropy
pair (U, Fy)

(k) / Ha( AR))dr, Fa(zk) = /k " HL(AG) — AR f (r)dr-



The following result is well-known (cf. e.g. [4, 22]).
Lemma 4.1. For any ¢ € L*(0,T; H3(Q)) such that ¢(-,0) = ¢(-,T) =0, and any
k € R, we have

a1 - / U, k)Oy — / Fouk) Vo + / H.(A(u) — A(K))VA(u) - Vo

/ H!(A(u) — A(K))|VA®W)?$ = / GH.(A(u) — A(K)).

By letting € — 0 in (4.1) one obtains the entropy condition in the interior of @
(2.2). In this paper, however, we will not use this limit interior entropy condition.
Let (H'(Q))' be the dual space of H'(f2), we define the discrete residual R €
L2(0,T; (H'(2))") through the following relation, for any ¢ € H(Q),
(42)  (OUn, ) = (f(Un), Vo) + (VA(Un), Vo) = {g,0) = (R, ).
Then similar to Lemma 4.1, we have the following result.
Lemma 4.2. For any ¢ € L*(0,T; H3(2)) such that ¢(-,0) = ¢(-,T) = 0, and any
k' € R, we have

(4.3) — /Q U.(Un, K0 — /Q Fe(Un, k') - Vo + /Q H.(A(Un) — A(K'))VA(u) - V¢
+ / H!(A(Un) — A(K')IVAUR) ¢
Q

T
- / GHL(A(Un) — A(K))$ — / (R, H.(A(U) — A(K'))é)-
Q 0

Proof. For the sake of completeness, we sketch the proof here. We take ¢ =
H (A(Up) — A(k"))¢ in (4.2), integrate in time over (0,T), and rewrite each term
as follows. First, by integration by parts, we get

T
oUy, H.(A(U o:U, U, = — U.(Up, k)0, 9.
/O<tha((h) /t h /Q(h)t¢

Next, let ¥ (2, k') = 0,[H:(A(z) — A(K'))] = HL(A(z) — A(K'))A'(z), then it is easy
to see that

Fe(z, k) = N Ho(A(r) — A(K) f'(r)dr

FEHAAG) = AW = [ F000utr R

Thus, by doing integration by parts, we have

T
- /0 ), Vo)

/ (e (U, KYVUn - F(Un) + He(AUn) — AR F(T1) - V)

/F Up, k') -V — /le( ; ()¢€(r,k’)dr>

—/ F.(Up, k") - V.
Q
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The rest of the proof is straightforward and we omit the details. O

Now we are going to apply the Kruzkov “doubling of variables” technique and
will always write u = u(y, s), Uy, = Up(,t), unless otherwise stated. If necessary,
in the following we will write ()(;,;) or Q(y.,) to stress the domain of integration
with respect to (z,t) or (y, s) respectively, although @ x @ will mainly denote the
domain of integration with respect to four variables. The following entropy error
identity extends similar result in [4].

Lemma 4.3. Let ¢ = ¢(x,t;y,s) be non-negative function such that
(z,t) = ¢z, t;y,5) € C(Q) for every (y,s) € Q,
(y,5) > d(x,t5y,5) € CZ(Q) for every (z,t) € Q.

Then we have

(4.4) —/QXQUs(u,Uh)(at¢+as¢) —/

QX

o F (u,Up)(Voo + Vyo)

+ 0xa H.(A(u) — A(Un))VyA(u) - (Vad + Vy9)

+ or0 H (A(Un) — A(u))Va A(Un) - (Vadp + Vyo)

*/, QHQ(A(U) — A(UW)IV2AUR) — VyA(u)Pe

- / O [U. (Un, w) — U (u, Up))]o
QxQ

- Vx[Fe(Uhau) _Fa(uth))]¢
QxQ

“Ja

Proof. Recall that we write u = u(y, s) and so we can take k = Up(z,t) in (4.1).
Similarly, we can take k' = u(y, s) in (4.3). The lemma follows from the following
two identities which can be easily proved by integration by parts

T
/0 (R, Ho(A(Un) — A(u))d)dt.

(v,s)

H.(A(u) — A(Un))VyAu) - Vo

QxQ
= H(A(u) — A(Un)) V5 A(Us) - VyA(u)d
QxQ
H.(A(Un) — A(w)) Vo A(Up) - Vyo
QxQ
=/ QH;(A(Uh) — A(u))VLA(Up) - VyA(u)g.

O

The next objective is to remove the restriction that the test functions in the
entropy error identity (4.4) must have vanishing trace. This is achieved by using
the technique of boundary layer sequence introduced in [22]. The properties of the
boundary layer sequence are summarized in the following lemma. For a proof, we
refer to [22].



Lemma 4.4. For any § > 0, let {5 be the solution of the elliptic problem
—8°Al+Cs=1 inQ, (=0 ondf.
Then we have

lim{s=1 ae. inQ; 0<G<1, —-A{G>0 in Q.
—0

Moreover, for any v € L*(0,T; H*(Q)), and for any € € HY(Q) N C(Q) such that
f(,o) = f(,T) =0,

lim /Q (v V¢)éda = — /E (v v)E,

where ¥ = 00 x (0,T).

Now we specify the choice of the test function ¢ in the entropy error identity
(4.4), which is similar to that used in [22].

Definition 4.5. Let

(4.5) ¢z, t,y,8) = C5(2) Gy (y)E(x, 8y, 9)0(2),

where 6 € C2°(0,T) such that 8 > 0, and § is defined as follows. Let {¢; }o<j<s be
a partition of unity subordinate to open sots By, By, - - - , By such that  C LJJJ:OBj7
Bo CC Qand 092 C UL, B;. Let ¢; € C°(R%), 0 < ¢; < 1, such that supp(¢;) C
B; and ¢;(x) = 1 on the support of ¢; so that ¢;(x)¢;(z) = ¢;(x). We use ¢; as
a function of y and ¢; as a function of &, and denote ¢;(x)p; (y) = ¥;(x,y). Define

J
(46) 5(377 t7 Y, S) = Z wl(t - s)wm(az' - yl)wn(xd - yd)¢](x7y)7

=0

where wy, w, are sequences of symmetric mollifiers in R, w,, is a sequence of sym-
metric mollifier in R, and for j =1,2,---,J, z = (z',24),y = (', yq) are local
coordinates induced by ¢;(z,y) in B;, that is, B, N0Q = {z € B; : x4 = p;(z")},
BNQ = {z € B : x4 < p;(z')} for some Lipschitz continuous function p; : R4~ —
R.

The following theorem is the main result of this section.
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Theorem 4.6. Let 6 and & be defined in Definition 4.5. Then we have the following

entropy error inequality

(4.7) - Ue(u,Un)&0; — K. (u,Un) - (Vo€ + V)0
QXQ QxQ

* oo H[(A(u) — A(Un))|Vo A(UR) = V, A(u) €6

< - / WU (Un, ) — Us(u, Uy))1€6
QxXQ

- vx[FE(uth) - FE(uth))]fe
QxQ

[ [ (Bt - B(a) - AUV, AW) 1268
Qy,s) 7 B(a,)

_ / / (B, Un) = Ho(A(UR) = A) V2 A(Un) ) - €6
Qa,t) ¥ B(y,s)

T
_ / / (R, H.(AUs) — A(u))€8)dt,
Q(y»S) 0

where K (u,Up) = Fe(u,Up) — H.(A(u) — A(Up))(VyAlu) — VL A(UR)), ¥ = 00 x
(0,T), and B, ) or Ty 5) are the domain of integration of ¥ with respect to (x,t)
or (y,s) respectively.

The proof of the theorem depends on the following lemmas.

Lemma 4.7. We have

4y gim [ wO@6 00 =~ [ v e

511i7rl>10_/QXQF€(uaUh)(vw¢+Vyﬁzs) = _/QXQFs(uaUh)(wa'i'vyf)e

+/ / Fo(u,Up) - v, €0
Qy,s) ¥ T(a,t)

+ / / Fu(u,Un) - 1,60
Qa.t) 7 Z(y,s)

Proof. By the definition of ¢ in (4.5) and £ in (4.6), we know that 9;¢ + 0s¢ =
(5¢n&0s. Thus

/c,ngUE(u’Uh)(6t¢+aS¢)=/

QX

o Ue (u, Un)(sCn&0:.-

Then (4.8) follows by letting &,77 — 0 in above equality and using Lebesgue domi-
nated convergence theorem.
Next, we note that

(4-9) Vi + Vy¢ = Cé(n(vzf + Vyg)e + (CnvavCé + C&vnd)fe'
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Thus

/ Fu(u, Un) (Vb + Vyd) = / Fo(u, U)o G (V26 + V)8
QxQ QxQ

+ Fe(u, Up)($y Vals + G Vy(y)E8.
QXQ

Now we let 6,7 — 0. The first term can be treated by using Lebesgue dominated
convergence theorem and the second term can be treated by Lemma 4.4 because of
F.(u,Uy) € L?*(0,T; H'(2)). This proves (4.9). a

Lemma 4.8. We have

lim H (A(u) — A(Un))VyA(u) - (Voo + Vy9)
§n—0J0QxQ
> H.(A(u) — A(Un))VyA(u) - (Vo€ + Vy£)6
QXQ

[ [ B - AU A v,
Quy.s) /E(,1)
Proof. By (4.9) we have
(4.10) oro He(A(u) — A(Un))VyA(u) - (Voo + Vy9)

0x0 H(A(u) — A(Un))VyA(u) - (Vo + Vy€) (s (0

+ [ H(AG) — AT T AW - Vil

+ oo H.(A(u) — A(Un))V,A(u) - Vy(,G560.

By Lebesgue dominated convergence theorem, we get

Jim H.(A(u) — A(UR))V A(u) - (V€ + V) (¢80
M=0 JoxQ

-/ H.(A() — A(UR))VyAw) - (Vo + V,€)0.

By Lemma 4.4 and Lebesgue dominated convergence theorem, we have

Jim / H.(A(w) — AUR))VyA(u) - Vo CsCy€O
=0 JoxQ

. / / HL(A(u) — A(U3))V,y Alu) - 1,6,
Quy,s) Y E(a,1)
To deal with the third term on the right-hand of (4.10), we define
®.(2) :/ H.(r)dr, VzeR.
0

It is easy to see that ®.(z) = ®.(—z2) and P. (21 + 22) < ®.(z1) + P.(23). Thus
Vo (u,Un) = . (A(u) — A(Ur)) + 2<(A(u)) — 2(A(Ur)) 20 ae. in @ x Q.
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Note that

0x0 Hs (A(u) - A(Uh))vyA(u) ’ vy<71C5€9

VyCPE(A(U) — A(Uh)) : Vy(n(&fe
QxQ

0r0 Vy[@:(A(u) — A(Up)) — @ (A(Un))] - V(580

V. (u,Up) - Vy(p(s&l — / V@ (A(w)) - V(G560
QxQ QxQ
= L1 + LQ.

Since ¥, (u,Up) > 0, —A,¢, > 0, by integrating by parts we get

L = —/ meMAw@w—/ B, (1, Un) V4G - V€050
QxQ QxQ

v

—/' . (u, Un)V Gy - V4 C5H.
QxQ

Since ¥, (u,Us)|s,, ., =0, we deduce by using Lemma 4.4 that

lim L; >0.
§,n—0

Notice that, by using Lebesgue dominated convergence theorem, we have

}il% Ly = - H.(Aw)VyA(u) - V(80
- QxQ
- H.(A(u)VyA(u) - Vy[(1 = )€
QxQ
- H(A(u))VyA(u) - Vy (E0)(1 - ()
QxQ
= L21 + LQQ.

Since ¢; — 1 a.e. in €2, we obtain

hm LQQ = 0
7n—0
To deal with L2, we denote by

Oy, s) = u—@@»/ £z, 1.y, 9)0()dudr.

Qa,1)

Since 8 € C°(0,T), for sufficiently large I, we may assume that ©(-,0) = O(-,T) =
0. Thus we can take ¢ = H.(A(u))© as the test function in (2.4). Using similar
argument leading to (4.1), we can show that

(4.11) _/ Us(u,O)BSG—/ FE(U,O)'Vy®+/ H.(A(w)V,A(u) - V,0
/H' NIV, A(u)?0 = /gH (u))O.



13

Therefore

Lo = / gH. (A(w)® + /Q U.(u,0)0,6 — /Q div, F. (u,0)0
/ HL(A@w)|V, A(u) 6,

which tends to zero as  — 0 by using the fact that ©,0;0© — 0 as n — 0. This
proves that lim,_,¢ lims_,o Ly = 0. Similarly, we can show that lim;_,¢ lim,_,o Ly =
0. This completes the proof. O

Now we are ready to prove Theorem 4.6.

Proof of Theorem 4.6. The proof lies in taking the test function ¢ in the entropy
error identity (4.4) as in Definition 4.5, and then take the limit 6,7 — 0. By
Lemmas 4.7 and 4.8 and Lebesgue dominated convergence theorem, we only remain
to consider the limit of the following quantity

Ly = ) QHE(A(Uh) — A(W)VL A(UR) - (Vo + Vi)

T
v [ [ R EA - Aw)s.
Quy,s) V0
From (4.9) and (4.2), it is easy to check that

Ly = o H.(A(Uy) — A()Vo AU) - (Vo€ + Vy€)(sCy0

+ ; QHE(A(Uh)_A(u))va(Uh)'vnd<6£9

T
+/Q(y 5)/ <g - 8tUh7H5(A(Uh) — A(u))<6<n€0>dt
. / (F(UR), Va (H(ATn) = A())€0)Go )t
(y,s)
+/Q(y 5)/0 <f(Uh)7VwC5C’f]H5(A(Uh) — A(u))é‘e)dt

T
- /Q / (Vo A(Un), Va (Ho(A(U) — A(w))E0)CsGy)de
(y,s)

=: L31+---+ L.

By Lebesgue dominated convergence theorem, we have

lim Ly = H.(A(Us) — A)) V. A(Us) - (V€ + V,6)8,
M0 QxQ

and
T
Jim (Lo + Lot L) = [ [ (RE(A@0) - A(w)B)ae
&n Quy.s)
By Lemma 4.4, we get

lim Lj, = / / — A(w))V,A(UL) - vy€8.
3,n—0 Q) VT

(y,5)
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Moreover, since f(Up) = 0 on X, 4, we have

lim L35 =0.
8,n—0
Therefore we have

lim Ly = H.(A(Ub) — AW)) Vo A(U) - (Vo€ + V,6)8
§,n—0 QxQ

_/ / H.(A(Un) — A(u)) Vo A(Up) - v, €0
Qz,t) ¥ E(y,s)

T
+LWQA<KH4M“0—MMﬁww

This completes the proof. O

5. A POSTERIORI ERROR ANALYSIS

We start by prove the following elementary estimate which extends the result in
[12, Corollary 6.4].

Lemma 5.1. For any € > 0 and z € R, define
v(e,z) = min{A'(s) : |A(s) — A(2)| < ¢}

Then for any k € R and z € R, we have

10:[Ue (2, k) — Ue (K, 2)]| < W’Cla
&Y
|0:[Fe (2, k) — Fe(k,2)]| < m’cza

where 0 < v < 1 is the Hélder exponent of A' o A7 in (H2), K1 = H(A' 0 A71),
Ko = K1l f' |z (r) + L(f') with H(A" 0 A™") and L(f') being the Holder constant
of Ao A~ and the Lipschitz constant of f' respectively.

Proof. We only prove the estimate for F.. The estimate for U, is similar. By
definition,

O:[Fe(z,k) — Fe(k, 2)]
:a/’ — A(R)) + Ho(A(r) — A@)] f'(r)dr

z

= HAE) A - [ AR AR

= [T - AE)A s - / HL(A(r) — A(2)A'(2) ' (r)dr
k

- / H!(A(r) — AG)A()(f(2) — f/()dr
/ H!(A(r) — A2))(A'(r) — A'(2)) f'(r)dr-
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Without loss of generality, we may assume z > k. Then since H!(A(r) — A(z))
vanishes outside the set {A'(s) : |A(s) — A(z)| < €}, we know that

/ THIAW) — AE)A () )

1 ! ! _ !
S 2 AN ) = F e
S L - ATHAR) - o) A(r)dr
A-1(A(z)—¢)
< Uy

where we have used the fact that z = A7!(A(z)). Moreover,

/k CHIAW) — AR () — A f ()

z

< Boa et [ | ()] dr
- 2)—¢)
< HA o A™HE" Y £ I mylz — ATHA(2) - ©)
y
< H(A o AV f' | poe(R) —— .
< HA oA e ®) ) 2)
This completes the proof. O

The next step is to let the parameters in the mollifier functions I,m,n — oo in
the entropy error inequality (4.7) to complete the Kruzkov “doubling of variables”
technique.

Lemma 5.2. We have

(5.1) lim UE(u,Uh)§0t=/ U (u, Up)8y,
Q

l,m,n—o0 QxQ

(5.2) lim K. (u,Up) - (Vo + V)0 = 0,

l,m,n—o0 QxQ

(5.3) lim H{(A(u) — A(Un)IV A(Un) — Vy A(u)[*€8

l,m,n—o0 QxQ

- /Q H! (A(u) — AUR)IVA(UR) — VA(w)6.

Proof. From the definition of £(x,¢,y, ) in (4.6) and the property of mollifier func-
tions, we have

J
lim Us<u,Uh)£et=j§:jo /Q U (u, Un)ip; (. )0y = /Q U (u, U)6,

Im,n—o0 OxQ

where we have used the fact that

J J J
(5.4) Z%’(w,w) = Z pj(x)p;(z) = Z%‘(Sﬂ) =1
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This proves (5.1). Similarly, we can show (5.3). To see (5.2), we note that

J
Vol + Vi€ =Y wilt — )wm (@’ — 3 wn(@a — ya)(Varh; + Vyiiy).

=0

Thus

J
lim / KT (T84 9,800 = zzjo /Q K. (u, Un)V oty (x, 2)8,

l,m,n—o0
which vanishes due to (5.4). a

Lemma 5.3. We have

1
= (u, f| < & 0,
(5.5 lmhnrgoo ‘/QXQ (Un,u) — U (u,Up))é ‘ < Kie /Q e 10:Us|
— 1
(5.6) lim ‘ Vao(Fe(Up,u) — Fs(u,Uh))fﬂ‘ < ,CQE’Y/ —— |V, Usl8.
Lmn—=oo | Joxg Q 1/(€,Uh)
Proof. By Lemma 5.1, we have
‘/ Uh? ) Ua(uth))fe‘
QxQ
1
S ]C1E’y/ |8tUh|9 fdyds
Qa,0) v(e, Un) Q.9
From the definition of £ in (4.6) and (5.4), it is easy to see that
lim &z, t,y,8) = 1.
l,m,n—o0 Qey.)
This proves the estimate (5.5). Similarly we can show (5.6). a

Lemma 5.4. We have

n—oo l,m—oo

(5.7) lim  lim / / (Fe(u,Up) — H (A(u) — A(Up))V,A()) - v,60 = 0,
Qo) I B2t
n—o0 I,m—00

(5.8) lim lim /Q /Z (u,Up) — H:(A(Un) — A(w)) Vo A(UR)) - vy€6 = 0.
@6) /B,

Proof. We modify the idea in [22, §3] to show (5.7). Since U = 0, A(Up) = 0 on
Y(z,t), defining N;(y') = (=Vp;(y’),1) (see Definition 4.5 for the notation) we get

l,m— o0

lim / / (Fi (4, Un) — He(A(u) — A(UR))Vy A(w) - 28
Qy,s) ¥ L)

Z / — Ho(A(u)Vy A®) - Nj (0 Jwon(pi(u') — va)its0
Q(y s)
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where ¥;(y) = ¢;(', 03y )05y’ ya)- Lot waly) = 2f),_, . wn(s)ds, then
Vwyn, = =2wn(p;j(y') — ya)N;(y'). Thus

L = Z [, (F0) BTy 400) T
J
= g2 [, (R0 AT A T - )i

- Z / (F.(u,0) — Ho (A(u))V, A(w)) - V($;8)(1 = w,,)
Q(y s)

=: Ly + L4z-

Notice that w, — 1 a.e. in Q, by Lebesgue dominated convergence theorem, we
have lim,, o, L4y2 = 0. Moreover, by (4.11) and using the argument in dealing
with the limit Lo in the proof of Lemma 4.8, we can show that lim,,_ o, 141 = 0.
Therefore, Ly tends to 0 as n — oco. This proves (5.7).

The proof of (5.8) is simpler. Since Uy}, is a finite element function, the trace of
F.(Up,0) + F.(A(Uy)) - Vo A(Up) on X, 4 is well-defined and is equal to 0. One
can easily prove the integral in (5.8) converges to zero as I, m,n — oo. O

Lemma 5.5. Let 8 be defined in Definition 4.5, then we have

(59 - /Q U e, Un)6s + /Q H! (A(u) — AUV (AUR) — Aw))|?8

Y 1 ’
< Ke /Qu(s,Uh)(latUhl + |VzUh|)0—/0 (R, H:(A(Up) — A(u))6)dt.

where K = max(K1, K>).

Proof. We let first I,m — oo then n — oo in the entropy error inequality (4.7). B
Lemmas 5.2-5.4, we are remained to consider the limit of

/Q(y )/ (R, H.(A(Up) — A(w))€8)dt

/ (g — BT Ho (A(U) — A(u))é0
QxQ

le

- /Q ) = 2 AU) - Vo (AD) ~ Aw))ed

[ () - VaA(U) - Vg HAAWS) ~ AP,
QxQ
Notice that, by integration by parts, we have

/Q ) = VeAWD) - VEH(AU) - Au)f

= _/Q Q(f(Uh) — VL AUR)) - Vy (H(A(U,) — Au)))€o

" /Q(z,t) /E(y’s) HE(A(Uh))(f(Uh) - VwA(Uh)) . l/ny
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Thus

Iy = - / (0 — QU H(A(Uy) — A(w))E0
QxQ

" Joro H(A(Un) = A)(f(Un) = Vo A(Un)) - (Ve A(Un) — VyA(u))E6

- /Q U0 = VeAW) - (76 + VO H-(ATh) - A(u)p

s B - VAT 1,8
Qa,t) Y T(y,s)
=: Ls1+- -+ Lsg.

Similar to the proof of (5.1) in Lemma 5.2, it is easy to see that

T
lim  (Lsy + Ls) = — / (R, H.(A(Un) — A(u))8)dt.
l,m,n—o0 0

Similar to the proof of (5.2) in Lemma 5.2, we know that limy n n—eo Lsz = 0.

Finally, since H.(A(Uy)) = 0 on X, ), we can easily prove that Lsy — 0 as
l,m,n — oo. This completes the proof. O

To proceed, we introduce the interior residual

n o_ rrn—1
Ui —Un + AAU]) onany K € M",

Tn

R" = gn_

where we recall that g% = 7,1 f::_l g(z, t)dt.
The following theorem is the main result of this paper.

Theorem 5.6. Let the assumptions (H1)-(H3) be satisfied. Forn > 1, let ¢, =
(Z?Zl 8{1)&, where v is the Holder exponent of A' o A= and EI,EX,EY are the
error indicators defined below. Denote Q, = Q x (t"1,t"), and define

1 1
(5.10) A,, = max <1,/Qn m(|atUh| + |VUh|) + /QW) )

where for any z € R, v(ey,z) = min{Ad'(s) : |A(s) — A(z)| < en}. Then there
exists a constant C depending only on the minimum angles of the meshes M™,
n=1,---,m, such that the following a posteriori error estimate is valid

2y
m m 1 3 T+~
| u™ = Ui ey < Eo+ D _(EF +EH +C Y AT (Zﬂ) ;

n=1 n=1 i=1
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where the error indicators &y, £, i =1,---,3, are defined by

& =|luo— U}? 1) initial error
&p =1 2R A IVAUN N 20 jump residual
&x =1% huR™ 120 interior residual
& =712 V(AWUT) - AURY) 220 time residual
"o \up - ot , -
Er = —S—L— — (3 Uy + divf(Up)) dt characteristics
n—1 Tn L1(Q)
o
& = / lg — 3" llr (@ dt source.
tn—1

Proof. In the proof we will make use of the Clément interpolation operator II" :
HL () — Vi, which satisfies the following local approximation properties [9], for
any ¢ € Hy(Q),

(6.11) |l = I"@||2(x) + hx|| V(e — I"0) |l2(k) < C* x| Ve lla(nvy)s
(5.12)  |l¢ =" |lr2(e) < C*RY3( Ve |lL2(n(e))s

where N(A) is the union of all elements in M™ surrounding the sets A = K € M"
or A =e € B™. The constant C* depends only on the minimum angle of the mesh
M™,

Denote ¢ = H.(A(Uy) — A(u))8. Then by (4.2) and (3.4), we know that, for
te ("1,

(R,Q) = {g—3" Q) +(R" - AA(U}), ¢ - II"¢) = (VA(UR), V(¢ - II"())
Un—l _ Un—l
(P — divf (Un), C) = (V(AWU) = AR, VE),
where AA(U}Y) is understood in elementwise sense. Thus, after integrating by parts,
we get

T
_ /O (R, H.(A(v) — A(Uy))0)dt

N " N n
= —;/tn_l(g—gn’c)_g/tn_l(Rn,C—HnC)

n

N
+> > [IVAUD](C - T7¢)
n=1

tnl oepn e

N n _ prn—1
—nzl /tn_l <M — (U + divf(Un)), )

Tn

N "
+3 [ V@@ - awp). vou

n—1

n=1

= I+---+V.
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Now we assume 0 < 6 < 1 and @ is supported in (t"~!,"). Since H.(A(u) —
A(Ur)) €1, we have

I+IVLSEy + &5
By (5.11)-(5.12), we have

" 1/2
M+ <0 [ (1B e + I TAC) ) 1€ o0
Recall that V¢ = HL(A(Uy) — A(w))V(A(Ur) — A(u))f. By Young’s inequality,
1
M+ < - H!(A(u) — A(Up))|V(A(u) — A(UR))|?0 + Ce™H(EP + EM)2.
Q'ﬂ-
Similarly, we have
1
Vo< g HiAW) - AUR)IV(A() - A(Un))I?6 + Ce7H(ER)*.
Qn
Substitute these estimates into (5.9) we arrive at, for any § € C°(t"~1,¢") satis-
fying 0 < 0 <1,
1
n V(€7 Uh)

(5.13) — | U.(w,Un)8 < K& /
Qn Q

(10:Un| + V2 Unl)

3 2
+(EF 4+ EX) + Cet (Z 5?) .
=1
The following argument to choose @ is standard (see e.g. [19]). For any t"~! < ¢; <
ts < t7, take o sufficiently small such that ¢, —a > ¢!, t5 + a < 7, and define

t—t1
o(t) = / was)ds,

—to

where w, is the symmetric mollifier in R. Then it is clear that 0 < § < 1 and
0: = wo(t —t1) — we(t — ta2). Thus

- / Ua(u, Un)b, = / U oty Un )it — ) — /Q U (1, U)ot — 1)

— /QUE(U,Uh)(tQ)d(I;—/QUE(U,Uh)(tl)dx, as a — 0.

From the definition of the entropy function U.(z,k) = [, kz H.(A(r) — A(k))dr, it is
easy to prove that

|z — k| <U.(z,k) < |z - K|,

__c

v(e, k)
where v(e, k) = min{A'(s) : |A(s) — A(k)| < £} is defined the same as that in
Lemma 5.1. Thus

a—0

— lim UE (u, Uh)Ot

> = U ey = | 0= U0 1oy =< | s do

= |u = Uil = ™ = U ey —ellvie, U ™ g,
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as ty — t" and t; — t"~L. Therefore we deduce from (5.13) that

1 1
n_pynil,, < 5 - . o+
||u Uh ||L @ =< € (IC/Q V(é‘,Uh)(latUhl +V Uh|) +/Q V(é‘,U’?))

n

3 2
"t = U ey + EF +EF + Ce™! (25?) .

i=1

_1
Now let &, = (320, €f)$ and take e = £,/Axt", where A, is defined in (5.10).
Since € < ey, we have v(e,Up) > v(en, Up), v(e,Ul?) > viey, Ul), and consequently,

1 1
———(|6:Un| + |V U, +/ ——— <A,
/ V(s,Uh)(l dUn| + | n) Qv Up) —

n

Thus

1 3 T+~
™~ UF oy < 1™ = UF™ llzagay + &7 + 7 + CATT (2 E?> .
i=1

This completes the proof upon summing n from 1 to m, m > 1. O

To conclude this section, we give several remarks about the a posteriori error
estimate derived in this section.

Remark 5.7. In practical computations, the error indicator £ for the initial error
can be easily reduced by refining the initial mesh, and the source error indicator
&s can be controlled by reducing time step sizes. The characteristic error indicator
&4 can be reduced by reducing the time step size if the approximate characteristics

X(t) in (3.5) is solved by convergent multistep Euler method or high order Runge-
Kutta method.

Remark 5.8. In the case of strong diffusion A’(s) > 8 > 0 for any s € R and A’
is uniformly Lipschitz continuous, then the Hoélder exponent v = 1 in (H2) and
A, is bounded by 7| Uy || BV(Q,) Which is expected to be bounded in practical
computations. The a posteriori error estimator in Theorem 5.6 then recovers the
standard a posteriori error estimator derived in the literature for parabolic problems
[25, 7]. In particular, the space error indicators £, £, which control the adaptation
of finite element meshes at each time step, are sharp in the sense that a local lower
bound for the error can be established by extending the argument in [7, Theorem
2.2] for linear parabolic equations.

Remark 5.9. In the case of small constant viscosity A’ = ¢, then the Hélder ex-
ponent v = 1 in (H2), and A,, = Ce~!. The estimators derived in Theorem 5.6
are closely related to the estimators in [16], in which L?(L?) a posteriori error
estimates are derived based on the duality argument for the linear convection dom-
inated equation

Ou . .
(5.14) 5 +div(vu) —eAu=g¢ in Q,
where v € C(Q)? such that divv = 0. For the linear problem (5.14), we remark
that one can derive an L>°(L') a posteriori error estimate of the same form as in
Theorem 5.6 without using the Kruzkov “doubling of variables” technique. We now
describe briefly this simple argument. The weak formulation of (5.14) is

(5.15)  (Bru, ) — (v, Vo) + €(Vu, Vo) = (g,9) Vo € Hy(S).
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The discrete problem is the same as in (3.4) and we define the discrete residual
R € L*(0,T; H~1(£)) similar to (4.2), for any ¢ € H§ (),

(5.16) (O:Un, ) — (VUR, V) + (VUL Vi) = (g,0) — (R, ).

Subtracting (5.15) from (5.16) we get the following error equation, for any ¢ €
H(Q),

(Os(u = Un),0) = (v(u = Up), Vo) + e(V(u = Us), Vy) = (R, ¢).

The a posteriori error estimate can be readily derived by taking ¢ = Hs(u — Up),
where Hs(s) = s/v/s? + 62 is a regularization of sgn(s), using the following Galerkin
orthogonality for ¢t € (t*71,¢"]

-n Up - Uirzl_l
Ry = (g—3" @+ B (0:Un +vVUs), ¢

HR", o — ") — e(VU, V(e — ")) — V(U — Up'), Vo),

and exploiting the standard argument in the a posteriori error analysis. We remark,
however, that this simple argument can not be extended to deal with the nonlinear
problem considered in this paper.

Remark 5.10. The a posteriori error analysis in this paper is different from the a
posteriori error analysis for nonlinear conservation laws in [11, 12, 20] or nonlinear
degenerate parabolic equations in [23] in the following aspects. Firstly, only Cauchy
problems are considered in [11, 12, 20, 23]. The difficulty to include boundary
condition is essential. In this paper, we have used the recently introduced technique
of “boundary layer sequence” in [22] to overcome the difficulty. We also remark
that the use of the technique of “boundary layer sequence” allows us to extend the
analysis in the paper to treat other types of boundary conditions. We will report
the progress in this respect in future studies. Secondly, the nature of the estimators
are different: our estimators emphasize the diffusion effect of the problem which
requires the assumption A'(s) > 0 for any s € R; the estimates in [23] are valid
for any nonlinear function A such that A'(s) > 0. Consequently, the estimators in
[23] do not have the right order in the region when the solution is smooth. Finally,
the methods of analysis are different. Recall that there are several parameters
introduced in the analysis

o The regularizing parameter € in H.(z);
e The boundary layer sequence parameters 6, and the mollifier parameters
L,m,n.

The analysis for Cauchy problems in [11, 12, 20, 23] is based on letting £ — 0
and taking finite mollifier parameters [, m,n. Note that there are no boundary layer
sequence parameters 6, ) for the analysis for Cauchy problems. The analysis in this
paper is based on letting 6,7 — 0 and I, m,n — oo but taking a finite €. We are not
able to use the same technique as that in [11, 12, 20, 23] by choosing finite mollifier
parameters [, m,n to treat the problem with boundary conditions.
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6. A NUMERICAL EXAMPLE

In this section we report a numerical example for the following linear convection
diffusion equation

% + div(vu) —eAu=g¢ in Q.

The computation makes usc of the adaptive finite clement toolbox ALBERT [27]
and is based on the a posteriori error estimate derived in this paper. Further
numerical experiments including the application to nonlinear convection diffusion
equations will be reported in a forthcoming paper.

By Theorem 5.6 or the argument in Remark 5.9, we know that

1<m<N

N N 1/2
max || u™ — Ulrzn ||L1(Q) < &+ Z(Eﬁl + EE?) +C (2 Tnngme>

n=1 n=1

N 1/2
+C (Z Tnn:pace> ’

n=1

where the time error indicator 5}, . and space error indicator ng,,.. are given by

Mime = €l VR = Ur ™) 2oy Moace = 9 M
KemMn

with the local error indicator n} defined as
Mg = € e R |12y + €l R IVUR 120k -

Let the time and space tolerances TOLyine 81d TOLgpace be given. At each time
step n > 1, the time step size 7, is determined through the requirements

TDLtime2 1 TOLtime
ngme = Ta 7__(84? +ggz) S T

The set of elements marked for refinements M7, . and the set of elements marked

for coarsening M7 are determined by the relations

coarse

SNk >6r > gk, SNoonp <2 > k.

KeMmMzy Kemn KeM? e Kemn

refine

The iteration for the mesh adaptation at each time step n is terminated whenever
Nhace < TOLgpace” /T is satisfied.

We consider the so-called rotating cylinder problem from [16, Example 6.3]. Let
Q=0,1)2,T=059g=0v=-2r(22s—1,1 - 22;)" and

[ 1, fors<1/4;
Y=o, otherwise,

where 52 = (2z; — 1/2)? + (22, — 1)%.

In the computations we take TOLyime = TOLgpace and 6, = 0.5, 8. = 0.1. The
initial mesh Mg at time ¢ = 0 is so chosen that & = || uo — U,? llz1(2) < TOLsnitia1-
In our computations, we take TOL;ipitia1 € TOLgpace SO that the initial errors are
negligible. Table 6.1 shows the initial errors and the numbers of nodes of the corre-
sponding initial meshes for different choices of €, TOL;nitia1, and the corresponding
TOL = TOLgpace + TOLyine-
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TABLE 6.1. The initial errors and the numbers of nodes of the
initial meshes for different choices of €, TOL and TOLjnitia1-

TOL | TOLinitia1 &o number of nodes

6.0 2.0e-4 1.47e-4 8415

4.0 1.0e-4 9.58¢-5 13407
e=le-5| 2.0 5.0e-5 4.96¢-5 24751

1.0 2.5e-5 1.77e-5 68051

2.0 2.0e-3 1.51e-3 835

1.0 1.0e-3 5.73e-4 2247
e=1e-3 | 0.5 5.0e-4 3.91e-4 3287

0.25 2.5¢e-4 1.47e-4 8415

0.125 | 1.25e-4 [ 9.58¢e-5 13407

Tables 6.2 and 6.3 show the total number of nodes A = Zgzl M,,, where M, is
the number of nodes of M, the total estimated error n and the convergence rate
o for € = 1073 and € = 107° respectively. For two different TOL;, let ; and M; be
the corresponding total estimated error and total number of nodes, the convergence
rate « is computed by

_ log(m/n2)
lOg(Ml/Mg) )

TABLE 6.2. The total number of nodes M, the total estimated
error 1 and the convergence rate o when e = 1073,

TABLE 6.3. The total number of nodes M, the total estimated

TOL M n o

2.0 20540 | 1.2044

1.0 113238 | 0.6392 | -0.3711

0.5 728872 | 0.3267 | -0.3605
0.25 | 4434790 | 0.1637 | -0.3827
0.125 | 25173197 | 0.0814 | -0.4024

error 7 and the convergence rate o when € = 1075,

TOL M n a
6.0 | 102111 | 3.7485

4.0 | 267457 | 2.6576 | -0.3572
2.0 | 2046604 | 1.2973 | -0.3524
1.0 | 14878263 | 0.6426 | -0.3541

We observe from Tables 6.2 and 6.3 that the a posteriori error estimator 7 is
roughly proportional to M~1/3, ie. n ~ CM~1/3 for some constant C' > 0. This
indicates that

(6.1) max ||u—U"||piq) < CM~Y3.

1<n<N
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We remark that because of the singular nature of the solutions, the numerical
scheme (3.4)-(3.5) with uniform refinements both in space and time will not produce
the convergence rate (6.1) in terms of the error reduction.

Figure 6.1 shows the meshes and the surface plots of the solutions at time ¢ =
0.251278 and ¢ = 0.500878 when € = 1075, We observe that the meshes “follow” the
positions of the cylinder. For this problem, the “leakage” of the numerical solutions
is observed in [16] in the following sense: the mesh is coarser in the regions of the
cylinder closest to and farthest from the center of rotation. We do not observe,
however, this phenomenon in our computation as indicated in Figure 6.1. This
may be explained by the difference of the error indicators used in two papers.

0.9} 409F
o8 1 o8}
o7}t Josl
06 2 06F
05 05
04t J 04
03 103
o2t 1 ool
01t J ot}
% 01 o0z 03 04 05 08 07 08 08 1 0 01 02 03 04 05 08 07 08 08

FIGURE 6.1. The meshes (top) and the surface plots (bottom)
of the solutions at time ¢ = 0.251278 and ¢t = 0.500878 when
€ = 1073, The number of nodes are 3133 (¢t = 0.251278) and 2143
(t = 0.500878) respectively.
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