RELIABLE A POSTERIORI ERROR CONTROL FOR
NON-CONFORMING FINITE ELEMENT APPROXIMATION OF
STOKES FLOW

W. DORFLER AND M. AINSWORTH

ABSTRACT. We derive computable a posteriori error estimates for the lowest order
non-conforming Crouzeix—Raviart element in case of approximation of incompress-
ible Stokes flow. The estimator provides an explicit upper bound that is free of
any unknown constants. In addition, it is shown that the estimator provides an
equivalent lower bound on the error up to a generic constant.

1. INTRODUCTION

1.1. Setting. The use of solenoidal (i. e. divergence free) finite elements is attractive
since it allows the decoupling of the velocity from the pressure in incompressible flow
calculations. It is well-known that the only conforming solenoidal finite elements
are based on high degree polynomials, and therefore, if one is to avoid high degree
finite elements, then one is obliged to use non-conforming elements. The lowest
order such element is the P;—Py element (for the velocity and pressure components,
respectively), developed by Crouzeix and Raviart [10]. For an overview of this and
related methods, see [6, Ch. IV.3]. We point out that the analysis of this element
is confined to problems with pure Dirichlet boundary conditions due to its failure
to satisfy a discrete Korn’s inequality, although there is evidence that the method
is of practical use in spite of this apparent failing [23]. Furthermore, the element is
widely used in the numerical simulation of Stokes, Navier-Stokes and non-Newtonian
flow [20, 4, 14, 22, 24, 5].

Adaptive methods for non-conforming elements have been studied for some time
now, and a posteriori error estimates have been obtained bounding the true error
above and below. Early papers treated the case of the linear (and nonlinear) Poisson
problem [1, 13, 19] and estimators for the Stokes problem have been obtained, for
example, in [26, 27, 11, 8]. Maximum norm error estimators were derived in [12].
However, such estimates almost always contain generic (unknown) constants and as
such do not provide actual computable error bounds. Of course, it is possible to
attempt to evaluate the constants appearing in the error bounds [7] but this kind of
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approach generally leads to overly pessimistic estimates. An alternative approach is
to attempt to estimate the error in functional outputs as in [20].

It was observed in [2] that computable upper bounds can be derived for non-
conforming elements where such unknown constants are absent. Moreover, the
bounds are found to be not only accurate, but also easy and cheap to compute.
We adopt a similar approach here to derive constant-free (for the upper bound) a
posteriori error estimates for the Crouzeix—Raviart finite element approximation of
Stokes flow. The argument is presented in full detail for the case of homogeneous
Dirichlet boundary conditions in two space dimensions. We also outline the modi-
fications needed to generalise to non-homogeneous data in planar domains and the
extensions to the three dimensional setting.

Notations. Throughout, we use standard notations for the Lebesgue (L?(G,RF))
and Sobolev (H™(G,R*)) spaces on some open domain G C R? into R* for d,k € N
and p € [1,00]. The norm on L*(G,RF) is denoted by |.|s. For vector valued
functions v = [viL:Ld : G — RY we let Vv = grad(v) := [ajvi]i,j:m’ Vv =
div(v) := 3%, d;v;. In particular, for the two-dimensional case, d = 2, we define
vVt o= [82,—81] so that Vts = [823, —813] for scalar functions s : G — R and
V1w = curly(v) = 0yv1 — 01v,. Likewise, for matrix valued functions A : G — R%4
we let V- A be the vector field [ 31 05 Aij] iy
1.2. The Stokes problem. Let Q@ C R?, d € {2,3}, be an open polygonal or
polyhedral domain. For a given source f € L%(Q,R?) we seek a velocity field
u : ) — R? and a pressure p : Q — R satisfying the Stokes equations,

—Au+Vp=f inQ,
Vu=0 in{Q, (1.1)
u=0 on o
subject to the side-constraint fQ p = 0. Initially, we confine our attention to homo-
geneous boundary conditions but this assumption is relaxed in Section 4.

The weak form of the Stokes problem consists of seeking v € V and p € M
satisfying

/{Vu:Vv—pV-v+V-uq}:/f-v YveV,Vge M, (1.2)
Q Q
where
V= H}(Q,RY), M:=L3Q):= {qeLQ(Q) : /q:o},
Q

If the following inf-sup-condition holds for some positive constant ¢y depending on
the domain 2 and the norm |.| = . |q

V .
inf sup S0V 09

> cp > 0, 1.3
M ey [Vollg] =7 3
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then it may be shown, see [6, Ch. II.1] or [16, Ch. IV], that there exists a unique
solution of problem (1.2) which depends continuously on the data

[Vu| + co lpl < C(Q,d)|f]. (1.4)
The mapping

u,vn—)/Vu:V'v
Q

defines a positive definite bilinear form on the closed subspace X C V defined by
X :={veH}(QRY) : V-v=0}

As a matter of fact, this property may be exploited to reformulate the problem
whereby we seek w € X such that

/QVu:sz/Qf-v Yo e X. (1.5)

One advantage of reformulating the problem over the space X is that the pressure p
does not appear explicitly and the problem for the velocity field is positive definite,
although on the other hand, it is more difficult to discretise the subspace X.

2. THE NON-CONFORMING CROUZEIX-RAVIART ELEMENT

2.1. Triangulation. Let K be a triangulation of the domain Q C R?. We assume
that Q = UgexcK and that the non-empty intersection of distinct elements is either
a single common edge or vertex of both elements. In addition, the triangles are
supposed to be shape regular in the sense that the usual minimal angle condition
holds uniformly over all sequences of triangulations. Observe that the triangulation
need not necessarily be quasi-uniform, although the assumptions do mean that the
triangulation will be locally quasi-uniform.

Let N be a set indexing the element vertices, the subset A indexes vertices on
the interior of the domain, while A2 indexes vertices on the domain boundary. The
centroid and area of an element K € I are denoted by ¢ i and | K| respectively. The
piecewise constant function defined by h(x) := hg for & € K, where hg := diam(K),
is used to define the mesh-size h of K. The vector nyx denotes the unit exterior
normal on the boundary 0K and t := ng denotes the unit tangent vector, obtained
by a 90° rotation of ny in an anti-clockwise sense. We denote the set of all element
edges by &, the set of interior edges by &, and the set of boundary edges by £°.
The midpoint and diameter of an edge v are denoted by «, and h, respectively.
Each edge v € £ is oriented by assigning a unit normal vector n, along with a
corresponding unit tangent vector ¢, := n# In the case of an exterior edge v € £?
the vector n., is always taken to be the exterior normal on 0€). Observe that these
definitions mean that ng., = £n, and tx., = £t,, and that the positive sign is
always taken in the case of a boundary edge v C 0f).

It is useful to introduce broken spaces relative to a triangulation K. For exam-
ple, the space H'(K) := Qg H'(K) consists of functions whose restriction to
individual elements are locally H'-smooth, but which are in general discontinuous
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across element interfaces. Likewise, P*(K) denotes the space of piecewise polyno-
mials of degree at most [ € N with respect to the triangulation K. The subspace
P'(K) N HY(Q) consisting of continuous piecewise polynomials is denoted by PL(K).
Although functions in broken spaces are not differentiable at element boundaries, it
is possible to define an element-wise gradient V), as follows:

Viw(z) := Vw(x), =<cint(K), VK K.

On an interior edge v = 0K N K’ the jump in the trace of w € H'(K) across the
edge is denoted by [w], := wg., — wkr.,, where the elements are ordered so that
the edge normal n, points from K’ into K. Equally well, for a sufficiently smooth
function w, [dyw], and [0, w], denote jumps in traces of derivatives of w across an
interior edge, where 0 :=t, -V and 0, := n, - V denote the normal and tangential
derivatives.

2.2. The finite element space. The finite element discretisation of problem (1.2)
is defined in terms of a pair of subspaces V, C V and M, C M, consisting of
piecewise polynomials relative to the triangulation K of the domain €. In order for
the discrete problem

/ {thh : Vv — pp Vv + Vh-uhqh} = / [ Yv, € Vi, Vg, € My,
Q Q
(2.1)

to be uniquely solvable, it is necessary [6, pp. 78] for the pair to be properly bal-
anced so that a discrete version of the inf-sup condition (1.3) is satisfied. Not all
combinations give rise to a stable approximation. For instance, the lowest order
combination V', C PL(K)? and M, C P’(K) does not satisfy an inf-sup condition.
Given a stable combination, the direct approach leads to a saddle point prob-
lem coupling the unknowns in the discrete velocity and pressure. Alternatively, by
analogy with the approach involving the divergence-free subspace X described in
Section 1, one can obtain a symmetric positive definite system involving only the
discrete velocity, through the introduction of the subspace X; C V', consisting of
discretely divergence-free functions. At first sight, such an approach has much to
commend it. Unfortunately, it is found [15] that the only non-trivial divergence-free
conforming polynomials are of high order. Nevertheless, if one is prepared to relax
the requirement for a conforming approximation of the velocity field and instead use
a non-conforming scheme (details later), then it is even possible to use the lowest
order approximation whereby V; C P}(K)? and M, C P°(K). The extra freedom
in the velocity means that this combination is stable in the sense that a discrete
inf-sup condition is now satisfied, despite the fact that this fails to hold for the cor-
responding conforming combination. More importantly, it is possible to construct
the subspace X, C V', consisting of piecewise divergence-free functions explicitly.
Let 6, € P}(K) be the first order scalar, non-conforming function uniquely defined
by the conditions 6. (x,) = &, for 7,7 € €. These functions are non-conforming
in the sense that they fail to belong to the space H!()) since their traces are dis-
continuous across element interfaces. Nevertheless, such functions are continuous at
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edge midpoints and therefore satisfy a weakened conformity condition whereby the
average values of the traces are continuous at element interfaces: f7 Uk = fv Up, K

on v = K N K'. The finite element spaces for the approximation of the Stokes
problem are then defined by

Vi = span{‘rv, vy € 8}, My, = {q € Py(K) : /Qq = O} (2.2)

where 7., := 0,t, and v, := 0,n.,. Evidently, the space V, is non-conforming in the
sense described above. The stability and convergence of this method are studied in
the original paper of Crouzeix and Raviart [10].

Let X denote the subspace consisting of piecewise divergence-free functions,

X = span{'vh eV, :V, v, = O}.

Owing to the lack of conformity, X, is not a subspace of X. A basis for X can be
defined explicitly as follows: for n € N let

Onp,
Pn = Z h . Vo, (23)

’YEE:wnG’Y v

where o, , € {£1} is chosen so that the vectors o, ,n, defined on element edges
trace a path around the node x,, in an anti-clockwise sense. The subspace X; C V7,
is then given by

X :=span{7,, p, : YEE nEN}.
In order to see this, first note that every v, € X, satisfies 0 = §, . vy ng = [, Vo,
and hence, since vy, is linear, it follows that V-v;, = 0 on K. As intimated earlier,
the availability of an explicit representation for the subspace X, means that it is

possible to decouple the computation of the discrete velocity from the pressure field.
The discrete velocity field u, € X, is uniquely determined by the condition

/ Viwuy - Vyvy, = / f -V V’Uh € Xy, (24)
Q Q

Once the discrete velocity is in hand, the corresponding pressure p, can be com-
puted, without having to solve a linear system, using a marching procedure over the
triangulation as described in [17].

2.3. A projection operator. Let v € V be given, then the conditions
Myv(x,) = ]['v Vye&
Y

define a unique function Il,v € V. This rule defines a non-conforming projection
operator Il : V — V. Moreover, the operator has the property IT;, : X — X,
To see this first observe that the above conditions imply that fw II,v-ng = fw v-Ng

for all v € £. Therefore, if v € X, then

Hhv~nK:j{ v~nK:/V~v:O
oK K K
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and hence I1,v € X,. Finally, the projection IT, satisfies the following local inter-
polation estimate

lv — IIpo| 5 + b | V(v = o) | < Chg|Vo|x VK ek YveV. (2.5)

2.4. Enhanced approximation space. For later purposes we will embed V', x M},
into a pair of enhanced (higher order) conforming spaces V; C V and M} C M.
Roughly speaking, the enhanced velocity space V', consists of continuous piecewise
quadratic functions augmented by so-called cubic “bubble” functions associated with
the element interiors, while the enhanced pressure space M} consists of continuous
piecewise linear functions. The precise details are as follows.

Given an edge v € &, let ¢ denote the conforming piecewise quadratic function
defined uniquely by the conditions [, 05 = d,, and 65(x,) = 0 for all n € N.
Analogously to above we define

o
% . % L, T * Y L%
T, =00t, vii=0n, p,= E A V..

’YEE:wnG’Y v

For each node n € N let ¢ be the conforming piecewise quadratic fungtion uniquely
defined by the conditions ¢ (x,,) := 0, and fw ¢y = 0 for all v € £. Finally, let
B% be the piccewise cubic function supported on clement K, whose valuc at the
centroid x g is unity.

The enhanced spaces are defined by

Vo= Span{Ti“y, V., rm, Bilm : yEE, neEN, me{1,2}, K € IC}, (2.6)
= {qh € P(K) /qh = 0} (2.7)
Q

where &; and é, denote the unit basis vectors for the Euclidean space R?. As before,
the associated subspace X; C V', defined by

=

X} = {’UhEVZ : /V'UhC_Ih=0 thGM;}k} (2.8)
Q

has an important role to play. The resulting finite element space X ; may be regarded
as an enriched Taylor-Hood space [6, Ch. 6.3].

3. A POSTERIORI ERROR ESTIMATES FOR HOMOGENEOUS BOUNDARY DATA

For simplicity, we begin by considering the case of homogeneous boundary condi-
tions and defer the treatment of the general case until later.

3.1. Error representation. Let e :=u —u, € X + X}, and e, := p — p,, € L3(Q)
denote the error in the velocity and the pressure respectively. Thanks to (1.2) and
(2.1), these quantities satisfy

/{Vhe:Vv—eme}:/{f-v—thh:Vv+phV~v} YvoeV. (3.1)
Q Q
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In order to obtain a posteriori error estimates, we shall adopt the equilibrated
residual approach [3, Ch. 6]. This approach consists of splitting the residual ap-
pearing on the right hand side of (3.1) into contributions from individual elements
K € K in conjunction with the solution of local Neumann problems of the form:
seek e, T such that,

/ {Vek : Vv — 15 V-v} = R (v) +/ gx v Vo e Vg =V |, (3.2)
K oK

where
RK(v)sz{f-v—Vuh : Vo +p,V-v}. (3.3)

The data for the local Neumann problem (or inter-element flux) g, € L*(0K,R?)
is assumed to satisfy the consistency condition

for all edges v € £. This condition ensures that the contributions from the local
fluxes cancel pairwise if (3.2) is summed over all elements K € K. Problem (3.2)
corresponds to the solution of a local Stokes’ problem. This local problem may, as
described earlier for the global problem, be posed over the subspace consisting of
locally divergence-free functions:

/V&:K:szRK(v)+/ gy -V

" oK (3.5)

2/{f-v—Vuh:Vv}—|—/ g v VUEXK::XLK.
K K

The solvability of this equation depends on the fluxes satisfying a suitable compat-
ibility condition:

Lemma 1. (i) There exists a solution [ex,mx] € X x LK) of (3.2) (with Veg
being unique) iff the fluxes gy satisfy the conditions

/ gi *Vp = —RK(vh) V’Uh I~ Vh,K- (36)
oK

(ii) If, in addition to (3.6), the fluxes gy are required to be piecewise constant on
each interior edge v C 0K \ 050, then the fluxes are uniquely determined and are
given explicitly by

xn oty = —Ri(Ty) = /K {f Ty — Vuy,: VTW},

9Ky My = —Ri(vy) = / {f vy — Vuy, : Vi, "‘phV‘V'y}.
K
For the sake of definiteness, take gy .. := 0 on an exterior edge v C 052.

Proof. (i) Existence is trivial if 0K abuts a portion of the exterior boundary 0.
More generally, for an internal element K, condition (3.6) implies that Rx(c) = 0
for constant ¢ € R?. This condition completely characterises the kernel of the pure
Neumann-problem and it follows the local problems will be uniquely solvable for all
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K € K, up to the addition of an arbitrary ¢ € R?.
(ii) The assertion follows at once on observing that the equations arising from (3.6)
by inserting the test functions 7., and v, are decoupled, and the components of
gk, can be read off. Note that 7, is divergence-free on element K while Vv, is
non-zero. Property (3.4) is verified by noting that

h’Y(gK;fy +gK;fy’) : t’Y = /(gK;fy +gK;fy’) : t’y = _RKUK’(T’Y) = 07
Y

and analogously for v., with Rxyux (v,) = 0. d

Lemma 2. Let I, : V — V, be the non-conforming projection operator defined
in Section 2.3. Then,

/{Vhe:V'v—epV-v}=R(v—1'[hv)=/f-(v—l'[hv) YveV.
0 )
Proof. With the aid of (3.1) and (2.1),
/ {Vie: Vv—¢,V-v} = / {f v—Vu,: Vo +p,V-v}
0 )

:/Q{f (v —Iw) — Vu, : V(v — L) + p, V- (v — o) }

Z/Qf'(’v—ﬂh'v)—KZGK/BK(n-Vuh—phn)-(v—l'[hv) YveV,

and then observe that the second term vanishes by definition of I, since both
n - Vuy, and ppn are constant on each edge v C 0K. O

3.2. Decomposition of the error. Following an idea of [13] we decompose the
gradient of the error in the velocity in the form

Ve =Vey+a (3.7)
where ey € X is uniquely defined by

/VeO:V'v=/Vhe:Vv Vv € X.
Q Q
The remainder a € L?(Q, R*?) satisfies
/ a:Vv=0 Vve X
Q

and as a consequence, (3.7) defines an orthogonal splitting of the error
| Viel* = [ Veol* + |af*.
Moreover, a belongs to the closed subspace Y of L?(Q, R??) defined by

Y::{wELQ(Q)Q’Q:/w:szo Vv e X}.
0

Members of the subspace Y share the following useful property:
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Lemma 3. For each w € Y there exists a function w € L3(§2) such that

/w:V'v=/wV-'v Yo eV, (3.8)
Q Q

i.e. V-w = Vw and which satisfies the estimate
Jwl < 1/cofw] (3.9)
where cq is the constant appearing in the inf-sup condition (1.3).

Proof. Integration by parts reveals that every w € Y N H*(Q, R*?) satisfies
—/(V"w)~v=0 Vo € X.
Q

Hence, by [16, Ch. IIL.1], there exists w € H'(2) N L3(Q2) such that V-w = Vw.
Equation (3.8) then follows by integration by parts. The validity of the inf-sup
condition means that we may pick v € Hj (€, R?) such that V-v = w and

1
ol = / WV v = / w : Vo < [w][Vo] < ~Jw]lw]
Q Q Co

which completes the proof of the assertion. O

Remark. More precisely, w € Y is of the form w = wld + V's [11] since, by
(3.8), we have V-(w — wld) = 0 and therefore w — wld must be of the form V's
for some s € H'(, R?).

3.3. Upper a posteriori error bound. We are now in a position to describe the
a posteriori error estimator, and to prove that it gives computable upper bounds for
the error. Let fx denote a constant approximation of f on K (such as the mean
value of f over K). The estimator 7, for the conforming part ey of the error is
defined by

1/2 ] 1 — 2 2
Ne = (Z 772;[() with 772;1( = E|K|‘fK‘ Z ‘:cv—:cK| ,
KeK ~e€ :yCOK
where, it will be recalled, ¢k and ., denote the centroid of the element and an edge
~ respectively. The estimator 7y for the remainder a is defined by

* ]' *
Mo = Vi —wn)| + —|V-u’l, (3.10)

where u* is any function in H}(Q, R?) and ¢ is the inf-sup constant. The estimator
for the total error e is obtained by summing the estimators

1= N + Ne- (3.11)

The presence of the constant ¢y from in the inf-sup-condition (1.3) in the expression
for mye seems to be unavoidable. Fortunately, bounds for ¢q are available and can

be obtained from [9, 25].
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In order to describe the upper bound property of the estimator, it is convenient
to introduce the data oscillation on K defined by

osc()? = 3" ose(£)? = K| If ~ Fxli:

KeK KeK

Theorem 1. (Upper a posteriori bound) Let 7 denote the estimator defined in (3.11).
Then, for any choice u* € H} (2, R?),

[ Vel <n+C ose(f),

where C is a positive constant that only depends on the shape regularity of the
mesh.

Proof. Thanks to the orthogonal splitting of the error (3.7), it suffices to estimate
the two contributions separately.
(i) Upper bound for ey. Let v € X, then

/ Veo: Vv = / Vie: Vo = / Vie : Vo < |Viee|| V|
Q Q Q

and hence |Vey| < |Vie|. In order to estimate eg, observe that

/KV&:K:szfo-(v—Hhv)

:/ka..(vnhv)+/K(fTK)~(thv)
:/Ka'Ksz+/K(f—?K)-(v—Hhv) Yo € Xk,

where ok is given by

To verify the last step, first note that

/VO'KZV’U:/ a'KnK~'v—/(V~a'K)~'v
K oK K

Simple computations reveal that V-0 = —1/2 TKV_ (x —xx) = —fx on K and
that oxkng = —1/2 fxng - (x — xx) = —|K|/(3h,) fx on v C OK. Hence

/aKaKnK.v_ chaKfK / —|K| /fK II,v

and the claim follows. Consequently, using the interpolation estimate (2.5), we
obtain

x +Chi|f - fx

IVek|x < |lox & < Nex +C ols(c(f)
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and the result follows by evaluating |o k| explicitly.
(i1) Upper bound for a. To estimate a take any w € Y and choose an arbitrary
element u* € HJ(Q,R?). Then, applying Lemma 3, we obtain

/Qa:w=/QVh(e—eO):wz/QVh(—uh):w

:/ {Vi(u* —up):w— Vu*:w}

= / {Vi(u* —up)w— V-utw}.
Q
The estimate now follows using the bound for w from Lemma 3. ([l

3.4. Choice of u*. The quality of the estimator n defined in (3.11) will depend on
making a good choice for u*. One possibility is to construct «* by post-processing
the finite element approximation w,. With this in mind, we begin by defining a
mapping P, : X, — V7 onto the enhanced space V' defined in Section 2.4. Firstly,
the values of the (discontinuous) function v, are averaged at each node n € N as
follows:

> W rUnk(x,), forx, €,
S(vh)n = { KeK:izneK (312)
0, for x,, € 011,

where {wy, x} is any set of non-negative weights satisfying > .o cx@Wnr = 1.
Secondly, each v, € X} may be uniquely written in the form v, = Zwes VT +
D nen UnPr, and a mapping Py : X, — V7 can therefore be defined by

Py =Y v,ri+ > {vnp) + S(op)nd} }- (3.13)

~eE neN

By construction, there holds fw P,v, -n = fw v, -n =0forall y €& It is easily
verified that, for every v, € X,

/ V‘(thh) gn = 0 th c Mh, (314)
Q

so that Pjvy indeed belongs to V.
The post-processing scheme embodied in P}, forms the basis for a family of post-
processing schemes of the form:

Qyvn == Pyop, + Z ek Py (3.15)

KeK

corresponding to various choices of the local vectors cx € R? for K € K.

The simplest choice ex = O gives an operator Q% which coincides with the basic
post-processing scheme, i.e. QY = Pj,. Alternatively, the freedom in the choice of
coefficients of the bubble functions £} may be exploited to give a post-processed



12 W. DORFLER AND M. AINSWORTH

approximation QEDth belonging to the subspace X} of ’discretely divergence-free’
functions by taking cx € R? as suggested in [17]:

C%DF leﬂ}k( (/61((:13 - Ph’Uh / thh (316)

Note that this choice preserves the property fw Q,un -n = fw Puouy,-n = fw Up N

for all ¥ € £ The construction of the discretely divergence-free post-processing
scheme QPPF is motivated by the desire to implicitly control the influence of the
term in (3.10) involving the inf-sup constant ¢y. A more direct approach is to choose
the constants c¢x to minimise this term. This can be achieved by choosing

/V5K®V[3K N = /V (Phuy)V By,

and the associated 'minimal-divergence’ post-processing scheme is denoted by Q™.
Finally, in view of the fact that one obtains an upper bound regardless of the choice
of ¢cx, we consider the post-processing scheme whereby the coefficients ¢ are chosen
to minimise the upper bound:

1 1
(IVBlicd+ % [ VoV a) @ = = [ (VP + 2 V- (Pru) 1) V5.,
K K
and denote the associated post-processing operator by Q.

3.5. Lower a posteriori error bound. Each of the post-processing schemes de-
fined in the previous section gives Q,up € Hi(Q2, R?) and we may therefore select
u* = Quup in Theorem 1 to obtain upper bounds on the crror. We shall show
that each of these upper bounds also provides an efficient bound provided that the
triangulation satisfies the additional condition whereby each element K € K should
have at most one edge on the exterior boundary 0€2. Obviously, this assumption is
not a serious practical limitation since it may be satisfied by performing a suitable
refinement of any triangles that do not meet this requirement.

Theorem 2. (Lower a posteriori bound) Suppose that each element K € K has at
most one edge on the exterior boundary. If the estimator ny. is defined by taking
u* = Q,u;, where Q,, is any of the operators defined in Section 3.4, then

en < [Vael +ose( ),
where c is a positive constant that depends only on the shape regularity of the mesh.

Proof. The orthogonality of the splitting (3.7) means that it suffices to prove lower
bounds for |Veg| and |Va| individually.

(i) Lower bound for |Veg|. Let f denote the piecewise constant function whose
value on K is given by fx and let o be defined as in the proof of Theorem 1. Then,
for all v € X we have

/QVeo:Vv:/QVhs:sz/Qa:Vv—k/Q(f—?)-(v—l'[hv).
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Let K', K" € K be distinct elements sharing the common edge v = K' N K" and
denote Q, := K' U K". Let s € CZ(Q,) be compactly supported in €,, and set
v := V's. Then, with the aid of (2.5), we obtain

1
- : < |
||V'U|| ‘/{;v (e g V'U‘ >~ ||V60||Q’Y + C %S’Yc(f)

Moreover, from the definition of o,

/Qa':Vv: /fK (v — M)

Ke{K',K"}

. {|K|f /VLHfKtK/}

Ke{K' K"}

Observe that tx + £+ = 0 on 7y and so, for the sake of definiteness, we fix tx = ¢,.
Furthermore,

/VJ'S = /(nw -VEs)n, + /(t7 V)t = /8ns t,,
Y Y Y Y

where the first integral vanishes since 3 vanishes at the endpoints of 7. Hence,
setting \g = \o(s 7( sand A\ = \((s f O s, we obtain

! "
—/ o: Vo= —§(|K F, o+ B |fkn> A+ (fK, - fB) . (3.17)
Observe that the right hand side is invariant under a re-scaling of the domain and
so without loss of generality we may assume that h, = 1. The main idea is, through
appropriate choices of s, to show that (3.17) gives rise to a pair of linearly indepen-
dent cquations in which the tangential components of fr. and fy» arc regarded
as unknowns. The choices of s are constructed as follows. Firstly, let o be the
largest value such that B,(z,) C €. Let s be a non-negative function with support
supp(s) = B,/2(x,) and such that s is radially symmetric about the midpoint x.,
normalised so that max(s) = 1. Let ¢ satisfy |§| < ¢/2 and consider the functions
ss = s(. — dn.,) obtained by shifting the support of s. The mapping § — A¢(ss)
is then a positive, symmetric and strictly decreasing function and 6 — \(ss) is a
non-constant skew-symmetric function. Taking first 6 = 0 and then 6 = ¢, for some
fixed value &y € (0, 0/2), we find that (3.17) gives a pair of linearly independent
cquations for the tangential components of f . and fg». Conscquently, there is a
constant C, depending only on the shape of {2, such that

|TK"t7|§}%‘/Q O'ZV’U‘

where we have exploited the fact that [Vv|g is independent of 6. In fact, by a
scaling argument, we deduce that there is a positive constant C, again independent
of &, such that [Vv|, < C/h,. Hence,

K2 1 F e bl < ORI F w8, < C (IVeolg, + %S;C(f))-
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Since each element is assumed to have at most one edge on the exterior boundary,
we can apply the same reasoning to another edge v # +' contained in dK’ and since
the set {t,,t,} is linearly independent, we are able to estimate both components of
f i and thereby arrive at the bound:

K Frlio < C (IWesl,ua, + 05 (£).

Summation over all elements K € K then yields,
en < [ Veol +ose(f)

since |z — x| < C|K]|.

(ii) Lower bound for |a|. The proof consists of two steps. In the first step we show
that |a| bounds a sum of jumps J; (defined below) in the tangential derivatives of
up. Then, in the second step we show that these jumps bound the error estimator
above.

(ii.1) |a| bounds Jy. Let K' and K" be distinct elements sharing a common edge
v=K'NK" and let s := 0}z, where 6 is defined as in Section 2.4 and z, € R? is

a constant to be specified later. The function V+'s is divergence-free and therefore
V<1s € Y. Then, arguing as in the proof of Theorem 1.(ii), we deduce

/a:VLs:—/ Vou, : Vis=— /(tK-Vuh)-s
Q K'UK" K

=— [y[&tuh]y - 8.

Choose z, := —[0yup]y, then

2 % 2 *
2. =h, / B, = b, / 0" |eunhs|* = — 1, / a: V(0 [Bous],)
5 v K'UK"
< lalgrurn V031 Jey
and by summing over v € £ we obtain

Jt = (Z Jt%,y) v < C "a"v

vyEE

Ke{K' K"}

where (' is a positive constant independent of any mesh-size.
This completes the proof of the first step. For the next step we want to prove that
J¢ bounds 7. To finish then, observe that 1y < C|Vi(u* — up)|.
(ii.2) Bound for |Vi(u* — uy)|. To this end take any K € K and let Ag := {7 €
E . v C Qg} be the set of all edges in Qg := U{K' € K : KNK'# (}. We now
wish to bound
IV —w)l

Z’YGAK Jt27'Y
from above. The form of w* means that the denominator depends on an at least as
large a set of coefficients of u;, as the numerator. Since Qx is the quotient of two
homogeneous quadratic forms, it suffices to show that if the denominator vanishes,

Qr -
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then so does the numerator. Thanks to a scaling argument, we may eliminate the
mesh size and consider a patch Qg of elements of unit diameter. Suppose now that
Jt., = 0 holds for all v € Ag. If x, is any vertex of K and v = K N K’, then by
continuity in ., we have |up.x(€n) — upr(2,)]| < fw |[Oyun]| = 0. Because all edges
emanating from x, are in Ag, we conclude that u; is continuous at x,. Since it
is linear it is thus continuous in Qg and u* = u;, on K. Thus upx = Pru, | &
and therefore u* = uy, + dgfj on K. If we show that dx = 0 holds, we have
that Qi is bounded by an hg-independent constant and we arrive at the bound
|Vi{u* —up)| < CJg after summation over K. It is trivial to see that dx vanishes
in the case where u* is chosen to be QY. In the case of QP"F, the fact that both u*
and wy, are solenoidal implies that dx again vanishes. Likewise, since QhMIN is chosen
to minimise the difference in the divergences of w* and u,, we conclude that dy
vanishes in this case also, and a similar argument applies in the case of QYFT. O

We conclude this section by stating the a posteriori estimate for the combined
error in velocity and pressure.

Corollary 1. (A posteriori error estimate for the pressure) The error in the pressure
is bounded above as follows:

co |yl <27+ C ose(f).

Therefore, the total error |Vhe| + ¢o |ep| is equivalent to our error estimate up to
data oscillation terms.

Proof. First, applying Theorem 2 we at once derive

en < [Vael +o0se(£) < |Vael + o ley| + osc(F).

It remains to give the upper a posteriori bound for |e,|. To this end, notice that
thanks to the inf-sup-condition (1.3)

1
cle) € c=— [ ¢,V-v Yve V\{0}.
o [lesl ol /|, \ {0}

From the error representation formula in Lemma 2 we obtain

1

1
—_— eV~'v§—/ Vye: Vo —f-(v-Iv
Vol Jo?V Y S (vl Jo 1 (v - M)}

1/2
2
< Vel + (KXJ‘C %)+ C ose(f) < 2+ C ose(f),

and we then proceed as in the proof of Theorem 1, part (i). Hence

[Vrel +collep] < 3n+C ose(f).

as claimed. O
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4. EXTENSION TO NON-HOMOGENEQUS BOUNDARY DATA

Consider the case of non-homogeneous boundary conditions in which problem (1.1)
is modified by requiring u = u? on 9Q for some u® € H'(0Q,R?) satisfying
f 86 u? -m = 0. The latter condition is necessary for the problem to be well-poscd.
Further details concerning existence theory in this situation may be found in [16,
Ch. 1V]. Here, we will restrict ourselves to outlining the modifications necessary
to extend our previous results Theorem 1 and Theorem 2 to cover this situation.
The non-homogeneous boundary conditions are applied to the discrete problem by

requiring that
/uh=/u8 Yy e £9.
Y Y

Note that applying the boundary conditions in this fashion guarantees that |, uy, -
n = 0. The enhanced approximation Q,u, from Section 2 is modified to satisfy
the condition Q,ux(x,) = u’(x,) for all £, € 0Q. In particular, there holds
f7 Q,up-n = fw up N = fw u? - n for all v € £9. For given data u® € H'(0Q,R?),
the theoretical bounds will involve the quantity

ose(u?)? = 3~ ose(u?)? == Y hy |0u” — (9w, |2
ye&d ! yeED

where (. ), denotes the mean value integral over .

Theorem 3. (A posteriori bounds in case of non-homogeneous boundary condi-
tions) Suppose that the estimator 7y, is obtained by choosing u* := Q,uy. Then,
Theorem 1 is modified to

[Vhe| <5+ C (o}gc( )+ ()g%c(ua))
while Theorem 2 is modified to
< 9.
en < |Vie| + o%c(f) + %%c(u )
The constants ¢, C' depend only on the shape regularity of the mesh.

Proof. We outline the necessary modifications to the proofs given earlier in the case
of homogeneous data. The splitting of the error remains as stated in (3.7), but the
arguments in the proofs of Theorems 1 and 2 have to be modified when we come to
bound |a|. To extend our previous results to non-homogeneous data it is useful to
introduce a function v* € H'(2, R?) with exact boundary values 4. On an interior
element K € K, we simply take v* := w*. A more elaborate argument is needed
for a triangle K with an exterior edge ~. Firstly, define £ := 0 on K \ v and
€% = u® — u* on 7. By construction [,, €% -n = J,(u” —u*) - n = 0. Hence, an
element-wise Stokes problem on K with boundary data given by €% has a solution
which we denote by €, and which satisfies the bound |VE&x|x < Cosc,(dpu?)
(obtained using arguments similar to those of [2, Lemma 8]). On each such element
K we define v* := u* + &;. In summary, the function v* € H(Q, R?) satisfies
v* = u? on .
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(i) Upper bound for |a|. These previous definitions mean that step (ii) in the proof
of Theorem 1 has to be modified as follows

/Qa:wzfgvh(e—eo):w=/QVh(u—uh):w

=/Q{Vh(v*—uh):'w+V(u—v*):w}
:/Q{Vh(v*—uh):w—V-u*w}

:/Q{vh(u*—uh>:w—V-u*w}+Z/KvsK:w

Kek
since V-£; = 0. It only remains to estimate the final term as follows,

1/2

> [ Veriws (T 1vertz) ul <€ ose(w’) .

Kex’ K Kek
(ii) Lower bound for |al. We only have to reconsider part (ii.2) of the proof to
Theorem 2. We will split u* — u, = (u* — @*) + (@* — uy,), where u* is as u*, but
with @ (z,) := S(u), also for ¢, € N? in contrast to @' (x,) := u’(x,). The
term |V (u" — wy)| is treated as in part (ii) before, so that it remains to bound
IV (w — )],

First consider an element K € K with a boundary edge v and boundary vertices

T,, ©,. The following argument is based on the observation

IV(u" —u)|, <C Jax, |(un;x — u”)(@1)].

Using the discrete boundary conditions yields (us.x — u®)(x,) = h.,/2 Osunx +
+, u? — u®(x,) and with arguments as in the proof of Theorem 2, part (i.1) with
s:=0z

ahaded

/ a:Vis= (/ 0fyatu8 — h78tuh) “ Zy
K v

= (—2(Uh;K —u?)(x,) + /Q;atua +2 7/’“8 - 2’“8(%)) =2
Y Y
or

2(unx — u’) (@) - 2,
= /Ka : Vs + (/ 9;(atu3 — (Oyu?),) + 2 7[11,8 — (u(=,) + ua(mm))> C 2y
7 v
The last two terms can be written in the form f7 Xy (Opu? — (3pu?),) with |x,| =1/2
(see [2, Lemma 9]) so that we conclude (choosing z, = [1;0] and [0; 1])
|(unsc = u)(@a)| < C (lalx + hy|0u” = (Beu?), ) < C (lalx + ose(u?)).

The remainder of the argument then proceeds as in the case of homogeneous data.

O
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5. THREE DIMENSIONAL CASE

To emphasise the similarities with the previous considerations we adopt a notation
analogous to the two-dimensional case. We assume €2 is decomposed into a set K of
tetrahedra satisfying the usual assumptions. Further, Iet £ be the sct of all faces of
tetrahedra in K and A be an index set for the edges. Faces and edges are assumed
to be oriented in the following way: with each face ¥ € &, a normal vector n,
is assigned (which coincides with the exterior normal if v C 09Q) and each edge
has a fixed direction, e.g. pointing to the vertex with the larger index in the set of
vertices V := {x;};. For v € £ let 6, be the linear non-conforming basis function
satisfying 6. (x,) = d,, (where x, is the centroid of 7). On the face v we construct
an orthonormal basis {t,,t, .} satisfying (¢, x t,2) - n, = 1. By analogy with
the two-dimensional case, we define basis functions 7., ; := 6,%,,;, and v, := 0,n,.
The spaces V), and M), are defined as in (2.2) and the degrees of freedom for V,
are identified with the functionals f7 vy,

The construction of the subspace X involves choosing an appropriate subset
Nx of N and defining p,, as in (2.3) for n € Nx [18]. Signs are chosen such that
the face normals p,(x,) trace a path around the edge n in the anticlockwise sense
with respect to the chosen orientation of this edge. The definition of II, remains
as described in Section 2.3, and in particular, functions in X will be automatically
mapped into X,.

We will now sketch the differences to the two-dimensional case needed to ex-
tend the a posteriori error bounds in Theorems 1 and 2 under the assumption of
homogeneous boundary data.

Modifications to the proof of Theorem 1. Definition 3.11.(i) has to be replaced by

K| —
e = S Ful” 3 =l

vEE i yCOK

for the conforming error, since we will obtain o := —1/3 fx o(x — zx) for K € K
in the proof of Theorem 1, part (i), with the same technique as before (note that
(x —xk) ng =3/4|K|/|y| Ve € v C OK). Part (ii) works exactly the same way.

A choice of u*. Before proving the lower bound, we have to be more specific about
the choice of u*. One possibility is to choose Vi to be PL(K)? enriched by face
bubbles in normal directions [21, p. 122]. For this let 62 be the cubic face bubble for
v € € with f7 6> = 1. For each vertex x; let ¢; its piecewise linear basis function
and let S(vp); be the weighted mean for v, € V; as in (3.12). We then define
Py : V= Vi by Pyoy =) 0, S(vn);0; + 3 s T(vn),05m,, where T(.), is
chosen such that f7 Py, -n., = f7 vy, - n,. Thus we obtain that for v, € X, (3.14)
holds for piecewise constant g, and therefore M; = M, = P*(K). Our choice here
1Is u* = Phuh.

Modifications to the proof of Theorem 2, part (i). Taking v := V X r;, where r; :=
st.; for some s € C3(Q,,R?) and [ € {1,2}, we achieve V-v = 0. Now we obtain,
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for some ¢, > 0,
[o:vo= > {ceFu [VoxtutFu (ot [}
Q Ke{K',K"} Y v

Using {I,!'} = {1, 2} and cyclic permutation we see that

/VS X t%l = /(VS X t%l) . t’y,l’ t’y,l’ ~ /8ns t’y,l’
Y Y Y

and fg - (n, xt,;) ~ fx-t,y. Hence we end up in the same situation as in (3.17)
and, with the same choice of s as before, onc obtains an cstimate for the tangential
part of fx on v and, using a second face of K, an estimate for the whole vector.

Modifications to the proof of Theorem 2, part (ii.1). For I € {1,2} let v; := z;t, v 0
for some z € R®, i € {1,2,3}, I’ such that and {I,I'} = {1,2}. Define w(z) to be
the matrix with i*" row V x v;(2). Then V-w = 0 so that w € Y and one obtains

3 3
/ a:w= —/ Z Vg VX v, =— Z[Vuh,i]’y ey Xty p)2ihy
Q L i=1

~ =[O, Unly - 2h.
Choosing z = [0;. ,up], yields the required bound.
Modifications in the proof of Theorem 2, part (ii.2). The essential steps are to show
that Pjuy, % depends on coefficients of u, on Q2 and that vanishing jumps Jy,, for
v € Ak imply u* = u;, on K. The first property is immediate. For the second we

show as before that u;, is continuous on (g and thus equals u* at all vertices. Since
V-uj, =0 we see that T'(u), = 0 for all ¥ C 0K and therefore u* = u), on K.

6. NUMERICAL EXAMPLES.

We show numerical results for two examples. The first one has a polynomial
velocity field of third order on Q := (0,1)? with non-homogeneous data f and u®.
Velocity, stream function and pressure are given by

Ue(T1, T2) = [21(1 — 1) (1 — 229), —22(1 — 22) (1 — 21)],
\I’e(xl,xg) = xle(]. — .’,Ul)(l — 1172),
pe(1, 32) = 2(z2 — 31).

The second example (see e. g. [26]) has a singular solution (u, ¢ H?(2,R?)) on an
L-shaped domain (2 := (—1,1)2\ (0,1) x (—1,0)) with £ = 0, explicitly given by

ue(r, @) = r*[(a + 1) sin(d)y(¢) + cos($)y'(¢),
— (a + 1) cos(9)9(¢) + sin(6)¥' ()],
Te(r,¢) = r*t1y(9),

pelr,0) = 17 (120 (8) + 4"(9)
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Qx 7l 7] 77 Qx 7l 7] 79
Q) | 1731 | 5.11_, [ 3.49_, Q) 13371 1.05_, | 6.98_,
PPE 12,02, [9.66_5 | 2.84_, PPE 13,691 [1.81_, | 5.63_,
QMY | 1.55_, |6.31_5 | 2.31_, QN 1277 1 | 1.24_, | 4.60_,
OPT | 1.55_1 | 5.77_5 | 2.51 OPT 277 1| 1.18_, [ 4.79

TABLE 1. Results for Example 1 on the uniform grid with N = 3969
(left) and for Example 2 on the uniform grid with N = 5985 (right)
for the different choices of Q.

in polar coordinates [r, ¢] € (0,00) x (0,37/2), where

P(P) = P sin((a + 1)¢) cos(aw) — cos((a + 1)¢),
+ i : sin({c — 1)¢) cos(aw) + cos((a — 1)),
o= % ~ 0.54, w=3n/2.

In the experiments we calculate the “exact” (using a quadrature formula for P,) and
the estimated error in the energy norm |V .| (using a quadrature formula for Ps)
for the velocity on a sequence of uniformly and adaptively refined grids, respectively.
For each marked triangle two newest node bisection steps [28] were performed. As
a local error indicator for the adaptive algorithm we used (cf. Sect. 3.3)

* 1 *
= i+ IV (0 = )l + IV
0

and triangles are marked using the mazimum strategy (mark K if ng > Nmax/2)-
The global error estimate is, according to (3.11), given by

N = Ne + Nc-

Values for the constant ¢ = 0.4 for = (0,1)? and ¢y = 0.3 for the L-shaped domain
have been obtained from [25, pp. 253-254]. All errors will be presented as relative
errors. For convenience, the following abbreviations will be used: F := |V (u, —
wp)|/1Vuel, 7:= n/| V], 7 = |V (u* — )| /| Vu], 79 = |V-u*|/[Vu|.

Table 1 compares the bounds obtained using the four different types of post-
processing scheme used to define 4" in the case of a uniform grid. Observe that the
estimators involving QSPT and QM perform comparably and represent a significant
improvement over the estimators based on QY and QPP in this example.

Figure 1 shows the convergence history for both examples on a sequence of uni-
formly and adaptively refined grids, Table 2 the corresponding data. In the first
example (which is H?-regular) the slope of the lines is about 1/2, confirming the
expected relations £ ~ N2 and 77 ~ N2, respectively. However, the exact error
is overestimated by a factor of about 3.5. In the second example the slope of the
data in the uniform case is about 1/4, which is consistent with the expected rate of
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N E n|n/E

N E 7| n/FE 916.24_,|1.44 2.31
916.24_,|1.44 2.31 47 13.74_, | 1.08 2.89

49 13.47_, | 1.01 291 1731216, | 7.04_1| 3.26
225 [ 1.80_; | 5.81_; | 3.23 329 11.69_; |5.71_,| 3.38
961 | 9.15_5 | 3.05_; | 3.33 991 | 9.69_ | 3.43_; | 3.54
3969 | 4.60_o | 1.55_¢ | 3.37 1287 | 8.60_2 | 2.99_; | 3.48
4537 1 4.63_5|1.64_; | 3.54

TABLE 2. Data for the uniform (left) and adaptive (right) results in

Figure 1 (Example 1) using u* = QT Tuy,.

«/2. The adaptive algorithm improves this by that the error decreases with N'/2 as
in the H?*-regular case. This confirms that the adaptive algorithm is quasi-optimal
although, once again, there is overestimation by a factor of about 3 in the uniform
case and approximately 3.9 in the adaptive case.

The cost of using QT is about 10% more than that for Q%. Pressure errors
are of the size of the velocity errors and the overestimation of n with respect to

|V (we — up)| + collpe — pr| is about a factor of 3.

0.2

0.2

-0.2F -0.2F

_o4f —04f

-06[ -06[

Iog‘O(Err)
Iog‘O(Err)

-0.8F -0.8F

L L L
5 3 3.5 4

25 3 a5 4 1 15 2!
log,o(N)

100,N)
FIGURE 1. Exact (o) and estimated error (V) on uniform grids

(dashed) and adaptive grids (solid) for the first example (left) and
the second example (right).
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