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1 Introduction

This paper is concerned with the construction of non-linear schemes of the ADER type for

time-dependent scalar linear and non-linear conservation laws in one, two and three space

dimensions. The ADER approach was first put forward by Toro and collaborators [22], where

the idea was illustrated for solving the linear advection equation with constant coefficients.

Formulations were given for one, two and three-dimensional linear schemes on regular meshes

and implementation of linear schemes of up to 10th order in space and time for both the

one-dimensional and the two-dimensional case were reported. We also mention the work of

Schwartzkopff et al. [13], where linear schemes of upto 6th order in space and time were
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constructed. These were then applied to acoustic problems and detailed comparison with other

schemes was carried out.

The extension of the ADER approach to non-linear problems relies on the solution of the

generalised Riemann problem. For non-linear systems, including source terms, this was pre-

sented in [23]. Construction of ADER schemes for the Euler equations using this Riemann

problem solution has been reported in [17, 24]. For the construction of schemes as applied

to non-linear scalar equations see also [16]. Extension of ADER to scalar advection-diffusion-

reaction equations in one space dimension is reported in [18], where explicit non-linear schemes

of up to 6th order are presented.

As is well known from the theorem of Godunov [5], high-order linear schemes will generate

spurious oscillations near discontinuities or sharp gradients of the solution. These oscillations

pollute the numerical solution and are thus highly undesirable. To avoid generating spurious

oscillations, non-linear solution-adaptive schemes must be constructed. It appears as if it was

Kolgan [10] who first proposed to supress spurious oscillations by applying the so-called principle

of minimal values of derivatives, producing in this manner a non-oscillatory (TVD) Godunov-

type scheme of second order spatial accuracy. Further, more well-known, developments are due

to van Leer [25, 26]. In multiple space dimensions unsplit second-order non-oscillatory methods

were constructed by Kolgan [11], Tiliaeva [15], Colella [4] and many others. Uniformly high-

order extensions of these methods are represented by essentially non-oscillatory (ENO) [8, 2]

and weighted essentially non-oscillatory (WENO) [12, 7, 1, 9, 14] schemes.

In one space dimension non-linear ADER schemes of up to fifth order of accuracy in time

and space have been presented in [22, 17, 24, 16]. These schemes use essentially non-oscillatory

(ENO) or weighted essentially non-oscillatory (WENO) reconstruction procedures to control

spurious oscillations. In two space dimensions, however, the ADER approach has so far been

limited to linear schemes and linear equations only [22, 13] and therefore cannot be used as such

for computing discontinuous solutions. However, we are aware of work in progress by Kaeser

(private communication) for the two dimensional non-linear scalar case. We also remark that

no three-dimensional ADER schemes, either linear or non-linear, have yet been presented.

The motivation of this paper is twofold. Firstly, we carry out the construction of non-

linear ADER schemes in two and three space dimensions. These schemes generalize linear

two-dimensional ADER schemes developed [22, 13]. Secondly, we extend the ADER approach

to non-linear scalar conservation laws with reactive-like source terms in two and three space

dimensions thus extending non-linear one-dimensional ADER schemes of [17, 24, 16, 18] to

multiple space dimensions.

We present numerical examples for schemes of up to fifth order of accuracy in both time

and space, which illustrate that the schemes indeed retain the designed order of accuracy in all

space dimensions, for a fixed Courant number, and produce essentially non-oscillatory results

for solutions with discontinuities.

The rest of the paper is organized as follows. In Section 2 we review the ADER approach

in one space dimension as applied to advection-reaction equations. Extension to two and three

space dimensions is carried out in Sections 3 and 4. Numerical results are provided in Section
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6 and conclusions are drawn in Section 7.

2 Review of ADER schemes in one space dimension

Consider the following one-dimensional nonlinear advection-reaction equation:

∂tq + ∂xf(q) = s(x, t, q), (1)

where q(x, t) is the unknown conservative variable, f(q) is the physical flux and s(x, t, q) is a

source term. Integration of (1) over the control volume in x−t space Ii×∆t, Ii = [xi−1/2, xi+1/2],

of dimensions ∆x = xi+1/2 − xi−1/2, ∆t = tn+1 − tn, gives

qn+1
i = qn

i +
∆t

∆x

(
fi−1/2 − fi+1/2

)
+ ∆t si, (2)

where qn
i is the cell average of the solution at time level tn, fi+1/2 is the time average of the

physical flux at cell interface xi+1/2 and si is the time-space average of the source term over the

control volume:

qn
i =

1

∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx, fi+1/2 =
1

∆t

∫ tn+1

tn
f(q(xi+1/2, τ)) dτ,

si =
1

∆t

1

∆x

∫ tn+1

tn

∫ xi+1/2

xi−1/2

s(x, τ, q(x, τ)) dx dτ.

(3)

Equation (2) involving the integral averages (3) is upto this point an exact relation, but

can be used to construct numerical methods to compute approximate solutions to (1). This is

done by subdividing the domain of interest into many disjoint control volumes and by defining

approximations to the flux integrals, called numerical fluxes, and to the source integral, called

numerical source. Let us denote the approximations to these integrals by the same symbols

fi+ 1
2

and si in (3). Then the formula (2) is a conservative one-step scheme to solve (1).

The ADER approach defines numerical fluxes and numerical sources in such a way that the

explicit conservative one-step formula (2) computes numerical solutions to (1) to arbitrarily

high order of accuracy in both space and time. The approach consists of three steps: (i) recon-

struction of point wise values from cell averages, (ii) solution of a generalized Riemann problem

at the cell interface and evaluation of the intercell flux fi+1/2, (iii) evaluation of the numerical

source term si by integrating a time-space Taylor expansion of the solution inside the cell.

The point-wise values of the solution at t = tn are reconstructed from cell averages by means

of high-order polynomials. To avoid spurious oscillations essentially non-oscillatory (ENO) [8]

or weighted essentially non-oscillatory (WENO) [12, 7] reconstruction can be used leading to

non-linear schemes. In general, WENO reconstruction produces more accurate results and

therefore it is used in the design of our schemes. By means of the reconstruction step the

conservative variable is represented by polynomials pi(x) in each cell Ii. At each cell interface
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we then have the following generalized Riemann problem:

∂tq + ∂xf(q) = s(x, t, q),

q(x, 0) =





qL(x) = pi(x), x < xi+1/2,

qR(x) = pi+1(x), x > xi+1/2.

(4)

This generalisation of the Riemann problem is twofold: (i) the governing equations include

non-linear advection as well as reaction terms and (ii) the initial condition consists of two

reconstruction polynomials of (r−1)th order for a scheme of rth order of accuracy. By the order

of accuracy we mean the convergence rate of the scheme when the mesh is refined with a fixed

Courant number.

We find an approximate solution for the interface state q(xi+1/2, τ), where τ is local time

τ = t− tn, using a semi-analytical method [23]. The method gives the solution at x = xi+1/2 at

a time τ , assumed to be sufficiently small, in terms of solutions of a sequence of conventional

Riemann problems for homogeneous advection equations. First we write a Taylor expansion of

the interface state in time:

q(xi+1/2, τ) = q(xi+1/2, 0+) +
r−1∑

k=1

[
∂

(k)
t q(xi+1/2, 0+)

] τ k

k!
, ∂

(k)
t q(x, t) =

∂k

∂tk
q(x, t), (5)

where 0+ ≡ lim
t→0+

t. The leading term q(xi+1/2, 0+) accounts for the interaction of the boundary

extrapolated values qL(xi+1/2) and qR(xi+1/2) and is the self-similar solution of the conventional

Riemann problem with the piece-wise constant data:

∂tq + ∂xf(q) = 0

q(x, 0) =





qL(xi+1/2) if x < xi+1/2

qR(xi+1/2) if x > xi+1/2





(6)

evaluated at (x− xi+1/2)/t = 0. We call q(xi+1/2, 0+) the Godunov state [5]. Next, we replace

all time derivatives by space derivatives using equation (1) by means of the Cauchy-Kowalewski

procedure. This procedure can be easily carried out with the aid of algebraic manipulators, such

as MAPLE or Mathematica. For example, for the model inviscid reactive Burgers’ equation

qt +
(

1

2
q2

)

x
= Aq, A = constant, (7)

the Cauchy-Kowalewski procedure yields the following expressions for time derivatives:

qt = −qqx + Aq,

qtt = 2 qqx
2 − 3 qx Aq + q2qxx + A2q

(8)

and so on. Expressions (8) contain unknown space derivatives of the solution

q(k) ≡ ∂k

∂xk
q, q(1) ≡ qx, q(2) ≡ qxx, q(3) ≡ qxxx, . . . ,
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at cell interface position xi+1/2 and time τ = 0. It can be shown that by differentiating the

governing equation with respect to x we can obtain evolution equations for each q(k). Generally,

these evolution equations are non-linear and inhomogeneous: for a fixed k > 0 the source terms

depend on lower order derivatives q(k−1), q(k−2) etc. For each k we then pose a generalized

Riemann problem with initial conditions obtained by taking appropriate derivatives of qL(x),

qR(x) with respect to x; we call these problems derivative Riemann problems [22]. Because we

only need the Godunov state of these derivative Riemann problems we can replace them by the

following linear, homogenuous conventional Riemann problem:

∂tq
(k) + λi+1/2∂xq

(k) = 0, λi+1/2 = λ(q(xi+1/2, 0+)),

q(k)(x, 0) =





∂(k)
x qL(xi+1/2), x < xi+1/2,

∂(k)
x qR(xi+1/2), x > xi+1/2.

k = 1, . . . , r − 1

(9)

Having found the solution at x = xi+1/2 of all these derivative Riemann problems we substitute

them into Taylor expansion (5) and obtain an approximate solution qi+1/2(τ):

qi+1/2(τ) = a0 + a1τ + a2τ
2 + . . . + ar−1τ

r−1, 0 ≤ τ ≤ ∆t, ai = constant, (10)

which approximates the interface state q(xi+1/2, τ) to the rth order of accuracy:

qi+1/2(τ) = q(xi+1/2, τ) + O(τ r), 0 ≤ τ ≤ ∆t. (11)

Two options exist to evaluate the numerical flux. The first option is the state-expansion

ADER [17], in which an appropriate rth-order accurate Gaussian rule is used to evaluate the

numerical flux:

f̂i+1/2 =
N∑

α=0

f(qi+1/2(γα∆t))Kα (12)

where γj and Kα are properly scaled nodes and weights of the rule and N is the number of

nodes.

The second option to evaluate the numerical flux is the flux-expansion ADER [24, 16], in

which we seek Taylor time expansion of the physical flux at xi+1/2

f(xi+1/2, τ) = f(xi+1/2, 0+) +
r−1∑

k=1

[
∂

(k)
t f(xi+1/2, 0+)

] τ k

k!
. (13)

From (13) and the second equation in (3) the numerical flux is now given by

fi+1/2 = f(xi+1/2, 0+) +
r−1∑

k=1

[
∂

(k)
t f(xi+1/2, 0+)

] ∆tk

(k + 1)!
. (14)

The leading term f(xi+1/2, 0+) accounts for the first interaction of left and right boundary

extrapolated values and is computed from (6) using a monotone flux, such as Godunov’s first
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order upwind flux. Following [24], the remaining higher order time derivatives of the flux in

(14) are expressed via time derivatives of the intercell state qi+1/2(τ)

∂

∂t
f =

∂f

∂q

∂

∂t
q,

∂2

∂t2
f =

∂2f

∂q2

(
∂

∂t
q

)2

+
∂f

∂q

∂2

∂t2
q, (15)

where from (10)
∂

∂t
q = a1,

∂2

∂t2
q = a2, (16)

and so on. No numerical quadrature is then required to compute the numerical flux.

An improvement of the flux-expansion ADER approach is the so-called ADER-TVD ap-

proach [24]. In ADER-TVD schemes the leading term in the flux expansion (14) is computed

from (6), not as a first order upwind flux, but as a second order TVD flux with a compressive

limiter, such as the flux of the Weighted Average Flux scheme [20, 21].

Now we deal with the treatment of the source term. The first step in the evaluation of

the numerical source term sn
i in (3) is to discretize the space integral by means of a N -point

Gaussian rule [18]:

si =
N∑

α=1

(
1

∆t

∫ tn+1

tn
s(xα, τ, q(xα, τ))dτ

)
Kα, (17)

where Kα are the scaled weights of the rule, xα are the Gaussian integration points and N is

the total number of points in the rule.

Next for each Gaussian point xα (which are different from xi±1/2) we reconstruct values

of q and its space derivatives by means of the WENO reconstruction, write the time Taylor

expansion of the form (5) and perform the Cauchy-Kowalewski procedure to replace all time

derivatives by space derivatives. As a result we obtain high-order approximations to q(xα, τ),

α = 1, . . . , N of the form (10). Finally, the time integration in (17) is carried out by means of

a Gaussian quadrature:

si =
N∑

α=1

(
N∑

l=1

s(xα, τl, q(xα, τl))Kl

)
Kα. (18)

The solution is advanced by one time step by updating the cell averages of the solution

according to the one-step formula (2).

3 Extension to two space dimensions

Consider the following two-dimensional nonlinear advection-reaction equation:

∂tq + ∂xf(q) + ∂yg(q) = s(x, y, t, q), (19)

where q(x, y, t) is the unknown conservative variable, f(q), g(q) are the advection fluxes in x

and y coordinate directions respectively and s(x, y, t, q) is a source term. Integration of (19)

over the control volume in x− y − t space Iij ×∆t, with

Iij = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2],
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of dimensions ∆x = xi+1/2 − xi−1/2, ∆y = yj+1/2 − yj−1/2, ∆t = tn+1 − tn, gives

qn+1
ij = qn

ij +
∆t

∆x

(
fi−1/2,j − fi+1/2,j

)
+

∆t

∆y

(
gi,j−1/2 − gi,j+1/2

)
+ ∆t sij , (20)

where qn
ij, fi+1/2,j, gi,j+1/2 and sij are now given by

qn
ij =

1

∆x

1

∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

q(x, y, tn) dy dx, (21)

fi+1/2,j =
1

∆t

1

∆y

∫ yj+1/2

yj−1/2

∫ tn+1

tn
f(q(xi+1/2, y, τ)) dτ dy,

gi,j+1/2 =
1

∆t

1

∆x

∫ xi+1/2

xi−1/2

∫ tn+1

tn
g(q(x, yi+1/2, τ)) dτ dx,





(22)

sij =
1

∆t

1

∆x

1

∆y

∫ tn+1

tn

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

s(x, y, t, q(x, y, t)) dy dx dt. (23)

The procedure to evaluate the fluxes in two space dimensions consists of three main steps.

The first step in evaluating the fluxes is to discretize the spatial integrals over the cell sides in

(22) using an rth order Gaussian numerical quadrature. For the rest of this section we shall

concentrate on fi+1/2,j; the expression for gi,j+1/2 is obtained in an entirely analogous manner.

The application of a one-dimensional N -point quadrature rule to (22) yields the following

expression for the numerical flux in the x coordinate direction:

fi+1/2,j =
N∑

α=1

(
1

∆t

∫ tn+1

tn
f(q(xi+1/2, yα, τ))dτ

)
Kα, (24)

where (xi+1/2, yα) are the integration points over the cell side [yj−1/2, yj+1/2] and Kα, Kβ are

the weights.

The second step in evaluating the fluxes is to reconstruct the point-wise values of the solu-

tion from cell averages to high order of accuracy at the Gaussian integration points (xi+1/2, yα).

In this paper we use the so-called dimension-by-dimension reconstruction which is explained in

[2, 14] in the context of the two-dimensional ENO and WENO schemes. The reconstruction con-

sists of two one-dimensional WENO reconstruction sweeps. First we perform one-dimensional

WENO sweep in the x coordinate direction (normal to the cell interface) and obtain left and

right y-averages of q and its x - derivatives. Next we perform the final sweep in y direction and

obtain the sought point-wise values of q and its space derivatives.

After the reconstruction is carried out for each point yα along the cell side [yj−1/2, yj+1/2]

we pose the generalized Riemann problem (4) in the x-coordinate direction (normal to the cell

boundary) and obtain a high order approximation to q(xi+1/2, yα, τ). All steps of the solution

procedure remain essentially as before. First, we write the Taylor series expansion in time

q(xi+1/2, yα, τ) = q(xi+1/2, yα, 0+) +
r−1∑

k=1

[
∂

(k)
t q(xi+1/2, yα, 0+)

] τ k

k!
. (25)
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The leading term q(xi+1/2, yα, 0+) is the self-similar solution of the conventional Riemann prob-

lem
∂tq + ∂xf(q) = 0,

q(x, 0) =





qL(xi+1/2, yα) if x < xi+1/2,

qR(xi+1/2, yα) if x > xi+1/2.





(26)

evaluated at (x − xi+1/2)/t = 0. Next, we replace all time derivatives by space derivatives

using (19) by means of the Cauchy-Kowalewski procedure, which will now involve not only x

derivatives, but also all mixed and y derivatives up to order r−1. For example, for the inviscid

reactive Burgers’ equation

qt +
(

1

2
q2

)

x
+

(
1

2
q2

)

y
= Aq, A = constant, (27)

the Cauchy-Kowalewski procedure yields the following expressions for time derivatives:

qt = −qqx − qqy + Aq,

qtt = 2 qqx
2 + 4 qx qqy − 3 qx Aq + q2qxx + 2 q2qxy + 2 qqy

2 − 3 qy Aq + q2qyy + A2q
(28)

and so on. The expressions in (28) contain space derivatives of the solution

q(k1,k2) ≡ ∂k1+k2

∂xk1∂yk2
q, q(1,0) ≡ qx, q(0,1) ≡ qy, q(1,1) ≡ qxy, . . . (29)

It can be shown that all q(k1,k2) obey inhomogeneous evolution equations, which are obtained

by taking spatial derivatives of the governing equation. Similar to the one-dimensional case,

since we need only the values at (x − xi+1/2)/t = 0, all space derivatives can be computed as

the Godunov states of the corresponding linear homogeneous derivative Riemann problems:

∂tq
(k1,k2) + λi+1/2,α ∂xq

(k1,k2) = 0, λi+1/2,α = λ(q(xi+1/2, yα, 0+)),

q(k1,k2)(x, 0) =





∂k1+k2

∂xk1∂yk2
qL(xi+1/2, yα), x < xi+1/2,

∂k1+k2

∂xk1∂yk2
qR(xi+1/2, yα), x > xi+1/2.

(30)

Here
∂k1+k2

∂xk1∂yk2
qL(xi+1/2, yα),

∂k1+k2

∂xk1∂yk2
qR(xi+1/2, yα)

are left and right reconstructed point-wise values of derivatives.

After solving (30) for 1 ≤ k1 + k2 ≤ r − 1 we substitute q(k1,k2) into Taylor expansion (13)

and form a polynomial qi+1/2,α(τ):

qi+1/2,α(τ) = b0 + b1τ + b2τ
2 + . . . + br−1τ

r−1, 0 ≤ τ ≤ ∆t, bi = constant (31)

which approximates the interface state q(xi+1/2, yα, τ) at the Gaussian integration point (xi+1/2, yα)

to the rth order of accuracy.
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Finally, once approximations to q(xi+1/2, yα, τ) for all α are built we can carry out time

integration in (24). For the state-expansion ADER schemes we use the N -point (rth order

accurate) Gaussian quadrature:

fi+1/2,j =
N∑

α=1

(
N∑

l=1

f(qi+1/2,α(τl))Kl

)
Kα. (32)

For the flux-expansion ADER schemes we write the Taylor time expansion of the physical

flux at each point xi+1/2, yα

f(xi+1/2, yα, τ) = f(xi+1/2, yα, 0+) +
r−1∑

k=1

[
∂

(k)
t f(xi+1/2, yα, 0+)

] τ k

k!
. (33)

Similar to the one-dimensional case, the leading term f(xi+1/2, yα, 0+) is computed from (26)

using a monotone flux, such as Godunov’s first order upwind flux. The remaining higher order

time derivatives of the flux in (33) are expressed via time derivatives of the intercell state

qi+1/2,α(τ), see (15), (16); the only difference is that now time derivatives of q are given by the

time expansion (31). The numerical flux is given by

fi+1/2,j =
N∑

α=1

(
f(xi+1/2, yα, 0+) +

r−1∑

k=1

[
∂

(k)
t f(xi+1/2, yα, 0+)

] ∆tk

(k + 1)!

)
Kα . (34)

The computation of the numerical source consists of four steps. First we use the tensor

product of the N -point Gaussian rule to discretize the two-dimensional space integral in (23)

so that the expression for sij reads

sij =
N∑

α=1

N∑

β=1

(
1

∆t

∫ tn+1

tn
s(xα, yβ, τ, q(xα, yβ, τ))dτ

)
KαKβ. (35)

Then we reconstruct values and all spatial derivatives, including mixed derivatives, of q at

the Gaussian integration point in x − y plane for the time level tn. Note that these points

are different from flux integration points along cell sides. The reconstruction procedure is

essentially the same as for the flux computation: first we perform reconstruction in the x

direction, then in the y direction, or vice versa. Next, for each Gaussian point (xα, yβ) we

perform the Cauchy-Kowalewski procedure and replace time derivatives by space derivatives.

As a result we have high-order approximations to q(xα, yβ, τ), where α, β = 1, . . . N . Finally,

we carry out numerical integration in time using the Gaussian quadrature:

sij =
N∑

α=1

N∑

β=1

(
N∑

l=1

s(xα, yβ, τ, q(xα, yβ, τl))Kl

)
KβKα. (36)

The solution is advanced by one time step by updating the cell averages of the solution

according to the one-step formula (20).

4 Three space dimensions

Consider the following three-dimensional nonlinear advection-reaction equation:

∂tq + ∂xf(q) + ∂yg(q) + ∂zh(q) = s(x, y, z, t, q), (37)
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Integration of (37) over the control volume Iijk ×∆t, with

Iijk = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2]× [zk−1/2, zk+1/2],

of dimensions

∆x = xi+1/2 − xi−1/2, ∆y = yj+1/2 − yj−1/2, ∆z = zk+1/2 − zk−1/2, ∆t = tn+1 − tn

gives

qn+1
ijk = qn

ijk +
∆t

∆x

(
fi−1/2,jk − fi+1/2,jk

)
+

∆t

∆y

(
gi,j−1/2,k − gi,j+1/2,k

)

+
∆t

∆z

(
hij,k−1/2 − hij,k+1/2

)
+ ∆t sijk,

(38)

where qn
ijk, fi+1/2,jk, gi,j+1/2,k, hij,k+1/2 and sijk are given by

qn
ijk =

1

∆x

1

∆y

1

∆z

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ yj+1/2

yj−1/2

q(x, y, z, tn) dz dy dx, (39)

fi+1/2,j,k =
1

∆t

1

∆y

1

∆z

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

∫ tn+1

tn
f(q(xi+1/2, y, z, τ)) dτ dz dy,

gi,j+1/2,k =
1

∆t

1

∆x

1

∆z

∫ xi+1/2

xi−1/2

∫ zk+1/2

zk−1/2

∫ tn+1

tn
g(q(x, yi+1/2, z, τ)) dτ dz dx,

hij,k+1/2 =
1

∆t

1

∆x

1

∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ tn+1

tn
h(q(x, y, zi+1/2, τ)) dτ dy dx,





(40)

sij =
1

∆t

1

∆x

1

∆y

1

∆z

∫ tn+1

tn

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

s(x, y, z, t, q) dz dy dx dt. (41)

The procedure to evaluate the numerical flux in three space dimensions is a straightforward

extension of the two-dimensional one. We again concentrate on fi+1/2,jk; the expressions for

gi,j+1/2,k, hij,k+1/2 are obtained in an entirely analogous manner. First we discretize the spatial

integrals over the cell faces in (40) using a tensor product of a suitable Gaussian numerical

quadrature. The expression for the numerical flux in the x coordinate direction then reads

fi+1/2,jk =
N∑

α=1

N∑

β=1

(
1

∆t

∫ tn+1

tn
f(q(xi+1/2, yα, zβ, τ))dτ

)
Kβ Kα, (42)

where yα, zβ are the integration points over the cell face [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2] and

Kα, Kβ are the weights. Next we reconstruct the point-wise values of the solution from cell

averages to high order of accuracy at the Gaussian integration points (xi+1/2, yα, zβ), including

all derivatives up to order r − 1 for the scheme of the rth order of accuracy. Reconstruction

in three space dimensions is a straight-forward generalization of the two-dimensional algorithm

and consists of three one-dimensional sweeps [19]. First we perform a one-dimensional WENO

sweep in the x direction (normal to the face) and obtain left and right y−z averages of q and its

x derivatives. Then we perform the one-dimensional sweep in y direction to obtain z averages

of q and its mixed x − y derivatives for Gaussian integration points in y direction. Finally,
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we obtain the sought point-wise values by performing the one-dimensional WENO sweep in z

direction. See [19] for more details.

After the reconstruction is carried out for each Gaussian integration point (yα, zβ) at the

cell face we pose the generalized Riemann problem (4) in the x-coordinate direction (normal

to the cell boundary) and obtain a high order approximation to q(xi+1/2, yα, zβ, τ). All steps of

the solution procedure remain essentially as in the two-dimensional case. First, we write Taylor

series expansion in time

q(xi+1/2, yα, zβ, τ) = q(xi+1/2, yα, zβ, 0+) +
r−1∑

k=1

[
∂

(k)
t q(xi+1/2, yα, zβ, 0+)

] τ k

k!
. (43)

The leading term q(xi+1/2, yα, zβ, 0+) is the self-similar solution of the conventional Riemann

problem

∂tq + ∂xf(q) = 0,

q(x, 0) =





qL(xi+1/2, yα, zβ) if x < xi+1/2,

qR(xi+1/2, yα, zβ) if x > xi+1/2,





(44)

evaluated at (x − xi+1/2)/t = 0. Next, we replace all time derivatives by space derivatives

using (37) by means of the Cauchy-Kowalewski procedure which will now involve x, y and z

derivatives up to order r − 1. For example, for the inviscid reactive Burgers’ equation

qt +
(

1

2
q2

)

x
+

(
1

2
q2

)

y
+

(
1

2
q2

)

z
= Aq (45)

the Cauchy-Kowalewski procedure yields the following expressions for time derivatives:

qt = −qqx − qqy − qqz + Aq,

qtt = qxqqz + 2qq2
x + q2qxx + 2q2qxy + 2q2qxz + 2qqy

2 + q2qyy + 2q2qyz+

2qq2
z + q2qzz + A2q − 3 qx Aq + 4 qy qqz − 3 qz Aq + 4 qx qqy − 3 qy Aq,

(46)

and so on. The expressions in (46) contain space derivatives of the solution

q(k1,k2,k3) =
∂k1+k2+k3

∂xk1∂yk2∂zk3
q, q(1,0,0) ≡ qx, q(0,1,0) ≡ qy, q(0,0,1) ≡ qz, . . . (47)

Again, it can be shown that all q(k1,k2,k3) obey inhomogeneous evolution equations, which are

obtained by taking spatial derivatives of the governing equation. Then all q(k1,k2,k3) can be

computed as Godunov states of the following linear derivative Riemann problems:

∂tq
(k1,k2,k3) + λi+1/2,αβ ∂xq

(k1,k2,k3) = 0, λi+1/2,αβ = λ(q(xi+1/2, yα, zβ, 0+))

q(k1,k1,k3)(x, 0) =





∂k1+k2+k3

∂xk1∂yk2∂zk3
qL(xi+1/2, yα, zβ), x < xi+1/2

∂k1+k2+k3

∂xk1∂yk2∂zk3
qR(xi+1/2, yα, zβ), x > xi+1/2

(48)

Here
∂k1+k2+k3

∂xk1∂yk2∂zz3
qL(xi+1/2, yα, zβ),

∂k1+k2+k3

∂xk1∂yk2∂zz3
qR(xi+1/2, yα, zβ)
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are left and right reconstructed point-wise values of derivatives. After solving (48) for 1 ≤
k1 +k2 +k3 ≤ r−1 we substitute q(k1k2k3) into the Taylor expansion (43) and form a polynomial

qi+1/2,α,β(τ):

qi+1/2,α,β(τ) = c0 + c1τ + c2τ
2 + . . . + cr−1τ

r−1, 0 ≤ τ ≤ ∆t, ci = constant (49)

which approximates the interface state q(xi+1/2, yα, zβ, τ) at the Gaussian integration point

(xi+1/2, yα, zβ) to the rth order of accuracy.

The flux of the state-expansion ADER scheme is given by

fi+1/2,jk =
N∑

α=1

N∑

β=1

(
N∑

l=1

f(q(xi+1/2, yα, zβ, τl))Kl

)
Kβ Kα. (50)

For the flux expansion ADER schemes we write Taylor time expansion of the physical flux

at each point (xi+1/2, yα, zβ)

f(xi+1/2, yα, zβ, τ) = f(xi+1/2, yα, zβ, 0+) +
r−1∑

k=1

[
∂

(k)
t f(xi+1/2, yα, zβ, 0+)

] τ k

k!
. (51)

Similar to the two-dimensional case, the leading term f(xi+1/2, yα, zβ, 0+) is computed from

(44) using a monotone flux, such as Godunov’s first order upwind flux. The remaining higher

order time derivatives of the flux in (51) are expressed via time derivatives of the intercell state

qi+1/2,α,β(τ). These time derivatives are computed from Taylor expansion (49). The numerical

flux is then given by

fi+1/2,jk =
N∑

α=1

N∑

β=1

(
f(xi+1/2, yα, zβ, 0+) +

r−1∑

k=1

[
∂

(k)
t f(xi+1/2, yα, zβ, 0+)

] ∆tk

(k + 1)!

)
KαKβ . (52)

The computation of the numerical source now involves four-dimensional integration. First

we use the tensor-product of the N -point Gaussian rule to discretize the three-dimensional

space integral in (41) so that the expression for sijk reads

sijk =
N∑

α=1

N∑

β=1

N∑

γ=1

(
1

∆t

∫ tn+1

tn
s(xα, yβ, zγ, τ, q(xα, yβ, zγ, τ))dτ

)
KγKβKα. (53)

Then we reconstruct values and all spatial derivatives, including mixed derivatives, of q at the

Gaussian integration point in x− y − z space for the time level tn. Note that these points are

different from flux integration points over cell faces. The reconstruction procedure is entirely

analogous to that for the flux evaluation. Next for each Gaussian point (xα, yβ, zγ) we perform

the Cauchy-Kowalewski procedure and replace time derivatives by space derivatives. As a

result we have high-order approximations to q(xα, yβ, zγ, τ). Finally, we carry out numerical

integration in time using the Gaussian quadrature:

sijk =
N∑

α=1

N∑

β=1

N∑

γ=1

(
N∑

l=1

s(xα, yβ, zγ, τ, q(xα, yβ, zγ, τl))Kl

)
KγKβKα. (54)

The solution is advanced by one time step by updating the cell averages of the solution

according to the one-step formula (38).
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The explicit scheme considered above requires the computation of a time step ∆t to be

used in the conservative updates (2), (20), (38), such that stability of the numerical method is

ensured. One way of choosing ∆t is

∆t = Ccfl ×min
ijk

(
∆x

|λn,x
ijk |

,
∆y

|λn,y
ijk |

,
∆z

|λn,z
ijk |

)
. (55)

Here λn,d
ijk is the speed of the fastest wave present at time level n travelling in the d direction,

with d = x, y, z. Ccfl is the CFL number and is chosen according to the linear stability condition

of the scheme.

In one space dimension linear schemes applied to the linear homogeneous advection equa-

tion with constant coefficient have the optimal stability condition Ccfl ≤ 1. [22]. Numerical

experiments indicate that the approach has the same stability condition for nonlinear scalar

equations and systems as well [17].

The linear stability analysis of ADER schemes in two and three space dimensions is not

available yet. Numerical experiments indicate that ADER schemes have a reduced stability

condition which in fact coincides with the stability condition of the unsplit Godunov scheme [5]

and ENO/WENO schemes [2, 14]. In two space dimensions the stability condition is 0 < Ccfl ≤
1/2 and in three space dimensions the stability condition is 0 < Ccfl ≤ 1/3.

When the source term is present it should also be taken into account when choosing the

stable time step.

5 Numerical results

In this section we present numerical results of the state-expansion ADER schemes of up to fifth

order of accuracy as applied to scalar homogeneous equations. The detailed evaluation of ADER

for equations with source terms and the flux-expansion ADER in several space dimensions is the

subject of ongoing research. These examples illustrate that the ADER schemes can compute

discontinuous solutions without oscillations and at the same time maintain the designed very

high order of accuracy in both time and space in multiple space dimensions. In all examples for

flux integration we use the two-point 4th-order Gaussian rule for third and forth-order ADER

schemes and the three-point 6th-order Gaussian rule for the fifth order ADER scheme.

We remark that it seems to have become a popular practice to check the formal order of

very high-order schemes by running them with very small Courant numbers or choosing the

time step in such a way that the spatial order dominates the computation [1, 3]. This results in

exceedingly small time steps and therefore enormous computational cost of the scheme. This

is especially so in many space dimensions. In practical calculations, however, for hyperbolic

equations one uses a fixed Courant number which should be as close as possible to the maximum

allowed value given in the previous section. In this paper our goal is to compare the performance

of different methods in a realistic setup. Thus we use a fixed Courant number Ccfl = 0.45 in

two space dimensions and Ccfl = 0.27 in three space dimensions in all numerical examples.
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Table 1: Convergence study for the 2D linear advection equation with variable coefficients (56)

with initial condition (58) and δ = 1 at output time t = 4. CFL= 0.45 for all schemes. N is

the number of cells in each coordinate direction.

Method N L∞ error L∞ order L1 error L1 order

ADER3 50 2.92× 10−1 6.53× 10−1

100 7.56× 10−2 1.95 1.16× 10−1 2.49

200 9.27× 10−3 3.03 1.12× 10−2 3.38

400 7.47× 10−4 3.63 6.65× 10−4 4.07

ADER4 50 2.04× 10−1 3.67× 10−1

100 2.95× 10−2 2.79 3.95× 10−2 3.22

200 2.63× 10−3 3.49 2.51× 10−3 3.98

400 3.22× 10−5 6.35 2.57× 10−5 6.61

ADER5 50 1.36× 10−1 2.84× 10−1

100 2.10× 10−2 2.69 3.06× 10−2 3.21

200 1.26× 10−3 4.06 9.47× 10−4 5.01

400 2.08× 10−5 5.92 1.70× 10−5 5.80

5.1 The kinematic frontogenesis problem

This test problem [6] is important in meteorology where it models a real effect taking place in

the Earth atmosphere. From the numerical point of view it tests the ability of the schemes to

handle moving discontinuities in two space dimensions. We remark that a number of advection

schemes has been reported to fail for this test problem, especially those using dimensional

splitting.

We solve the two-dimensional linear equation with variable coefficients

qt + (u(x, y)q)x + (v(x, y)q)y = 0, (56)

where (u, v) is a steady divergence-free velocity field:

u = −y ω(r), v = xω(r), ω(r) =
1

r
UT (r), r2 = x2 + y2,

UT (r) = Umax sech2(r)tanh(r), Umax = 2.5980762.

(57)

The initial distribution of q(x, y, t), defined on a square domain [−5, 5]× [−5, 5], is assumed to

be one-dimensional

q(x, y, 0) = q0(y) = tanh
(

y

δ

)
, (58)

where δ expresses the characteristic width of the front zone. The exact solution is then given
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Figure 1: Solution of the two-dimensional linear advection equation (56) with the initial con-

dition (58) and δ = 10−6 at output time t = 4 and CFL= 0.45. Method: the ADER5 scheme.

Mesh of 401×401 cells is used.

by [6]

q(x, y, t) = q0(y cos(ωt)− x sin(ωt)) (59)

and represents a rotation of the initial distribution around the origin with variable angular

velocity ω(r). We note that as time evolves the solution will eventually develop scales which

will be beyond the resolution of the computational mesh.

We first consider a smooth solution with δ = 1. Table 1 shows a convergence study for cell

averages at the output time t = 4. Obviously, all schemes achieve the design order of accuracy.

The size of the error decreases as the formal order of the scheme increases. Moreover, the forth

and fifth order schemes show sixth order of accuracy on fine meshes. We would like to stress

the fact that such high orders of accuracy are achieved for a fixed Courant number.

Next we compute the numerical solution which corresponds to a discontinuous initial dis-

tribution with δ = 10−6. At the given output time the initial discontinuity has been rotated

several times and the solution represents a discontinuous rolling surface.

Figs. 1 – 2 depict, respectively, a three-dimensional plot and contour plot of the numerical

solution obtained by the fifth order ADER scheme. We observe that the numerical solution is

essentially non-oscillatory with sharp resolution of all discontinuities. All parts of the discon-

tinuous rolling surface have been captured well. Further illustration is provided by Figures 3

– 5, which show one-dimensional cuts along the y axis for −3 ≤ y ≤ 3; results of the third,

forth and fifth order schemes on the meshes of 201×201 cells and 401×401 cells are shown. In

all figures the solid line corresponds to point-wise values of the exact solution whereas symbols

correspond to the numerical solution (cell averages). Clearly all schemes capture all features
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Figure 2: Contours of the solution of the two-dimensional linear advection equation (56) with

the initial condition (58) and δ = 10−6 at output time t = 4 and CFL= 0.45. Method: the

ADER5 scheme. Mesh of 401×401 cells is used. See also Fig. 1.

Figure 3: One-dimensional cuts along the y axis for the two-dimensional linear advection equa-

tion (56) with the initial condition (58) and δ = 10−6 at output time t = 4 and CFL= 0.45.

Solid line shows point-wise values of the exact solution and symbols show cell averages com-

puted by the ADER3 scheme. The meshes of 201×201 cells (left) and 401×401 cells (right) are

used.
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Figure 4: One-dimensional cuts along the y axis for the two-dimensional linear advection equa-

tion (56) with the initial condition (58) and δ = 10−6 at output time t = 4 and CFL= 0.45.

Solid line shows point-wise values of the exact solution and symbols show cell averages com-

puted by the ADER4 scheme. The meshes of 201×201 cells (left) and 401×401 cells (right) are

used.

Figure 5: One-dimensionals cut along the y axis for the two-dimensional linear advection equa-

tion (56) with the initial condition (58) and δ = 10−6 at output time t = 4 and CFL= 0.45.

Solid line shows point-wise values of the exact solution and symbols show cell averages com-

puted by the ADER5 scheme. The meshes of 201×201 cells (left) and 401×401 cells (right) are

used.
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Table 2: Convergence study for the 3D inviscid Burgers’ equation (60) with initial condition

(61) at output time t = 0.05. CFL= 0.27 for all schemes. N is the number of cells in each

coordinate direction.

Method N L∞ error L∞ order L1 error L1 order

ADER3 5 1.84× 10−2 3.34× 10−2

10 2.05× 10−3 3.17 3.47× 10−3 3.27

20 3.89× 10−4 2.39 2.09× 10−4 4.05

40 4.85× 10−5 3.00 1.74× 10−5 3.59

80 6.99× 10−6 2.79 2.18× 10−6 3.00

ADER4 5 1.90× 10−2 2.21× 10−2

10 1.07× 10−3 4.14 5.82× 10−4 5.25

20 6.64× 10−5 4.01 2.25× 10−5 4.70

40 5.10× 10−6 3.70 1.27× 10−6 4.15

80 3.07× 10−7 4.05 8.27× 10−8 3.94

ADER5 5 4.77× 10−3 7.96× 10−3

10 2.42× 10−4 4.30 1.17× 10−4 6.09

20 1.07× 10−5 4.50 3.50× 10−6 5.06

40 2.75× 10−7 5.28 1.06× 10−7 5.04

80 8.79× 10−9 4.97 3.95× 10−9 4.75

correctly. The resolution of the discontinuities improves as the formal order of accuracy of the

scheme increases, which is more clearly shown in the finer mesh results. We observe slight oscil-

lations in the result of the ADER5 scheme for the internal steps in the y cut of q(x, y, t). These

oscillations are due to the fact that the essentially non-oscillatory reconstruction cannot find a

smooth stencil on this coarse mesh. Indeed, there are only four cells between discontinuities in

the middle, whereas the forth order polynomials used in the reconstruction need at least five

cells. When the mesh is refined further the oscillations vanish rapidly.

5.2 The three-dimensional inviscid Burgers’ equation

We solve the three-dimensional inviscid Burgers’ equation

qt +
(

1

2
q2

)

x
+

(
1

2
q2

)

y
+

(
1

2
q2

)

z
= 0 (60)

with the following initial condition defined on [−1, 1]× [−1, 1]× [−1, 1]:

q(x, y, z, 0) = q0(x, y, z) = 0.25 + sin(πx) sin(πy) sin(πz) (61)
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and periodic boundary conditions. For this test problem the exact solution is obtained by

solving numerically the relation q = q0(x − qt, y − qt, z − qt) for a given point (x, y, z) and

time t. The cell averages of the exact solution at the output time are computed using the

8th-order Gaussian rule.

Table 2 shows the errors at the output time t = 0.05, when the solution is still smooth. We

observe that all ADER schemes reach the design rth order of accuracy in both norms. Moreover,

the error decreases by an order of magnitude when the formal order of accuracy increases. As

expected, the fifth order scheme is the most accurate scheme. Again, we would like to stress

the fact that such high orders of accuracy are achieved for a fixed Courant number.

6 Conclusions

The design of nonlinear ADER schemes of upto fifth order in both time and space as applied

to scalar linear and nonlinear advection-reaction equations was presented. The numerical re-

sults for the linear advection equation with variable coefficients and for the inviscid Burgers’

equation suggest that for smooth solutions the schemes retain the designed order of accuracy

for realistic CFL numbers. When the solution is discontinuous the schemes produce essen-

tially non-oscillatory results and sharp resolution of discontinuities. The extension to nonlinear

hyperbolic systems in 2D and 3D is the subject of ongoing research.
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