FULLY DISCRETE SEMI-IMPLICIT SECOND ORDER SPLITTING
FOR ANISOTROPIC SURFACE DIFFUSION OF GRAPHS
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Abstract. We analyze a fully discrete numerical scheme for approximating the evolution of
graphs for surfaces evolving by anisotropic surface diffusion. The nonlinear geometric fourth order
equation is split into two coupled second order problems, which are approximated by linear finite
elements. The time discretization is semi-implicit. We prove error bounds for the resulting scheme
and present numerical test calculations that confirm our analysis and illustrate surface diffusion.
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1. Introduction. This article is concerned with the geometric problem of de-
termining an evolving surface I'(¢) whose motion is governed by the highly nonlinear
fourth order geometric anisotropic surface diffusion equation

V=AprH, onT(t), (1.1)

where V' and Ar denote, respectively the normal velocity and the Laplace-Beltrami
(surface Laplacian) operator for I'(¢). Furthermore H., denotes the anisotropic mean
curvature of the surface with respect to the positive, convex and 1-homogeneous
surface energy density v : R**1\{0} - R. We can introduce H, formally as the first
variation of the surface energy

A,(T) = / Y(w) (12)

where v denotes the unit normal to I'.

Modelling morphological surface evolution and growth is fundamental in materials
science and the study of microstructure. The surface evolution law (1.1) is referred
to as surface diffusion because it models the diffusion of mass within the bounding
surface of a solid body. At the atomistic level atoms on the surface move along the
surface due to a driving force consisting of a chemical potential difference. For a
surface with surface energy density v(v) the appropriate chemical potential in this
setting is the anisotropic curvature H,. This leads to the flux law

pV = —diVFj N

where p is the mass density and j is the mass flux in the surface, with the constitutive
flux law ([18], [20])

J=—-DVrH,.
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Here, D is the diffusion constant. From these equations we obtain the law (1.1)
after an appropriate nondimensionalisation. The notion of surface diffusion is due to
Mullins [20] and for a review we refer to [4].

Our sign convention is that H. with respect to the outer normal is positive for
the Wulff shape

W:={pe R |(p,q) <v(qg) Vge R}

This evolution has interesting geometrical properties: if I'(¢) is a closed surface bound-
ing a domain Q(t), then the volume of Q(t) is preserved and the surface energy (or
weighted surface area) of I'(¢) decreases. The corresponding result in the graph case
is given in Lemma 2.2. Tt is known that in the isotropic case, for closed curves in the
plane or closed surfaces in R? balls are asymptotically stable subject to small pertur-
bations, see [14], [16]. However, it is known that, for one dimensional graphs surfaces
may lose their graph property in finite time whilst the surface evolves smoothly, [15].
Furthermore topological changes such as pinch—off are possible, [17], [19].

In what follows we shall study evolving surfaces I'(¢) which can be described, for
each t > 0, as the graph of a height function u(-,t) over some base domain Q C R”,
ie. I'(t) = {(z,u(z,t)) € R"™ |z € Q}. The area element and a unit normal, denoted
by Q(u) and v(u), are then given by

W) = ST TVuE. wlu) — (Vu, —1) _ (Vu,—1)

so that we can calculate the surface energy or weighted area for a graph ' given by
the height function v as

A%UZLW%ZL%WM@MZ/VW%A)

Q

in view of the homogeneity of . Thus the first variation of A, in the direction of a
function ¢ € C§°(Q) is

d n n
%Z’Y(u + E‘b)\e:O = Z/Q'Ym(vua 1), = — Z /Q'Ypipj (Vu, _1)uzizj¢7
i=1

ij=1
=~ [ o= [ wo

where we use w to denote the anisotropic or weighted mean curvature of the surface
in the graph case so that

w = — Z ’Ypipj (V’U,, _]-)uziz]-- (13)

ij=1
In order to translate (1.1) into a differential equation for u = u(z,t) we observe
that the normal velocity V' of ['(t) is given by
Ut
Q(u)’
Furthermore, if v : @ — R then the Laplace-Beltrami operator on T'(¢) is given by
(see (2.5) below)

V=-

_Vu@Vu

Arv = —UV- ((Q(u)I W) VU)
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where ® denotes the usual tensor product of two vectors in R™. Thus, anisotropic
surface diffusion for graphs is defined by the following highly nonlinear fourth order
evolutionary equation

w=-v- | (Qur- %) v( zn: Yoy (Vi ~Dttza ) | - (14)

i,j=1

The aim of this paper is to analyse a fully discrete finite element approximation
of the initial value problem in the case of graphs. We use the second order splitting
method for fourth order problems proposed by Elliott et al [13] for the fourth order
Cahn—Hilliard equation and subsequently employed for surface diffusion by Deckelnick
et al [11]. Thus the space discretization is accomplished using H' conforming finite
element spaces. For example, continuous piecewise linear elements on triangulations
are sufficient. On the other hand in time we use a novel semi-implicit discretization
which requires only the solution of linear algebraic equations but which preserves the
Liapunov structure. This ensures the natural stability properties of the scheme with
a time step independent of the spatial mesh size. The scheme involves stabilising
the explicit Euler scheme by adding a semi-implicit linear form which involves the
discrete time derivative and which also involves the anisotropy. A similar idea was
previously used in [10] for the anisotropic mean curvature flow of graphs. The main
achievement of the paper is the derivation of a priori geometric error bounds. We
prove optimal order bounds for the difference of the normals measured in the L2
norm over either the continuous surface I'(t) or the discrete surface 'y (t) and the
L? norm on the discrete surface of the difference of the tangential gradients of the
anisotropic mean curvature. This latter bound is equivalent to an H~! bound on the
difference in normal velocities. Some numerical computations are presented which
confirm the analysis and which illustrate the effect of anisotropy.

A second order splitting finite element scheme for axially symmetric surfaces was
presented by Coleman et. al. [6, 7] together with some stability results and interesting
numerical computations illustrating pinch—off and the formation of beads. A first finite
element error analysis for the second order splitting method for surface diffusion in
the axially symmetric case was presented by Deckelnick et. al. [11]. Subsequently
Baensch et. al. [1] developed an optimal order continuous in time finite element
error analysis for the second order splitting method in the case of multi-dimensional
graphs. Our work has the distinctive feature of analysing a fully discrete second
order splitting finite element method for nonlinear surface anisotropy using a stable
semi-implicit time stepping scheme.

REMARK 1.1. The analysis is easily extended to the more general evolution law:

V=Ar(H,—f)+yg (L.5)

where f is a forcing arising from an extra term in the energy and g is a surface growth
term. For example including mechanical energy leads to the appearance of f and in
epitazial growth g models the deposition of atoms.

REMARK 1.2. Qur results are presented for zero Neumann boundary conditions
with exact quadrature. The results and arguments also hold without change for the
case of Q0 being a box and periodic boundary conditions. Minor modifications are
required for homogeneous Dirichlet boundary conditions. These three sets of conditions
have the property of being variationally seperated and allow the second order splitting
method to work.
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REMARK 1.3. The approach to surface diffusion in this paper is entirely analogous
to the work of Elliott et. al [13] for the Cahn-Hilliard equation where u is an order
or phase field variable and w is the chemical potential. The variational gradient flow
structure is identical in each setting. Indeed the degenerate Cahn-Hiliard equation
yields a diffuse interface approzimation to surface diffusion, [3].

The paper is organized as follows. In §2 we introduce some notation and assump-
tions. We set up the numerical scheme and derive some preliminary estimates in §3,
whilst §4 contains the proof of the error bounds. Finally §5 contains some numerical
results.

2. Notation and Assumptions.

2.1. Differential geometry. Let ' be a C? hypersurface in R**! with unit
normal v. For any function 7 = #j(z1, .., 7,11) defined in a neighbourhood N C R**!
of T we define its tangential gradient on ' by

Vrij:= Dij — (D, v)v

where on R™*! (- -} denotes the usual scalar product and D denotes the usual
gradient. The tangential gradient Vr# only depends on the values of 77 on I' and
(Vrij, vy = 0. The Laplace-Beltrami operator on I' is defined as the tangential diver-
gence of the tangential gradient :

Arij = (Vr, Vrij).

Let T have a boundary OI' whose intrinsic unit outer normal, tangential to T, is
denoted by p. Then the surface Green’s formula is

/ (VeE Vi) = [ E(Vrm ) - / EAMT. (2.1)
T T

or

We now turn to the situation in hand where I'(t) = {(z,u(z,t)) € R**! |z € Q}.
For functions v = v(x), = € 2, we use the extension o(z,zp4+1) = v(z) and define

Vrov := Vro = Do — (Do, v(u))v(u) = P(v(u))Do
where we observe that Do = (Vv,0), v(u) = (Vu,—1)/Q(u) and P(v(u)) is given by
Pw(u)) :=1—v(u) ®v(u).

Here, we have used the tensor product notation y ® y := yy™. It follows that

1 1
(Vrv,Vrn) = Vv -V — WVU -Vu Vn-Vu = 0w (Vo) E(Vu)Vn, (2.2)
where,
Vu® Vu
E(Vu) :=Qu)I — 0w
For later use we note that
(P(v(u)) Do, D0)Q(u) = (Vo) E(Vu)Vw (2.3)
[Vo|?

(Vu)'E(Vu)Vo > Qo)
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Integrating (2.2) over I we derive

o 1 ¢
[ (¥e0.5ei) = [ (Fe0.Vem@Q) = | 5o (90 BTV Q)

= / (Vo) E(Vu)Vn.
Q

If we combine this relation with (2.1) we obtain for test functions n, which vanish on
N

nArv = : uw)Vu) = L . u)Vo u
Laaco= [ a7 (B0 = [ 1507 (BT0T) Q).

so that

1
Arv:=Arv = ——V - (E(Vu)Vuv). 2.5
oV (ET0e) 2.5)
2.2. The anisotropy. We suppose that v : R*™! \ {0} — R is smooth with
v(p) > 0 for p € R*™! \ {0} and that ~ is positively homogeneous of degree one, i.e.

Y(Ap) = [Alv(p)  forall A #0,p # 0. (2.6)

Here, | - | denotes the Euclidean norm. It is not difficult to verify that (2.6) implies
(v'(p),p) = 7(p),(Y"(P)P @) =0, (2.7)
0 A8) = 15090 (0, () = 73700, ) (28)

for all p € R**! \ {0}, ¢ € R**1 X # 0 and 7,5 € {1,...,n + 1}. Finally, we assume
that there exists 9 > 0 such that

(D*y(p)g,q) > vlg|>  forall p,g € R* |p| =1, (p,q) = 0. (2.9)

2.3. Function spaces. By (-,-) we denote the L?(Q) inner product (v,n) :=
fo v(@)n(z)dz for v,n € L*(Q) with norm [jv]| := (v,v). Also H™?(Q) denotes the
usual Sobolev space with the corresponding norm being given by

m 1
lallzrmr@y = (3 1D ull e )"
k=0

with the usual modification for p = co. For p = 2 we simply write H™(Q) = H™?*(Q)
with norm || - || grm () -

2.4. The variational formulation and initial value problem. Rather than
discretising the fourth order equation (1.4) we use the height u of the graph and the

anisotropic curvature of the graph w as variables and consider the two second order
equations (1.1,1.3):

ug =V - (E(Vu)Vw) (2.10)

w= - Z Vpip; (V’LL, _l)umiz]" (2'11)

i,j=1
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For boundary conditions we take the Neumann conditions:

E(Vu)Vw -vpg =0 (2.12)
(Y (v(w)), (vae,0)) = 0. (2.13)

The first equation, (2.12), is the zero mass flux condition whereas the second equation,
(2.13) is the natural variational boundary condition which defines w as the variational
derivative or chemical potential for the surface energy functional. We impose the
initial condition

u(-,0) = uy (2.14)

and note that an initial condition on w is not required.

In order to write down the variational formulation it is convenient to introduce
the forms :

Laplace-Beltrami (LB) Form

E(u;w,n) ::/Q(Vw)tE(Vu)Vnda:

Anisotropic Mean Curvature (AMC) Form

Atwn) =Y [ ) do.

Then it is straightforward to show the following equivalence between the classical
form of the initial value problem and the variational formulation.

LEMMA 2.1. For u € C'([0,T];C*(2)), u(-,0) = up and w € C°([0,T]; C*(Q))
the initial value problem (2.10,2.11,2.12,2.13) is equivalent to the variational equations
forte[0,T):

(Opu,m) + E(u;w,n) =0 vne HY(Q) (2.15)
(w,n) — A(u,n) =0 Ve HY(Q). (2.16)

LEMMA 2.2. The solution (u,w) satisfies for each t € [0,T] the surface energy
equation

Z(u) +/0 E(uyw,w)ds =T, (uop) (2.17)

and the conservation laws
(w,1) = (ug,1) , (w,1)=0. (2.18)

Furthermore for each t € [0,T] we have the bounds

t
[Ju(t)]? +/0 ||wl]|* ds < C(y,u0,T). (2.19)

Proof. Taking n = w in (2.15) and n = Q;u in (2.16) and combining the resulting
equations yields (2.17). Taking n =1 in (2.15,2.16) yields (2.18).
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In order to prove the first part of (2.19), we use n = w in (2.15) and apply (2.33)
below which gives

1 1 1 1
2 < . 5 . 2 < = . _
2dt” ul|” = —E(uy;w,u) < E(u;w,w)2E(u;u,u)2 < 2/95(u,w,w)+ 2/QQ(u)

Integrating this inequality with respect to time we obtain with the help of (2.17)

u(®)]> < uoll? + /euwmw+ ()/h@%SmeI)

1nf|p| 1Y(p

Using n = w in (2.16) we deduce
\Y% 1
szmum<wm7|/WM<0/'w'2/Q

so that (2.4) and similar arguments as above yield

N\»—-

t t t
[ wlPds < ¢ [ ewsw,wids+ ¢ [ QG ds < Cua, 7).
0 0 0

REMARK 2.3. The surface energy equation (2.17) can be written as

/F(t)v(u)+/0T /F(t) IVrH,|* = /F(O)v(u). (2.20)

The conservation of u is equivalent to the conservation of the volume lying below the
graph of the surface. That the integral over Q0 of the anisotropic mean curvature is
zero is a consequence of the fact that constant vertical variations in the height of the
graph do not change the anisotropic surface area.

2.5. Geometric lemmas. The following algebraic relations are elementary:

LEMMA 2.4.
V(u—0)[> = (Qu) = Q(v))? + [v(u) — v(v) PQ(u)Q(v) (2.21)
1 1
5w~ gy S P - o) (2:22)
|Q(u) — Q(v)] £ Q(u)Q(v)|v(u) — v(v)| (2.23)

LEMMA 2.5. (Properties of the AMC form A.)
Let u,v € H->°(Q). Then

A(v,u —v) > T, (u) /|l/ ) —v(v)]*Q(u), (2.24)

where

_'—#max su su
Y= {p‘;)llv( ), sup ' (p)|}- (2.25)
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If in addition |Vu| < K a.e. in Q, then
[Alwn) = Alwn)| £ C0LE) [ uta) = v0)|Va. (2.26)
Proof. The first inequality is a consequence of the following estimate,
2 T (P01 = 0y > () Q) — ¥(E())Q(w) — Fw(w) — () PQw). (2.27)

The proof of (2.27) is contained in Theorem 3.1 in [10], but we include it for the
convenience of the reader. Observing that (Vv,—1) = Q(v)rv(v) we can write with
the help of (2.6) and (2.7)

Z Vo (v()) (u = v) = (7' (v(v)), Qu)r(u) — Q(v)v(v))

=7 (u)Q(w) —v(¥())Q@) + Q(u)(y' (v (v), ¥(u))
= Q) (Y (¥(v)),v(v)) = Y(¥(w)Q(u) + (v (v))Q(v)
)

=7(v(W)Qu) —v(¥(v))Q(v) + RQ(u), (2.28)
where R := (y'(v(v)),v(u)) —v(v(u)). We claim that
R > —7|v(w) - v(o)]. (2.20)

A natural way to prove (2.29) is to rewrite R with the help of second derivatives
of v evaluated on the segment connecting v(v) and v(u). In view of (2.8) such an
expression is critical if the segment is close to the origin. In order to deal with this
problem we distinguish between two cases:

Case 1 |v(u) —v(v)]> < a (0 < a < 4 to be chosen later). Since |v(v)| = |v(u)| =1
we observe that for every s € [0,1]

(1= ) +5 v = 1= 25(1 = )(1 = (v(v),v(w)
:1—41—@wmy—mmﬁz1—%,
which, together with (2.7) and (2.8) implies
R =~ (100() = 7(v(v)) = (7' (v(v)), v(w) — v(v)))

= —/ (1 =5)("((1 = 9)r(v) + sv(w)) (v(u) — v(v)), (v(u) = v(v)))ds

>—|21|1p1|7” D) / |1_5 W( s () = v(o)P (2.30)

—v(v)2

Ve =r s 10 v(0)
Case 2 |v(u) — v(v)|* > a. We deduce from (2.7)
R=(y(v() = (v(w),v(w)) > =y (v(v) =+ (v(u))]

> =2 sup /()] 2 = sup [ ()] ()~ o) (2:31)
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Let us choose & = 2(v/5 — 1). Then 2 = —i— and (2.30), (2.31) imply (2.29). The

inequality (2.27) now follows from (2.28) and (2.29).
Let us next turn to (2.26). Lemma 6.1 in [10] implies that there exists ¢p = ¢o(K) > 0
such that

[sv(u) + (1 — s)v(v)| > co a.e. in Q, for all s € [0, 1]. (2.32)

As a consequence,
n+1
[Yps (v(w)) — )| =| Z/ Voip; (sv(u) + (1 = s)v(v))ds(v; (u) — v;(v))|
< Cly(u) —v(v)l,

which yields (2.26). O
LEMMA 2.6. (Properties of the LB form £.)
Let u,v € H->°(Q). Then

€ s w, )| < € (usw, w) 2 (s ) (2.33)
If in addition |Vu| < K a.e. in Q, then
E(wyu—v,u—v) < C’(K)/ lv(u) —v(v)]?Q(v) (2.34)
Q

i) — £ )] < CEIVinl [ () = v(o)] || Q) (239
€ (u;n1,m2) — E(vsm,m2)| < €&(vimi,m)
o, [ -vPee). (230

Proof. Using (2.3) together with Young’s inequality we have
E(u;w,n)| = | / ) Q(u)]

< [ (Pwtw)Ds. D)
< E(u;w, w)%é‘(u n,M)2.

=

(P(v(u))Df, D)% Q(u)

Nl»—-

Next, observing that (V(u — v),0) = Q(u)r(u) — Q(v)v(v) we obtain
(P(v(v))(V(u—0),0),(V(z—v),0))

(I = (v(v) @ v(0))) (Qu)v(u) = Qv)r(v)), (Qu)v(u) — Qv)r(v)))

(W)* (1 = (v(u), v(v))*) = Q(u)* (1 — (¥(u),v(v))) (1 + (v(u), ¥(v)))

(u)?|v(u) — v(v)]?,

since 1 — (v(u),v(v)) = 3|v(u) — v(v)]>. Multiplication of the above inequality by
Q(v) followed by integration over 2 yields (2.34). From the definition of P(v(u)) and
(2.23) we infer

[P(v(w)Q(u) = P(v(v))Q(v)| < C(K)[v(u) = v(v)|Q(v),

Q
Q

IA
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which implies (2.35). Finally, writing D7j = (Vn,0) we have

E(usmi,m2) — E(v;n1,m2)|
/ (P(v(v)) D, Do )| |Q(w) — Q)| + / I P(u(w))) Dy, D7) | Q (1)
=T+ 1I.

Then, using (2.23)

1] < /Q (P(v(v))Dif, Dijt)  (P(v(v)) Difa, Dils) % |v(u) — v(0)|Q(u)Q(v)

< cgimm) + ST, [ ) - v0PQE)

It is easy to see that

1] < C(K) / 10(u) — v(0)| [V ] [V

|V771|2 ( 2 ) — (v
<o [ TrE+ SR wmle, [ - vo)Pew

<cEimm) + (Tuwnio | v - vwPaw)

where we have used (2.4); this concludes the proof of (2.36). O

REMARK 2.7. We note that inequalities (2.34) and (2.36) were proved in [1] as
Lemma 4.7 and Lemma 4.5 respectively. The argument used above, employing the
projection P, is more direct and slightly simpler than the one used in [1] in that it
avoids the splitting of ) into subsets.

LEMMA 2.8. Let u,v € H"*°(Q) with |Vu| < K a.e. in Q. There erists a
constant ¢; > 0 which only depends on K and o from (2.9) such that for

D= [ () = & () 10 Q)
Q
we have

D>e /Q v(w) - v(0)] Q)

Proof. This is just a reformulation of Lemma 3.2 in [8]. O
3. Discretization.

3.1. The finite element approximation. We now turn to the discretization
of (2.15,2.16). Let T, be a family of triangulations of Q with maximum mesh size
h := max, ¢, diam(7). We suppose that () is the union of the elements of T so that
element edges lying on the boundary are curved. Furthermore we suppose that the
triangulation is nondegenerate in the sense that

diam(7)
max
TETh Pr

<K
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where the constant x > 0 is independent of h and p, denotes the radius of the largest
ball which is contained in 7. The discrete space is defined by

Sh .= {vy, € C°(Q) | vy, is a linear polynomial on each 7 € Tj}.
There exists an interpolation operator II"* : H2(Q) — S" such that
lv = || + b[|V (v — TI"0)|| < ch?||v]|r2(0) for all v € H*(1Q). (3.1

We are now in position to give a precise formulation of our numerical scheme.
Let At := % for an integer N and t,,, := mAt, m =0, ..., N. We denote by U™, W™
the approximations to u(-,t,,) and w(:,t,,) respectively. Furthermore, let

,Um+1 _ ,Um

At

(5t’l}m =

In order to formulate a semi-implicit scheme requiring just the solution of linear
equations we introduce the following form:
Stabilising Anisotropic (SA) Form

B(u;v,n) := ABo(u;v,n) + At E(u;v,n) (3.2)
where
I
Bo(u;v,n) .—/Q 0w Vo - Vwdz. (3.3)

REMARK 3.1. The purpose of the form By is to stabilise A, which will be evaluated
at the old timestep. The second part in B is introduced in order to gain control on
[[TU™|| (see the proof of Lemma 3.4 below, in particular (3.14) and (3.15)) and the
corresponding error in the convergence analysis.

ScHEME 3.2. We seek for each m € [1, N] a pair {U™, W™} € S" x S satisfying
for m > 0:

(6 U™ m) + EU™ W™ ) =0 VpeSh (3.4)
(WmFL n) — AU™,n) — AtB(U™;6U™,n) =0 Vne S (3.5)
For simplicity we impose the initial condition:
U° .= M. (3.6)
The scheme does not require W°. The constant X is chosen to satisfy

A Ymin > 7, where Ymin = f?fl v(p) >0 (3.7)
o

in order to ensure stability (see Lemma 3.4 below).
LeEmMMA 3.3. (Properties of the SA form B)
Suppose that u,v € H>*(Q). Then

B(u;v,v) < (A |s?:p1 v(p) + At)E(u;v,v). (3.8)



12 K. DECKELNICK, G. DZIUK AND C. M. ELLIOTT

If in addition |Vu| < K a.e. in Q then
|B(u;n1,m2) — B(v;nu,m2)] (3.9)
< CImlle ([ o) = v(@) 1Vl + At [ () = w0l [9m1Q(0)).

Proof. The inequality (3.8) follows immediately from (2.4). Next, if |Vu| < K
a.e. in 2, we deduce from (2.32)

’Y(V(U)) ’Y(V(U))
Qu (v)
1

1 1
5 |/ (50000 + (1= ), () = v(o))| + Cligt= = |

< Clu(u) = v(v)|.

Combining this inequality with (2.35) implies (3.9). O

3.2. Stability. LEMMA 3.4. Suppose that (3.7) holds. Then the unique discrete
solutions satisfy

N
m[%%v]z LU™ + ALY EURL R WR) < C(y,U) (3.10)
me
k=1
M2 4+ A FII2 < 0 T). 11
,max [[U77 + tZ:IIW I <O U% ). (311

Proof. Taking n = At W™+l in (3.4), n = At6;U™ in (3.5) and adding yields

ALEU™; WL WY L A(U™, U™ — U™) + (AD2BU™;5,U™, 5,U™) = 0.
(3.12)

Lemma 2.5 implies

A(Um,Um+1 _ Um) Z I'Y(Um+1) / |I/ Um+1 (Um)|2Q(Um+1)

> L(U™Y) — L(U™) — (At)2—L—Bo(U™; 5,U™, 8,U™),

where we have used (2.21). Inserting the above inequality into (3.12) and recalling
the definition of B we infer
(U™ — T, (U™) + At U™, WwmH ymtty (3.13)
+(A = L) (AD2By U™ 8,U™, 5,U™) + (AP EWU™, §,U™, 5,U™) < 0

Summation over m yields (3.10) as well as
N-1 N—1
(A Y Bo(U™ 6U™, 6,U™) + (A1) Y EU™;6,U™,6,U™) < C(A,7,U°).

m=0 m=0

(3.14)
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Next, using n = At U™ in (3.4) we deduce

1 1 1
IO = SIT™ P + SIom™ = U™ |)? = Ate@mwm o)
< AtEU™ WL Wtz g(Um Ut Uty (3.15)
< ALEWU™ WML WY (E(U™ U™, U™)E + ALEU™; 6,U™, 6,U™)3)
< AtEU™; W ) 4 At/ QU™) + (A)E(U™;5,U™, 5, U™).

Q

Finally, using n = At W™*! in (3.5) we obtain with the help of (2.4) and (3.8)
At||W™H 12 = At AU™, W™ + (At)2B(Um'6tUm wmH
vwm+1 2 :
<atsw oI [ F5gt) ([ ewm) (3.16)

lp|=1

+ (At)2B(Um;6tUm,6tUm)5B(Um; Wm“,Wm“)%
< AtEUT WL W 4 O(y) At / QU™ (3.17)
Q
+C(AHBU™; 6, U™, 6,U™).

Now (3.11) follows from summing (3.15), (3.16) over m, the inequality [, Q(U™) <
C(v)I,(U™) and (3.10), (3.14). O
REMARK 3.5. It follows in particular that

max /Q(Um) < C(y,U%). (3.18)

me[0,N] Jq

3.3. Boundary conditions, domain perturbation and quadrature. For
Neumann boundary conditions it is sufficient for the union of the elements to contain
Q provided exact quadrature is used. The above analysis can be easily extended to
higher order elements. On the other hand when using piece-wise linear elements it is
convenient to use a quadrature rule based on mass lumping for the L? inner products.
The other integrals require just the measure of the regions of integration. In the case
of Dirichlet boundary conditions it is necessary either to analyse the effect of domain
perturbation in the case of linear finite elements with a polygonal interpolation of
or to analyse isoparametric approximations for higher order elements.

4. Error bounds. We set:
™ i=u( ), W i=w(ty), ST = 0™ — Owulc, timg)-
Then we have for the continuous problem the analogue of the discrete scheme:

(Geu™,m) + EW™ T w™ T n) = (5™, ) Vne H'(Q)
(w™,n) — A(u™,n) =0 vn e H'(Q). (4.2)

—~~
:.h
[y

~

It is convenient to introduce the errors

e =u" =U™ =p + 00, ey :=wm —W":=p + 0,

w
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where

pzn =™ — Hhum, pm _ _ thm

w T

are the interpolation errors. It is our goal to prove the following error bounds:
THEOREM 4.1. Suppose that (3.7) holds. Then there exists 6 > 0 such that for
0<At<$

N
s (||em||2 + [ ) = vom) Q(Um)+AtZ(||efu||2+8<Uk1;eﬁ,,ez>)
k=1

< C(R? + (At)?),

where C and 6 depend on ~v,Q, T, \ and the solution wu.
The rest of this section will be devoted to the proof of Theorem 4.1.

Subtracting the equations (3.4,3.5) and (4.1,4.2), yields the error equations
(0eeyt,m) + E™ T w™H ) — EU™ WL ) = (S™,n) (4.3)
(e ™ m) — A™,m) + AU™, ) + At BU™;6,U™, ) = (w™ —w™,n). (4.4)
for all n € S".

4.1. The energy estimate. The first step is to emulate the energy bounds
obtained for the continuous and discrete solutions by testing (4.3,4.4) with e+ —
pmtl € St and §e™ — 6ip™ € SP yielding:

(e e) + (™ ey — £ W e (45)
= (e, Pt ) + E™ T w™ T pin ) — E(UT W pin ) 4+ (8™ et — pin )

(emF1, 5e™) — A(u™, 5pe™) + A(U™, ™) + At B(U™; 5,U™, 5;e™) (4.6)
= (en ™, 8epl) — A(u™, 0py) + AU™, 8epl)') + At BU™;6,U™, 619}y
+At(5tw ,5teum — 6tpum)

Combining these equations and multiplying by At yields:
At(Au™, 8el) — AU™, 6ell))
+ At(EW™ T w™ ety — (U W el ) + (AY)?B(U™; Siel)t, brel)
= AH(A(™, Sip) — AU™, 61p7))
HAL(E T w™ T p ) — @™ W, o)
+ At(S™, emTt — pmEL)  At(em T §:p™) + At(Se™, pm ) (4.7)

— (At)2(5twm,5teum —0ep) + (At)2(B(Um; du™, beny) — B(U™; 6,U™, 6tpum))

7
=> R
j=1

We now proceed to estimate the terms on both sides of the equation.
Let us denote the left hand side of (4.7) by L™. We start with the following
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LEMMA 4.2. Let
D™= /Q(W(V(Um)) — (' (™)), v(U™))NHQU™).

Then we have for m € [0, N — 1] and small At
At(A(u™,6e]) — AU™, 6el)) > D™ —pm

— (7 + CAt) / V(e mIUm) <)

- CAt((At)2 + /Q l(u™*!) — V(Um+1)|2Q(Um+1)).

Proof. see Lemma 4.2 in [10]. O
Lemma 4.2 and the definiton of By now imply

At(A(u™,5el) — A(U™, 6el)) > D™ D™ (4.8)

— (A1)? (77 + OAL) Bo(U™; 6,em™, 6,e™)

—oar((an? + /Q ™) — U EQU)).

Next we examine

At(E™ T w™ ety — g(Uum, Wt el th)
= AtE(U™;em T em Tl 4 At(g(um+1; w™ T em Ty — g(u™; wm"'l,eZ"'l))
+At (S(um; wm™ Tt em Ty — g(Umw™ efﬂnﬂ))

=0 +ay +aj.

We infer from (3.18) and (2.4) that

% m+1)2
| < C(A)?||Vw™ || /|vem+1| < C(An? /Q Um / Ve )| )

<eatgwm emtt emtty 4 Ciap.
€

) w
Furthermore, (2.36) yields
0| < e ALEWU™, e e ) + [ Vu / (™) — V(U™ PQEU™).

Combining (4.8) and the estimates for aj’,af* we derive

L™ > DD g (1= 20 ALE(U™s et et (4.9)
(At) ( )Bo(Um 5te 5teum) + (At)3g(Um, 5teum, (Steum)

——At (At)? /Iv ) —v(UMPQU™) /Iu m) (Um+1)|2Q(Um+1)).

Our next aim is to derive bounds on the L*-norms of ef! and ef*+1.
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4.2. The L’—estimates. LEMMA 4.3. We have for m € [0, N — 1]
lew™HI? < EW™; et m+1)+0(At)2B(Um 5™, 5,e™)
+c/ (™) — U™ PQU™) + C(h2 + (At)?).

Proof. Inserting n = e™* — pm*1 into (4.4) and using (2.26) we infer

et = (et emtt — ptt) +

) ( m—+1 m+1)

€w ) Pw
_A( m m+1 pm—',-l) —.A(Um m+1 _PZ—H)
—AtB(Um 6tUm m+1 m+1)

— Puw

+At(5twm m+1 m+1) ( m+1

— P ot

<c / (™) — o U™)|([Vem ] + [Vom L))
+At|B(U™;6:U™, e m+1 pfﬂn+1)|
FON(mH ]+ ) + e o

1
< Sl + AL B 6 U™, et — it

+C(( +h2 / |V€m+1|2 +C/ |I/ —V Um)| Q(Um)

It remains to bound the term involving B. Clearly,
BU™;6,U™, et
S B(Umy(')*tUm,(stUm)% Um m+1 m+1)%

)

B(
S(B(Um;fStum,tStum)%-i-B(U :5pem 5tegl)%)3(Um m4l  m+l

) w 7ew )%
=¢ <(/ Qm)? +B<U”;5t6226te3>%) EU™;entt en )3,
Q

by (3.8). Recalling (3.18) we deduce

1
At|BU™; 6,U™, em )| < Z(‘,'(Um;efﬂn+1 emthy 4 C((At)2 + (A2 B(U™; 6™, 5™ ))
Similarly,

m—+1

At |BU™;5:U™, pi

)| < C((At)? + B?) + C(A)’BU™; 5ell, 5rel).
If we insert these inequalities into the estimate for ||emT!|| and use (2.4) we arrive at
the desired bound. O

LEMMA 4.4. We have for 0 <m < N
m—1
kHEaX llek||> < ¢ (At Z E(Uk; eht1 ek+ly 1 (At)? E(U*; 5,ek be ))
€l
k=0

+ O((AY)? + 1) +0Atz/ (k) — (UMY 2QU™).
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Proof. Clearly,

1 1 1
Sk~ 3 kI + llek — ek (4.10)
= At (5 eht) (4.11)

= At (6%, 081 4 At (5,ek, phtT)

ur’u u

= At(E(UR WL GEFLY — g(ub T wh T OE D)) - AL (S*,08T1) + At (ek, phtT),

where the last inequality follows from (4.3) with the choice n = At6%+1. To begin,

|5(Uk; Wk+1, 95+1) _ 5(uk+1; wk+1 , 05+1)|
< |E(UF; ek gE )| 4 |E(UF; whHT 981 — E(uk;wh T gk +T))
+ |g(uk’ wk+1 , 9k+1) _ g(uk+1; wk+1 , 0k+1)|

=I+1II+1III
Before we estimate these terms we first note that (2.34) and (3.18) imply
EWUR 0,0, < 26U ey ™ e ™) + 26U pu™, o) (4.12)

< 4EUF;eheh) + 4AL? EUFdiekdiel) + CITAH - [ QY
Q
< C/ lv(uk) — v(U")PQU) + 4(At)? E(U*; 6,.eF, 6,eF) + Ch?.
Q
We then infer from (2.33) and (4.12)
I < E(UF; ekt ebtysgUk, ohtt ghttys

< EUF;ebtt el ) + C((At)2E(UF; Sek, Srel) + b + /Q lv(u*) —v(U*)PQUY)).
Next, (2.36) together with (4.12) implies
IT<EUR 01,0, + OV |7 < /Q v (u*) —v(U")PQU")
< C(APEU et diet) +1 + [ Io(ul) = o(UHFQY).
as well as
I < 85057057 + CIVut e [ () = viuh) PQut)
< O((A)2EWU™; 5rek, ek) + (A1) + 1% + /Q lv(u®) —v(U*)PQTUHY)).

Collecting the above estimates we derive
ALEUE W Q-FT) g+ uh 1 ghH)| < ALE(UF; ekt ekt

CAt ((AL)2E(UF; ek, 61ek) + (A1) + 1? + /Q lv(u¥) — v(U")2PQU")).
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Next,

At|(S*, 051 < CAD* (llegll + llew™ — egll + llou™1I)

< i”eﬁ“ —ef||? + CAt||lek||? + CAt((AL)? + ).

If we insert the above estimates into (4.12), sum from k£ = 0 to m — 1 and rearrange
terms we obtain

m—1
1 1
Sl 2 < S e u||2+AtZs e,k ) + O(AD? 3 E(U*; b6k, drek)
k=0

LO((A)? + 1) + CAtZ/Qp(uk)—u(Uk)PQ(Uk)

m—1 m—1
+OAL Y |lebl* + At Y (deef, pH).
k=0 k=0

Integrating by parts discretly in time and recalling Lemma 3.4 we infer

m—1 m—1
ALY (Sred, i) = | — ALY (ek,6ip%) + (e, o) — (€0, p0)]
k=0 k=0
<C max ||ek||h2 < Ch?,
KE[O,N
which implies
m—1 m—1
lemll> <24t Y U ek el + C(A? D E(UF; 6k, 6,ek) + C((A)? + 1)
k=0 k=0
+0At /|y ) —v(U"))2PQU*F) +0Atz llek 2.

k=0

The result now follows with the help of a discrete Gronwall argument. O

We now turn to estimating the right hand side of (4.7). Invoking (2.26) we obtain

|BE| = At AU, 8epl) — A(U*, 6,p8)] < CAt/ v(u*) = v(U")[|Vorpy] (4.13)
Q

< CAth (/Q w(uh) — V(U’f)|2>%

< CAth? + CAt/Q w(uh) — v(UH2QU™).
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Lemma 2.6 and (3.18) imply

|RS| < At|EFFT whth phtty — E(uF;wh Tt phth)|
+ At |EF Wkt pEy — E(UF W pE )|+ At |E(UF; el plhit )|
< CAH|Vr | (4.14)

([ 1) = s VA 0 + [ o) - o) IVp’““IQ(U’“)>
+AEUR et e EEUR T )
< eAtEUF ekt ekt 4 %At((At) +R?) + cm/ﬂ (k) — (UMY 2QU™).
Next, Lemma 4.3 gives
IR + Ri| < C(AL>(llel | + [1o5 1) + Atllel 605
< e At]|ekH? + gAt((At)2 + ht)

< eAtE(UF; ekt kH) + e (At B(U*; 5iek 5,k (4.15)
c
+eAt/ lv(u®) — v(U*PQU*) + At((At) + h?).
m—1 7
Starting from the relation Z Lk = Z ZR;“ and using (4.9) together with
k=0 k=0 j=1
(4.13)—(4.15) we deduce
m—1
D™+ (1—4e)At Y E(U* ek eh) (4.16)
k=0
_ m—1 m—1
+ (At)? </\ cm) > Bo(U*;6ieh, diek) + (1 — e) (A1) Y~ E(U*; 6k, 5rek)
Ymin k=0 k=0
C C m m—1
<D + = ((At)> + 1®) + —At / v(uh) = v(UMPQU*) + Y (RE + RE + RE).
<D0+ (A0 +12) + A [ k)~ vUIPQUUA) + 3 (RE + RE + RY)
Integrating by parts discretly in time yields
k k m om 0o 0 k2 c 4
Z R5| - | — At Z(eu76tpw) + (eu 7pw) - (euva)| < € max ||eu|| + —h"
o ke[0,m] €
(4.17)
Similarly,
m—1 m—1 m—1
| Y REI< = (A7 Y (6", 6ef) + (A1*] Y (5w, 67| (4.18)
k=0 k=0 k=0
5 mlw — 2wk +wh-t 1 5
< (A —A m= A A
<( t)|;( R Len) t(Gew™ " ™) + At (§;w?,e0)| + Ch2At

< CAt max ||e¥|| + Ch?At < € max ||ek|]® + 9((At)2 + ht).
ke[o,m] ke[0,m] €



20 K. DECKELNICK, G. DZIUK AND C. M. ELLIOTT

Finally, let us write

RI? = (At)2 (B(Uk5 5tuk, 5t€5) - B(Uk5 5tuk, 5t05) + B(Uk; 5t65,5tl)§))

=T+ II+1III.
In view of the deﬁnition of B we have
U*))  ~v))
_ k 2>\/ (v ( _ s S.ek
I = (At)? / Q YWD G b sk 4+ (A Q( 008~ OWE )Vtu - Vosek

( (Uk 5tu 6t6 )
= (At)? (Gk,V(Steu) + I, + I,

y(v(ub))
Q(uk)

L] < C(AY? | |p(u?) = v(U")|[Virey|
Q

where we have written G* := Véuk. We infer from (2.32) and (2.4)

g%mﬁllé%ir+%A{LW@%—VW“FQW@
< AP EWstieh diek) + Cat [ i) - vU QY.
Furthermore, (2.33) and (3.18) yield
|I3] < e(At)2E(U*; 6,ek,6,eF) + C(At)3.

Observing that B(U*; 6;p%, 6;p%) < Ch? we finally have

IIT) < (A2 B(U*; 6pub, 6,u") 2 BU"; 8,0, 6,:0%)% < CAL((AL)? + B2),

|TTT] < (At BU"; bief, 01el) 2 BWUF; 6, 00%) 2

< (At B(U*; 8¢k 61k + gAt((At)2 + h?).

Summing the above estimates, integrating the first term in I by parts in time and
taking into account the estimate (which follows from (2.21) and (2.23))

webir < ([ Sl ([ qum)’ <o [ mut) —vtpeuh)’

o Q( U’“
we derive
m—1 m—1
m m C
| Z: RE| < A — (A1)? Z: (6:G*,Vek) + At(G™, Ve™) — At(G°,Ved)| + :((At)2 +h?)
—1 C m—
+ e(At) 2 BU*,6iek,6rek) + —At > / lv(u®) — v(U*))2QU*)
k=0 € Q
m—1
/ p(™) = U™EQU™) + (A 3 BUF, 6yek, dyek) (4.19)
k=0

C((At) LR+ AtZ/ (b — vUH2QUP).
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We are now in position to complete the proof of the error estimate. If we insert
(4.17)-(4.19) into (4.16) and apply Lemma 4.4 we obtain

/|u ) = (U™ PQU™) + (1 — 5e AtZg ekl ehtl)

m—1

+ (At)? ()\ - —€— C’At) Z Bo(U*; 6,ek, 5,ek)
Ymin k=0
m—1
+ (1= 26)(A1)* Y E(UF; 6k, 6rek)
k=0

<D+ g((At)2 + %) + gAti/ lv(u®) — v(UF)2Q(U").
€ e —a
Recalling the definition of D*¥ and Lemma 2.8 we have
DF > ¢ / lv(u®) — v(UR)PQU"), (4.20)
as well as by (2.29)
D <3 [ ulus) ~ n(UOPQEY) < OB

Thus, after choosing € and At sufficiently small we have

. At m - . m—1 m—1 .
D"+ = S EUF ekt ek £ eo(Al)? Y BUY;d,ek, 1ek) < C((A1)” + 1) + CAt Y D,
k=1 k=0 k=0
Gronwall’s lemma together with (4.20) implies that
N-1
max v(u™) —v(U™ U™+ AtY EUF ek ek) + (At)? B(U*; ek 6ek
s [ e kz b+ (80 3 BN e i)

< C((AD? + 1)

and the remainder of the proof of Theorem 4.1 now follows from Lemma 4.3 and
Lemma 4.4.

5. Numerical Results.

5.1. The algebraic problem. Let {x;} denote the usual nodal basis functions
for S". Set

M;j = (xi,x5), B =EU™xi,x5), Bl =BU™;xi,X5)
and
Ft = —AU™,x;) +BU™ U™, x;)-
It follows that the nodal values U™+, W™*+! solve the linear algebraic system:
= MU™tL L prwmt = ~ MU™
BmU™tt — MyWmtt = Fm,
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Note that the structure of this system is of the same form as that arising in
discretizations of the Cahn-Hilliard equation. Eliminating W™*! by inverting the
mass matrix in the second equation leads to the ”fourth order” system:

MU™ 4 Em M BMU™ = L MU™ + EMCUF™ (5.1)

At

In our practical computations we have used mass lumping, so that M becomes a
diagonal matrix. The linear equations were solved by the conjugate gradient method.

5.2. Convergence Tests. We measured the actual error in different norms for
several quantities for test problems, for which we know the continuous solutions. For
this we have to extend our method to include right hand sides f and g as indicated
n (1.5). The tables contain the errors for the graph u = u(z,t),

P = s 0" = U™, B = mgwgv]</ v(u™) — U™ PQU >) ,

and for the curvature w = w(z, t),

N 2 M-1
Ezpw = (At > llw™ - Wm||2> N (At > EUT W =W w™ — Wm)>

m=0 m=0

These are the errors which were estimated in Theorem 4.1. Additionally we provide
the errors

Eoo ooy = max |[u™ —U™||pe, Foo2vy = max [[Vu™ —VU™|.
me[0,N] me[0,N]

We also measure the error

Vw VWm 2
E2,2,Vw :< / | )| ) )

which is bounded from above by Es ¢ v,. The error in the normal velocity is given
by

1
2

E22v— (AtZ/ (Um))2Q(Um)> R

where
ey tm) e UM —ym
ow™ VU= " Rgmmy

Between two spatial discretization levels with grid sizes hy and he we compute the
experimental order of convergence

eoc(hy, he) = log ggz;; <log Z—;)

V(u™) =-—

for the errors E(hy) and E(hs) for each of the error norms.

[N



FULLY DISCRETE SURFACE DIFFUSION OF GRAPHS 23

Fic. 5.1. Initial function which leads to loss of the graph property after short time and solution
becoming vertical (cut along the x1-x3 plane of symmetry).

For isotropic surface diffusion we used the function
1 3 1
u(z,t) = 3 cos(t) (1 + |z|? - Z|x|4 + g|m|6>

as continuous solution on the domain = {z € R?||z| < 1} and on the time interval
[0,T] = ]0,1]. We calculated the right hand side g from the equation

g:V—ApH,,,

and used this function as a right hand side in our algorithm to compute U and W™.

We have chosen A = 1. In Tables 5.1 and 5.2 we show the results for the time step size

At = 0.1 h and Tables 5.3 and 5.4 contain the results for At = h2. The results confirm

the theoretical estimates from Theorem 4.1. Obviously the errors Fo 2, and Ex 2 vy

as well as the errors Es ¢ vy and Es 5 vy, exhibit the same orders of convergence.
The anisotropic case was tested with the exact solution

u(z,t) =\/1—4t—4m%—m§

on the domain Q = {z € R*||z| < 0.125} and for ¢ € [0,0.125]. Domain and time
interval have to be relatively small in order to remain in the setting of a graph.
As in the isotropic case we have used a right hand side g, and since u does not
satisfy the natural boundary condition, we have extended the concept to include the
inhomogeneous Neumann boundary condition (y'(Vu,—1), (vsq,0)) = c for a given
function ¢ on 0f). As anisotropy we have used

v(p) = 1/0.25p] + p3 + p3

and the stabilizing parameter was A = 1.

We add an example of a surface which moves under isotropic surface diffusion and
which loses its graph property in finite time. Nevertheless the discrete solution exists
for all times. In Figure 5.1 two steps of the evolution are shown. In Figure 5.2 the
maxima of the moduli of the gradients of the discrete solution is plotted as a function
of time. The computational domain is ! = (—1, 1) and the time interval is [0, 0.0005].
The graph of the solution becomes vertical after a short time, but the discrete solution
continues to exist. We show the maximal gradient for the discretization levels 9, 10,
11 and 12. Observe that the number 1/h is 8.0, 11.32, 16.0 and 22.63 for these levels
and by comparison with peaks in the graph of figure 5.2 we see the suggestion of
“infinite” gradients. For this singular example we plot the quantity
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h Expu eoc | Exa, eoc | Eys eoc Esevw eoc
1.0 8.495 - 0.4538 - 0.2264 - 5.534 -

0.7368 | 3.299 3.10 | 0.1702 3.21 | 0.6294 -3.35 | 2.965 2.04
0.4203 | 0.6255 2.96 | 0.06580 1.69 | 0.2343 1.76 | 1.097 1.77
0.2219 | 0.1564  2.17 | 0.03241 1.11 | 0.06291 2.06 | 0.4664 1.34
0.1137 | 0.04360 1.91 | 0.01622 1.04 | 0.01597 2.05 | 0.2234 1.10

0.05754 | 0.01306 1.77 | 0.008113 1.02 | 0.003942 2.05 | 0.1109 1.03
TABLE 5.1
Errors for the isotropic test problem with At = 0.1h.

h E,00u eoc | Faoy eoc | Expovy eoc | Ezsvwy eoc
1.0 5.027 - 9.113 - 0.4676 - 5.529 -

0.7368 | 1.848 3.28 | 3.548 3.09 | 0.1767 3.19 | 2.952 2.06
0.4203 | 0.3365 3.03 | 0.6565  3.01 | 0.06754  1.71 | 1.090 1.78
0.2219 | 0.07905  2.27 | 0.2053  1.82 | 0.03305 1.12 | 0.4636 1.34
0.1137 | 0.01990 2.06 | 0.1093  0.94 | 0.01654  1.04 | 0.2221 1.10

0.05754 | 0.004986 2.03 | 0.07361 0.58 | 0.008272 1.02 | 0.1102 1.03
TABLE 5.2
Errors for the isotropic test problem with At = 0.1h.

1 m
SO+ AL w2 (5.2)
k=1

for times mAt € [0,0.0005] in Figure 5.3. In the continous problem the analogue
quantity is conserved during the evolution. Although the continuous solution breaks
down after a short time, the L?-norms behave well.

5.3. Numerical experiments. We end this section with two illustrative com-
putations. First we demonstrate the smoothing property of isotropic surface diffusion
by choosing a highly oscillary initial function ug,

uo(z) =14 0.1 (sin (2(m + 1)7z1) + sin (2mzzy) (sin (2(m + 1)7wzy) + sin (2mrxz)))
(5.3)

with m = 4. The computational domain is the unit disk = {z € R?||z| < 1}, and
we have used natural boundary conditions. The grid has to be fine in order to capture
the frequency of the initial function. In order to show the rapid smoothing of vy we
have chosen an extremely small time step proportional to h*. In Figure 5.4 we show
the solution at the times 0.0, 3.5 x 1076, 7.0 x 107 and 1.4 x 10~°. Figure 5.5 shows
level lines of the solution for these time steps. The level lines are equally distributed
between the values 0.65 and 1.35 and are the same in all four cases.

Secondly, we computed an example for anisotropic surface diffusion with an ex-
tremely strong anisotropy. The anisotropy is chosen to be a regularized I' norm,

v(p) =Y /P +e2pl? (5.4)

j=1



FULLY DISCRETE SURFACE DIFFUSION OF GRAPHS 25

h Expu eoc | Exa, eoc | Eys eoc Esevw eoc
1. 1.523 - 0.5929 - 0.1119 - 3.135 -

0.7368 | 0.5954  3.08 | 0.1827 3.85 | 0.4998 -4.90 | 2.203 1.16
0.4203 | 0.5108  0.27 | 0.06818 1.76 | 0.1906 1.72 | 0.9358 1.53
0.2219 | 0.1661 1.76 | 0.03228 1.17 | 0.06028 1.80 | 0.4549 1.13
0.1137 | 0.04476 1.96 | 0.01622 1.03 | 0.01591 1.99 | 0.2234 1.06

0.05754 | 0.01146 2.00 | 0.008113 1.02 | 0.004031 2.02 | 0.1112 1.02
TABLE 5.3
Absolute errors for the isotropic test problem with At = h?

h E,00u eoc | Faoy eoc | Expovy eoc | Ezsvwy eoc
1. 1.003 - 0.9711 - 0.5960 - 3.116 -

0.7368 | 0.3781 3.19 | 0.7349  0.91 | 0.1854 3.82 | 2.189 1.16
0.4203 | 0.2202 0.96 | 0.6887  0.12 | 0.06911 1.76 | 0.9296 1.53
0.2219 | 0.07354 1.72 | 0.2628 1.51 | 0.03292 1.16 | 0.4522 1.13
0.1137 | 0.01989 1.96 | 0.1163  1.22 | 0.01654 1.03 | 0.2221 1.06

0.05754 | 0.005087 2.00 | 0.05621 1.07 | 0.008271 1.02 | 0.1105 1.03
TABLE 5.4
Absolute errors for the isotropic test problem with At = h?

where we have chosen ¢ = 1073, Thus the Frank diagram is a smoothened octahedron
and the Wulff shape is a smoothened cube. The initial data were taken to depend on
three random numbers ry, 72,73 € (0, 1),

1 1
uo(z) = 1 (sin (2mrizy) + 1 sin (37rr2x2)> (0.1sin (27rgzy) + sin (5rrixz))

X sin (27ryx122). (5.5)

We used Neumann boundary conditions and the right hand side (for the curvature
equation) f = 1 — 22 — 2. The domain is given as = (—1,1) x (=1, 1), the triangu-
lation contains 16641 vertices and 32768 triangles. We chose A\ = 4. In Figure 5.6 we
show the graph of the solution w in the direction of the x;-axis. Figure 5.7 shows the
graph for the time steps 0, 10, 50 and 200. And the level lines for these time steps
are shown in Figure 5.8. The Wulff shape (a smooth cube) appears in the solution as
a consequence of the right hand side f.
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h

Expu eoc | Ex eoc | B33 eoc | Es e vuw eoc
0.1250 0.1475e-1 - 0.1354e-1 - 0.1409e-1 - 0.1207e-3 -
0.7138e-1 | 0.4999e-2 1.93 | 0.8346e-2 0.86 | 0.3483e-2 2.50 | 0.5734e-4 1.33
0.3807e-1 | 0.1458e-2 1.96 | 0.4399e-2 1.02 | 0.8862e-3 2.18 | 0.1997e-4 1.68
0.1964e-1 | 0.3937e-3 1.98 | 0.2216e-2 1.04 | 0.2221e-3 2.09 | 0.6971e-5 1.59
0.9969e-2 | 0.1032e-3 1.98 | 0.1110e-2 1.02 | 0.5553e-4 2.05 | 0.3079%-5 1.21
TABLE 5.5
Absolute errors for the anisotropic test problem with At = h?
h Ev,0u eoc | Ezp v eoc | Ex2,vu eoc | Es 2 vuw eoc
0.1250 0.8037e-1 - 0.7644e-1 - 0.1547e-1 - 0.1200e-3 -
0.7138e-1 | 0.2658e-1 1.98 | 0.4285e-1 1.03 | 0.9390e-2 0.89 | 0.5710e-4 1.33
0.3807e-1 | 0.7753e-2 1.96 | 0.2293e-1 0.99 | 0.4894e-2 1.04 | 0.1988¢-4 1.68
0.1964e-1 | 0.2093e-2 1.98 | 0.1182e-1 1.00 | 0.2453e-2 1.04 | 0.6921e-5 1.59
0.9969e-2 | 0.5481e-3 1.98 | 0.5997e-2 1.00 | 0.1227e-2 1.02 | 0.3080e-5 1.22
TABLE 5.6

Absolute errors for the anisotropic test problem with At = h2
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F1a. 5.5. Lewvel lines of the solution from Figure 5.4.
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F1G. 5.6. Anisotropic surface diffusion for the initial function (5.5) with anisotropy (5.4), viewn
from the x1 azis. Time steps 0, 10, 50, 200.

F1a. 5.7. The solution from Figure 5.6 shown as graph.

Fic. 5.8. Lewvel lines of the solution from Figure 5.7.



