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1. Introduction and Notation. In recent years there has been considerable
interest in the development and mathematical analysis of discontinuous Galerkin finite
element methods for the numerical approximation of second–order elliptic partial
differential equations. Unlike classical, conforming, finite element methods which
seek a continuous piecewise polynomial approximation to a weak solution u in the
Sobolev space H1(Ω), in discontinuous Galerkin finite element methods the numerical
solution is sought as a discontinuous piecewise polynomial approximation to u on a
suitable finite subdivision T = {κ}, into open disjoint Lipschitz subdomains κ, of
the computational domain Ω, Ω = ∪κ∈T κ, where Ω is a bounded domain in Rn with
Lipschitz continuous boundary.

A useful technical tool in the error analysis of classical conforming finite element
methods is the Poincaré inequality which, given that Ψ is a bounded linear functional
on H1(Ω) with Ψ(1) = 1, asserts the existence of a positive constant C = C(d), where
d = diam(Ω), such that

‖ξ‖L2(Ω) ≤ C
{
‖∇ξ‖L2(Ω) + |Ψ(ξ)|

}
for all ξ ∈ H1(Ω).

By writing ξ −Ψ(ξ) in place of ξ in this inequality, we deduce that

‖ξ −Ψ(ξ)‖L2(Ω) ≤ C ‖∇ξ‖L2(Ω) for all ξ ∈ H1(Ω),

and therefore

inf
c∈R

‖ξ − c‖L2(Ω) ≤ ‖∇ξ‖L2(Ω) for all ξ ∈ H1(Ω).

In the context of discontinuous Galerkin finite element methods it is natural to enquire
what the analogue of these inequalities are when the function ξ only belongs to the
broken Sobolev space H1(Ω, T ), consisting of functions ξ such that ξ|κ ∈ H1(κ) for
each κ in T .

We shall present two versions of a Poincaré–type inequality for broken Sobolev
spaces. A variant of a Poincaré–type inequality for functions in broken Sobolev spaces
in the case of Ω ⊂ R2 was derived in Arnold [2], Lemmas 2.1 and 2.2, where the proof
relies on elliptic regularity in non–smooth domains. More general results of this kind
for Ω ⊂ Rn involving various seminorms were obtained by Brenner in [4]. The proofs
in [4] heavily rely on the compactness of the embedding H1(Ω) ⊂→ L2(Ω).
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2 A. LASIS AND E. SÜLI

Here we generalise both approaches, providing bounds on the Lq(Ω)–norm, in
terms of a broken H1–norm, for 1 ≤ q ≤ 2n/(n − 2), n ≥ 3, and for 1 ≤ q < ∞,
n = 2, Ω ⊂ Rn. The first version of a Poincaré–type inequality for functions in
broken Sobolev spaces is proved by using the Sobolev embedding theorem and elliptic
regularity results, and thus relies on the regularity of the domain. For the second
version, we chose to extend the approach used by Brenner in [4]. Both versions
include the critical value of q = 2n/(n−2) for which the embedding H1(Ω) ⊂→ Lq(Ω)
is continuous but not compact.

Let us introduce the notation we shall be using throughout. Let T be a subdivision
of the domain Ω ⊂ Rn, n ≥ 2, into disjoint open elements κ such that Ω = ∪κ∈T κ.
We assume that the family of subdivisions T is shape–regular (see [3]), and that each
κ ∈ T is an affine image of a fixed master (reference) element κ̂, i.e., κ = Fκ(κ̂), where
κ̂ is either the open unit simplex or the open unit hypercube in Rn. For a nonnegative
integer k we denote by Pk(κ̂) the set of polynomials of total degree k on κ̂. To each
κ ∈ T we assign a local polynomial degree pκ ≥ 0 and a local Sobolev index sκ ≥ 0.
With this, we designate to the subdivision T the broken Sobolev space of composite
order s = {sκ : κ ∈ T },

Hs(Ω, T ) =
{
u ∈ L2(Ω) : u|κ ∈ Hsκ(κ) ∀κ ∈ T }

,

with the broken Sobolev norm and seminorm, respectively,

‖u‖Hs(Ω,T ) :=

(∑

κ∈T
‖u‖2Hsκ (κ)

) 1
2

, |u|Hs(Ω,T ) :=

(∑

κ∈T
|u|2Hsκ (κ)

) 1
2

.

By E we denote the set of all open (n − 1)–dimensional faces of the subdivision
T , containing the smallest common (n− 1)–dimensional interfaces e of neighbouring
elements. We define

Eint :=
⋃

e∈E\∂Ω

e and E∂ :=
⋃

e∈E∩∂Ω

e.

Numbering the elements of the subdivision T , and choosing any internal interface
e ∈ Eint, there exist positive integers i, j such that i > j and elements κ ≡ κi and
κ′ ≡ κj which share this interface e. We define the jump of a function u ∈ Hs(Ω, T )
across the face e and the mean value of u on e by

[u]e := u|∂κ∩e − u|∂κ′∩e, 〈u〉e :=
1
2

(u|∂κ∩e + u|∂κ′∩e)

respectively, ∂κ denoting the union of all open faces of element κ.

2. Sobolev–Poincaré Inequality for Broken Sobolev Spaces: I. In this
section we derive broken Sobolev–Poincaré inequalities stated in Theorem 2.1 and
Corollary 2.2. In the next section we shall then improve these results in various ways
by using a completely different technique.

Suppose that κ̂ ⊂ Rn is a bounded open set with Lipschitz continuous boundary,
and diamn(κ̂) = 1, n ≥ 2.

By the trace inequality (see [1]), for 1 ≤ q ≤ ∞ and 1/q + 1/q′ = 1,

W 1
q′(κ̂) ⊂→ W

1−1/q′

q′ (∂κ̂) = W
1/q
q′ (∂κ̂).
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Applying this with q′ = 2n/(n + 2), it follows that

W 1
q′(κ̂) = W 1

2n
n+2

(κ̂) ⊂→ W
n−2
2n
2n

n+2
(∂κ̂), n ≥ 2. (2.1)

We note that by the Sobolev embedding theorem (see [1])

W s
p (Ω) ⊂→ W t

q (Ω), s− n

p
≥ t− n

q
,

0 ≤ t ≤ s < ∞
1 < p ≤ q < ∞,

(2.2)

with Ω ⊂ Rn an open set in Rn. Applying this result on Ω = ∂κ̂ (splitting ∂κ̂ into
finitely many open subdomains, if necessary) with n replaced by n− 1 in (2.2) and

s =
n− 2
2n

, p =
2n

n + 2
, t = 0, q = 2

(
1− 1

n

)
, n ≥ 2,

we see that

s− n− 1
p

=
n− 2
2n

− (n− 1)(n + 2)
2n

= −n

2
,

while

t− n− 1
q

= −n(n− 1)
2(n− 1)

= −n

2
.

The condition on the Sobolev indices, required for the embedding, holds, and hence

W
n−2
2n
2n

n+2
(∂κ̂) ⊂→ W 0

2(1− 1
n )(∂κ̂) = L2(1− 1

n )(∂κ̂). (2.3)

From (2.1) and (2.3) we deduce that

W 1
2n

n+2
(κ̂) ⊂→ L2(1− 1

n )(∂κ̂), n ≥ 2.

By the continuity of the embedding operator, there exists C = C(κ̂) such that

‖û‖
L

2(1− 1
n )(∂κ̂)

≤ C ‖û‖W 1
2n

n+2
(κ̂) , n ≥ 2,

for all û ∈ W 1
2n

n+2
(κ̂), i.e.,

‖û‖
L

2(1− 1
n )(∂κ̂)

≤ C

(
‖û‖

L
2n

n+2 (κ̂)
+

∥∥∥∇̂û
∥∥∥

L
2n

n+2 (κ̂)

)
, n ≥ 2.

Applying (2.2) with Ω = κ̂ and

s = 1, p =
2n

n + 2
, t = 0, q = 2, n ≥ 2,

we deduce that

W 1
2n

n+2
(κ̂) ⊂→ L2(κ̂), n ≥ 2;

hence û ∈ W 1
2n

n+2
(κ̂) has ‖û‖L2(κ̂) < ∞.
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Therefore, noting that 1 ≤ 2n/(n + 2) < 2, Hölder’s inequality gives

‖û‖
L

2(1− 1
n )(∂κ̂)

≤ C

(
‖û‖L2(κ̂) +

∥∥∥∇̂û
∥∥∥

L
2n

n+2 (κ̂)

)
, n ≥ 2. (2.4)

Let κ be defined as h · κ̂, by simply scaling κ̂. Hence h = diam(κ), and we shall
write hκ = h. By rescaling (2.4), we see that

h
0− n−1

2(1−1/n)
κ ‖u‖

L
2(1− 1

n )(∂κ)
≤ C

(
h
−n

2
κ ‖u‖L2(κ) + h

1− n
2n/(n+2)

κ ‖∇u‖
L

2n
n+2 (κ)

)
,

where u(x) = û(x̂), x̂ ∈ κ̂. Thus,

‖u‖
L

2(1− 1
n )(∂κ)

≤ C

(
‖u‖L2(κ) + ‖∇u‖

L
2n

n+2 (κ)

)
(2.5)

for each u ∈ W 1
2n

n+2
(κ), n ≥ 2.

Let ξ ∈ H1(Ω, T ). Then ξ ∈ Lq(Ω, T ) = Lq(Ω), (1 ≤ q ≤ 2n/(n − 2) for n ≥ 3
and 1 ≤ q < ∞ for n = 2). Now, for n ≥ 3, with q = 2n/(n− 2), q′ = 2n/(n + 2),

‖ξ‖Lq(Ω) = sup
χ 6=0

(ξ, χ)
‖χ‖Lq′ (Ω)

. (2.6)

Let ψ ∈ H1
0 (Ω) denote the weak solution to the following elliptic boundary value

problem, with χ ∈ Lq′(Ω),

−∆ψ = χ in Ω
ψ = 0 on ∂Ω

}
. (2.7)

Since H1
0 (Ω) ⊂→ Lq(Ω) by the embedding theorem, it follows by the duality theorem

that

χ ∈ Lq′(Ω) = (Lq(Ω))′ ⊂→
(
H1

0 (Ω)
)′

= H−1(Ω),

and therefore the existence and uniqueness of a weak solution to (2.7) in H1
0 (Ω) is

guaranteed (for example, by the Lax–Milgram theorem, see [5]).
We shall suppose from now on that Ω is a W 2

q′–regular domain in Rn (see [8]).
By elliptic regularity theory it then follows that

‖ψ‖W 2
q′ (Ω) ≤ C ‖χ‖Lq′ (Ω) . (2.8)

Furthermore,

‖∇ψ‖2L2(Ω) = (∇ψ,∇ψ) = (−∆ψ, ψ) = (χ, ψ) ≤ ‖χ‖Lq′ (Ω) ‖ψ‖Lq(Ω) ≤ C ‖χ‖Lq′ (Ω) ‖∇ψ‖L2(Ω) ,

and therefore

‖∇ψ‖L2(Ω) ≤ C ‖χ‖Lq′ (Ω) . (2.9)

Now, returning to (2.6) with ψ = ψχ,

‖ξ‖Lq(Ω) = sup
χ6=0

(ξ,−∆ψ)
‖χ‖Lq′ (Ω)

= sup
χ 6=0

∑
κ(∇ξ,∇ψ)κ −

∑
e

∫
e
[ξ] (∇ψ · n) ds

‖χ‖Lq′ (Ω)

. (2.10)
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Here we used the notational convention that, for e ⊂ ∂Ω, [ξ]|e = ξ. Clearly,

∑
κ

(∇ξ,∇ψ)κ ≤
∑

κ

‖∇ξ‖L2(κ) ‖∇ψ‖L2(κ) ≤
(∑

κ

‖∇ξ‖2L2(κ)

) 1
2

(∑
κ

‖∇ψ‖2L2(κ)

) 1
2

=

(∑
κ

‖∇ξ‖2L2(κ)

) 1
2

‖∇ψ‖L2(Ω) ≤ C

(∑
κ

‖∇ξ‖2L2(κ)

) 1
2

‖χ‖Lq′ (Ω) , (2.11)

where in the transition to the last inequality we used (2.9).
On the other hand,

−
∑

e

∫

e

[ξ] (∇ψ·n) ds ≤
∑

e

∫

e

|[ξ]| |∇ψ · n| ds ≤
∑

e

‖[ξ]‖
L

2n−2
n−2 (e)

‖∇ψ · n‖
L

2(1− 1
n )(e)

,

(2.12)
where we used Hölder’s inequality on e with s = (2n − 2)/(n − 2) > 2 and s′ =
2(1− 1/n) < 2, 1/s + 1/s′ = 1.

However,

‖∇ψ · n‖
L

2(1− 1
n )(e)

≤ ‖∇ψ‖
L

2(1− 1
n )(e)

≤ ‖∇ψ‖
L

2(1− 1
n )(∂κ)

≤ C

(
‖∇ψ‖L2(κ) + |ψ|W 2

2n
n+2

(κ)

) (2.13)

for each element κ that contains the face e, and in the transition to the last inequality
we used (2.5).

From (2.12) and (2.13), for n ≥ 3,

−
∑

e

∫

e

[ξ] (∇ψ·n) ds ≤ C

(∑
e

‖[ξ]‖2
L

2n−2
n−2 (e)

) 1
2

(∑
κ

(
‖∇ψ‖2L2(κ) + |ψ|2W 2

2n
n+2

(κ)

)) 1
2

≤ C

(∑
e

‖[ξ]‖2
L

2n−2
n−2 (e)

) 1
2


‖∇ψ‖2L2(Ω) +

(∑
κ

|ψ|2W 2
2n

n+2
(κ)

) 1
2 ·2




1
2

. (2.14)

Next, with aκ ≡ |ψ|W 2
2n

n+2
(κ), q′ = 2n/(n + 2) < 2,

(∑
κ

|ψ|2W 2
2n

n+2
(κ)

) 1
2

≡
(∑

κ

a2
κ

) 1
2

≤
(∑

κ

|aκ|q
′ |aκ|2−q′

) 1
2

≤
(
max

κ
|aκ|2−q′

) 1
2

(∑
κ

|aκ|q
′
) 1

2

=
(
max

κ
|aκ|

)1− q′
2

(∑
κ

|aκ|q
′
) 1

2

≤



(∑
κ

|aκ|q
′
) 1

q′



1− q′
2 (∑

κ

|aκ|q
′
) 1

2

,

where we used that

max
κ
|aκ| ≤

(∑
κ

|aκ|q
′
) 1

q′

.
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Therefore,

(∑
κ

|ψ|2W 2
2n

n+2
(κ)

) 1
2

≤
(∑

κ

|aκ|q
′
) 1

q′− 1
q′ ·

q′
2 + 1

2

=

(∑
κ

|aκ|q
′
) 1

q′

=

(∑
κ

|ψ|q′
W 2

2n
n+2

(κ)

) 1
q′

=

(∑
κ

|ψ|
2n

n+2

W 2
2n

n+2
(κ)

)n+2
2n

= |ψ|W 2
2n

n+2
(Ω) . (2.15)

Substituting (2.15) into (2.14), we have that, for n ≥ 3,

−
∑

e

∫

e

[ξ] (∇ψ · n) ds ≤ C

(∑
e

‖[ξ]‖2
L

2n−2
n−2 (e)

) 1
2 (

‖∇ψ‖2L2(Ω) + |ψ|2W 2
2n

n+2
(Ω)

) 1
2

≤ C

(∑
e

‖[ξ]‖2
L

2n−2
n−2 (e)

) 1
2

‖χ‖Lq′ (Ω) ,

(2.16)

where in the transition to the last inequality we used (2.9) and (2.8).
Substituting (2.11) and (2.16) into (2.10) gives

‖ξ‖Lq(Ω) ≤ C





(∑
κ

‖∇ξ‖2L2(κ)

) 1
2

+

(∑
e

‖[ξ]‖2
L

2n−2
n−2 (e)

) 1
2



 .

Thus we have proved the following theorem.

Theorem 2.1 Let n ≥ 3, q = 2n/(n− 2), and suppose that Ω ⊂ Rn is a W 2
q′–regular

domain, q′ = 2n/(n + 2). There exists C = C(Ω) such that

‖ξ‖Lq(Ω) ≤ C





(∑
κ

‖∇ξ‖2L2(κ)

) 1
2

+

(∑
e

‖[ξ]‖2
L

2n−2
n−2 (e)

) 1
2



 (2.17)

for all ξ ∈ H1(Ω, T ).

In particular, if ξ is a (discontinuous) piecewise polynomial function on T with
pκ = deg ξ|κ ≥ 1, then [ξ] is a polynomial on e whose degree is pe = max(pκ, pκ′),
where e ⊂ ∂κ ∩ ∂κ′.

Let us scale e to ê so that diamn−1(ê) = 1. By Bernstein’s inequality,

‖v̂‖Lr(ê) ≤ Cp
1− 2

r

ê ‖v̂‖L2(ê) ∀v̂ ∈ Ppê(ê).

By rescaling to e,

h
−n−1

r
e ‖v‖Lr(e) ≤ Cp

1− 2
r

e h
−n−1

2
e ‖v‖L2(e) ,

and thus

‖v‖Lr(e) ≤ Cp
1− 2

r
e h

(n−1)( 1
r− 1

2 )
e ‖v‖L2(e) ∀v ∈ Ppe(e).
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In particular, with

r =
2n− 2
n− 2

=
2(n− 1)
n− 2

we have 1− 2
r

=
1

n− 1
and (n− 1)

(
1
r
− 1

2

)
= −1

2
.

Hence, with n ≥ 3,

‖v‖
L

2n−2
n−2 (e)

≤ Cp
1

n−1
e h

− 1
2

e ‖v‖L2(e) ∀v ∈ Ppe(e).

Taking v = [ξ] yields

‖[ξ]‖2
L

2n−2
n−2 (e)

≤ Cp
2

n−1
e h−1

e ‖[ξ]‖2L2(e) ,

where pe = max(pκ, pκ′), pκ, pκ′ ≥ 1.
Now, let us suppose that the polynomial degree p = {pκ : κ ∈ T } has locally

bounded variation in the sense that there exists ρ ≥ 0 such that

max
κ

measn−1

max
κ′

(κ̄∩κ̄′)>0

|pκ − pκ′ | ≤ ρ.

Then if pκ ≥ pκ′ , we have pe = pκ, whereas if pκ ≤ pκ′ , we have

pe = pκ′ = pκ + pκ′ − pκ = pκ + |pκ′ − pκ| ≤ pκ + ρ = pκ

(
1 +

ρ

pκ

)
≤ (1 + ρ)pκ,

and hence for any face e and any element κ that contains the face e, we have

pe ≤ (1 + ρ)pκ.

Thus we have proved the following Sobolev–Poincaré inequality.

Corollary 2.2 Let n ≥ 3, q = 2n/(n−2), and suppose that Ω ⊂ Rn is a W 2
q′–regular

domain, q′ = 2n/(n + 2). There exists C = C(Ω) such that

‖ξ‖Lq(Ω) ≤ C





(∑
κ

‖∇ξ‖2L2(κ)

) 1
2

+

(∑
e

p
2

n−1
e h−1

e ‖[ξ]‖2L2(e)

) 1
2





for all ξ ∈ Sp(Ω, T ,F), where pe = max(pκ, pκ′), e ⊂ ∂κ ∩ ∂κ′.
Further, if the polynomial degree vector has bounded local variation, then

‖ξ‖Lq(Ω) ≤ C





(∑
κ

‖∇ξ‖2L2(κ)

) 1
2

+

(∑
κ

p
2

n−1
κ h−1

κ ‖[ξ]‖2L2(∂κ)

) 1
2



 . (2.18)

Remark 2.3 For n = 2 an identical result holds for any 1 ≤ q < ∞. For n ≥ 3 the
results of Theorem 2.1 and Corollary 2.2 hold for all q with 1 ≤ q ≤ 2n/(n− 2). This
follows from

‖ξ‖Lq(Ω) ≤ C ‖ξ‖
L

2n
n−2 (Ω)

, 1 ≤ q ≤ 2n

n− 2
.

2
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3. Sobolev–Poincaré Inequality for Broken Sobolev Spaces: II. In the
previous section we obtained a broken Sobolev–Poincaré inequality for functions in
the broken Sobolev space H1(Ω, T ) under certain restrictive conditions, i.e., W 2

q′–
regularity of the domain Ω and Corollary 2.2 being shown only for functions in the
finite–dimensional subspace Sp(Ω, T ,F) of H1(Ω, T ).

In this section we shall obtain a more general and more precise bound on the Lq–
norm of functions in H1(Ω, T ), removing the restrictions mentioned above. We shall
closely follow the argument presented by Brenner in [4], extending it from L2–based
norms to Lq–based norms, 1 ≤ q ≤ 2n/(n− 2), n ≥ 3.

3.1. Seminorm on H1(Ω). Let Φ be a seminorm on H1(Ω), such that

Φ(ξ) ≤ C ‖ξ‖H1(Ω) for all ξ ∈ H1(Ω), C > 0,

and such that

Φ(1) = 1.

The latter implies that Φ(c) = 0 for a constant function c if, and only if, c = 0. With
such Φ the following generalised Poincaré–Friedrichs inequality holds: there exists a
positive constant C = C(Ω) such that

‖ξ‖L2(Ω) ≤ C
{
|ξ|H1(Ω) + Φ(ξ)

}
for all ξ ∈ H1(Ω);

this follows from the compactness of the embedding H1(Ω) ⊂→ L2(Ω) (see [9]).
Let n ≥ 3 and 1 ≤ q ≤ 2n/(n − 2). Then Lq(Ω) is continuously embedded into

H1(Ω) (note that for q = 2n/(n− 2) the embedding is not compact, — but this will
not affect our argument).

In the following argument we shall show that the general Poincaré–Friedrichs
inequality holds for the Lq–norm, with q defined above.

1. Let Ψ be a bounded linear functional on H1(Ω), with the property Ψ(1) = 1
and let Φ(ξ) = |Ψ(ξ)|. Then

‖ξ −Ψ(ξ)‖L2(Ω) ≤ C
{
|ξ −Ψ(ξ)|H1(Ω) + Φ(ξ −Ψ(ξ))

}

= C
{
|ξ|H1(Ω) + |Ψ(ξ −Ψ(ξ))|

}
= C |ξ|H1(Ω) ,

as |Ψ(ξ −Ψ(ξ))| = |Ψ(ξ)−Ψ(ξ)Ψ(1)| = 0 by the property Ψ(1) = 1.
2. From now on, we suppose that

q =
2n

n− 2
.

Then, by the continuity of the embedding H1(Ω) ⊂→ Lq(Ω), we have

‖ξ‖Lq(Ω) ≤ C ‖ξ‖H1(Ω) = C(‖ξ‖L2(Ω) + |ξ|H1(Ω)),

and thus by the results obtained in the previous step, we have

‖ξ −Ψ(ξ)‖Lq(Ω) ≤ C
{
‖ξ −Ψ(ξ)‖L2(Ω) + |ξ|H1(Ω)

}

≤ C
{
|ξ|H1(Ω) + |ξ|H1(Ω)

}
= C |ξ|H1(Ω) . (3.1)
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Thus we conclude that

‖ξ‖Lq(Ω) ≤ ‖ξ −Ψ(ξ)‖Lq(Ω) + ‖Ψ(ξ)‖Lq(Ω) ≤ C |ξ|H1(Ω) + |Ψ(ξ)| |Ω|1/q
,

and hence by the properties of Ψ we have

‖ξ‖Lq(Ω) ≤ C
{
|ξ|H1(Ω) + |Ψ(ξ)|

}
= C

{
|ξ|H1(Ω) + Φ(ξ)

}
.

Thus, when n ≥ 3, this inequality also holds for all q with 1 ≤ q ≤ 2n/(n− 2). This
is a simple consequence of Hölder’s inequality.

When n = 2, the same result is true for all q with 1 ≤ q < ∞.

3.2. Nonconforming and Conforming Finite Element Interpolants. Let
us concentrate on the case when the finite element partition is a simplical subdivision
T of Ω, consisting of triangles in the case of n = 2 and simplices in the case of n ≥ 3.

Let us introduce some notation we shall be using throughout. We denote the
minimum angle of the triangles or simplices in T by θT . To represent the statement
A ≤ ς(θT )B, where the generic function ς : R+ → R+ is continuous and independent
of T , we shall use the notation A . B; the statement “A . B and B . A” will be
denoted as A ≈ B.

The nonconforming P1 finite element space (see [7]) associated with the triangu-
lation T is

VT :=
{
v ∈ L2(Ω) : vκ = v|κ ∈ P1(κ) for any κ ∈ T and v is continuous at the centre

of the common side (face) of any two neighbouring triangles (simplices)} .

A function in VT is completely determined by its nodal values at the centres of the
sides (faces) of the triangles (simplices) in T .

Next, we introduce the interpolation operators we shall be using throughout our
argument.

We define the interpolation operator I : H1(Ω, T ) → VT by

(Iξ)(ce) :=
1
|e|

∫

e

〈ξ〉 ds, for all e ∈ Eint ∪ E∂ , ξ ∈ H1(Ω, T ), (3.2)

where e ⊂ ∂κ is an open face of the element κ ∈ T , and ce is the centre of this face.
For e ∈ E∂ , we take 〈ξ〉 to be ξ.

We define the local interpolation operator Πκ : H1(κ) → P1(κ) by

(Πκξ)(ce) :=
1
|e|

∫

e

ξ ds, for all e ⊂ ∂κ, ξ ∈ H1(Ω, T ). (3.3)

Thus the difference of the two interpolants I and Πκ on an element κ ∈ T is

(Iξ −Πκξ)(ce) =





1
2 |e|

∫

e

[ξ] ds if e ⊂ ∂κ \ ∂Ω,

0 if e ⊂ ∂κ ∩ ∂Ω.

(3.4)

From (3.4), by standard finite element estimates (see [5, 6]) we have

|Iξ −Πκξ|2H1(κ) . |κ|1−(2/n)
∑

e⊂∂κ

|(Iξ −Πκξ)(ce)|2

. |κ|1−(2/n)
∑

e⊂∂κ\∂Ω

|e|−2

(∫

e

[ξ] ds

)2

.
∑

e⊂∂κ\∂Ω

|e| n
1−n

(∫

e

[ξ] ds

)2

, (3.5)
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and for n ≥ 3, q = 2n/(n− 2),

‖Iξ −Πκξ‖2Lq(κ) . |κ|2/q
∑

e⊂∂κ

|(Iξ −Πκξ)(ce)|2 .
∑

e⊂∂κ

|e| n
n−1 · 2q |(Iξ −Πκξ)(ce)|2

=
∑

e⊂∂κ

|e|n−2
n−1 |(Iξ −Πκξ)(ce)|2 .

∑

e⊂∂κ\∂Ω

|e|n−2
n−1 |e|−2

(∫

e

[ξ] ds

)2

=
∑

e⊂∂κ\∂Ω

|e| n
1−n

(∫

e

[ξ] ds

)2

, (3.6)

where |κ| is an n–dimensional volume of κ, and for e ⊂ ∂κ we have

|κ| ≈ |e| n
n−1 . (3.7)

Moreover, we have the following estimate for the local interpolation operator:

‖ξ −Πκξ‖2Lq(κ) + |Πκξ|2H1(κ) . |ξ|2H1(κ) . (3.8)

To prove this, first note that by standard finite element estimates we have

|Πκξ|H1(κ) . |ξ|H1(κ) .

Applying (3.1) with Ψ(ξ̂) := Π̂κ̂ξ̂ = |κ̂|−1 ∫
κ̂

ξ̂ dx̂ yields
∥∥∥ξ̂ − Π̂κ̂ξ̂

∥∥∥
Lq(κ̂)

.
∣∣∣ξ̂

∣∣∣
H1(κ̂)

.

Scaling back, we obtain

‖ξ −Πκξ‖Lq(κ) . |ξ|H1(κ) ,

and hence (3.8).
On writing Iξ = (Iξ−Πκξ) + Πκξ, combining the estimates (3.5) and (3.8), and

summing over κ ∈ T , we obtain

|Iξ|2H1(Ω,T ) . |ξ|2H1(Ω,T ) +
∑

e∈Eint

|e| n
1−n

(∫

e

[ξ] ds

)2

. (3.9)

By noting that q = 2n/(n− 2) > 2, and thus

(∑

κ∈T
|aκ|q

)1/q

≤
(∑

κ∈T
|aκ|2

) 1
2

, (3.10)

we have, with aκ = ‖ξ − Iξ‖Lq(κ),

‖ξ − Iξ‖2Lq(Ω) =

(∑

κ∈T
‖ξ − Iξ‖q

Lq(κ)

)2/q

≤
∑

κ∈T
‖ξ − Iξ‖2Lq(κ) .

∑

κ∈T
‖ξ −Πκξ‖2Lq(κ)

+
∑

κ∈T
‖Iξ −Πκξ‖2Lq(κ) . |ξ|2H1(Ω,T ) +

∑

e∈Eint

|e| n
1−n

(∫

e

[ξ] ds

)2

, (3.11)



POINCARÉ–TYPE INEQUALITIES 11

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡¡

@
@

@
@

@
@

@
@

@
@

@@

XXXXXX
»»»»»»¤

¤
¤
¤
¤
¤

C
C
C
C
C
C
¤
¤
¤
¤
¤
¤

C
C
C
C
C
C

»»»»»»
XXXXXX

•

•

• •

• •

•
κ′

κ′′

ε

c2

c1

c5

c3

c4

c6

Fig. 3.1. Sequence of cj ’s

where in the transition to the last inequality we used (3.8) and (3.6).

Now, let WT ⊂ H1(Ω) be the Lagrange finite element space associated with T ,
consisting of continuous piecewise polynomials on T of degree n, such that the shape
functions of VT are the shape functions of WT , and the nodal variables of VT are the
nodal variables of WT .

We denote the set of the centres of the sides of κ ∈ T by C(κ), the set of other
nodes by N (κ), and define C(T ) :=

⋃
κ∈T C(κ) and N (T ) :=

⋃
κ∈T N (κ).

We define on the finite element spaces VT and WT the operators E and F by

(Ev)(ε) =
1
|Ξε|

∑

κ∈Ξε

vκ(ε), for all ε ∈ N (T ) ∪ C(T ), v ∈ VT (3.12)

and

(Fw)(ε) = w(ε), for all ε ∈ C(T ), w ∈ WT , (3.13)

where vκ = v|κ, Ξε = {κ ∈ T : ε ∈ ∂κ} is the set of elements sharing ε as a vertex,
and |Ξε| is the cardinal number of Ξε, i.e., the number of elements in Ξε. For ε ∈ C(T )
we have (Ev)(ε) = v(ε) since v is continuous at the centres of the sides.

Let us state the following estimate for the operators E and F .

Lemma 3.1 For the operators E and F defined by (3.12) and (3.13), the following
estimates hold:

‖Ev − v‖2Lq(Ω) .
∑

κ∈T
|v|2H1(κ) for all v ∈ VT , (3.14)

‖Fw − w‖2Lq(Ω) .
∑

κ∈T
|w|2H1(κ) for all w ∈ WT . (3.15)

Proof. Assume that ε ∈ N (T ) and κ′, κ′′ ∈ Ξε. Then we can find a sequence
c1, . . . , cm in C(T ) so that c1 ∈ ∂κ′, cm ∈ ∂κ′′, and cj , cj+1 ∈ ∂κj , κj ∈ Ξε (see Figure
3.1 for an example with triangular elements in R2 and m = 6). Note that |Ξε| and
thus m is bounded by a constant depending only on the shape–regularity of T . Thus



12 A. LASIS AND E. SÜLI

from the Cauchy–Schwarz inequality and the Mean Value Theorem we have, for any
ε ∈ N (T ) and any v ∈ VT , that

[vκ′(ε)− vκ′′(ε)]
2 . [vκ′(ε)− vκ′(c1)]

2+
m−1∑

j=1

[
vκj (cj)− vκj (cj+1)

]2+[vκ′′(cm)− vκ′′(ε)]
2

.
∑

κ′′′∈Ξε

|κ′′′|(2/n)−1 |v|2H1(κ′′′) .

Using this estimate together with (3.12) and the Cauchy–Schwarz inequality, for any
κ ∈ Ξε and any ε ∈ N (κ), we have

[(Ev − vκ)(ε)]2 .
∑

κ′′′∈Ξε

|κ′′′|(2/n)−1 |v|2H1(κ′′′) for all v ∈ VT . (3.16)

From this estimate, for κ ∈ T it follows that

‖Ev − v‖2L2(κ) ≈ |κ|
∑

ε∈N (κ)∪C(κ)

[(Ev − vκ)(ε)]2 = |κ|
∑

ε∈N (κ)

[(Ev − vκ)(ε)]2

.
∑

ε∈N (κ)

∑

κ′′′∈Ξε

|κ′′′|2/n |v|2H1(κ′′′)

for all v ∈ VT , where we used the fact that

|κ| ≈ |κ′′′| for κ′′′ ∈ Ξε and ε ∈ N (κ). (3.17)

As ‖Ev − v‖Lq(κ) ≤ |κ|1/q−1/2 ‖Ev − v‖L2(κ) and 1/q − 1/2 = −1/n, from the
last estimate we obtain

‖Ev − v‖2Lq(κ) . |κ|−2/n
∑

ε∈N (κ)

∑

κ′′′∈Ξε

|κ′′′|2/n |v|2H1(κ′′′) ,

and using (3.17) again, we obtain

‖Ev − v‖2Lq(κ) .
∑

ε∈N (κ)

∑

κ′′′∈Ξε

|v|2H1(κ′′′) . (3.18)

After summation over κ ∈ T and using (3.10) with q = 2n/(n− 2) > 2, we get (3.14).

On each κ ∈ T , Fw is a linear nodal interpolant of w with the nodes placed at
the centres of the sides of κ. From standard interpolation and inverse estimates (see
[5, 6]) it follows that

‖Fw − w‖2L2(κ) . |κ|4/n |w|2H2(κ) . |κ|2/n |w|2H1(κ) for all w ∈ WT ,

and thus by an inverse estimate we have

‖Fw − w‖2Lq(κ) ≤ |κ|−2/n ‖Fw − w‖2L2(κ) . |w|2H1(κ) .

Summation over κ ∈ T and (3.10) with aκ = ‖Fw − w‖Lq(κ) give (3.15).
2
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Corollary 3.2 We have that

‖Ev‖Lq(Ω) ≈ ‖v‖Lq(Ω) for all v ∈ VT , (3.19)

and

|Ev|H1(Ω,T ) ≈ |v|H1(Ω,T ) for all v ∈ VT . (3.20)

Proof. To prove (3.19), we note that from (3.18) using Hölder’s inequality for finite
sums, we have

‖Ev‖Lq(Ω) ≤ ‖Ev − v‖Lq(Ω) + ‖v‖Lq(Ω) =

(∑

κ∈T
‖Ev − v‖q

Lq(κ)

)1/q

+ ‖v‖Lq(Ω)

.
(∑

κ∈T
|v|qH1(κ)

)1/q

+ ‖v‖Lq(Ω) .
(∑

κ∈T
‖v‖q

Lq(κ)

)1/q

+ ‖v‖Lq(Ω) . ‖v‖Lq(Ω) ,

(3.21)

where we used (3.10) and an inverse inequality with q = 2n/(n− 2).
Similarly, by a completely identical argument with E replaced by F and v ∈ VT

by w ∈ WT , we obtain

‖Fw − w‖Lq(Ω) . ‖w‖Lq(Ω) for all w ∈ WT ,

and hence, as above,

‖Fw‖Lq(Ω) . ‖w‖Lq(Ω) for all w ∈ WT . (3.22)

From the definitions (3.12) and (3.13)

F (Ev) = v for all v ∈ VT , (3.23)

and thus by (3.22) and (3.21)

‖v‖Lq(Ω) = ‖F (Ev)‖Lq(Ω) . ‖Ev‖Lq(Ω) . ‖v‖Lq(Ω) for all v ∈ VT , (3.24)

hence (3.19).

From a standard inverse estimate and (3.14), for all v ∈ VT we have

|Ev|H1(Ω) ≤ |Ev − v|H1(Ω)+ |v|H1(Ω) .
(∑

κ∈T
‖Ev − v‖2Lq(κ)

) 1
2

. |v|H1(Ω,T ) . (3.25)

Similarly, from (3.15),

|Fw|H1(Ω,T ) . |w|H1(Ω) for all w ∈ WT . (3.26)

The estimate (3.20) follows from (3.23), (3.26) and (3.25).
2
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3.3. Sobolev–Poincaré Inequalities for Nonconforming P1 Finite Ele-
ment. We proved in Section 3.1 that, for 1 ≤ q ≤ 2n/(n − 2), n ≥ 3, there exists a
positive constant C such that

‖ξ‖Lq(Ω) ≤ C
{
|ξ|H1(Ω) + |Ψ(ξ)|

}
for all ξ ∈ H1(Ω), (3.27)

where Ψ is a bounded linear functional on H1(Ω) with the property that Ψ(1) = 1.
Let us now prove the Sobolev–Poincaré inequality for functions in a nonconform-

ing P1 finite element space.

Theorem 3.3 Let Ψ be a bounded linear functional on H1(Ω), Ψ(1) = 1, such that

|Ψ(Ev − v)| . |v|H1(Ω,T ) for all v ∈ VT , (3.28)

where E : VT → WT is defined by (3.12). Then, there exists a continuous function
ς : R+ → R+, independent of T , such that

‖v‖Lq(Ω) ≤ ς(θT )
{
|v|H1(Ω,T ) + |Ψ(v)|

}
for all v ∈ VT , (3.29)

where q = 2n/(n− 2) and θT is the minimum angle in T .

Proof. Combining (3.19), (3.27) and (3.20) yields, for all v ∈ VT ,

‖v‖Lq(Ω) ≈ ‖Ev‖Lq(Ω) . |Ev|H1(Ω) + |Ψ(Ev)|
≤ |v|H1(Ω,T ) + |Ψ(Ev − v)|+ |Ψ(v)| . |v|H1(Ω,T ) + |Ψ(v)| ,

where in the transition to the last inequality we used the hypothesis (3.28).
2

Let us now construct some examples of seminorms which satisfy the conditions
of Theorem 3.3.

Example 3.4 By the trace inequality and the Sobolev embedding theorem, we have

H1(Ω) ⊂→ H
1
2 (∂Ω) ⊂→ Lr(∂Ω),

for

1
2
− n− 1

2
= 0− n− 1

r
,

i.e., with

r =
2(n− 1)
n− 2

and r′ = 2
(

1− 1
n

)
;

1
r

+
1
r′

= 1.

Let ψ ∈ L2(1− 1
n )(∂Ω), such that

∫
∂Ω

ψ ds 6= 0 and define

Ψ1(ξ) =
(∫

∂Ω

ψ ds

)−1 ∫

∂Ω

ψξ ds, ξ ∈ Lr(∂Ω). (3.30)
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Thus Ψ1 : R+ → R+ is a bounded linear functional on H1(Ω) and Ψ1(1) = 1.
Let us check (3.28). With r = 2(n−1)/(n−2) > 2 and r′ = 2(1−1/n), for all v ∈ VT
we have

|Ψ1(Ev − v)| ≤ ‖ψ‖
L

2(1− 1
n )(∂Ω)

‖Ev − v‖
L

2(n−1)
n−2 (∂Ω)

= ‖ψ‖
L

2(1− 1
n )(∂Ω)

( ∑

e∈E∂

‖Ev − v‖r
Lr(e)

)1/r

.

By subsequently using (3.10) and the inverse inequality to switch from the Lr–norm
to the L2–norm in (n− 1) dimensions, we obtain

( ∑

e∈E∂

‖Ev − v‖r
Lr(e)

)1/r

≤
( ∑

e∈E∂

‖Ev − v‖2Lr(e)

) 1
2

≤ C

( ∑

e∈E∂

‖Ev − v‖2L2(e)

{
(diamn−1(e))

n−1
r −n−1

2

}2
) 1

2

= C

( ∑

e∈E∂

‖Ev − v‖2L2(e) |e|(
1
r− 1

2 )·2
) 1

2

= C

( ∑

e∈E∂

‖Ev − v‖2L2(e) |e|
2
r−1

) 1
2

.

Let N (e) denote the set of the nodes on e excluding the centre of e, and let κe denote
the member of T whose boundary contains e. Then, as

2
r
− 1 =

n− 2
n− 1

− 1 = − 1
n− 1

,

we have (by the previous estimates)

( ∑

e∈E∂

‖Ev − v‖r
Lr(e)

)1/r

≤ C

( ∑

e∈E∂

‖Ev − v‖2L2(e) |e|
2
r−1

) 1
2

≤ C





∑

e∈E∂

|e|1− 1
n−1


 ∑

ε∈N (e)

|(Ev − vκe)(ε)|



2




1
2

.

By noting that N (e) is a finite set whose cardinality is uniformly bounded (which
follows by the assumed shape–regularity of mesh), by the Cauchy–Schwarz inequality
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applied to the finite sum
∑

ε∈N (e) . . . and (3.16) we have

( ∑

e∈E∂

‖Ev − v‖r
Lr(e)

)1/r

≤ C





∑

e∈E∂

|e|1− 1
n−1


 ∑

ε∈N (e)

|(Ev − vκe
)(ε)|




2




1
2

≤ C


 ∑

e∈E∂

|e|1− 1
n−1

∑

ε∈N (e)

|(Ev − vκe)(ε)|2



1
2

≤ C


 ∑

e∈E∂

|e|1− 1
n−1

∑

ε∈N (e)

∑

κ′′′∈Ξε

|κ′′′| 2n−1 |v|2H1(κ′′′)




1
2

.

Finally, we note that |e|1− 1
n−1 = |e|n−2

n−1 ≈ |κ|n−2
n , and that |κ′′′| 2n−1 = |κ′′′| 2−n

n ≈
|κ| 2−n

n ; thus, from the previous estimate, we obtain

( ∑

e∈E∂

‖Ev − v‖r
Lr(e)

)1/r

≤ C


 ∑

e∈E∂

|e|1− 1
n−1

∑

ε∈N (e)

∑

κ′′′∈Ξε

|κ′′′| 2n−1 |v|2H1(κ′′′)




1
2

.




∑

κ∈T
|∂κ∩∂Ω|>0

|v|2H1(κ)




1
2

,

which completes the proof that Ψ1 satisfies (3.28).
2

Example 3.5 Let ψ ∈ Lq′(Ω), q′ = 2n/(n + 2), such that
∫
Ω

ψ dx 6= 0. Define

Ψ2(ξ) =
(∫

Ω

ψ dx

)−1 ∫

Ω

ψξ dx. (3.31)

Clearly, Ψ2 : R+ → R+ is a bounded linear functional on H1(Ω) and Ψ2(1) = 1.
Moreover, by (3.14) we have, for all v ∈ VT ,

|Ψ2(v − Ev)| . ‖v − Ev‖Lq(Ω) ‖ψ‖Lq′ (Ω) .
(∑

κ∈T
|v|2H1(κ)

) 1
2

= |v|H1(Ω,T ) ,

and thus Φ2 satisfies the conditions of Theorem 3.3.
2

Example 3.6 Let us split the boundary ∂Ω into the finite number of parts Γ1, . . . , Γm,
such that

⋃
i=1,...,m Γi = ∂Ω.

Let ψ ∈ L2(1− 1
n )(∂Ω), such that

∫
∂Ω

ψ ds 6= 0, and such that for some index set I
with |I| < m, we have ψ ≡ 0 on Γi, i ∈ I. We define

Ψ3(ξ) =
(∫

∂Ω

ψ ds

)−1 ∫

∂Ω

ψξ ds. (3.32)

Clearly, this example is a special case of Example 3.4 and therefore it also satisfies
the conditions of Theorem 3.3.

2
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3.4. Sobolev–Poincaré Inequalities for Broken Sobolev Spaces. Suppose
that

|Ψ(Iξ − ξ)|2 . |ξ|2H1(Ω,T ) +
∑

e∈Eint

|e| n
1−n

(∫

e

[ξ] ds

)2

. (3.33)

This condition is satisfied by Ψ1 (and thus Ψ3) and Ψ2 above, if ψ ∈ L2(1− 1
n )(∂Ω)

and ψ ∈ L
2n

n+2 (Ω), respectively, with
∫

∂Ω
ψ ds 6= 0 and

∫
Ω

ψ ds 6= 0, respectively.
Let us start with the proof of (3.33) for Ψ1. With r = 2(n− 1)/(n− 2), we have

|Ψ1(Iξ − ξ)| ≤ C ‖Iξ − ξ‖Lr(∂Ω) = C

( ∑

e⊂∂Ω

‖Iξ − ξ‖r
Lr(e)

)1/r

≤ C





∑

κ∈T
|∂κ∩∂Ω|>0

(
h−1

κ ‖Iξ − ξ‖L2(κ) + ‖∇(Iξ − ξ)‖L2(κ)

)r





1/r

≤ C





∑

κ∈T
|∂κ∩∂Ω|>0

(
h−1

κ ‖Iξ − ξ‖L2(κ) + ‖∇(Iξ − ξ)‖L2(κ)

)2





1
2

,

where we used the trace inequality

‖w‖Lr(e) ≤ C
(
h−1

κ ‖w‖L2(κ) + ‖∇w‖L2(κ)

)
for all w ∈ H1(κ),

with w = Iξ − ξ, and (3.10).
Now,

‖Iξ − ξ‖L2(κ) ≤ ‖Iξ −Πκξ‖L2(κ) + ‖Πκξ − ξ‖L2(κ) .

As in (3.5),

‖Iξ −Πκξ‖2L2(κ) . |κ|
∑

e⊂∂κ

|(Iξ −Πκξ)(ce)|2 . |κ|
∑

e⊂∂κ\∂Ω

|e|−2

(∫

e

[ξ] ds

)2

= |κ| 2n · |κ|1− 2
n

∑

e⊂∂κ\∂Ω

|e|−2

(∫

e

[ξ] ds

)2

. h2
κ

∑

e⊂∂κ\∂Ω

|e| n
1−n

(∫

e

[ξ] ds

)2

,

and thus

h−1
κ ‖Iξ −Πκξ‖L2(κ) .





∑

e⊂∂κ\∂Ω

|e| n
1−n

(∫

e

[ξ] ds

)2




1
2

.

Identically to the proof of (3.8), we conclude that

‖Πκξ − ξ‖L2(κ) . hκ |ξ|H1(κ) ,
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and therefore, by combining these estimates, we have

h−1
κ ‖Iξ − ξ‖L2(κ) . |ξ|H1(κ) +





∑

e⊂∂κ\∂Ω

|e| n
1−n

(∫

e

[ξ] ds

)2




1
2

.

Analogously, writing Iξ− ξ = (Iξ−Πξ)+Πξ +(−ξ) and using (3.5), (3.8) we deduce
that |Iξ − ξ|H1(κ) is also bounded by the same expression.

Hence,

|Ψ1(Iξ − ξ)|2 .
∑

κ∈T
|∂κ∩∂Ω|>0

(
h−1

κ ‖Iξ − ξ‖L2(κ) + ‖∇ξ‖L2(κ)

)2

.
∑

κ∈T
|∂κ∩∂Ω|>0



|ξ|

2
H1(κ) +

∑

e⊂∂κ\∂Ω

|e| n
1−n

(∫

e

[ξ] ds

)



. |ξ|2H1(Ω,T ) +
∑

e∈Eint

|e| n
1−n

(∫

e

[ξ] ds

)2

,

as required.
Next, we prove that Ψ2, defined above, also satisfies the condition (3.33). With

r = 2n/(n− 2) we have

|Ψ2(Iξ − ξ)| ≤ C ‖Iξ − ξ‖Lr(Ω) . ‖Iξ −Πκξ‖Lr(Ω) + ‖Πκξ − ξ‖Lr(Ω)

≈
(∑

κ∈T
‖Iξ −Πκξ‖r

Lr(κ)

)1/r

+

(∑

κ∈T
‖Πκξ − ξ‖r

Lr(κ)

)1/r

.
(∑

κ∈T
‖Iξ −Πκξ‖2Lr(κ)

) 1
2

+

(∑

κ∈T
‖Πκξ − ξ‖2Lr(κ)

) 1
2

.





∑

κ∈T

∑

e⊂∂κ\∂Ω

|e| n
1−n

(∫

e

[ξ] ds

)2




1
2

+

(∑

κ∈T
|ξ|2H1(κ)

) 1
2

,

where we used (3.10), (3.6), and (3.8). Hence,

|Ψ2(Iξ − ξ)|2 .
∑

e∈Eint

|e| n
1−n

(∫

e

[ξ] ds

)2

+ |ξ|2H1(Ω,T ) .

Theorem 3.7 Let Ψ be a bounded linear functional on H1(Ω, T ), Ψ(1) = 1, which
satisfies conditions (3.28) and (3.33). Then, there exists a continuous function ς :
R+ → R+, independent of T , such that

‖ξ‖2Lq(Ω) ≤ ς(θT )

{
|ξ|2H1(Ω,T ) +

∑

e∈Eint

|e| n
1−n

(∫

e

[ξ] ds

)2

+ |Ψ(ξ)|2
}

, (3.34)

for all ξ ∈ H1(Ω, T ), q = 2n/(n− 2), n ≥ 3.
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Proof. By (3.27), (3.11), (3.9), and (3.33)

‖ξ‖2Lq(Ω) . ‖ξ − Iξ‖2Lq(Ω) + ‖Iξ‖2Lq(Ω) . ‖ξ − Iξ‖2Lq(Ω) +
(
|Iξ|2H1(Ω) + |Ψ(Iξ)|2

)

. ‖ξ − Iξ‖2Lq(Ω) + |Iξ|2H1(Ω) + |Ψ(Iξ − ξ)|2 + |Ψ(ξ)|2

. |ξ|2H1(Ω,T ) +
∑

e∈Eint

|e| n
1−n

(∫

e

[ξ] ds

)2

+ |Ψ(ξ)|2 ,

as required.
2

Remark 3.8 We make some remarks about this theorem.
1. For 1 ≤ q ≤ 2n/(n − 2), n ≥ 3, the inequality follows from the one for

q = 2n/(n− 2) via Hölder’s inequality.
2. For n = 2, the argument is identical and (3.34) holds for all q ∈ [1,∞).
3. We have proved the inequality in the case of T being a simplical triangulation

of Ω. The extension to the case of a general partition of Ω is discussed in
Sections 6 and 7 of [4]. Proceeding in exactly the same fashion as in [4], we
conclude that the inequality (3.34) holds for general partitions.

4. Let us use the Cauchy–Schwarz inequality on the term of (3.34) containing
the integral of jumps of ξ over the face e. We obtain

∑

e∈Eint

|e| n
1−n

(∫

e

[ξ] ds

)2

≤
∑

e∈Eint

|e| 1
1−n

∫

e

[ξ]2 ds.

By noting that |e|−1 = h
−(n−1)
e , where he ≡ diam e, we obtain

‖ξ‖2Lq(Ω) ≤ ς(θT )

{
|ξ|2H1(Ω,T ) +

∑

e∈Eint

h−1
e

∫

e

[ξ]2 ds + |Ψ(ξ)|2
}

.

2
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