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1 Introduction

Let us consider the McKean-Vlasov equation in Rd,

dXt = b[Xt, µt] dt+ dWt, X0 = x0 ∈ Rd, (1)

where b[x, µ] :=
∫
b(x, y)µ(dy) for any measure µ (this is a notation conven-

tion), with locally Borel functions b(·, ·) : Rd × Rd → R
d, and d-dimensional

Wiener process Wt. Here µt is the marginal distribution of Xt. Strictly
speaking, one should call solution of the equation (1) the couple (Xt, µt).
However, with a slight abuse of notation we will call solution just the process
Xt, having in mind that actually it is a couple.

The equation was suggested by Kac [7] as a stochastic toy model for
the Vlasov kinetic equation of plasma (cf. [12]). The study of equation
(1) was initiated by McKean [14]. A general introduction to the topic can
be found in [19]. By ergodic measures we mean here the existence of a
stationary distribution, its uniqueness, and at least weak convergence to this
distribution as time goes to infinity.

The equaiton (1) relates to the following nonlinear equation for measures,

∂tµt = L∗(µt)µt, (2)

with
L(µ) = ∆/2 + b[x, µ]∂x,

in the sense that the distribution of Xt solves equation (2) provided X0 is
distributed with respect to measure µ0 and the process W is independent
from X0. Initial data in this paper will be always fixed, although generaliza-
tions to any initial measure with appropriate finite moments (see below) are
straightforward.
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An important method of solving equation (1) approximately is a use of
the so called N -particle equation with weak interaction,

dX i,N
t =

1

N

N∑
j=1

b(X i,N
t , Xj,N

t ) dt+ dW i
t , X

i,N
0 = x0, 1 ≤ i ≤ N, (3)

with d-dimensional independent Wiener processes W i
t . It is known that under

reasonable assumptions the process X i,N converges weakly to the solution of
the McKean-Vlasov equation with the same W i, see [19], [1], [13], et al.,

dX̄ i
t = b[X̄ i

t , µ
i
t] dt+ dW i

t , X̄0 = x0 ∈ Rd, (4)

where µit stands for the law of X̄ i
t (given initial data). This result is called

propagation of chaos for McKean-Vlasov equation. Here the law µit actually
does not depend on i, if solution of the equation (1) is unique in law (e.g.,
see conditions for that in [6], [1], and also Theorem 2 below). The measure
µit satisfies in the weak sense a non-linear PDE (2). It is also makes sense
to consider different initial data for different particles. We will not use these
convergence results, and hence do not impose these reasonable assumptions.

Large deviation results can be found in [5]. Approximation results are
established in [4] et al.; the approach from [9] can be applied here, too. The
paper [13] is based on log-Sobolev inequalities and Dirichlet forms technique.
In [10], [18] one can find other propagation of chaos results.

The topic of the paper will be ergodic properties of equation (4) and some
relations to the first equation. The most close works are [1] and [13] which
contain condition for ergodicity and (exponential) convergence rate to equi-
librium. In compare to [1], we allow any finite dimension, and do not impose
assumptions of dissipation greater than linear; our approach is different. In
compare to [13], we do not require gradient form of the interaction drift term,
although conditions are still restrictive. Other close papers are [20], – also
with gradient type drift, – [3], [6]. In [16] a different class of interacting
diffusions is considered, results are also existence and uniqueness of invariant
measures, however, even the setting can hardly be compared with ours. For
more complete bibliography see references in [1], [15], [19] et al.

Section 2 contains main results: a new version of existence theorem, and
uniqueness and ergodicity theorem under two sets of assumptions. Section 3
is a collection of proofs.

2 Main results

Main assumptions for existence: we assume that the function b(x, ·) has a
linear growth in the first variable,

|b(x, y)| ≤ C(1 + |x|), (5)

and continuous with respect to the second variable y for any x. Fully contin-
uous bounded version for more general equations, – i.e. with a non-constant
diffusion matrix coefficient and more general dependence of both coefficients
on distribution, – can be found in [6] established by using the martingale
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problem method and tightness. Assumptions in [6] allow non-bounded coef-
ficients as well, but in addition require an appropriate Lyapunov function,
which may be dropped in the bounded case. Another existence and unique-
ness theorem for d = 1 under assumptions not reduced to that from [6] (nor
from this paper), can be found in [1].

Theorem 1 Under assumption (5), there is a strong solution to equa-
tion (1).

Various uniqueness assumptions can be found in papers [1], [6] et al. The
latter (i.e. [6]) requires some kind of Lipschitz condition to this end. In the
next theorem, we assume either Lipschitz condition, too (which, hence, im-
plies uniqueness), or another set of conditions close to it although not exactly
the same. Anyway, uniqueness in distribution not only for the limiting sta-
tionary measure but also for the distribution µ1

t for any finite t follows from
the auxiliary estimate (15). Notice that in [6] uniqueness has been established
for more general class of equations under Lipschitz type conditions.

Main assumptions for ergodicity and uniqueness are as follows:

• Coefficient b is decomposed into two parts,

b(x, y) = b0(x) + b1(x, y),

where the first part is responsible for the “enviromnent”, while the
second for the interaction itself. Next assumptions concern both whole
b, and separately b0 and b1.

• b: recurrence–1
lim
|x|→∞

sup
y
〈b(x, y), x〉 = −∞, (6)

• b: recurrence–2
lim
|x|→∞

sup
y
〈b(x, y), x〉 ≤ −r < 0, (7)

[Essential is that the value r is fixed, and does not change with N , see
the proof of theorem 2, item E.]

• b0: attraction to zero which grows at least linearly with distance (=
one-sided Lipschitz condition), for any x, x′,

sup
y
〈b0(x)− b0(x′), x− x′〉 ≤ −c0|x− x′|2 (c0 > 0). (8)

The next two assumptions are required if c0 is any positive. Instead,
one can assume (11) which says that c0 is large enough, along with (12)
saying b1 is Lipschitz.

• b1: anty-symmetry of interactions,

b1(x, x′)− b1(x′, x) = 0. (9)
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• b1: “attraction” between particles, which increases with distance, in a
certain non-rigorous sense

〈(x− x′)− (x̄− x̄′), b1(x, x′)− b1(x̄, x̄′)〉 ≤ 0, (10)

e.g., one might imagine a system of particles connected pairwise by
elastic strings; the analogy, of course, is not exact, but just gives an
example how interaction may not decrease with distance; needless to
say that this is not a plasma. Hence, possibly the next assumptions
(11-12) which replace (9-10) are more reasonable.

• b0: large attraction to zero,

c0 > Cb1
Lip, (11)

where Cb1
Lip <∞ is the best constant satisfying

max (|b1(x, y)− b1(x′, y)|, |b1(y, x)− b1(y, x′)|) ≤ Cb1
Lip|x− x

′|, (12)

for all x, x′, y.

Remark. In (8) let x′ = 0, then

sup
y
〈b(x, y)− b(0, y), x〉 ≤ −c|x|2,

which implies

sup
y
〈b(x, y), x〉 ≤ −c|x|2 + sup

y
〈b(0, y), x〉,

however, this may not imply (6), in the case if b(0, y) is not bounded, e.g., the
rhs of the latter inequality may become even positive. Hence, we impose both
conditions (6) and (8); in particular, generally speaking, the recurrence may
be not strong enough to provide exponential convergence even in Markovian
case (i.e., if there is no interaction), cf. [8].

Theorem 2 Let either of the two sets of assumptions hold true: (1◦) (5-8)
with r ≥ r(d) large enough and (8-10) with any c0 > 0; or (2◦) (5-8) with
r ≥ r(d) large enough and (11-12). Then, in both cases, the distribution µt
is unique, and there is a weak limit

µt =⇒ µ∞, t→∞,

and, moreover,
µ1,N
t =⇒ µ∞, N, t→∞.

The measure µ∞ is a unique invariant one for the equation (1), in particular,
it does not depend on X0.
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3 Proofs

3.1 Auxuliary result

Lemma 1 Let (5) and (6) hold true. Then for any m > 0,

sup
N

sup
t
E|X i,N

t |m <∞.

If (5) and (7) hold true instead, the same bound is valid for a fixed m if r is
large enounh, that is, r ≥ rm.

This Lemma will be only used in subsection 3.3. Even more, it could be
avoided in that subsection, too. However, for a possible future progress we
would like to keep all technical estimates to be as good as possible.

Proof follows directly from comparison theorem for the |X1,N | and a cor-
responding one-dimensional markovian diffusion with reflection, and bounds
for the invariant measure for this reflected markovian diffusion, cf. [22] con-
cerning a comparison of similar type.

3.2 Proof of Theorem 1

follows from Krylov’s successive approximations due to tightness and
Krylov’s bounds for stochastic integrals, cf. [11] for the ordinary Itô SDE.
The advantage is that Krylov’s technique does not require continuity of co-
efficients. The approximations read,

dXn
t = bn[Xn

t , µ
n
t ] dt+ dW

(n)
t , X0 = x0,

where bn(·, y) is a smooth approximation of the function b(·, y) in the function
space Lp,loc(R

d) which is also bounded uniformly with respect to y for any
fixed n, and, moreover, satisfies a uniform linear growth condition (5) for all
n’s. Due to [6], we have a solution Xn with a corresponding measure µn and
a corresponding d-dimensional Wiener process denoted by W (n) (just notice
that it is not at all W n).

Next, due to tightness of the couple (Xn
. ,W

(n)
. ) in C([0, t];Rd) for any

t, – which follows from standard stochastic integral inequalities, – one can
find a sub-sequence n′ → ∞ such that µn

′
has a weak limit in C([0, t];Rd)

for any t. Due to Skorokhod embedding theorem (see [17] or [11]), one can
change probability space and find another sub-sequence n′′ →∞ such that,
moreover, (Xn′′

. ,W (n′′)
. )→ (X0

. ,W
(0)
. ) in C([0, t];Rd) almost surely. Here all

W n′′
. are d-dimensional Wiener processes, and all Xn′′

t are FWn′′

t measurable
(since all Xn′′

. are strong solutions). In the limit, from

Xn′′

t − x0 =

∫ t

0

(∫
bn
′′
(Xn′′

s , y)µn
′′

s (dy)

)
dt+W

(n′′)
t (13)

we get

X0
t − x0 =

∫ t

0

(∫
b(X0

s , y)µ0
s(dy)

)
dt+W

(0)
t , (14)
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by the Lebesgue dominated convergence theorem. Details of this conver-
gence based on Krylov’s bounds for Itô processes and on the approximation
‖bn(·, y)− b(·, y)‖Lp,loc → 0, n → ∞, may be found in [11] and [17] for ordi-

nary SDEs: they include freezing of bn
′′
. For the equations (13) one has, in

addition, to take into account the continuity with respect to the variable y
and weak convergence of marginal distributions µn

′′
s =⇒ µ0

s.
Concerning strong solutions for all these equations see [21].

3.3 Proof of Theorem 2

A. We are going to show that

sup
t
E|X i,N

t − X̄ i
t |2 ≤ C/N. (15)

This part in case (1◦) follows closely [1] and [13]. Since we do not use directly
any uniqueness result for the equation (1), we shall say precisely what is
meant by X̄ i

t : this is any solution of the equation (4). However, we take a
solution with the same distribution µt = µit for any i. The latter is certainly
possible due to the theorem 1 which asserts, in particular, that any solution
Xt for (1) is strong. Hence, for any W i we can take the same functional
of the corresponding Wiener path (W i) for all i’s, which implies the same
distribution, too. We add that since any solution of the equation (1) is strong,
then the estimate (15) relates to any such solution, even if it not unique.

After having established this precaution, we have,

d(X i,N
t − X̄ i

t)
2 = 2(X i,N

t − X̄ i
t)(b[X

i,N
t , µ̂Nt ]− b[X̄ i

t , µ
1
t ]) dt

= 2(X i,N
t − X̄ i

t)(b[X
i,N
t , µ̂Nt ]− b[X̄ i

t , µ
1
t ]) dt

+2(X i,N
t − X̄ i

t)(b0(X i,N
t )− b0(X̄ i

t)) dt

≤
[
2(X i,N

t − X̄ i
t)(b[X

i,N
t , µ̂Nt ]− b[X̄ i

t , µ
1
t ])− 2c0|X i,N

t − X̄ i
t |2
]
dt

Hence,

d

N∑
i=1

(X i,N
t − X̄ i

t)
2 = 2

N∑
i=1

(X i,N
t − X̄ i

t)(b[X
i,N
t , µ̂Nt ]− b[X̄ i

t , µ
1
t ]) dt

≤ −2c0

N∑
i=1

|X i,N
t − X̄ i

t |2 dt+ 2
N∑
i=1

(X i,N
t − X̄ i

t)(b[X
i,N
t , µ̂Nt ]− b[X i,N

t , µ1
t ]) dt

Therefore,

E
N∑
i=1

(X i,N
t − X̄ i

t)
2 − E

N∑
i=1

(X i,N
s − X̄ i

s)
2

= 2E

∫ t

s

N∑
i=1

(X i,N
r − X̄ i

r)(b̂[X
i,N
r , µ̂Nr ]− b̂[X̄ i

r, µ
1
r]) dr
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≤ −2c0E

∫ t

s

N∑
i=1

|X i,N
r − X̄ i

r|2 dr

+2E

∫ t

s

N∑
i=1

(X i,N
r − X̄ i

r)(b[X
i,N
r , µ̂Nr ]− b[X̄ i

r, µ
1
r]) dr

We have,

A := E

N∑
i=1

(X i,N
r − X̄ i

r)(b[X
i,N
r , µ̂Nr ]− b[X̄ i

r, µ
1
r]) (16)

= E

N∑
i=1

(X i,N
r − X̄ i

r)

(
1

N

N∑
j=1

(b(X i,N
r , Xj,N

r )− b[X̄ i
r, µ

1
r])

)

= E

N∑
i=1

(X i,N
r − X̄ i

r)

(
1

N

N∑
j=1

(b(X i,N
r , Xj,N

r )− b(X̄ i
r, X̄

j
r ))

)

+E
N∑
i=1

(X i,N
r − X̄ i

r)

(
1

N

N∑
j=1

(b(X̄ i
r, X̄

j
r )− b[X̄ i

r, µ
1
r])

)
=: A1 + A2.

Case (1◦). Using anty-symmetry and increase of interaction conditions on
b1, we get,

(X i,N
r − X̄ i

r)
(
(b(X i,N

r , Xj,N
r )− b(X̄ i

r, X̄
j
r ))
)

+(Xj,N
r − X̄j

r )
(
(b(Xj,N

r , X i,N
r )− b(X̄j

r , X̄
i
r))
)

=
(
(X i,N

r −Xj,N
r )− (X̄ i

r − X̄j
r )
) (

[b(X i,N
r , Xj,N

r )− b(X̄ i
r, X̄

j
r )]
)
≤ 0.

Hence, the first term is not positive, while the second possesses the bound,

|A2| = |E
N∑
i=1

(X i,N
r − X̄ i

r)

(
1

N

N∑
j=1

(b(X̄ i
r, X̄

j
r )− b[X̄ i

r, µ
1
r])

)
|

≤ 1

N

N∑
i=1

(
E
(
X i,N
r − X̄ i

r

)2
)1/2

E( N∑
j=1

b(X̄ i
r, X̄

j
r )− b[X̄ i

r, µ
1
r]

)2
1/2

≤ CN1/2
(
E|X1,N

r − X̄1
r |2
)1/2

, (17)

because random variables b(X̄ i
r, X̄

j
r )−b[X̄ i

r, µ
1
t ] are non-correlated for different

j’s. In the other words, if α(t) := E(X1,N
t − X̄1

t )2, then (t > s)

Nα(t)−Nα(s) ≤ −2c0

∫ t

s

Nα(r) dr + CN1/2

∫ t

s

α1/2(r) dr. (18)

This implies

α(t) ≤ C2

4c2
0N

.
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Indeed, the function α(t) is differentiable, α(t) ≥ 0, and α(0) = 0. Its
derivative due to (18) satisfies

α′(t) ≤ −2c0α(t) + (C/
√
N)α1/2(r).

If α(t) = 0, there is nothing to show. Suppose α(t) > 0, and let t0 :=
sup(s < t : α(s) = 0). Notice that 0 ≤ t0 ≤ t, since α(0) = 0. Denote
β(t) = α(t) exp(2c0(t− t0)), then on (t0, t) we have,

α′(s) ≤ −2c0α(s) + (C/
√
N)α1/2(s)

implies

β′(s) ≤ (C/
√
N)β1/2(s) exp(c0(s− t0)),

whence
β′(s)

β1/2(s)
≤ (C/

√
N) exp(c0(s− t0)),

so,

2β1/2(t) ≤ C

c0

√
N

(exp(c0(t− t0))− 1),

which implies

β(t) ≤
(

C

2c0

√
N

)2

(exp(c0(t− t0))− 1)2,

or, equivalently,

α(t) ≤
(

C

2c0

√
N

)2

(1− exp(−c0(t− t0)))2 ≤
(

C

2c0

√
N

)2

.

Sorry for the boring details.

Case (2◦). The value (A) from (16) can be considered as follows. The term
A2 = S possesses the bound (17). Let us estimate A1:

|A1| ≤ |E
N∑
i=1

(X i,N
r − X̄ i

r)

(
1

N

N∑
j=1

(b(X i,N
r , Xj,N

r )− b(X i,N
r , X̄j

r ))

)
|

+ |E
N∑
i=1

(X i,N
r − X̄ i

r)

(
1

N

N∑
j=1

(b(X i,N
r , X̄j

r ))− b(X̄ i
r, X̄

j
r ))

)
|

≤ Cb1
Lip

1

N

N∑
i,j=1

E |(X i,N
r − X̄ i

r)(X
j,N
r − X̄j

r )|

+ Cb1
Lip

1

N

N∑
i,j=1

E |(X i,N
r − X̄ i

r)|2

≤ 2Cb1
LipNα(r).

Hence, we get

Nα(t)−Nα(s) ≤ −(2c0 − 2Cb1
Lip)

∫ t

s

Nα(r) dr + CN1/2

∫ t

s

α1/2(r) dr, (19)
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which implies, as we know,

α(t) ≤ C2

4(c0 − Cb1
Lip)

2N
.

B. Uniqueness of distribution µt now follows directly from the bound (15).
Indeed, since distribution µ̂Nt ≡ Law(X1

t , . . . , X
N
t ) is unique, and µit has been

chosen the same for any i, that is, it does not depend on N at all, then we
have, µi,Nt =⇒ µit as N → ∞. But clearly µi,Nt = µ1,N

t for any i, due to
uniqueness of µ̂Nt and symmetry (remind that the initial data X i

0 is the same
for each i). Hence, the limit µit is indeed unique.

C. The following statement also follows directly from the bound (15), al-
though it will not be used in the sequel.

Corollary 1 Under assumptions of the Theorem 2, for any finite number of
indices i1 < i2 . . . < ik,(

X i1,N
t , . . . , X ik,N

t

)
=⇒

(
X̄ i1
t , . . . , X̄

ik
t

)
, N →∞, (20)

uniformly with respect to t ≥ 0, where the random variables in the right hand
side are independent.

Indeed, all processes X̄ i are independent because W i are, while finite dimen-
sional convergence (20) follows from (15). This is a propagation of chaos
type result, – the term suggested by M. Kac, – saying that different particles
behave nearly independently if their total number is large.

D. Show that X̂N
t = (X1,N , . . . , XN,N) is ergodic, possesses mixing, and

hence, the law of X̂N
t tends in TV topology to some limiting measure, µN∞.

Then this measure is stationary for the equation system (3). Naturally, this
implies the convergence for projections, too, ‖µ1,N

t −µ1,N
∞ ‖TV → 0 as t→∞.

We firstly show the ergodicity and mixing under (6), which is easier and
shows clearly the idea. For this end it suffices to notice that the mixing
condition (see [23]) for the large (Markov diffusion) process X̂N ∈ RdN ,

lim
|x̂N |→∞

〈x̂N , b̂N(x̂N)〉 = −∞, (21)

with an obvious drift notation b̂N(x̂), follows directly from (6).

E. Show the same under assumption (7). This can be done by the method
used in [22, 23] for couples of independent recurrent processes. Firstly, we
need r to be large enough so that for some m greater than 2 the assertion
of the Lemma 1 holds true. Although in this lemma the values rm are not
explicit, however, certain bounds which are linear in m are actually available
for them, cf. [23].

The foundation of the approach to establishing beta-mixing as well as
convergence rate to a (unique) equilibrium measure in total variation in [23]
consists of two estimates,

sup
t≥0

EX̂0
|X̂t|m1(t < τ) ≤ C(1 + |X̂0|m),
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and
EX̂0

τ k+1 ≤ C(1 + |X̂0|m),

with τ := inf(s : |X̂t| ≤ R), for R large enough, with the appropriate k.
In turn, for both bounds the main technical tool is the inequality

〈x̂, b̂(x̂)〉 ≤ −(r − ε) < 0 for any fixed ε > 0 and for |x̂| > R, where one
can choose R to be arbitrary large. This inequality is inappropriate, how-
ever, in our case; instead we can apply the method used also in [22, 23] for
couples of independent recurrent processes. The basic estimate for this (in
the present setting) is

lim
|x̂|→∞

N∑
i=1

〈x̂i, b̂i(x̂)〉 |x̂i|m−2 = −∞. (22)

The latter follows from two remarks. (1) We notice that for each d-tuple of
the form (x̂id+1, . . . , x̂(i+1)d), the value

d∑
j=1

x̂id+j b̂id+j(x̂)

is bounded from above; moreover, it is negative once |x̂i| =
|(x̂id+1, . . . , x̂(i+1)d)| is greater than some constant, R0; finally, it approaches
the value −r or less if |x̂i| is large enough. (2) Since we actually compare the
values

〈x̂i, b̂i(x̂)〉 |x̂i|m−2,

and m is greater than two (see above), it remains to notice that as |x̂| tends
to infinity, for each 1 ≤ i ≤ N the value 〈x̂i, b̂i(x̂)〉 |x̂i|m−2 either remains
bounded, or tends to −∞; and at least one of them does tend to −∞. Hence,
(22) holds true. The rest of the proof follows the calculus and arguments from
[23], as we mentioned above, for the couples of independent processes and
stopping time denoted in [23] by γn.
F. Now we use the double limit theorem for µ1,N

t , and the weakest among
the two topologies, both being stronger than weak one. One limit is uniform
due to the bound (15). All assertions of the theorem follow from the double
limit theorem. Indeed, both convergence assertions are straightforward, and
uniqueness of µ∞ follows from uniqueness of µ̂Nt . The limiting measure cannot
depend on X0 because this property has the measure µ̂N∞. As long as the
measure µ∞ is invariant for the equation (1), it is unique as well, because we
have convergence to this measure, while prelimiting distributions µ1,N

∞ , N =
2, 3, . . . , are unique. Finally, to show that µ∞ is indeed invariant, it suffices
to pass to the limit as t→∞ in the integral equality (t, s ≥ 0)

Xt+s = Xt +

∫ t+s

t

b[Xr, µr] dr +W {t}
s , W {t}

s := Wt+s −Wt, (23)

using Skorokhod’s technique (see [17] or [11]), quite similarly to the passage
from (13) to (14) indeed. We denote Y t

s = Xs+t, then (23) reads,

Y t
s = Y t

0 +

∫ s

0

b[Y t
r , ν

t
r] dr +W {t}

s , (24)
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with notation νtr = µt+r. Due to tightness, exactly as in the proof of the
Theorem 1, we can choose a subsequence t′ → ∞ such that the couple
(Y t′

. ,W
{t′}
. ) weakly converges. Changing the probability space by the Sko-

rokhod method, we can assume that the couple (Y t′′
. ,W {t′′}

. ) converges along
some new subsequence t′′ → ∞ almost surely, (Y t′′

. ,W {t′′}
. ) → (Y 0

. ,W
{0}
. )

in the weak topology in C([0,∞);Rd). In particular, νt
′′
r =⇒ ν0

r . But we
already know that νt

′′
r = µt′′+r =⇒ µ∞. Hence, from (24) rewritten on the

new probability space, we get in the limit

Y 0
s = Y 0

0 +

∫ s

0

b[Y 0
r , ν

0
r ] dr +W {0}

s ,

where W
{0}
· is a new Wiener process in Rd, and ν0

r ≡ µ∞ is the distribution
of Y 0

r for any r. Thus, µ∞ is an invariant measure indeed. �

Remark Any of the two sets of assumptions in the Theorem 2 is rather
strong indeed, as any implies a uniform bound (15). For the purposes of
establishing the assertions of the theorem, this bound seems to be far too
strong than needed. The author can hardly believe that there is no other
way of establishing ergodic properties for the equation (1) which would not
use this bound. However, this seems to be a fair description of the current
state of the question.
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