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Abstract

We study a class of Markov processes of the type Xn+1,h = Xn,h+
F (Xn,h)h +

√
h ξn+1, where F : Rd → R

d is a bounded continuous
function, (ξn) are i.i.d. random variables with zero mean, and t = nh
understood as “macro-time”. Such processes are approximations to
the SDE, dXt = F (Xt) dt + dWt. Upper estimates for β-mixing and
convergence rates to invariant measure are established under certain
assumptions on smoothness of F , the density of ξn and some recur-
rence conditions. The estimates are analogous to those for the limiting
SDE.
Keywords: Stochastic Difference Equation – Mixing – Markov Process
– Euler Scheme – Malliavin Calculus.

1 Introduction

In this paper we continue studying of β-mixing and convergence rates to
invariant distribution for models treated in [7, 8, 9, 3]. The main goal is to
find an answer to the following question: if one approximates a stochastic
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differential equation by Euler scheme, what are conditions which ensure a
uniform mixing and convergence to equilibrium rates? The term “uniform”
relates to different discretisation step sizes, and not to, e.g., initial data.
We consider here only the case of bounded coefficients. Notice that the
question of convergence of approximation schemes to the limiting solution
is not discussed; it would be interesting to investigate relationships between
these two problems. We consider approximations by not necessarily Gaussian
noise ξn, however our approach requires that the “drift” function F is smooth
enough, and ξn possesses a density with certain nice properties, depending on
dimension. The latter dependence may look strange, but it relates naturally
to the extensive use of the Bismut approach of Malliavin calculus, although
the name is usually applied for continuous time case. Notice that for “strong
approximations” (that is, with ξn Gaussian), smoothness assumptions on F
may be dropped, due to the Harnack inequality technique, which case will be
treated separately in another paper, because of an entirely different approach.
Also notice that in principle, a diffusion coefficient, at least non-degenerate,
may be added to the scheme. We did not do it here, in order not to overload
the presentation.

Consider a family of Markov processes of the following form,

Xn+1,h = Xn,h + F (Xn,h)h+
√
h ξn+1, X0,h = x ∈ Rd, (1)

where F : Rd → R
d is a bounded continuous function, the sequence (ξn) is

a sequence of i.i.d. random variables with Eξn = 0 and E|ξn|m <∞ for some
m ≥ 2. Letting h = 1 we get “the discrete case model” from [7, 3]. Consider
t = nh as “macro-time” and pass to the limit h → 0. Formally, we look at
the process as an approximation to the stochastic differential equation with
constant diffusion,

dXt = F (Xt) dt+ σ dWt, X0 = x ∈ Rd, (2)

where (Wt) is a Wiener process in Rd and σ is the covariance matrix of ξn.
Processes satisfying equation (2) were studied in [7, 8] and we call this setting
by “the continuous case model”. So, the family of processes (1) is a link
between the discrete and continuous models, and studying uniform properties
of Xn,h for all h small enough seems important.

Denote the distance in total variation between two probability measures
µ and ν by ‖µ− ν‖TV = var (µ− ν). The β-mixing coefficient is defined by

βx(t) = sup
s≥0

Ex var
B∈FX≥t+s

(P(B | FX≤s)− P(B)),
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where FXI = σ{Xn,h : nh ∈ I} and Ex denotes expectation of the process
starting from x. It is not emphasized in the notation but βx(t) depend on
the value of h.

Consider the family of processes (Xn,h) for all h > 0 small enough. Under
certain assumptions, each process Xn,h (h is fixed) possesses an invariant
measure, and there are convergence to this measure and β-mixing [7, 3]. Our
goal is to establish uniform upper estimates for convergence and β-mixing
rates on the “macro-time” scale as t = nh→∞.

In [7, 3] some polynomial and sub-exponential bounds for the rates were
established for both discrete and continuous models. Methods of proof
were similar but not identical. The method of [7, 3] for the discrete model
was essentially based on two ideas: (i) estimating of moments of hitting-
times of a compact set (see the discussion in [7] and relations (8)–(10)) and
(ii) the coupling method for the process on the compact set through the lo-
cal Doeblin condition (see condition (3) below). An attempt to apply this
method here is straightforward but reveals that the latter condition is difficult
to verify for our model while the former one is easy to check.

The rest of the paper is organized as follows. Basic assumptions on
the process (Xn,h) and our main results are formulated in Section 2. Some
properties of the process are studied in Section 3 where we show that the cou-
pling method works in our settings; the use of Malliavin calculus is explained
from scratch, for the reader convenience. Section 4 deals with two different
forms of recurrence conditions. The main results of the paper are established
in Section 5.

2 Basic assumptions and main results

We will make some assumptions on the function F and the distribution of
the sequence of “noise” (ξn) from difference equation (1). It is convenient to
formulate all of them right here, although particular results in the sequel may
require only some part of them. There are three main assumptions, namely,
recurrence condition (F2) which ensures an attraction to the origin, a moment
assumption (either (D4), or (D5)), and condition (D1) on the density. Other
assumptions, (F1), (D2) and (D3), are technical ones, they ensure the work
of the Malliavin calculus approach, and also provide the local Doeblin condi-
tion (3) below. Condition (3) is a version of a standard one in ergodic theory
for Markov processes since 50s, cf. [1]. Although assumptions (D1)–(D5) have
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different nature, — positiveness, smoothness, and moment properties, — all
of them are features of the random variables ξn; this is why we use the same
notation (D) with indices for them.

(F1) the function F and its derivatives of orders up to d+ 2 are bounded;

(F2) there exist R0 > 0, 0 ≤ p < 1 and r > 0 such that

〈F (x), x〉 ≤ −r|x|1−p, |x| > R0;

(D1) the distribution of ξn has density p(x) which is positive everywhere;

(D2) the derivatives of p(x) of orders up to d+ 1 are absolute integrable;

(D3) Fisher information is finite,

∫
Rd

|p′(x)|2

p(x)
dx <∞;

(D4) E|ξn|m <∞, m ≥ 2;

(D5) E exp{κ|ξn|α} <∞ with 0 < κ < K and 0 < α ≤ 1.

We introduce one more condition of local mixing, see [11, 7, 3]. Let
(Xn) be a Markov process, B a compact set, τ1 = inf{n ≥ 0 : Xn ∈ B},
τk+1 = inf{n > τk : Xn ∈ B} hitting times of B. Define “the process on B”,
XB
n = Xτn , with n-step transition probabilities PB(n, x, dy). We say that

the process (Xn) satisfies the local Doeblin condition, if for any R > 0 large
enough and B = B(0, R) there is an integer n0 = n0(R) such that

inf
x,x′∈B

∫ (
1 ∧ PB(n0, x, dy)

PB(n0, x′, dy)

)
PB(n0, x

′, dy) =: q(R, n0) > 0, (3)

where P (dy)/P ′(dy) denotes the derivative of absolute continuous part of P
with respect to P ′ (singular part may be non-trivial). The condition may
look sophisticated but its point is to provide non-singularity of the measures
within the ball B. This form of non-singularity, rather than a “petite sets”
type condition, is used because it gives better constants uder the exponential.
The coefficient of ergodicity q in a case of uniform bound was suggested by
Dobrushin.

Considering a family of stochastic processes depending on a parameter
h, we have to adjust the local Doeblin condition for this family. We say
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that the local Doeblin condition is satisfied for the family of processes (Xn,h)
depending on the parameter h, if for any R > 0 large enough there exist reals
T = T (R) > 0, h0 > 0, and an integer-valued function N = N(T, h) such
that N(T, h)h ≤ T and

inf
h≤h0

inf
x,x′∈B

∫ (
1 ∧ PB(N(T, h), x, dy)

PB(N(T, h), x′, dy)

)
PB(N(T, h), x′, dy) =: q(R) > 0.

(4)

Theorem 1 (mixing and convergence rates) Let the family of processes
(Xn,h) satisfy conditions (F1), (F2), and (D1)–(D3) with some parameters
R0, p, r; and in addition, either m in (D4), or K and α in (D5). In each of
the cases 1–3 below,

(a) the family of processes (Xn,h) satisfies the local Doeblin condition (4);

(b) for each h small enough there exists the invariant measure µ = µh
(the measures may be different for different values of h but all constants
and functions in the following estimates can be chosen uniformly in h);

(c) marginal distributions µx(t) = L(Xn,h|X0,h = x) converge to µ at some
specific rate on the scale of macro-time t = nh and β-mixing holds with
the same rate.

1. If p = 0 and (D5) holds with α = 1 and some K > 0, then

‖µx(t)− µ‖TV ≤ C(x) exp{−c(1 + t)},
βx(t) ≤ C(x) exp{−c(1 + t)},

with some c > 0 and positive function C(x).

2. If 0 < p < 1 and (D5) holds with 0 < α < 1− p and some K > 0, then

‖µx(t)− µ‖TV ≤ C(x) exp{−c(1 + t)δ},
βx(t) ≤ C(x) exp{−c(1 + t)δ},

with any 0 < δ < α/(1 + p) and some c > 0 and a positive function
C(x) depending on δ.
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3. If p = 1 and (D4) holds with m > 4 and r > (m+ 1)E|ξ1|m/2, then

‖µx(t)− µ‖TV ≤ C(1 + |x|m)(1 + t)−k,

βx(t) ≤ C(1 + |x|m)(1 + t)−k,

where C > 0 and any k < (m− 2)/2 can be used.

Proof of the Theorem We give the proof in Section 5

Remark 1 The assumption m > 4 in the case 3 is needed for integrating
with respect to µ only. The value ‖µx(t) − µx′(t)‖TV can be estimated
from above via C(1 + |x|m + |x′|m)(1 + t)−k for x, x′ ∈ Rd, under m > 2 and
k < m/2. See the remark after the proof of Theorem 1 in [7].

Remark 2 Since the family (Xn,h) approximates the continuous process (2),
it is possible that the sequence of invariant measures (µh) converges to the in-
variant measure for SDE (2) in some sense. Indeed, under certain conditions
it can be shown. However, we will not use this here.

3 Uniform properties of (Xn,h) on a finite

macro-time interval

Let [0, T ] be a period of macro-time. We choose the value of T later. Define

N = N(T, h) = sup{n ≥ 0 : nh ≤ T}. (5)

For any fixed value of T we have N = N(T, h)→∞ and Nh ∼ T as h→ 0.
Fix R > 0 and the ball B = B(0, R). Let D be an open subset in B. It

is well-known that the solution to SDE (2) has the property,

inf
x∈B

Px(XT ∈ D) > 0.

One can write a lower bound depending on the set D only, if the ball B and
the value of T are fixed. It seems plausible that random events {XN,h ∈
D} have probabilities bounded away from zero, too, for all h small enough.
A reference on weak convergence of approximations to the SDE solution, and
on some extension of the Donsker–Prokhorov principle might be given, but
we propose another simple proof, for reader’s convenience and in order to
explore the capacity of the approach.
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Lemma 1 Let D ⊂ B = B(0, R) be an open set and assume that the CLT
holds true for the sequence (ξn),

√
h

N∑
k=1

ξk
d→ N (0, Tσσ∗), h→ 0,

where the covariance matrix σσ∗ is non-degenerate. Then there is h0 > 0
such that

inf
h∈(0,h0]

inf
x∈B

Px(XN,h ∈ D) > 0.

Proof It follows from (1) that

Xn,h = X0,h + h
n−1∑
k=0

F (Xk,h) +
√
h
n−1∑
k=0

ξk+1. (6)

For the sake of simplicity we assume that B(0, ρ0) ⊂ D with some ρ0 > 0
(the construction in the general case is similar). Denote M = sup |F (x)|, fix
an integer L so large that

ρ =
MT

L
∨ R
L
≤ ρ0

3
,

and consider the balls Bk = B(0, kρ). Obviously, B3 ⊂ D and x ∈ BL. One
represents XN,h as the sum of L blocs,

XN,h = x+
L−1∑
j=0

Yj,

where each bloc Yj contains [N/L] or [N/L] + 1 summands,

Yj =

[(j+1)N/L]−1∑
k=[jN/L]

(
F (Xk,h)h+

√
h ξk+1

)
.

We show that starting from x ∈ BL, the process Xn,h will hit the sets BL−1,
BL−2, . . . , B3, as n = [N/L], [2N/L], . . . , N , correspondingly, with proba-
bilities bounded away from 0. Due to the CLT,

√
h

[(j+1)N/L]−1∑
k=[jN/L]

ξk+1
d→ N (0, L−1Tσσ∗), h→ 0. (7)
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The drift arising from F is small enough,∣∣∣h [(j+1)N/L]−1∑
k=[jN/L]

F (Xk,h)
∣∣∣ ≤M([N/L] + 1)h ∼MT/L ≤ ρ. (8)

Suppose that X[jN/L] ∈ Bi for some i. Due to (7), the random events

{
X[jN/L] +

√
h

[(j+1)N/L]−1∑
k=[jN/L]

ξk+1 ∈ Bi−2

}
(9)

have probabilities bounded away from zero. Indeed, a Gaussian random
variable η with Eη = 0 and the covariance matrix L−1Tσσ∗ satisfies the in-
equality

min
3≤i≤L

inf
x∈Bi

P(η ∈ Bi−2 − x) ≥ 2ε

for some ε > 0. Due to weak convergence (7), one can take ε as a lower
bound for probabilities of events (9) for all h small enough. By virtue of (8),
the drift is bounded by ρ. Hence, X[(j+1)N/L] ∈ Bi−1. Similar calculations
show that P(X[(j+1)N/L] ∈ B3 | X[jN/L] ∈ B3) is bounded away from zero too,
so that

inf
h∈(0,h0]

inf
x∈B

Px(XN,h ∈ D) ≥ inf
h∈(0,h0]

inf
x∈B

Px(XN,h ∈ B3) ≥ εL > 0. �

The Lemma 1 is an important step towards the local Doeblin condition.

Lemma 2 Let pN(x, y) be the density of XN,h given X0 = x, and for some
0 < h1 ≤ h0 the following formula hold true (the value of h0 was introduced
in the Lemma 1): ∀ε > 0, ∃δ > 0, such that ∀h ∈ (0, h1], ∀x ∈ B,

|y − y′| < δ ⇒ |pN(x, y)− pN(x, y′)| < ε. (10)

Then there exists a set B0 ⊂ B with a positive Lebesgue measure such that

inf
h∈(0,h1]

inf
x,x′∈B

inf
y∈B0

pN(x, y) ∧ pN(x′, y) > 0. (11)

Proof Denote P (D) = infh∈(0,h0] infx∈B Px(XN,h ∈ D), fix an open set B1 ⊂
B with mesB1 > 0, and use the Lemma 1,

Px(XN,h ∈ B1) =

∫
B1

pN(x, y) dy ≥ P (B1) > 0.
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By virtue of (10), there exist x1 ∈ B1 and a ball B2 = B(x1, ρ1) ⊂ B1

such that

inf
y∈B2

pN(x, y) ≥ P (B1)

2 mesB1

.

Similarly, for any other point x′ ∈ B,∫
B2

pN(x′, y) dy ≥ P (B2) > 0,

and there are a point x2 ∈ B2 and a ball B3 = B(x2, ρ2) such that

inf
y∈B3

pN(x′, y) ≥ P (B2)

2 mesB2

.

Taking B0 = B2 ∩B3 6= ∅, we have

inf
x,x′∈B

inf
y∈B0

pN(x, y) ∧ pN(x′, y) ≥ P (B1)

2 mesB1

∧ P (B2)

2 mesB2

,

where the lower bound does not depend on h. �
One way to establishing formula (10) is given in the next lemma.

Lemma 3 Let pN(x, y) and fN(x, λ) be the density and the characteristic
function of XN,h, given X0,h = x. Assume that for some h1 > 0,

sup
x

sup
h≤h1

∫
Rd

|fN(x, λ)| dλ = K <∞,

(12)

sup
x

sup
h≤h1

∫
|λ|>L

|fN(x, λ)| dλ→ 0, L→∞.

Then the formula (10) is true.

Proof Since characteristic functions fN(x, λ) are integrable, and the random
variables XN,h have densities, we may write the inversion formula,

pN(x, y) = (2π)−d
∫
Rd

e−i〈λ,y〉fN(x, λ) dλ.

Let ε be an arbitrary positive number. Using (12), fix L so large that

sup
x

sup
h≤h1

(2π)−d
∫
|λ|>L

2 |fN(x, λ)| dλ < ε/2.
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One estimates,

|pN(x, y)− pN(x, y′)| ≤ (2π)−d
∫
|λ|≤L

∣∣∣e−i〈λ,y〉 − e−i〈λ,y′〉∣∣∣ |fN(x, λ)| dλ+ ε/2.

Since |eiz − 1| ≤ |z|, z ∈ R, the integral is bounded by (2π)−dKL|y − y′|.
Hence, (10) is true with δ = (2π)dε/(2KL). �

Further results will be obtained with the help of the Bismut approach to
Malliavin calculus; they imply that Lemmas 2 and 3 are applicable. The idea
is to introduce a family of random processes depending on a parameter and
differentiate several times certain integral identities, prototypes of Girsanov’s
formulae. In the one-dimensional case we get estimates,

|Exf ′′(XN,h)| ≤ C sup
z
|f(z)|,

where f is any smooth bounded complex-valued function, and the constant
C is chosen uniformly in h and independently of f . Taking f(y) = exp(iλy)
implies that the characteristic function of XN,h decreases at least as C/λ2 as
λ → ∞. It gives integrability and the estimates (12) required in Lemma 3.
This approach is implemented in the rest of the section.

From now we assume that the condition (D1) holds, F (x) and p(x) are
smooth enough (to be defined later) and their derivatives are bounded. Then
the mapping I +Fh : Rd → R

d is invertible, differentiable, and distributions
of Xn,h have densities for n ≥ 1, as long as h is small enough.

Let ε ∈ Rd be a parameter. Introduce the family of random processes,

Xε
n+1,h = Xε

n,h + F (Xε
n,h)h+

√
h(ξn+1 + ε

√
h), Xε

0,h = X0,h. (13)

Then X0
n,h = Xn,h, and

Xε
n,h = X0,h + h

n−1∑
k=0

F (Xε
k,h) +

√
h

n−1∑
k=0

ξk+1 + εnh, (14)

that is, the value Xε
n,h can be calculated as a function of X0,h and ξ1, . . . , ξn.

Denote by gεn corresponding mappings,

gε1(x, y1) = x+ F (x)h+
√
h(y1 + ε

√
h),

gε2(x, y1, y2) = gε1(gε1(x, y1), y2), (15)

. . .

gεn(x, y1, . . . , yn) = gε1(gεn−1(x, y1, . . . , yn−1), yn).
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Rewrite Exf(Xn,h) for any smooth function f : Rd → C, through change of
measure,

Exf(Xn,h) =

∫
. . .

∫
f(g0

n(x, y1, . . . , yn))
n∏
k=1

p(yk) dy1 . . . dyn

=

∫
. . .

∫
f(gεn(x, z1, . . . , zn))

n∏
k=1

p(zk + ε
√
h)

p(zk)

n∏
k=1

p(zk) dz1 . . . dzn

= Exf(Xε
n,h)γ

ε
n,h,

where

γεn,h =
n∏
k=1

p(ξk + ε
√
h)

p(ξk)
(16)

is a random density and γ0
n,h = 1. The identity holds true for each ε,

Exf(Xε
n,h)γ

ε
n,h = Exf(Xn,h). (17)

Remark 3 If Xn,h = ψn(X0,h, ξ1, . . . , ξn), where ψn are Borel functions and

Xε
n,h is calculated in the same way except using variables ξ1 + ε

√
h, . . . , ξn +

ε
√
h instead of ξ1, . . . , ξn, then identity (17) is true, too.

Case d = 1. We start with this case because calculations for d > 1 are
technically involved, though the basic idea remains the same.

We will often suppress lower indices in calculations to simplify formulas
and write X, Xε, γε, . . . instead of Xn,h, X

ε
n,h, γ

ε
n,h, . . . respectively. Also

we will often suppress upper zero indices, corresponding to ε = 0.
Differentiate (17) with respect to ε and substitute ε = 0,

0 = Exf
′(X)

∂Xε

∂ε

∣∣∣
ε=0

+ Exf(X)
∂γε

∂ε

∣∣∣
ε=0
. (18)

From formula (16) we deduce,

∂γε

∂ε
=
√
h

n∑
j=1

p′(ξj + ε
√
h)

p(ξj + ε
√
h)

n∏
k=1

p(ξk + ε
√
h)

p(ξk)
,

whence,
∂γε

∂ε

∣∣∣
ε=0

=
√
h

n∑
j=1

p′(ξj)

p(ξj)
.
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Denote Y ε = ∂Xε/∂ε. By (13), the processes Y ε
n,h satisfy equations

Y ε
n+1,h = (1 + F ′(Xε

n,h)h)Y ε
n,h + h, Y ε

0,h = 0. (19)

We need an auxiliary result about solutions to equations of the type (19).

Lemma 4 Let h > 0 be small enough, 0 ≤ n ≤ N = N(T, h), (an) and (bn)
sequences of real numbers. Consider (un) as the solution to equations

un+1 = (1 + han)un + hbn, u0 = 0. (20)

If supn |an| ≤ M and supn |bn| ≤ M , then |un| ≤ C with some real C
which can be chosen uniformly for all h small enough.

If supn |an| ≤ M and bn = 1, then un, n ≥ 1, are positive numbers and
u−1
N ≤ C with some C > 0, for all h small enough.

Proof By virtue of the triangle inequality,

|un+1| ≤ (1 + h|an|)|un|+ h|bn| ≤ (1 +Mh)|un|+Mh.

Since |u1| ≤Mh, we get by iterations,

|un| ≤Mh(1 + (1 +Mh) + (1 +Mh)2 + . . .+ (1 +Mh)n−1) = (1 +Mh)n− 1.

If n = N(T, h) and h→ 0, then nh→ T and (1 +Mh)n− 1→ eTM − 1, and
we can take C = eTM . For n < N(T, h), the same bound holds true.

To prove the second part of the lemma assume h < 1/M . We have
u1 = h > 0, and un+1 ≥ (1−Mh)un + h > 0. Again, by iterations,

un ≥ h[1 + (1−Mh) + (1−Mh)2 + . . .+ (1−Mh)n−1] = (1− (1−Mh)n)/M

and the lower bound tends to (1 − e−TM)/M as h → 0. Therefore u−1
N ≤

2M/(1− e−TM) for all h small enough. �
Calculations below show how can we remove Y = Y 0 = (∂Xε/∂ε)|ε=0

from (18) and get an important estimate. By Lemma 4, Y ε
n,h and (Y ε

N,h)
−1

are bounded. Since Y ε
n,h is computed through Xε

n,h (see equations (19)),
accordingly to Remark 3 one writes the identity (with lower indices N, h),

Exf(X)
1

Y
= Exf(Xε)

1

Y ε
γε. (21)
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Denote Zε = ∂Y ε/∂ε. The process Zε
n,h is the solution to equations,

Zε
n+1,h = (1 + hF ′(Xε

n,h))Z
ε
n,h + hF ′′(Xε

n,h)(Y
ε
n,h)

2, Z0,h = 0.

Use the Lemma 4 with an = F ′(Xε
n,h), bn = F ′′(Xε

n,h)(Y
ε
n,h)

2, and obtain
that |Zε| are bounded for all h small enough, if F is twice differentiable with
bounded derivatives.

Now differentiate (21) and set ε = 0,

0 = Exf
′(X)Y

1

Y
+ Exf(X)

−Z
(Y )2

+ Ex

(
f(X)

1

Y

√
h

N∑
k=1

p′(ξk)

p(ξk)

)
,

or, equivalently,

Exf
′(X) = Exf(X)

Z

Y 2
− Ex

(
f(X)

1

Y

√
h

N∑
k=1

p′(ξk)

p(ξk)

)
. (22)

We will estimate terms in the right hand side of (22). Those ones with
f , Y = Y 0

N,h and Z = Z0
N,h are bounded. Hence,

|Exf ′(XN,h)| ≤ C sup
x
|f(x)|

(
1 + E

∣∣∣√h N∑
k=1

p′(ξk)

p(ξk)

∣∣∣) , (23)

Assume (D3) holds, then the random variables p′(ξk)/p(ξk) have zero mean,
and their independence gives one,

E

(
√
h

N∑
k=1

p′(ξk)

p(ξk)

)2

= h
N∑
k=1

E

(
p′(ξk)

p(ξk)

)2

≤ T E

(
p′(ξ1)

p(ξ1)

)2

. (24)

Applying Cauchy–Bounyakovskii–Schwarz inequality, we get from (23),

|Exf ′(XN,h)| ≤ C sup
x
|f(x)|

1 +

√
T E

(
p′(ξ1)

p(ξ1)

)2
 . (25)

Thus, there exists a new constant C such that

|Exf ′(XN,h)| ≤ C sup
x
|f(x)|.
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Remark 4 Using different functions f , we obtain several useful inequalities.
Particularly, let f(x) = eiλx to have |iλExeiλXN,h| ≤ C. So, for the charac-
teristic function of XN,h we get |ExeiλXN,h| ≤ 1 ∧ (C/(1 + |λ|)).

We start computations giving us estimates involving higher derivatives
of f . Let g(ξ) denote an expression which can be evaluated using the random
variables of ξ1, . . . , ξN . Accordingly to Remark 3, one may write the identity,

Exf(X)g(ξ)
1

Y
= Exf(Xε)g(ξε)

1

Y ε
γε,

where g(ξε) is computed in the same way as g(ξ) except using variables
ξ1 + ε

√
h, . . . , ξN + ε

√
h instead of ξ1, . . . , ξN . Differentiating with respect

to ε gives,

0 = Exf
′(Xε)g(ξε)γε + Exf(Xε)

∂g(ξε)

∂ε

1

Y ε
γε

+ Exf(Xε)g(ξε)
−Zε

(Y ε)2
γε + Exf(Xε)g(ξε)

1

Y ε

∂γε

∂ε
.

Whence,

Exf
′(Xε)g(ξε)γε = Exf(Xε)

[
−∂g(ξε)

∂ε

1

Y ε
γε

+ g(ξε)
Zε

(Y ε)2
γε − g(ξε)

1

Y ε

∂γε

∂ε

]
. (26)

Thus, we can replace differentiating of f by applying a certain differential
operator to g(ξε)γε. Its result stands in the brackets in (26).

Suppose, we would like to estimate Exf
′′(XN,h) by iterating of (26). Use

the formula with g(ξε) = 1 and f ′ instead of f to obtain,

Exf
′′(Xε)γε = Exf

′(Xε)

[
Zε

(Y ε)2
γε − 1

Y ε

∂γε

∂ε

]
,

this is just the relation (22) with f ′′ and f ′ before we set ε = 0. Apply (26)
again with g(ξε) given by the expression in the brackets. We get,

Exf
′′(Xε)γε = Exf(Xε)R(ξε), (27)

where R denotes a sum of rational expressions which has powers of Y ε only
in denominators, and values of processes Zε, and V ε = ∂Zε/∂ε, i.e.

V ε
n+1,h = (1 + F ′(Xε

n,h)h)V ε
n,h + h

(
3F ′′(Xε

n,h)Y
ε
n,hZ

ε
n,h + F ′′′(Xε

n,h)(Y
ε
n,h)

3
)
,

and derivatives ∂γε/∂ε and ∂2γε/∂ε2.
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Remark 5 We can continue these iterations as long as all the expressions
in (26) are differentiable. In order to perform l iterations, F has to be
l + 1 times differentiable with bounded derivatives and we have to estimate
Ex|(∂jγ/∂εj)|ε=0|, 1 ≤ j ≤ l.

At the end of the second iteration we set ε = 0. It remains to estimate
the right hand side of (27). By the Lemma 4, the values |V ε| are bounded,
provided F , F ′, F ′′ and F ′′′ are. Bounds for the values of processes X,
Y and Z have been established earlier. Hence with some C > 0 we have
|Exf ′′(X)| ≤ C supx |f(x)|, if one could show that

Ex

(
∂γε

∂ε

∣∣∣
ε=0

)2

<∞, Ex

∣∣∣∣∂2γε

∂ε2

∣∣∣
ε=0

∣∣∣∣ <∞.
The former inequality is true due to (24). From the definition of γε given
by (16) we deduce,

∂2γε

∂ε2

∣∣∣
ε=0

= h
N∑
k=1

p′′(ξk)p(ξk)− (p′(ξk))
2

p2(ξk)
+

(
√
h

N∑
k=1

p′(ξk)

p(ξk)

)2

.

Using independence of ξk and (24), one has,

Ex

∣∣∣∣∂2γε

∂ε2

∣∣∣
ε=0

∣∣∣∣ ≤ NhE

∣∣∣∣p′′(ξ1)

p(ξ1)

∣∣∣∣+ 2NhE

(
p′(ξ1)

p(ξ1)

)2

≤ T

(
E

∣∣∣∣p′′(ξ1)

p(ξ1)

∣∣∣∣+ 2E

(
p′(ξ1)

p(ξ1)

)2
)
<∞,

if finiteness of E|p′′(ξ1)/p(ξ1)| is assumed, i.e. (D2) holds.
We have arrived to the final result of the section d = 1.

Lemma 5 Let d = 1 and Xn,h be defined by (1), and the basic assumptions
(F1), (D1)–(D3) hold true. Then there is a constant C > 0 such that

sup
x
|Exf ′′(XN,h)| ≤ C sup

z
|f(z)|,

for all h small enough and any twice continuously differentiable bounded
complex-valued function f .
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The previous lemma is sufficient for our purposes for the one-dimensional
case, but we discuss also estimates of Ex|(∂jγε/∂εj)|ε=0|, 2 ≤ j ≤ l, which
will be helpful in the case d > 1, with l = d + 1. What follows is a general
way of estimation suitable for any j. Differentiating j times of γε can be
represented as multiplying γε by hj/2 and a multiple sum of terms like

p(j1)(ξk1 + ε
√
h)

p(ξk1 + ε
√
h)

p(j2)(ξk2 + ε
√
h)

p(ξk2 + ε
√
h)

. . . ,

where the lower indices k1, k2, . . . are all different, the total sum j1 + j2 +
. . . = j, and the total number of summands is N j. At the end of iterations
we set ε = 0 and γε vanishes and the multiple sum and hj/2 remain only.
After taking expectations a lot of terms in the sum become zeros. Indeed, if
a summand contains a first derivative, then we use independence of ξk and
notice that

E
p′(ξk)

p(ξk)
=

∫
R

p′(x) dx = 0,

if p(x) → 0 as x → ∞. Hence we may calculate the number of possibly
non-zero summands and estimate each of them by

E

∣∣∣∣p(j1)(ξk1)

p(ξk1)

∣∣∣∣ E ∣∣∣∣p(j2)(ξk2)

p(ξk2)

∣∣∣∣ . . . (28)

We assume that p(j)(x) are absolute integrable for 2 ≤ j ≤ l and notice that
the number of multipliers is at most [j/2]. Any expression (28) is bounded
by a constant depending on j, while the number of summands of type (28)
for large N has the order N j/2, at most. So, the total multiple sum can be
estimated by Chj/2N j/2 ≤ CT j/2 <∞.

Notice that the last problem is analogous to the well-known fact (cf.,
e.g., 3.5.15–3.5.16 in [6]) that for i.i.d. random variables ηi with Eηi = 0 and
b > 1,

E

∣∣∣ m∑
i=1

ηi

∣∣∣b ≤ Cmb/2
E|η1|b,

and the proof is, indeed, similar (for integer b). We have obtained the fol-
lowing generalization of Lemma 5.

Lemma 6 Let Xn,h be a stochastic process defined by (1) for d = 1. As-
sume that for some positive integer l the function F and its derivatives

16



F ′, . . . , F (l+1) are bounded on R, the derivatives of p(x) of orders up to l
are absolute integrable, and basic assumptions (D1) and (D3) are true. Then
there is a constant C > 0 such that

sup
x
|Exf (l)(XN,h)| ≤ C sup

z
|f(z)|

for all h small enough and any l times continuously differentiable bounded
complex-valued function f .

Case d > 1. We will adapt previous computations for the multi-
dimensional case.

Let the parameter ε ∈ Rd changes along a line in Rd. It is more convenient
then instead of ε write εv, where now ε ∈ R and v is a fixed arbitrary unit
vector giving the direction of the line.

The following lemma is an analog of Lemma 4 for the multi-dimensional
case. Define a matrix norm by ‖A‖ = sup{|Av| : v ∈ Rd, |v| = 1}.

Lemma 7 Let h > 0 be small enough, 0 ≤ n ≤ N = N(T, h), (An) a se-
quence of d×d-matrices and (bn) a sequence of vectors in Rd. Consider (un)
as the vector solution to equations,

un+1 = (I + hAn)un + hbn, u0 = 0.

If supn ‖An‖ ≤ M and supn |bn| ≤ M , then |un| ≤ C with some real C
which can be chosen uniformly for all h small enough.

If T < π/(2M), supn ‖An‖ ≤M and bn ≡ v, |v| = 1, then

|〈v, uN〉| ≥ c > 0,

where the constant c can be chosen uniformly for all h small enough.

Proof The first part is proved in the same way as in Lemma 4 with obvious
changes. Let bn ≡ v, |v| = 1 and h < 1/M . We have by iterations,

un = h

(
n∑
j=1

n−1∏
k=j

(I + hAk)

)
v,

where the product over the empty set of indices is set to I. Consider I+hAk
as a linear transformation acting on a vector w. One gets,

(1−Mh)|w| ≤ |(I + hAk)w| ≤ (1 +Mh)|w|,

17



and if α is the angle between w and (I + hAn)w, then sinα ≤ Mh. Since
h is small enough, we may find some δ > 0 such that α ≤ (1 + δ)Mh. It
implies that the angle between v and any summand in the expression for
un is at most (1 + δ)Mnh. The assertion T < π/(2M) allows choosing
δ in such a way that (1 + δ)MNh ≤ (1 + δ)MT < π/2 − δ. Consider

the projection of h
(∏N−1

k=j (I + hAk)
)
v on the line given by the direction of v.

It has the same orientation as v and its length is at least h(1−Mh)N−j sin δ.
By arguments from the proof of Lemma 4 the vector uN has its projection
length at least M−1

(
1− (1−Mh)N

)
sin δ and for all h small enough we can

take c = (2M)−1(1− e−TM) sin δ. �
For an arbitraty fixed λ ∈ Rd we write the following identity,

Exf(〈λ,X〉) 1

〈λ, Y 〉
g(ξ) = Exf(〈λ,Xε〉) 1

〈λ, Y ε〉
g(ξε)γε,

where f : R → C is a bounded function, g(ξ) is an expression which can
be computed using values of ξ1, . . . , ξN , g(ξε) is evaluated in the same way
as g(ξ) but using variables ξ1 + ε

√
h v, . . . , ξN + ε

√
h v, and Y ε = ∂Xε/∂ε,

Y = Y 0. We are to show that the values in the denominators are bounded
away from zero. Achieving this, one takes the vector v = λ/|λ| and applies
Lemma 7 with An = F ′(Xε

n,h), bn = v. Differentiating with respect to ε gives,

Exf
′(〈λ,Xε〉)g(ξε)γε = Exf(〈λ,Xε〉)

[
〈λ, Zε〉
〈λ, Y ε〉2

g(ξε)γε − 1

〈λ, Y ε〉
∂g(ξε)

∂ε
γε

− 1

〈λ, Y ε〉
g(ξε)

∂γε

∂ε

]
, (29)

where Zε = ∂Y ε/∂ε. Formula (29) is a clear analog of (26) suitable for
iterations as pointed out in Remark 5. We start with g(ξε) = 1 and f (l−1)

instead of f and perform l iterations letting g(ξε) equal to expressions in
brackets for the next iterations. Setting ε = 0 in the end, we get,

Exf
(l)(〈λ,X〉) = Exf(〈λ,X〉)R(ξ), (30)

where R denotes a sum of rational expressions which has powers of 〈λ, Y ε〉
only in denominators, includes also values of processes ∂jXε/∂εj and deriva-
tives ∂jγε/∂εj for 1 ≤ j ≤ l. Substitute λ by |λ|v in (30) and take out |λ|
from scalar products. By Lemma 7 terms 〈v, Y ε〉, 〈v, Zε〉, 〈v, V ε〉, . . . are
bounded provided function F has l + 1 bounded derivatives. In total, we
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obtain |λ|l in the denominator similarly to the one-dimensional case adapted
for characteristic functions.

It remains to prove that the values E|(∂jγε/∂εj)|ε=0 are finite for all
1 ≤ j ≤ l. We write,

∂γε

∂ε

∣∣∣
ε=0

=
√
h

N∑
k=1

〈p′(ξk), v〉
p(ξk)

,

and similarly to the one-dimensional case(
E

∣∣∣∣∂γε∂ε ∣∣∣ε=0

∣∣∣∣)2

≤ E
(
∂γε

∂ε

∣∣∣
ε=0

)2

≤ T E

(
|p′(ξ1)|
p(ξ1)

)2

.

Finally, we employ our argumentations having led to Lemma 6 and get the fol-
lowing result.

Lemma 8 Let Xn,h be a stochastic process defined by (1). Assume that basic
assumptions (F1), (D1)–(D3) are true and l ≤ d+1. Then there is a constant
C > 0 such that

sup
x
|Exf (l)(〈λ,XN,h〉)| ≤ C|λ|−l sup

z
|f(z)|

for all h small enough and any l times continuously differentiable bounded
complex-valued function f .

We have established the desired estimate for characteristic functions ofXN,h.
One lets f(z) = eiz and obtains that characteristic functions of XN,h decrease
in absolute value as C/|λ|d+1 as λ→∞, Lemma 3 is applicable and the cou-
pling method works uniformly for all h small enough.

4 Recurrence conditions

In [7] two recurrence conditions were introduced separately for discrete and
continuous cases. The condition for the latter case was (F2). The recurrence
condition for the discrete case (see also [3]) can be generalized naturally,

|x+ F (x)h| ≤
{
C0, |x| ≤ R0,
|x| (1− rh/|x|1+p) , |x| > R0,

(31)
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with some positive constants r, R0 and C0. In both cases there is an “attrac-
tion” to the origin outside the ball {x : |x| ≤ R0}. The parameters 0 ≤ p ≤ 1
and r > 0 regulate the force of the attraction. Condition (F2) is more simple
and hence, natural; however, (31) was used in all proofs in [7, 3] which will
be employed in the last section.

Lemma 9 If (31) is true for all h small enough, then (F2) holds with the same
constants r and R0.

If (F2) holds and F is bounded, then for every ε > 0 there exists h0 > 0
such that (31) is satisfied with r − ε instead of r.

Proof Inequalities

|x+ F (x)h| ≤ |x|(1− rh/|x|1+p)

and

〈x, F (x)〉 ≤ −r|x|1−p +
1

2
(r2|x|−2p − |F (x)|2)h

are equivalent.
In the first case we pass to the limit as h→ 0 and get (F2).
In the second case denote M = sup |F (x)| and choose h0 ∈ (0, 2ε/M2].

Then for every h ∈ (0, h0] we get,

〈x, F (x)〉 ≤ −(r − ε)− ε ≤ −(r − ε) +

(
(r − ε)2

2|x|2p
− |F (x)|2

2

)
h.

The equivalence above shows that condition (31) is true with r − ε instead
of r. �

5 Proof of Theorem 1

Proof We will show how the proofs from [7, 3, 2] can be modified to obtain
our main results. Below the scheme of the method is briefly described and
some detailed calculus is given.

Let R > 0 and τh = τh(R) = inf{nh : |Xn,h| ≤ R, n ≥ 1} is the hitting
(macro-) time of the ball B = B(0, R).

If the process (Xn,h) were inside B permanently, the local Doeblin con-
dition together with the coupling method would provide exponential rates
of convergence and mixing [1]. But it is not true for our model because
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(Xn,h) may have long excursions away from the origin where the local Doe-
blin condition is not satisfied and mixing may be very slow or absent at all.
Suppose, we have shown that, say, Exτ

k
h ≤ C(1 + |x|m) for some k > 1.

It means the probability P(τh > t) decreases at a polynomial rate in t and
the process does visit B from time to time. Polynomial tails of the distribu-
tion of τh imply the excursions are not very long. Polynomial rates can be
achieved as a superposition of this and exponential mixing inside B. Finite
sub-exponential or exponential moments of τh guarantee even more regular
visits to B and, therefore, higher (sub-exponential or exponential) rates of
convergence and mixing.

Although we have formulated results for three different kinds of rates
let us focus on one of them. We choose the polynomial case as in [7] for
illustrating. Two others are treated similarly.

The first required estimate is

Ex|Xn+1,h|m1((n+ 1)h < τh) ≤ Ex|Xn,h|m1(nh < τh)

− chEx|Xn,h|m−21(nh < τh) (32)

with m > 2 and some c > 0 which does not depend on h. The function in
the last term (here it is |x|m−2; in other cases they are different) must tend to
infinity as |x| → ∞, be finite in B and bounded away from zero outside B.
The inequality implies Ex|Xn,h|m1(nh < τh) ≤ 1 + |x|m by iterations and
Exτh < C(1+|x|m) by summing over n. The multiplier h cancels out together
with n and gives correct bounds on the scale of macro-time t = nh where τh
were defined. This will be an analog of Lemma 1 in [7].

The next step is done by deducing from (32) that Exτ
k
h < C(1 + |x|m).

This is done exactly in the same way as in Lemma 3 in [7], i.e. through
multiplying (32) by some polynomials and summing over n.

Further, we consider two independent copies of our process, (Xn,h) and

(X ′n,h), and the stopping time γh = inf{nh : |Xn,h| ∨ |X ′n,h| ≤ R̃, n ≥ 1}. We
prove an analog of (32),

Ex,x′(|Xn+1,h|m + |X ′n+1,h|m)1((n+ 1)h < γh)

≤ Ex,x′(|Xn,h|m + |X ′n,h|m)1(nh < γh)

− c̃hEx,x′(|Xn,h|m−2 + |X ′n,h|m−2)1(nh < γh), (33)

with m > 2 and some c̃ > 0. In the same way as for τh (see [7, Lemmas 4
and 5] also) we prove that Ex,x′γ

k
h < C(1 + |x|m + |x′|m).
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Finally, exactly identical calculations as in Theorems 1–3 in [7] are used
to obtain polynomial bounds for convergence and β-mixing.

Thus, relation (32) has to be checked only, and it is done in the next
lemma. �

Lemma 10 Let rm = E|ξ1|m < ∞, m ≥ 2, and condition (31) hold with
r > (m− 1)r2/2. Then R ≥ R0 can be chosen in such a way that for |x| > R

Ex|Xn+1,h|m1((n+ 1)h < τh) ≤ Ex(|Xn,h|m − ch|Xn,h|m−2)1(nh < τh)

with some c > 0.

Proof We provide this fairly simple proof, indeed, for the reader’s conve-
nience, as well as for completeness of the text. Let u, v ∈ Rd, t ∈ R, m > 2,
and the real-valued function f(t) = |u + tv|m = 〈u + tv, u + tv〉m/2. Write
the Taylor’s formula for f(t) and substitute t = 1:

|u+ v|m = |u|m +m|u|m−2〈u, v〉 (34)

+
m(m− 2)

2
|u+ sv|m−4〈u+ sv, v〉2 +

m

2
|u+ sv|m−2|v|2,

where s ∈ [0, 1]. Since 〈u+ sv, v〉2 ≤ |u+ sv|2|v|2, the sum of two last terms
do not exceed m(m− 1)|u+ sv|m−2|v|2/2.

For each m > 0 and ε > 0 there are a positive constant C = C(ε,m) such
that

(x+ y)m ≤ (1 + ε)xm + Cym, x, y ≥ 0. (35)

From (34) and (35) it follows that

|u+ sv|m−2 ≤ (|u|+ |v|)m−2 ≤ (1 + ε)|u|m−2 + C|v|m−2

and

|u+ v|m ≤ |u|m +m|u|m−2〈u, v〉

+
m(m− 1)

2

(
(1 + ε)|u|m−2|v|2 + C|v|m

)
. (36)

If m = 2, then the calculations are much simpler,

|u+ v|2 = |u|2 + 2〈u, v〉+ |v|2,
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and one takes ε = 0 and C = 0 to satisfy (36).
We start deducing the desired inequality. For the sake of briefness denote

X = Xn,h, g = Xn,h + F (Xn,h)h and V =
√
h ξn+1, then Xn+1,h = g + V .

Substitute in (36) u = g, v = V and write the estimate,

E{|Xn+1,h|m1((n+ 1)h < τh) | Fn}
≤ 1(nh < τh)E{|g + V |m | Fn}

≤ 1(nh < τh)
(
|g|m +m|g|m−2

E{〈g, V 〉 | Fn}

+ (1 + ε)
m(m− 1)

2
|g|m−2

E{|V |2 | Fn}

+ CE{|V |m | Fn}
)
,

where Fn = σ{Xk,h : k ≤ n}. Due to independence of σ-fields σ{ξn+1}
and Fn the summand with the scalar product contributes nothing. Using
restrictions on the noise and the recurrent condition (|g| ≤ |X| as nh < τh),
one concludes that the right hand side of the last inequality does not exceed

1(nh < τh)

(
|g|m +

(1 + ε)m(m− 1)r2h

2
|X|m−2 + Crmh

m/2

)
. (37)

Assume the condition nh < τh is true in computations below. It implies
|X| > R. For m > 2 we achieve Crmh

m/2 ≤ (ε/2)m(m − 1)r2h|X|m−2,
increasing R or regarding only small enough values of h, if needed. For m = 2
the constants ε and C are zero, and the inequality is true also. Further,

|g|m ≤ |X|m
(

1− rh

|X|2

)m
≤ |X|m

(
1− mr′h

|X|2

)
,

where r′ < r, but it may be chosen arbitrary close to r by increasing R, hence
expression (37) is estimated from above by

|X|m1(nh < τh) + h|X|m−2

(
(1 + 2ε)r2m(m− 1)

2
−mr′

)
1(nh < τh).

One deduces,

Ex|g + V |m1(nh < τh) ≤ Ex|X|m1(nh < τh)− hEx|X|m−21(nh < τh)

×
(
mr′ − (1 + 2ε)r2m(m− 1)

2

)
.

Since r > (m − 1)r2/2, values ε and r′ can be chosen in such a way that
the difference in brackets is positive. Denote it by c. The required inequality
is proved. �
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