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Abstract. We consider the hp–version interior penalty discontinuous Galerkin finite element
method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann bound-
ary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial
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1. Introduction. Discontinuous Galerkin finite element methods (DGFEMs)
were introduced in the early 1970’s for the numerical solution of first–order hyperbolic
problems (see [30, 26, 24, 23, 16, 17, 18, 19, 31, 32]). Simultaneously, but indepen-
dently, they were proposed as non–standard schemes for the numerical approximation
of second–order elliptic equations [29, 36, 4]. In recent years there has been renewed
interest in discontinuous Galerkin methods due to their favourable properties, such as
a high degree of locality, stability in the absence of streamline–diffusion stabilisation
for convection–dominated diffusion problems [21], and the flexibility of locally varying
the polynomial degree in hp–version approximations, since no pointwise continuity re-
quirements are imposed at the element interfaces. Much attention has been paid to
the analysis of DG methods applied to non–linear hyperbolic equations and hyper-
bolic systems [20, 13, 14], several other types of non–linear equations (including the
Hamilton–Jacobi equation [22], the non–linear Schrödinger equation [25], and other
non–linear problems [15]). The analysis of the spatial discretisation of non–linear
parabolic problems by the Interior Penalty type of the DGFEM (see [4]) has been
pursued by Rivière & Wheeler in [33], where the non–linearities were assumed to be
uniformly Lipschitz continuous with respect to the unknown solution. The resulting
error bounds were based on the projection operator described in [34], and were not
p–optimal in the H1–norm.

In this work we shall be concerned with the error analysis of the hp–version
interior penalty discontinuous Galerkin finite element method (hp–DGFEM), for an
initial–boundary value problem for a semilinear PDE of parabolic type in n ≥ 2
spatial dimensions on shape–regular quadrilateral meshes (see (2.1) below). Here, we
consider only the spatial discretisation of the problem, leaving the choice of time–
stepping techniques and their analysis for a future work. We shall suppose that the
non–linearity satisfies the local Lipschitz condition (2.2).

The paper is structured as follows. In Section 2 we state the model problem,
followed by the definition of function spaces used throughout our work (Section 3).
Next, we state the broken weak formulation (Section 4). After selecting the finite
element space that will be used for the discretisation of the model problem in space
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2 A. LASIS AND E. SÜLI

(Section 5), we state the hp–DGFEM (Section 6). Section 7 contains the approxi-
mation theory, required in the subsequent error analysis. The error analysis of the
hp–DGFEM for semilinear parabolic equations is discussed in Section 8. We begin by
establishing the local Lipschitz continuity of the mapping f : Lq(Ω) → L2(Ω). Section
8.1 contains the error analysis of the non–symmetric version of the interior penalty
hp–DGFEM: we prove an h–optimal and p–suboptimal (by half an order of p) a pri-
ori error bound. The bound indicates that the presence of the non–linearity, obeying
condition (2.2), does not degrade the accuracy of the hp–DGFEM in the H1–norm.
Section 8.2 is concerned with the derivation of the L2–norm error bounds in the case
of the symmetric version of the interior penalty hp–DGFEM. For this purpose, we
first derive error bounds on the broken elliptic projector (Section 8.2.1) defined by
the symmetric version of the hp–DGFEM. Section 8.2.2 is concerned with the error
analysis and derivation of the a priori error bound for the L2–norm, and is largely
based on the techniques developed in the analysis of the non–symmetric version of
the hp–DGFEM. Section 9 contains some final comments on the results in this work.

2. Model Problem. Let Ω be a bounded open domain in R
n, n ≥ 2, with

a sufficiently smooth boundary ∂Ω. We consider the semilinear partial differential
equation of parabolic type

u̇ − ∆u = f(u) in Ω × (0, T ], (2.1)

where u̇ ≡ ∂u/∂t, T > 0, and f ∈ C1(R).
We also assume the following growth–condition on the function f :

|f(v) − f(w)| ≤ Cg(1 + |v| + |w|)α |v − w| for all v, w ∈ R, (2.2)

where Cg > 0 and α > 0.

Upon decomposing the boundary ∂Ω into two parts, ΓD and ΓN, so that ΓD∪ΓN =
∂Ω, we impose Dirichlet and Neumann boundary conditions respectively:

u = gD on ΓD × [0, T ],

∇u · n = gN on ΓN × [0, T ],
(2.3)

where n = n(x) denotes the unit outward normal vector to ∂Ω at x ∈ ∂Ω.
Finally, we impose the initial condition

u = u0 on Ω × {0} , (2.4)

where u0 = u0(x).

As the solution of this problem may exhibit blow–up in finite time, we shall
assume that, for the potential blow–up time T ⋆ ∈ (0,∞], the time interval [0, T ] on
which the problem is defined is bounded by the blow–up time, i.e., T < T ⋆.

3. Function Spaces. Since hp-DGFEM is a non–conforming method, it is nec-
essary to introduce Sobolev spaces defined on a subdivision T of the domain Ω; we
call such ‘piecewise Sobolev spaces’ broken Sobolev spaces.

A subdivision T of the domain Ω ⊂ R
n, n ≥ 2, is a family of disjoint open sets

(elements) κ such that Ω = ∪κ∈T κ. Before we define broken Sobolev spaces, we shall
introduce the basic principles of constructing a subdivision T .

Let T be a subdivision of the polyhedral domain Ω ⊂ R
n, n ≥ 2, into disjoint

open polyhedra (elements) κ such that Ω = ∪κ∈T κ, where T is regular or 1–irregular,
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i.e., each face of κ has at most one hanging node. We assume that the family of
subdivisions T is shape–regular (see pages 61, 113, and Remark 2.2 on page 114 in
[10]), and require each κ ∈ T to be an affine image of a fixed master element κ̂, i.e.,
κ = Fκ(κ̂) for all κ ∈ T , where κ̂ is either the open unit simplex or the open unit
hypercube in R

n, n ≥ 2.

Definition 3.1 The broken Sobolev space of composite order s = {sκ : κ ∈ T } on a
subdivision T of Ω is defined as

W s

p (Ω, T ) :=
{
u ∈ Lp(Ω) : u|κ ∈ W sκ

p (κ) for all κ ∈ T
}

,

sκ being the local Sobolev index on the element κ.
The associated broken norm and seminorm are defined as

‖u‖W s

p(Ω,T ) :=

(∑

κ∈T

‖u‖p
W sκ

p (κ)

)1/p

, |u|W s

p(Ω,T ) :=

(∑

κ∈T

|u|pW sκ
p (κ)

)1/p

.

When sκ = s, we write W s
p (Ω, T ), and for p = 2 we denote Hs ≡ W s

2 .

As our main concern are time–dependent problems, we need to introduce Sobolev
spaces comprising functions that map a closed bounded subinterval of R, with the
interval in question thought of as a time interval, into Banach spaces.

For further reference, let X denote a Banach space, with the norm ‖·‖, and let
the time interval of interest be [0, T ] with T > 0.

Definition 3.2 The space

Lp(0, T ;X)

consists of all strongly measurable functions u : [0, T ] → X with the norm

‖u‖Lp(0,T ;X) :=

(∫ T

0

‖u(t)‖p
dt

)1/p

< ∞ for 1 ≤ p < ∞,

and

‖u‖L∞(0,T ;X) := ess.sup
0≤t≤T

‖u(t)‖ < ∞.

In order to move to Banach–space–valued Sobolev spaces, we shall define the weak
derivative of a function belonging to L1(0, T ;X)

Definition 3.3 The function v ∈ L1(0, T ;X) is the weak derivative of u ∈ L1(0, T ;X),
written

u̇ = v,

provided that, for all scalar test functions ϕ ∈ C∞
0 (0, T ), we have

∫ T

0

ϕ̇(t)u(t) dt = −
∫ T

0

ϕ(t)v(t) dt.
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Definition 3.4 The Sobolev space

W 1
p (0, T ;X)

consists of all functions u ∈ Lp(0, T ;X) such that u̇ exists in the weak sense and
belongs to Lp(0, T ;X), with the associated norm

‖u‖W 1
p (0,T ;X) :=

(∫ T

0

{‖u(t)‖p
+ ‖u̇(t)‖p} dt

)1/p

< ∞ for 1 ≤ p < ∞,

and

‖u‖W 1
∞

(0,T ;X) := ess.sup
0≤t≤T

(‖u(t)‖ + ‖u̇(t)‖).

Further, for simplicity, we shall write H1(0, T ;X) ≡ W 1
2 (0, T ;X).

4. Broken Weak Formulation. Before presenting the broken weak formula-
tion of the problem described in Section 2, we shall introduce some notation. Let
T be a subdivision of Ω ⊂ R

n, n ≥ 2, into disjoint open polyhedra κ as in Section
3. By E we denote the set of all open (n − 1)-dimensional faces of the subdivision
T , containing the smallest common (n − 1)-dimensional interfaces e of neighbouring
elements. We define

Eint :=
⋃

e∈E\∂Ω

e and E∂ :=
⋃

e∈E∩∂Ω

e.

Numbering the elements of the subdivision T , and choosing any internal interface
e ∈ Eint, there exist positive integers i, j such that i > j and elements κ ≡ κi and
κ′ ≡ κj which share this interface e. We define the jump of a function u ∈ Hs(Ω, T )
across the face e and the mean value of u on e by

[u]e := u|∂κ∩e − u|∂κ′∩e and 〈u〉e :=
1

2
(u|∂κ∩e + u|∂κ′∩e) ,

respectively, with ∂κ denoting the union of all open faces of the element κ. With each
face e we associate the unit normal vector ν pointing from the element κi to κj when
i > j; when the face belongs to E∂ , we choose ν to be the unit outward normal vector
n. Finally, we decompose the set of all faces on the boundary E∂ into two sets, ED

and EN, such that ΓD = ∪e∈ED
e and ΓN = ∪e∈EN

e.
Now we are ready to introduce the broken weak formulation of the problem (2.1)–

(2.4). We define the bilinear form B(·, ·) by

B(u, v) :=
∑

κ∈T

∫

κ

∇u · ∇v dx

+

∫

Γint

{θ 〈∇v · ν〉 [u] − 〈∇u · ν〉 [v]} ds +

∫

Γint

σ [u] [v] ds

+

∫

ΓD

{θ(∇v · n)u − (∇u · n)v} ds +

∫

ΓD

σuv ds,

(4.1)

and the linear functional l(·) by

l(v) :=

∫

ΓN

gNv ds + θ

∫

ΓD

(∇v · n)gD ds +

∫

ΓD

σgDv ds. (4.2)
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Here σ is called the discontinuity–penalisation parameter and is defined by

σ|e = σe for e ∈ Eint ∪ E∂ ,

where σe is a non–negative constant on the face e. The precise choice of σe will be
discussed in Section 8. The subscript e in these definitions will be suppressed when
no confusion is likely to occur. The parameter θ here takes the values ±1. The
choice of θ = −1 leads to a symmetric bilinear form B(·, ·); we call this method a
Symmetric Interior Penalty, or SIP, method. On the other hand, the choice of θ = 1
leads to a non–symmetric, but coercive bilinear form B(·, ·); we call such method a
Nonsymmetric Interior Penalty, or NSIP, method. Further we shall label the bilinear
form (4.1) and the linear functional (4.2) with indices S and NS in the symmetric and
non–symmetric cases respectively.

Then, the broken weak formulation of the problem (2.1)–(2.4) reads:

find u ∈ H1(0, T ;A) such that
∑

κ∈T

∫

κ

u̇v dx + B(u, v) −
∑

κ∈T

∫

κ

f(u)v dx = l(v), for all v ∈ H2(Ω, T ),

u(0) = u0,

(4.3)

where by A we denote the function space

A =
{
w ∈ H2(Ω, T ) : w, ∇w · ν are continuous across each e ∈ Eint

}
.

5. Finite Element Space. Here we define the finite–dimensional subspace of
H1(Ω, T ) on which the finite element method will be posed.

It makes sense to construct this space in such a way that the degree of piece-
wise polynomials contained in the space can be different on every element κ of the
subdivision T . This will allow us to vary the approximation order according to the
local regularity of the solution on the element by changing the degree of the poly-
nomial on elements. As we are concerned with the discontinuous Galerkin method
here, we do not need to make any additional assumptions to ensure continuity of the
approximation across element interfaces. Henceforth, this method will be referred to
as hp–DGFEM (see [35] for a description of hp–FEM).

For a non–negative integer p, we denote by Pp(κ̂) the set of polynomials of total
degree p on a bounded open set κ̂. When κ̂ is the unit hypercube, we also consider
Qp(κ̂), the set of all tensor–product polynomials on κ̂ of degree p in each coordinate
direction. To each κ ∈ T we assign a non–negative integer pκ (the local polynomial
degree) and a non–negative integer sκ (the local Sobolev index).

Recalling the construction of the subdivision T (see Section 3), we collect the pκ

and the Fκ into vectors p = {pκ : κ ∈ T } and F = {Fκ : κ ∈ T }, and consider the
finite element space

Sp(Ω, T ,F) :=
{
u ∈ L2(Ω) : u|κ ◦ Fκ ∈ Rpκ

(κ̂), κ ∈ T
}

, (5.1)

where R is either P or Q.

6. Discontinuous Galerkin Finite Element Method. Using the finite ele-
ment space Sp(Ω, T ,F), defined in the previous section, and the broken weak formu-
lation of the problem (4.3), the approximation uDG to the solution u of the problem
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(2.1)–(2.4), discretised by the discontinuous Galerkin finite element method in space,
is defined as follows:

find uDG ∈ H1(0, T ;Sp(Ω, T ,F)) such that
∑

κ∈T

∫

κ

u̇DGv dx + B(uDG, v) −
∑

κ∈T

∫

κ

f(uDG)v dx = l(v), for all v ∈ Sp(Ω, T ,F),

uDG(0) = uDG
0 ,

(6.1)

where uDG
0 denotes the approximation of the function u0 from the finite element

space Sp(Ω, T ,F), and the parameter σ in (4.1) and (4.2) is to be defined in the error
analysis.

The equation (6.1) can be interpreted as a system of ordinary differential equations
in t for the coefficients in the expansion of uDG(t) in terms of basis functions of the
finite–dimensional space Sp(Ω, T ,F). Thus, (6.1) defines an autonomous system of
ordinary differential equations with C1 (and, therefore, locally Lipschitz continuous)
right–hand side, given that f ∈ C1(R) and the other terms are linear. By the Cauchy–
Picard theorem this, in turn, implies the existence of a unique local solution to (6.1).

Since no pointwise continuity requirement is imposed on the elements of the finite
element space, the approximation uDG in Sp(Ω, T ,F) to the solution u will be, in
general, discontinuous.

Remark 6.1 If the continuity assumptions made in the construction of the space A

are violated, i.e., u and ∇u ·ν are discontinuous across the element interfaces, we have
to modify the DGFEM accordingly. This could be done, for example, by performing a
DGFEM discretisation on every subdomain of Ω where the continuity requirements are
satisfied, and incorporating into the definition of the method transmission conditions
on interfaces where discontinuities in the solutions occur. Such situations include,
for example, heat transfer problems in heterogeneous or layered media or problems
that contain different phases of material. There the solution u and/or the diffusive
fluxes ∇u·n can be discontinuous across element interfaces. This information has to be
incorporated into the definition of the method and, in particular, into the choice of the
discontinuity–penalisation parameter σ, to avoid penalising physical discontinuities.

2

7. hp–Error Estimates. The first analysis of the p–version of FEM for Poisson’s
equation was given by Babuška et al. [9], and was subsequently refined by Babuška
& Suri in [7] and [8]. The analysis relied on the use of the Babuška–Suri projection
operator. For the special case of n = 2, the analysis in W s

q –norms was carried out
by Ainsworth & Kay in [2] and [3], where the approximation bounds were used for
deriving a priori error bounds for p– and hp–version FEMs for the r–Laplacian, using
approximation by continuous piecewise polynomials on both quadrilateral and trian-
gular elements. The error bounds obtained in these works contain logarithmic terms
in p, and thus are only optimal in p up to a logarithmic factor.

We shall proceed with the derivation of local approximation error bounds, avoid-
ing such suboptimal logarithmic terms by using some very recent results due to Melenk
[28].

From Proposition A.2 and Theorem A.3 in [28], we conclude the following result
concerning polynomial approximation of functions defined on hypercubes.
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Lemma 7.1 Let Q := (−1, 1)n, n ≥ 1, and let u ∈ W k
q (Q), where q ∈ [1,∞]; then

there exists a sequence of algebraic polynomials zp(u) ∈ Rp(Q), p ∈ N, such that, for
any 0 ≤ l ≤ k,

‖u − zp(u)‖W l
q(Q) ≤ Cp−(k−l) ‖u‖W k

q (Q) , 1 ≤ q ≤ ∞, (7.1)

where C > 0 is a constant, independent of u and p, but dependent on q and k.

To derive the general hp–estimates for the projection operator u 7→ zp(u), recall
from Sections 3 and 5 the construction of the subdivision T of the computational
domain Ω. Let κ̂ be the n–dimensional open unit hypercube, which we shall call the
reference element. We construct each element κ ∈ T via an affine mapping from
the reference element κ = Fκ(κ̂), based on scaling each coordinate of the reference
element by the factor hκ.

We shall also need the following result.

Lemma 7.2 Suppose that κ ∈ T is an n–dimensional parallelepiped of diameter hκ,
and that u|κ ∈ W kκ

q (κ) for some kκ ≥ 0 and κ ∈ T . Define û ∈ W kκ
q (κ̂) by the rule

û(x̂)|κ̂ = u(Fκ(x̂))|κ; Then

inf
v̂∈Rpκ (κ̂)

‖û − v̂‖W kκ
q (κ̂) ≤ Chsκ−n/q

κ ‖u‖W kκ
q (κ) ,

where sκ = min(pκ + 1, kκ).

Proof. (See [7], Lemma 4.4, and [3], Lemma 1). Assume that kκ is an integer.
If kκ = 0, then the result follows by bounding the left–hand side of the inequality
by ‖û‖Lq(κ̂) and scaling to ‖u‖Lq(κ). Suppose, therefore, that kκ ≥ 1. For any

v̂ ∈ Rpκ
(κ̂), we have

‖û − v̂‖W kκ
q (κ̂) ≤ ‖û − v̂‖W sκ

q (κ̂) +

kκ∑

lκ=sκ+1

|û|W lκ
q (κ̂) ,

with the convention that if sκ = kκ then the summation is over an empty index set
of lκ.

Using Theorem 3.1.1 in [12], we obtain

inf
v̂∈Rpκ (κ̂)

‖û − v̂‖W kκ
q (κ̂) ≤

kκ∑

lκ=sκ

|û|W lκ
q (κ̂) .

Scaling back to the element κ ∈ T , we obtain the result for integer kκ. The result for
general kκ follows by a standard function space interpolation argument.

2

Now we are ready to state our main result concerning the approximation proper-
ties of the projection operator u 7→ zp(u).

Theorem 7.3 Suppose that κ ∈ T is an n–dimensional parallelepiped of diameter hκ,
and that u|κ ∈ W kκ

q (κ) for some kκ ≥ 0 and κ ∈ T ; then, there exists a sequence of

algebraic polynomials zhκ
pκ

(u) ∈ Rpκ
(κ), pκ ≥ 1, such that for any l, with 0 ≤ l ≤ kκ,

∥∥u − zhκ

pκ
(u)

∥∥
W l

q(κ)
≤ C

hsκ−l
κ

pkκ−l
κ

‖u‖W kκ
q (κ) , 1 ≤ q ≤ ∞, (7.2)
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and, for q = 2,

∥∥u − zhκ

pκ
(u)

∥∥
L2(eκ)

≤ C
h

sκ−
1
2

κ

p
kκ−

1
2

κ

‖u‖Hkκ (κ) , (7.3)

∥∥∇(u − zhκ

pκ
(u))

∥∥
L2(eκ)

≤ C
h

sκ−
3
2

κ

p
kκ−

3
2

κ

‖u‖Hkκ (κ) , (7.4)

where eκ is any face (edge) eκ ⊂ ∂κ, sκ = min(pκ + 1, kκ), and C is a constant
independent of u, hκ, and pκ, but dependent on k = maxκ∈T kκ and q.

Proof. (See also [7]). Let u ∈ W kκ
q (κ) and define û ∈ W kκ

q (κ̂) by the rule û(x̂)|κ̂ =
u(Fκ(x̂))|κ. First, we note that, by Lemma 4.1 in [7], for any v̂ ∈ Rpκ

(κ̂), we have

the property that ẑhκ
pκ (v̂) = v̂. By Lemma 7.1, (7.1), we have, for 0 ≤ l ≤ kκ,
∥∥∥∥û − ẑhκ

pκ (û)

∥∥∥∥
W l

q(κ̂)

≤ Cp−(kκ−l)
κ ‖û‖W kκ

q (κ̂) .

Noting that ẑhκ
pκ (û)(x̂) = zhκ

pκ
(u)(Fκ(x̂)), and applying Lemma 7.2 with v̂ ∈ Rpκ

(κ̂),
we obtain

∥∥∥∥û − ẑhκ
pκ (û)

∥∥∥∥
W l

q(κ̂)

=

∥∥∥∥(û − v̂) − ẑhκ
pκ (û − v̂)

∥∥∥∥
W l

q(κ̂)

≤ Cp−(kκ−l)
κ inf

v̂∈Rpκ (κ̂)
‖û − v̂‖W kκ

q (κ̂) ≤ Cp−(kκ−l)
κ h

sκ−
n
q

κ ‖u‖W kκ
q (κ) .

Thus, by a scaling argument, for 0 ≤ m ≤ l ≤ kκ, we have
∣∣u − zhκ

pκ
(u)

∣∣
W m

q (κ)
≤ Cp−(kκ−l)

κ hsκ−m
κ ‖u‖W kκ

q (κ) ,

and therefore
∥∥u − zhκ

pκ
(u)

∥∥
W l

q(κ)
≤ Cp−(kκ−l)

κ hsκ−l
κ ‖u‖W kκ

q (κ) ,

and hence (7.2).
By setting q = 2 in (7.2) and using the trace inequality

‖u‖L2(∂κ) ≤ C
(
h
− 1

2
κ ‖u‖L2(κ) + ‖u‖

1
2

L2(κ) ‖∇u‖
1
2

L2(κ)

)
,

we obtain (7.3) and (7.4).
2

8. Error Analysis. This section is be concerned with the derivation of a pri-
ori error bounds for the initial–boundary value problem for the semilinear parabolic
equation described in Section 2.

We shall assume that the polynomial degree vector p, with pκ ≥ 1 for each κ ∈ T ,
has bounded local variation, i.e., there exists a constant ρ ≥ 1 such that, for any pair
of elements κ and κ′ which share an (n − 1)–dimensional face,

ρ−1 ≤ pκ

pκ′

≤ ρ. (8.1)
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We also recall our regularity assumptions on the subdivision T : namely, T is
shape–regular, and regular or 1–irregular. We shall consider the error analysis of
the hp–version of the discontinuous Galerkin finite element method on shape–regular
meshes. In particular, we shall derive a priori error bounds for both the symmetric
and the non–symmetric version of DGFEM.

Let us begin with the following lemma which establishes the local Lipschitz con-
tinuity of the non–linearity f , required in the a priori error analysis of the hp–version
of DGFEM (6.1) for the model problem (2.1)–(2.4).

Lemma 8.1 Let f ∈ C1(R) satisfy the growth–condition (2.2) with 0 < α < ∞ when
n = 2 and 0 < α ≤ 2/(n − 2) when n ≥ 3, and suppose that 2 < q < ∞. Let

q̂ = max

(
q,

2αq

q − 2

)
.

Then, there exists a positive constant C = C(α,Cg, q, |Ω|) such that

‖f(u) − f(v)‖L2(Ω) ≤ C ‖u − v‖Lq(Ω)

(
1 + ‖u‖α

L
2αq
q−2 (Ω)

+ ‖v‖α

L
2αq
q−2 (Ω)

)
(8.2)

for all u, v ∈ Lq̂(Ω).
Suppose that q = 2(α + 1); then q̂ = 2(α + 1). Moreover, if n = 2, 0 < α < ∞

then 2 < q̂ < ∞, and if n ≥ 3, 0 < α ≤ 2/(n − 2) then 2 < q̂ ≤ 2n/(n − 2).

Proof. From (2.2), by Hölder’s inequality, we have

‖f(u) − f(v)‖2
L2(Ω) =

∫

Ω

|f(u) − f(v)|2 dx ≤ C2
g

∫

Ω

(u − v)2(1 + |u| + |v|)2α dx

≤ C2
g

(∫

Ω

|u − v|2·
q

2 dx

) 2
q

(∫

Ω

(1 + |u| + |v|)2α·(1− 2
q )

−1

dx

)1− 2
q

.

As 1 − 2/q = (q − 2)/q and q > 2, we have

‖f(u) − f(v)‖2
L2(Ω) ≤ C2

g

(∫

Ω

|u − v|q dx

) 2
q

(∫

Ω

(1 + |u| + |v|)
2αq

q−2 dx

) q−2
q

= C2
g ‖u − v‖2

Lq(Ω)

(∫

Ω

(1 + |u| + |v|)
2αq

q−2 dx

) q−2
q

= C2
g ‖u − v‖2

Lq(Ω)

(∫

Ω

(1 + |u| + |v|)
2αq

q−2 dx

) q−2
2αq

·2α

≤ C2
g ‖u − v‖2

Lq(Ω)

(
|Ω|

q−2
2αq + ‖u‖

L
2αq
q−2 (Ω)

+ ‖v‖
L

2αq
q−2 (Ω)

)2α

≤ C2 ‖u − v‖2
Lq(Ω)

(
1 + ‖u‖α

L
2αq
q−2 (Ω)

+ ‖v‖α

L
2αq
q−2 (Ω)

)2

,

and hence (8.2) for all u, v ∈ Lq̂(Ω). The statement in the final sentence of the lemma
follows from our hypothesis on the range of α and the fact that q = 2(α + 1).

2

Hypothesis A. Let f ∈ C1(R) satisfy the growth–condition (2.2) with 0 < α < ∞
when n = 2, and 0 < α ≤ 2/(n − 2) when n ≥ 3. We define q = 2(α + 1).
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With this hypothesis in mind, we can remove the dependence on q in the constant
C in Lemma 8.1 in terms of α.

For the sake of clarity of the exposition, in the rest of the paper we shall confine
ourselves to the case of n ≥ 3. Our proofs can be easily adjusted to cover the case of
n = 2 with 0 < α < ∞.

8.1. The Non–Symmetric Version of DGFEM. Let the bilinear form B be
as in (4.1). Here we shall be concerned with the non–symmetric version of DGFEM
corresponding to θ = 1 in (4.1), so we write BNS(·, ·) in place of B(·, ·). We begin our
error analysis with the following definition.

Definition 8.2 We define the quantity |‖·|‖DG on H1(Ω, T ), associated with the
DGFEM, as follows:

|‖w|‖DG :=

(∑

κ∈T

‖∇w‖2
L2(κ) +

∫

ΓD

σw2 ds +

∫

Γint

σ [w]
2

ds

) 1
2

, (8.3)

where σ is a non–negative function on Γ.

Remark 8.3 Let us observe some properties of |‖·|‖DG defined above.
1. If σ > 0 on Γ, then |‖·|‖DG defines a norm in H1(Ω, T ).
2. If σ = 0 on Γ, then |‖·|‖DG defines a seminorm in H1(Ω, T ).
3. Clearly, |‖w|‖2

DG = BNS(w,w), for all w ∈ H1(Ω, T ).
2

The first step in the error analysis is to decompose the error u − uDG, where u
denotes the analytical solution, as u−uDG = ξ +η, where ξ ≡ Πu−uDG, η ≡ u−Πu,
with Π defined element–wise by

(Πu)|κ := Π(u|κ),

and Π denoting an appropriate projection operator on the element κ. Thus, using the
triangle inequality for the H1–norm, we have

‖u − uDG‖H1(Ω,T ) ≤ ‖η‖H1(Ω,T ) + ‖ξ‖H1(Ω,T ) . (8.4)

We assume for simplicity that the initial value is chosen as

uDG
0 = Πu0, (8.5)

and thus ξ(0) = 0.
We shall proceed by deriving a bound on ‖ξ‖H1(Ω,T ) in terms of norms of η. Then,

by choosing a suitable projection operator Π, we shall be able to use the bounds on
various norms of the projection error η derived in Section 7 to deduce an a priori
error bound for the method.

Let us prove the continuity of the bilinear form BNS, which will also provide the
necessary bound for our error analysis.

Lemma 8.4 Let T be a shape–regular subdivision of Ω and assume that the parameter
σ is positive on Γint ∪ ΓD; then, the following inequality holds for all v ∈ H1(Ω, T )
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and w ∈ Sp(Ω, T ,F), with C a positive constant that depends only on the dimension
n and the shape–regularity of T :

|BNS(v, w)| ≤ C |‖w|‖DG

{∫

ΓD

σ |v|2 ds +

∫

Γint

σ [v]
2

ds +
∑

κ∈T

‖∇v‖2
L2(κ)

+
∑

κ∈T

(
∥∥√τv

∥∥2

L2(∂κ∩ΓD)
+

∥∥∥∥
1√
σ
∇v

∥∥∥∥
2

L2(∂κ∩ΓD)

)

+
∑

κ∈T

(
∥∥√τ [v]

∥∥2

L2(∂κ∩Γint)
+

∥∥∥∥
1√
σ
∇v

∥∥∥∥
2

L2(∂κ∩Γint)

)} 1
2

,

(8.6)
where τe =

〈
p 2

〉
e
/he and he is the diameter of a face e ⊂ Eint ∪ ED; when e ∈ ED the

contribution from outside Ω in the definition of τe is set to 0.

Proof. (See also [21].) Let us decompose

|BNS(v, w)| ≤ I + II + III + IV,

where

I ≡
∣∣∣∣∣
∑

κ∈T

∫

κ

∇v · ∇w dx

∣∣∣∣∣ , II ≡
∣∣∣∣
∫

ΓD

{v(∇w · n) − (∇v · n)w} ds

∣∣∣∣ ,

III ≡
∣∣∣∣
∫

Γint

{[v] 〈∇w · ν〉 − 〈∇v · ν〉 [w]} ds

∣∣∣∣ ,

IV ≡
∣∣∣∣
∫

ΓD

σvw ds +

∫

Γint

σ [v] [w] ds

∣∣∣∣ .

For the term I we have

I ≤ |‖w|‖DG

∑

κ∈T

(
‖∇v‖2

L2(κ)

) 1
2

, (8.7)

and for the term IV we have that

IV ≤ |‖w|‖DG

(∫

ΓD

σ |v|2 ds +

∫

Γint

σ [v]
2

ds

) 1
2

. (8.8)

To deal with the term II, we first note that

II ≤
(∑

κ∈T

1

γκ
‖v‖2

L2(∂κ∩ΓD)

) 1
2

(∑

κ∈T

γκ ‖∇w‖2
L2(∂κ∩ΓD)

) 1
2

+

(∑

κ∈T

∥∥∥∥
1√
σ
∇v

∥∥∥∥
2

L2(∂κ∩ΓD)

) 1
2

(∑

κ∈T

∥∥√σ w
∥∥2

L2(∂κ∩ΓD)

) 1
2

for any set of positive numbers {γκ : κ ∈ T }. Here we can apply the inverse inequality

‖∇w‖2
L2(∂κ∩ΓD) ≤ K

p2
κ

hκ
‖∇w‖2

L2(κ) , (8.9)
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where K depends only on the shape–regularity of T (see Schwab [35], Theorem 4.76,
(4.6.4)). On letting γκ = hκ/p2

κ and defining τe = p2
κ/2he for an (n − 1)–dimensional

face e ⊂ ∂κ ∩ ΓD, we obtain

II ≤ C|‖w|‖DG

∑

κ∈T

(
∥∥√τv

∥∥2

L2(∂κ∩ΓD)
+

∥∥∥∥
1√
σ
∇v

∥∥∥∥
2

L2(∂κ∩ΓD)

) 1
2

. (8.10)

Similarly, we have

III ≤ C|‖w|‖DG

∑

κ∈T

(
∥∥√τ [v]

∥∥2

L2(∂κ∩Γint)
+

∥∥∥∥
1√
σ
∇v

∥∥∥∥
2

L2(∂κ∩Γint)

) 1
2

. (8.11)

By collecting the results we have the desired bound.
2

Now, let us derive a bound on the H1–norm of the error u − uDG.

Lemma 8.5 Let T be a shape–regular subdivision of Ω and assume that f ∈ C1(R)
satisfies Hypothesis A. Suppose further that the positive parameter σ is defined on
Γint ∪ ΓD and

σe = σ|e ≥ h−1
e

on each face e ∈ Eint ∪ ED. In addition, suppose that
a) the local polynomial degree pκ ≥ 2 on each κ ∈ T ;
b) the local Sobolev smoothness kκ ≥ 3.5 on each κ ∈ T ;
c) the hp–mesh is quasi–uniform in the sense that there exists a positive constant

C0 such that

max
κ∈T

hκ

p2
κ

≤ C0 min
κ∈T

hκ

p2
κ

.

Then, for all t ∈ [0, T ], there exists h0 > 0 such that for all h ∈ (0, h0], h =
maxκ∈T hκ, the following inequality holds, with C a positive constant that depends
only on the domain Ω, the quasi–uniformity of T , on the final time T , the exponent
α in the growth–condition for the function f , and the Lebesgue and Sobolev norms of
u over the time interval [0, T ]:

∫ t

0

‖(u − uDG)(s)‖2
H1(Ω,T ) ds ≤ C

∑

κ∈T

∫ t

0

{
‖η̇(s)‖2

L2(κ) + ‖η(s)‖2
L2(α+1)(κ) + ‖η(s)‖2

H1(κ)

+
∥∥√ση(s)

∥∥2

L2(∂κ∩ΓD)
+

∥∥√σ [η(s)]
∥∥2

L2(∂κ∩Γint)
+

∥∥√τη(s)
∥∥2

L2(∂κ∩ΓD)

+

∥∥∥∥
1√
σ
∇η(s)

∥∥∥∥
2

L2(∂κ∩ΓD)

+
∥∥√τ [η(s)]

∥∥2

L2(∂κ∩Γint)
+

∥∥∥∥
1√
σ
∇η(s)

∥∥∥∥
2

L2(∂κ∩Γint)

}
ds

(8.12)

where τe =
〈
p2

〉
e
/he and he is the diameter of a face e ∈ Eint ∪ ED, in which for

e ∈ ED the contribution from outside Ω is set to 0.

Proof. From the formulation of the hp–DGFEM (6.1), for all v ∈ Sp(Ω, T ,F),
we have

∑

κ∈T

∫

κ

u̇DGv dx + BNS(uDG, v) =
∑

κ∈T

∫

κ

f(uDG)v dx + lNS(v). (8.13)
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On the other hand, the broken weak formulation (4.3) of the problem can be rewritten
as

∑

κ∈T

∫

κ

(Πu̇)v dx + BNS(Πu, v) =
∑

κ∈T

∫

κ

f(u)v dx + lNS(v)

+
∑

κ∈T

∫

κ

(Πu̇ − u̇)v dx + BNS(Πu − u, v).

(8.14)

Upon subtracting (8.13) from (8.14) and choosing v = ξ, we obtain

∑

κ∈T

∫

κ

ξ̇ξ dx + BNS(ξ, ξ) =
∑

κ∈T

∫

κ

{f(u) − f(uDG)} ξ dx −
∑

κ∈T

∫

κ

η̇ξ dx − BNS(η, ξ).

By noting that

∑

κ∈T

∫

κ

ξ̇ξ dx =
1

2

d

dt

∑

κ∈T

‖ξ‖2
L2(κ) =

1

2

d

dt
‖ξ‖2

L2(Ω) ,

we can rewrite the above expression as

1

2

d

dt
‖ξ‖2

L2(Ω)+|‖ξ|‖2
DG ≤

∣∣∣∣∣
∑

κ∈T

∫

κ

{f(u) − f(Πu)} ξ dx

∣∣∣∣∣+
∣∣∣∣∣
∑

κ∈T

∫

κ

{f(Πu) − f(uDG)} ξ dx

∣∣∣∣∣

+

∣∣∣∣∣
∑

κ∈T

∫

κ

η̇ξ dx

∣∣∣∣∣ + |BNS(η, ξ)| . (8.15)

By the Cauchy–Schwarz and Young inequalities, with ε1 > 0, we have

∣∣∣∣∣
∑

κ∈T

∫

κ

η̇ξ dx

∣∣∣∣∣ ≤
(∑

κ∈T

‖η̇‖2
L2(κ)

) 1
2

(∑

κ∈T

‖ξ‖2
L2(κ)

) 1
2

≤ ε1

2
‖η̇‖2

L2(Ω) +
1

2ε1
‖ξ‖2

L2(Ω) ,

and, by the same argument, with ε2, ε3 > 0,
∣∣∣∣∣
∑

κ∈T

∫

κ

{f(u) − f(Πu)} ξ dx

∣∣∣∣∣ ≤
ε2

2
‖f(u) − f(Πu)‖2

L2(Ω) +
1

2ε2
‖ξ‖2

L2(Ω) ,

∣∣∣∣∣
∑

κ∈T

∫

κ

{f(Πu) − f(uDG)} ξ dx

∣∣∣∣∣ ≤
ε3

2
‖f(Πu) − f(uDG)‖2

L2(Ω) +
1

2ε3
‖ξ‖2

L2(Ω) .

Further, by Lemma 8.1, upon absorbing all constants into C and noting the definition
of q in Hypothesis A, we have

‖f(u) − f(Πu)‖2
L2(Ω) ≤ C ‖η‖2

Lq(Ω)

(
1 + ‖u‖α

L
2αq
q−2 (Ω)

+ ‖Πu‖α

L
2αq
q−2 (Ω)

)2

≤ C ‖η‖2
Lq(Ω)

(
1 + ‖u‖2α

L
2αq
q−2 (Ω)

+ ‖Πu‖2α

L
2αq
q−2 (Ω)

)

= C ‖η‖2
Lq(Ω)

(
1 + ‖u‖2α

L
2αq
q−2 (Ω)

+ ‖u − η‖2α

L
2αq
q−2 (Ω)

)

≤ C ‖η‖2
Lq(Ω)

(
1 + ‖u‖2α

L
2αq
q−2 (Ω)

+ ‖η‖2α

L
2αq
q−2 (Ω)

)

≤ C ‖η‖2
Lq(Ω) = C ‖η‖2

L2(α+1)(Ω) ,
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where the constant C > 0 depends only on the domain Ω, the growth–condition for
the function f , and on Lebesgue norms of u over the time interval [0, T ].

By Lemma 8.4 and Young inequality, with ε4 > 0, we have the bound

|BNS(η, ξ)| ≤ ε4

2
|‖ξ|‖2

DG +
1

2ε4
F1(η),

where

F1(η) := C
∑

κ∈T

(
‖∇η(s)‖2

L2(κ) +
∥∥√ση(s)

∥∥2

L2(∂κ∩ΓD)
+

∥∥√σ [η(s)]
∥∥2

L2(∂κ∩Γint)

+
∥∥√τη(s)

∥∥2

L2(∂κ∩ΓD)
+

∥∥∥∥
1√
σ
∇η(s)

∥∥∥∥
2

L2(∂κ∩ΓD)

+
∥∥√τ [η(s)]

∥∥2

L2(∂κ∩Γint)
+

∥∥∥∥
1√
σ
∇η(s)

∥∥∥∥
2

L2(∂κ∩Γint)

)
.

Applying these bounds on the right–hand side of (8.15) and absorbing all con-
stants into C1 and C2, we obtain

d

dt
‖ξ‖2

L2(Ω)+(2−ε4)|‖ξ|‖2
DG ≤ C1F(η)+C2 ‖ξ‖2

L2(Ω)+ε3 ‖f(Πu) − f(uDG)‖2
L2(Ω) ,

(8.16)

where

F(η) := F1(η) + ‖η‖2
L2(α+1)(Ω) + ‖η̇‖2

L2(Ω) .

To bound ‖f(Πu) − f(uDG)‖2
L2(Ω), we first note that, by the same argument as

above,

‖f(Πu) − f(uDG)‖2
L2(Ω) ≤ C ‖ξ‖2

L2(α+1)(Ω)

(
1 + ‖uDG‖2α

L
2αq
q−2 (Ω)

)
,

where the constant C > 0 depends only on the domain Ω, the growth–condition for
the function f , and on Lebesgue norms of u over the time interval [0, T ].

Let us choose uDG
0 = Πu0, thus giving ξ(0) = 0, and let 0 < t⋆ ≤ T be the largest

time such that uDG exists for all t ∈ [0, t⋆] and

‖ξ‖2
H1(Ω,T ) ≤ 1 for all t ∈ [0, t⋆];

existence of such a t⋆ is guaranteed by the Cauchy–Picard theorem. Since, by Hy-
pothesis A, 2αq/(q − 2) ≤ 2n/(n − 2), this implies that

‖uDG‖2α

L
2αq
q−2 (Ω)

≤ Const. for all t ∈ [0, t⋆]

by the broken Sobolev–Poincaré inequality (see Theorem 3.7 in [27]1); here Const.
is a constant that is independent of the discretisation parameters and t, and only

1Using the notation of the cited paper, we define Ψ as in Example 3.6 of that paper, with

ψ ∈ L2(∂Ω), ψ ≡ 0 on ΓN

and

|Ψ(ξ)|2 ≤ C
∑

e∈ED

h−1

e

∫

e

ξ2 ds.
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depends on Sobolev norms of u over the time interval [0, t⋆].
This implies that

‖f(Πu) − f(uDG)‖2
L2(Ω) ≤ C̃|‖ξ|‖2

DG,

where the constant C̃ > 0 depends only on the domain Ω, the growth–condition for
the function f , and on Lebesgue and Sobolev norms of u over the time interval [0, t⋆].

On choosing ε4 + ε3C̃ ≤ 1, (8.16) takes the form

d

dt
‖ξ‖2

L2(Ω) + |‖ξ|‖2
DG ≤ C1F(η) + C2 ‖ξ‖2

L2(Ω) , (8.17)

with the constant C1 > 0 depending only on the domain Ω, the growth–condition for
the function f , and on Lebesgue and Sobolev norms of u over the time interval [0, t⋆].

Upon integrating from 0 to t ≤ t⋆ and noting that ξ(0) = 0, this yields

‖ξ(t)‖2
L2(Ω) +

∫ t

0

|‖ξ(s)|‖2
DG ds ≤ C1

∫ t

0

F(η(s)) ds + C2

∫ t

0

‖ξ(s)‖2
L2(Ω) ds, (8.18)

with the constant C1 as above.

According to this inequality, if F(η) were zero, we would have ‖ξ‖2
L2(Ω) = 0 for

all t ∈ [0, t⋆]. More generally, by choosing an appropriate projection operator Π, we
can make F(η) as small as we like (for example, by fixing the local polynomial degree
pκ on each element κ ∈ T and reducing h = maxκ∈T hκ).

Let us choose C3 = C22
2α and h0 > 0 so small that, for all h ≤ h0 and t ∈ [0, t⋆],

the following inequality holds:

C1

∫ t

0

F(η(s)) ds <
1

1 + T
e−C3T × C−1

invC−2
0

(
max
κ∈T

hκ

p2
κ

)2

,

where Cinv is the constant from the inverse inequality

‖ξ‖2
H1(Ω,T ) ≤ Cinv

(
max
κ∈T

p2
κ

hκ

)2

‖ξ‖2
L2(Ω) . (8.19)

We note in passing that in order to be able to extract the factor (maxκ∈T (hκ/p2
κ))2

from F(η), we need hypotheses a) and b) above.
Hence (8.18) becomes

‖ξ(t)‖2
L2(Ω) +

∫ t

0

|‖ξ(s)|‖2
DG ds <

1

1 + T
e−C3T × C−1

invC−2
0

(
max
κ∈T

hκ

p2
κ

)2

+ C2

∫ t

0

‖ξ(s)‖2
L2(Ω) ds,

which, by the Gronwall–Bellman inequality, implies that

‖ξ(t)‖2
L2(Ω) < C−1

invC−2
0

(
max
κ∈T

hκ

p2
κ

)2

for all t ∈ [0, t⋆].

By the inverse inequality (8.19) we have that,

‖ξ(t)‖2
H1(Ω,T ) < C−2

0

(
max
κ∈T

hκ

p2
κ

)2 (
max
κ∈T

p2
κ

hκ

)2

= C−2
0

(
max
κ∈T

hκ

p2
κ

)2 (
min
κ∈T

hκ

p2
κ

)−2

,
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for all t ∈ [0, t⋆], which, by the quasi–uniformity hypothesis c) above, is ≤ 1. Hence,
then, for h ≤ h0, we have

‖ξ‖2
H1(Ω,T ) < 1 for all t ∈ [0, t⋆].

By continuity of the mapping t 7→ ‖ξ(t)‖2
H1(Ω,T ), the assumption t⋆ < T implies

that either ‖ξ(t)‖2
H1(Ω,T ) ≤ 1 for all t ∈ [0, T ], or that there exists a time t⋆⋆ ∈ (t⋆, T ]

such that ‖ξ(t⋆⋆)‖2
H1(Ω,T ) = 1.

In either case, we arrive at a contradiction with the fact that t⋆ is the largest time
in the interval [0, T ] such that, for all t ∈ [0, t⋆], we have ‖ξ(t)‖2

H1(Ω,T ) ≤ 1. Thus we
deduce that t⋆ = T , for 0 < h ≤ h0.

From (8.18) by the Gronwall–Bellman inequality we obtain

‖ξ(t)‖2
L2(Ω) +

∫ t

0

‖ξ(s)‖2
H1(Ω,T ) ds ≤ C

∫ t

0

F(η(s)) ds, 0 ≤ t ≤ T,

and hence

∫ t

0

‖ξ(s)‖2
H1(Ω,T ) ds ≤ C

∫ t

0

F(η(s)) ds, 0 ≤ t ≤ T,

with the constant C > 0 depending only on the domain Ω, the quasi–uniformity of T ,
on the time T , the growth–condition for the function f , and on Lebesgue and Sobolev
norms of u over the time interval [0, T ].

Employing the triangle inequality yields

∫ t

0

‖(u − uDG)(s)‖2
H1(Ω,T ) ds ≤ C

∫ t

0

{
‖η‖2

H1(Ω,T ) + F(η(s))
}

ds, 0 ≤ t ≤ T,

and hence (8.12).
2

Our next result concerns the accuracy of the hp–version NSIP DGFEM (6.1).

Theorem 8.6 Let Ω ⊂ R
n, n ≥ 2, be a bounded polyhedral domain, T = {κ} a

shape–regular and quasi–uniform subdivision of Ω into n–parallelepipeds, and p a
polynomial degree vector of bounded local variation. Let each face e ∈ Eint ∪ ED be
assigned a positive real number

σe =
〈p〉e
he

, (8.20)

where he is the diameter of e, with the convention that for e ∈ ED the contributions
from outside Ω in the definition of σe are set to 0. Suppose that the function f ∈
C1(R), that f satisfies the growth–condition (2.2) for some positive constant Cg, and
that Hypothesis A holds. Then, if u(·, t)|κ ∈ Hkκ(κ) with kκ ≥ 3.5 on each κ ∈ T ,
there exists h0 > 0 such that for all h ∈ (0, h0], h = maxκ∈T hκ, and all t ∈ [0, T ],
the solution uDG(·, t) ∈ Sp(Ω, T ,F) of the NSIP DGFEM (6.1) satisfies the following
error bound:

‖u − uDG‖2
L2(0,T ;H1(Ω,T )) ≤ C

∑

κ∈T

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
X

; (8.21)



hp–DGFEM FOR SEMILINEAR PARABOLIC PROBLEMS 17

with 1 ≤ sκ ≤ min(pκ + 1, kκ), pκ ≥ 2 on each κ ∈ T , where C is a positive constant
depending only on the domain Ω, the shape–regularity and quasi–uniformity of T , the
time T , the growth–condition on the function f , the parameter ρ in (8.1), on k =
maxκ∈T kκ, and on the Lebesgue and Sobolev norms of u over the time interval [0,T];

the norm ‖u‖2
X

signifies the collection of norms ‖u‖2
L2(0,T ;Hkκ (κ))+‖u̇‖2

L2(0,T ;Hkκ−1(κ)).

Proof. Let us choose the projector Π to be the projection operator u 7→ zhκ
pκ

(u),
defined in Section 7. From Theorem 7.3, inequalities (7.2)–(7.4), we have the estimates

‖η‖2
L2(∂κ) ≤ C

h2sκ−1
κ

p2kκ−1
κ

‖u‖2
Hkκ (κ) , ‖∇η‖2

L2(∂κ) ≤ C
h2sκ−3

κ

p2kκ−3
κ

‖u‖2
Hkκ (κ) ,

‖η‖2
H1(κ) ≤ C

h2sκ−2
κ

p2kκ−2
κ

‖u‖2
Hkκ (κ) , ‖η‖2

L2(κ) ≤ C
h2sκ

κ

p2kκ
κ

‖u‖2
Hkκ (κ) .

Let us collect all the terms on the right–hand side of (8.12), except ‖η‖2
L2(α+1)(κ):

I ≡ C
∑

κ∈T

∫ t

0

{
‖η̇(s)‖2

L2(κ) + ‖η(s)‖2
H1(κ) +

∥∥√ση(s)
∥∥2

L2(∂κ∩ΓD)

+
∥∥√σ [η(s)]

∥∥2

L2(∂κ∩Γint)
+

∥∥√τη(s)
∥∥2

L2(∂κ∩ΓD)
+

∥∥∥∥
1√
σ
∇η(s)

∥∥∥∥
2

L2(∂κ∩ΓD)

+
∥∥√τ [η(s)]

∥∥2

L2(∂κ∩Γint)
+

∥∥∥∥
1√
σ
∇η(s)

∥∥∥∥
2

L2(∂κ∩Γint)

}
ds.

From the above approximation results, by choosing σe as in (8.20), noting (8.1) and
the shape–regularity of T to relate he to hκ, and taking the maximum over t ∈ [0, T ],
we obtain

I ≤ C
∑

κ∈T

{
h2sκ−2

κ

p2kκ−2
κ

‖u̇‖2
L2(0,T ;Hkκ−1(κ)) +

(
h2sκ−2

κ

p2kκ−2
κ

+
p2

κ

hκ

h2sκ−1
κ

p2kκ−1
κ

)
‖u‖2

L2(0,T ;Hkκ (κ))

}

≤ C
∑

κ∈T

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
X

, (8.22)

with 1 ≤ sκ ≤ min(pκ + 1, kκ), pκ ≥ 2 on each κ ∈ T , where C is a positive constant
depending only on the domain Ω, the shape–regularity and quasi–uniformity of T ,
the time T , the growth–condition for the function f , the parameter ρ in (8.1), on
k = maxκ∈T kκ, and on the Lebesgue and Sobolev norms of u over the time interval
[0, T ].

Further, by the broken Sobolev–Poincaré inequality [27] we have the bound

‖η‖2
L2(α+1)(Ω) ≤ C

(∑

κ∈T

‖∇η‖2
L2(κ) +

∑

e∈Eint

h−1
e

∫

e

[η]
2

ds +
∑

e∈ED

h−1
e

∫

e

η2 ds

)
,

and thus by the above approximation bounds, by noting the shape–regularity of T to
relate he to hκ, we obtain

∑

κ∈T

‖η‖2
L2(α+1)(κ) ≤ C

∑

κ∈T

h2sκ−2
κ

p2kκ−2
κ

‖u‖2
Hkκ (κ) ,
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with the constant C as above.
Applying this bound to the right–hand side of (8.12), noting (8.22), and taking

the maximum over 0 ≤ t ≤ T , we obtain the desired bound.
2

Remark 8.7

1. The estimate (8.21) is optimal in h and p–suboptimal by p
1
2 .

2. By the broken Sobolev–Poincaré inequality, the same bound holds for the
L2–norm of the error. The bound in this case is not hp–optimal.

3. From the error bound we conclude that the presence of the non–linearity f(·),
satisfying the conditions stated in Section 2, does not diminish the rate of
hp–convergence rate in the H1–norm compared to the linear case.

2

8.2. The Symmetric Version of DGFEM. The symmetric version of the
interior penalty discontinuous Galerkin finite element method appeared in the liter-
ature much earlier than the non–symmetric formulation, (see Wheeler [36]). It was
not widely accepted as an effective numerical method until very recently, due to an
additional condition on the size of the penalty parameter which is required in order to
ensure the coercivity of the bilinear form of the method; this will be discussed in the
next section. The renewed interest in the symmetric formulation of the IP DGFEM is
due to the optimality of its convergence rate in the L2–norm and for linear functionals
of the solution.

The non–symmetric formulation of the IP method suffers from lack of adjoint
consistency (see [6, 5]), and results in suboptimal a priori error bounds in the L2–
norm and in linear functionals of the solutions. The symmetric version, due to its
adjoint consistency, does not suffer from these drawbacks.

We start our a priori error analysis in the L2–norm by deriving the error bounds
on the broken elliptic projector defined by the symmetric version of the interior penalty
discontinuous Galerkin finite element method. This part of the L2–norm error analysis
is crucial, as it will allow us to remove the terms in the error bound, containing the
H1–seminorm, which would otherwise result in a suboptimal convergence rate in the
L2–norm.

8.2.1. The Broken Elliptic Projector. Consider the boundary value problem
for the elliptic equation in the form

−∆u = 0 in Ω,

u = gD on ΓD,

∇u · n = gN on ΓN,

(8.23)

with ΓD ∪ ΓN = ∂Ω, ΓD having positive measure, and gD ∈ H
1
2 (ΓD), gN ∈ L2(ΓN).

We shall also assume that the solution u exists, that it is unique, and that u ∈ A.
In view of Section 4, the SIP formulation of the DGFEM for this problem is

find uDG ∈ Sp(Ω, T ,F) such that BS(uDG, v) = lS(v) for all v ∈ Sp(Ω, T ,F),
(8.24)

where the symmetric bilinear form BS is defined by (4.1), and the linear functional lS
is defined by (4.2), with θ = −1.

Let us check whether and under what conditions the solution uDG to (8.24) exists
and is unique.



hp–DGFEM FOR SEMILINEAR PARABOLIC PROBLEMS 19

The proof of continuity of the symmetric bilinear form BS(u, v) is essentially the
same as in the non–symmetric case (see Lemma 8.4). The coercivity, though, requires
further investigation.

For the symmetric bilinear form (4.1) (with θ = −1), we have, for any w ∈
Sp(Ω, T ,F),

BS(w,w) =
∑

κ∈T

‖∇w‖2
L2(κ)+

∫

ΓD

(
σw2 − 2w(∇w · n)

)
ds+

∫

Γint

(
σ [w]

2 − 2 [w] 〈∇w · ν〉
)
ds.

Clearly the integrands in the last two terms need not be positive unless σ is chosen
sufficiently large: the purpose of the analysis that now follows is to explore just how
large σ needs to be to ensure coercivity of BS(·, ·) over Sp(Ω, T ,F) × Sp(Ω, T ,F).

For any positive number τe we have

−2

∫

ΓD

w(∇w · n) ds ≥ −
∑

e∈ED

(∫

e

τew
2 ds +

∫

e

τ−1
e (∇w · n)2 ds

)
.

Omitting the summations, the second term on the right–hand side can be further
bounded by using the inverse inequality (8.9), the shape–regularity condition (to
relate hκ to he, where κ is the element whose face is e ∈ ED) and the bounded local
variation condition (to relate p2

κ to
〈
p2

〉
e
), by absorbing all constants into Cτ , we

obtain

−
∫

e

τ−1
e (∇w · n)2 ds ≥ −

∫

e

τ−1
e |∇w|2 |n|2 ds ≥ −τ−1

e Cτ

〈
p2

〉
e

he
‖∇w‖2

L2(κ) .

Similarly, for the term involving interior faces, we have

−2

∫

Γint

[w] 〈∇w · ν〉 ds ≥ −
∑

e∈Eint

(∫

e

τe [w]
2

ds + τ−1
e Cτ

〈
p2

〉
e

he

(
‖∇w‖L2(κ′) ‖∇w‖L2(κ′′)

))
,

using the restriction imposed by the bounded local variation condition (8.1): here κ′

and κ′′ are the two elements that have e as their common face.
Now letting

τ−1
e :=

1

2n · 2n−1

(
Cτ

〈
p2

〉
e

he

)−1

for e ∈ ED ∪ Eint,

we get

BS(w,w) ≥ 1

2

∑

κ∈T

‖∇w‖2
L2(κ) +

∫

ΓD

(σ − τ)w2 ds +

∫

Γint

(σ − τ) [w]
2

ds.

Thus the symmetric bilinear form BS(u, v) is coercive if

σe ≥ τe = 2n · 2n−1Cτ

〈
p2

〉
e

he
.

The factor 2n · 2n−1 stems for the fact that in n dimensions the summation over
e ∈ Eint may count, any one element κ, 2n · 2n−1 times, as we allow one hanging node
per interface.
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Choosing σe appropriately, i.e.,

σe = Cσ

〈
p2

〉
e

he
(8.25)

with the constant Cσ > 0 large enough, σe ≥ τe will be ensured and by the Lax–
Milgram theorem the solution to (8.24) then exists and is unique.

In view of the above arguments, we conclude that the SIP DGFEM solution of the
problem (8.23) uniquely determines the projection operator Πe on A onto the finite
element space Sp(Ω, T ,F) with the property (for u ∈ A)

BS(u − Πeu, v) = 0 for all v ∈ Sp(Ω, T ,F). (8.26)

Next, we state the approximation error bounds in the H1– and L2–norms for the
broken elliptic projector Πe.

Lemma 8.8 Let Ω ⊂ R
n, n ≥ 2, be a bounded polyhedral domain, T = {κ} a shape–

regular subdivision of Ω into n–parallelepipeds, and suppose that u|κ ∈ Hkκ(κ) for
some Sobolev index kκ ≥ 2 and κ ∈ T . Let Πeu be the projection of u ∈ A onto
Sp(Ω, T ,F), defined by (8.26), with pκ ≥ 0 for κ ∈ T , and σe chosen as in (8.25).
Then, the following error estimate holds:

‖u − Πeu‖2
H1(Ω,T ) ≤ C

∑

κ∈T

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
Hkκ (κ) . (8.27)

Furthermore, if Ω is convex, then

‖u − Πeu‖2
L2(Ω) ≤ C

(
max
κ∈T

h2
κ

pκ

) ∑

κ∈T

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
Hkκ (κ) , (8.28)

where sκ = min(pκ + 1, kκ), and the constant C is independent of u, pκ and hκ, but
dependent on k = maxκ∈T kκ and Cσ.

Proof. By recalling the definition of the DG–norm (8.3), we have, from the assump-
tion on σe, that

|‖u|‖2
DG ≤ BS(u, u) for all u ∈ A,

and thus by writing u − Πeu = (u − Πu)− (Πu − Πeu) = η + ξ, where the projection
operator Π will be chosen later, taking v ≡ ξ in the definition of the broken elliptic
projector (8.26), we deduce that

|‖ξ|‖2
DG ≤ BS(ξ + η − η, ξ) ≤ |BS(ξ + η, ξ)| + |BS(η, ξ)| = |BS(η, ξ)| .

By continuity of the bilinear form BS(η, ξ) (see Lemma 8.4 and the comments above),
after applying Young inequality we have

|‖ξ|‖2
DG ≤ C

∑

κ∈T

(∥∥√ση
∥∥2

L2(∂κ∩ΓD)
+

∥∥√σ [η]
∥∥2

L2(∂κ∩Γint)
+ ‖∇η‖2

L2(κ) +
∥∥√τη

∥∥2

L2(∂κ∩ΓD)

+

∥∥∥∥
1√
σ
∇η

∥∥∥∥
2

L2(∂κ∩ΓD)

+
∥∥√τ [η]

∥∥2

L2(∂κ∩Γint)
+

∥∥∥∥
1√
σ
∇η

∥∥∥∥
2

L2(∂κ∩Γint)

)
, (8.29)
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where τe = 2n · 2n−1Cτ

〈
p2

〉
e
/he, he is the diameter of a face e ∈ Eint ∪ ED, and for

e ∈ ED the contribution from outside Ω is set to 0.
Further, by noting that

∑
κ∈T ‖∇ξ‖2

L2(κ) ≤ |‖ξ|‖2
DG, and employing the triangle

inequality (8.4), we obtain the bound

∑

κ∈T

‖u − Πeu‖2
H1(κ) ≤ C

∑

κ∈T

(∥∥√ση
∥∥2

L2(∂κ∩ΓD)
+

∥∥√σ [η]
∥∥2

L2(∂κ∩Γint)
+ ‖η‖2

H1(κ)

+
∥∥√τη

∥∥2

L2(∂κ∩ΓD)
+

∥∥∥∥
1√
σ
∇η

∥∥∥∥
2

L2(∂κ∩ΓD)

+
∥∥√τ [η]

∥∥2

L2(∂κ∩Γint)
+

∥∥∥∥
1√
σ
∇η

∥∥∥∥
2

L2(∂κ∩Γint)

)
, (8.30)

Let us choose Π to be the u 7→ zhκ
pκ

(u) (see Section 7). From Theorem 7.3,
inequalities (7.2)–(7.4), we have the estimates

‖η‖2
L2(∂κ) ≤ C

h2sκ−1
κ

p2kκ−1
κ

‖u‖2
Hkκ (κ) , ‖∇η‖2

L2(∂κ) ≤ C
h2sκ−3

κ

p2kκ−3
κ

‖u‖2
Hkκ (κ) ,

‖η‖2
H1(κ) ≤ C

h2sκ−2
κ

p2kκ−2
κ

‖u‖2
Hkκ (κ) .

Applying these inequalities to the right–hand side of (8.30), choosing σe as in (8.25),
noting the bounded local variation condition (8.1) and the shape regularity of T to
relate he to hκ, we obtain

‖u − Πeu‖2
H1(Ω,T ) ≤ C

∑

κ∈T

(
h2sκ−2

κ

p2kκ−2
κ

+
p2

κ

hκ

h2sκ−1
κ

p2kκ−1
κ

)
‖u‖2

Hkκ (κ) ,

and hence (8.27).
Let us note that the same bound (8.27) is also valid for the DG–norm |‖u − Πeu|‖DG;

this follows from (8.29) and the fact that

|‖u − Πeu|‖2
DG ≤ C

∑

κ∈T

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
Hkκ (κ) .

To estimate ‖u − Πeu‖L2(Ω), we shall use the Aubin–Nitsche duality argument

(see [11]).
Let (·, ·) signify the L2–inner product. Then, for every g ∈ L2(Ω), by the Cauchy–

Schwarz inequality we have

(u − Πeu, g) ≤ ‖u − Πeu‖L2(Ω) ‖g‖L2(Ω) ,

and therefore

‖u − Πeu‖L2(Ω) = sup
g∈L2(Ω)

g 6=0

(u − Πeu, g)

‖g‖L2(Ω)

. (8.31)

Further, let the function w ∈ H2(Ω) be the solution of the problem

−∆w = g in Ω,

w = 0 on ΓD,

∇w · n = 0 on ΓN,

(8.32)



22 A. LASIS AND E. SÜLI

with g ∈ L2(Ω), and ΓD, ΓN as in (8.23). Then the SIP DGFEM formulation of this
problem is

find w ∈ A such that BS(w, v) = lg(v) for all v ∈ H2(Ω, T ),

where BS(w, v) is defined by (4.1) with θ = −1, and

lg(v) = (g, v) + lS(v),

with lS(v) defined by (4.2) with θ = −1 and gD = 0, gN = 0: clearly, then, lS(v) = 0
for all v in H2(Ω, T ).

Consider the SIP DGFEM approximation of (8.32) in the form

find wDG ∈ Sp(Ω, T ,F) such that BS(wDG, v) = lg(v) for all v ∈ Sp(Ω, T ,F).

By Galerkin orthogonality, we have

BS(u − Πeu,wDG) = 0,

and thence

(u − Πeu, g) = (g, u − Πeu) = lg(u − Πeu) = BS(w, u − Πeu)

= BS(u − Πeu,w) = BS(u − Πeu,w − Πw),

where Π is the projection operator u 7→ zhκ
pκ

(u).
Further, by Lemma 8.4, (8.6), and by noting that the bilinear form BS(·, ·) is

symmetric, we have

(u−Πeu, g) ≤ BS(u − Πeu,w − Πw) ≤ C |‖u − Πeu|‖DG

×
{∫

ΓD

σ |w − Πw|2 ds +

∫

Γint

σ [w − Πw]
2

ds +
∑

κ∈T

‖∇(w − Πw)‖2
L2(κ)

+
∑

κ∈T

(
∥∥√τ(w − Πw)

∥∥2

L2(∂κ∩ΓD)
+

∥∥∥∥
1√
σ
∇(w − Πw)

∥∥∥∥
2

L2(∂κ∩ΓD)

)

+
∑

κ∈T

(
∥∥√τ [w − Πw]

∥∥2

L2(∂κ∩Γint)
+

∥∥∥∥
1√
σ
∇(w − Πw)

∥∥∥∥
2

L2(∂κ∩Γint)

)} 1
2

(8.33)
with τe = 2n · 2n−1Cτ

〈
p2

〉
e
/he.

By the previous argument, we have the estimate

|‖u − Πeu|‖2
DG ≤ C

∑

κ∈T

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
Hkκ (κ) , (8.34)

and from Theorem 7.3, inequalities (7.2)–(7.4), we have the estimates

‖w − Πw‖2
L2(∂κ) ≤ C

h3
κ

p3
κ

‖w‖2
H2(κ) , ‖∇(w − Πw)‖2

L2(∂κ) ≤ C
hκ

pκ
‖w‖2

H2(κ) ,

‖∇(w − Πw)‖2
L2(κ) ≤ C

h2
κ

p2
κ

‖w‖2
H2(κ) .
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Applying these inequalities and the estimate (8.34) to the right–hand side of (8.33),
choosing σe as in (8.25) and noting the bounded local variation condition (8.1) and
the shape regularity of T to relate he to hκ, we obtain

(u − Πeu, g) ≤ C

(∑

κ∈T

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
Hkκ (κ) ×

∑

κ∈T

h2
κ

pκ
‖w‖2

H2(κ)

) 1
2

.

Further, by noting that for a suitable constant C > 0 we have

∑

κ∈T

h2
κ

pκ
‖w‖2

H2(κ) ≤ C

(
max
κ∈T

h2
κ

pκ

) ∑

κ∈T

‖w‖2
H2(κ) = C

(
max
κ∈T

h2
κ

pκ

)
‖w‖2

H2(Ω) ,

and, recalling that Ω is convex, on employing elliptic regularity, we obtain

(u − Πeu, g) ≤ C

((
max
κ∈T

h2
κ

pκ

) ∑

κ∈T

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
Hkκ (κ)

) 1
2

‖g‖L2(Ω) ,

and therefore

(u − Πeu, g)

‖g‖L2(Ω)

≤ C

((
max
κ∈T

h2
κ

pκ

) ∑

κ∈T

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
Hkκ (κ)

) 1
2

.

Noting (8.31), taking the supremum over g ∈ L2(Ω), g 6= 0, and squaring the resulting
expression yields (8.28).

2

8.2.2. A priori Error Bounds. Having defined the broken elliptic projector
and obtained the respective approximation error bounds, we are ready to state our
main result about the accuracy of the symmetric version of the hp–DGFEM.

Theorem 8.9 Let Ω ⊂ R
n, n ≥ 2, be a bounded convex polyhedral domain, T = {κ}

a shape–regular subdivision of Ω into n–parallelepipeds, and p a polynomial degree
vector of bounded local variation. Let each face e ∈ Eint ∪ ED be assigned a real
positive number

σe = Cσ

〈
p2

〉
e

he
, (8.35)

where he is the diameter of e, with the convention that for e ∈ ED the contributions
from outside Ω in the definition of σe are set to 0, and Cσ is sufficiently large. Suppose
that the function f ∈ C1(R) and obeys the growth–condition (2.2) for some positive
constant Cg, and that Hypothesis A holds. Then, if u(·, t)|κ ∈ Hkκ(κ), kκ ≥ 2, κ ∈ T ,
for 0 ≤ t ≤ T there exists h0 > 0 such that for all 0 < h ≤ h0, h = maxκ∈T hκ, the
solution uDG(·, t) ∈ Sp(Ω, T ,F) of the SIP DGFEM (6.1) obeys the following error
bounds:

ess.sup
0≤t≤T

|‖u − uDG|‖2
DG ≤ C

∑

κ∈T

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
X1

(8.36)
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and

‖u − uDG‖2
L∞(0,T ;L2(Ω)) ≤ C

(
max
κ∈T

h2
κ

pκ

∑

κ∈T

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
X2

+max
κ∈T

h
2− αn

α+1
κ

∑

κ∈T

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
L2(0,T ;Hkκ (κ))

)
, (8.37)

with 1 ≤ sκ ≤ min(pκ + 1, kκ), pκ ≥ 1, for κ ∈ T , where C is a positive constant de-
pending only on the domain Ω, the shape–regularity of T , the final time T , the growth–
condition for the function f , the parameter ρ in (8.1), the Lebesgue and Sobolev

norms of u, and k = maxκ∈T kκ; the norms ‖u‖2
X1,2

signify the collection of norms

‖u‖2
L∞(0,T ;Hkκ (Ω)) + ‖u‖2

L2(0,T ;Hkκ (Ω)) + ‖u̇‖2
L2(0,T ;Hkκ (Ω)) and ‖u‖2

L∞(0,T ;Hkκ (κ)) +

‖u̇‖2
L2(0,T ;Hkκ (κ)), respectively.

Proof. By the same argument as in the proof of Lemma 8.5, upon subtracting
(8.13) from (8.14) and choosing v = ξ̇, we obtain

˙‖ξ‖2

L2(Ω) + BS(ξ, ξ̇) =
∑

κ∈T

∫

κ

{f(u) − f(uDG)} ξ̇ dx−
∑

κ∈T

∫

κ

η̇ξ̇ dx−BS(η, ξ̇). (8.38)

Let us choose the projection operator Π to be the broken elliptic projector Πe. Then,
by definition (8.25), BS(η, ξ̇) = 0.

With the constant Cσ in (8.35) chosen large enough, the symmetric bilinear form
BS(·, ·) is coercive, and therefore defines an inner product on H1(Ω, T ), which induces
the norm |‖·|‖DG on this space. Hence we deduce that

BS(ξ, ξ̇) =
1

2

d

dt
|‖ξ|‖2

DG.

Thus, we can rewrite (8.38) in the form

˙‖ξ‖2

L2(Ω) +
1

2

d

dt
|‖ξ|‖2

DG =
∑

κ∈T

∫

κ

{f(u) − f(uDG)} ξ̇ dx −
∑

κ∈T

∫

κ

η̇ξ̇ dx

≤
∣∣∣∣∣
∑

κ∈T

∫

κ

η̇ξ̇ dx

∣∣∣∣∣ +

∣∣∣∣∣
∑

κ∈T

∫

κ

{f(u) − f(Πeu)} ξ̇ dx

∣∣∣∣∣

+

∣∣∣∣∣
∑

κ∈T

∫

κ

{f(Πeu) − f(uDG)} ξ̇ dx

∣∣∣∣∣ . (8.39)

By the Cauchy–Schwarz and Young inequalities, we have

∣∣∣∣∣
∑

κ∈T

∫

κ

η̇ξ̇ dx

∣∣∣∣∣ ≤
(∑

κ∈T

‖η̇‖2
L2(κ)

) 1
2

(∑

κ∈T

˙‖ξ‖2

L2(κ)

) 1
2

≤ ε1

2
‖η̇‖2

L2(Ω) +
1

2ε1

˙‖ξ‖2

L2(Ω),

and
∣∣∣∣∣
∑

κ∈T

∫

κ

{f(u) − f(Πeu)} ξ̇ dx

∣∣∣∣∣ ≤
ε2

2
‖f(u) − f(Πeu)‖2

L2(Ω) +
1

2ε2

˙‖ξ‖2

L2(Ω),
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∣∣∣∣∣
∑

κ∈T

∫

κ

{f(Πeu) − f(uDG)} ξ̇ dx

∣∣∣∣∣ ≤
ε3

2
‖f(Πeu) − f(uDG)‖2

L2(Ω) +
1

2ε3

˙‖ξ‖2

L2(Ω),

with ε1, ε2, ε3 > 0.
Next, by the result of Lemma 8.1, we have, upon absorbing the constants into C,

and noting Hypothesis A,

‖f(u) − f(Πeu)‖2
L2(Ω) ≤ C ‖η‖2

Lq(Ω)

(
1 + ‖u‖α

L
2αq
q−2 (Ω)

+ ‖Πeu‖α

L
2αq
q−2 (Ω)

)2

≤ C ‖η‖2
Lq(Ω)

(
1 + ‖u‖2α

L
2αq
q−2 (Ω)

+ ‖Πeu‖2α

L
2αq
q−2 (Ω)

)

= C ‖η‖2
Lq(Ω)

(
1 + ‖u‖2α

L
2αq
q−2 (Ω)

+ ‖u − η‖2α

L
2αq
q−2 (Ω)

)

≤ C ‖η‖2
Lq(Ω)

(
1 + ‖u‖2α

L
2αq
q−2 (Ω)

+ ‖η‖2α

L
2αq
q−2 (Ω)

)

≤ C ‖η‖2
Lq(Ω) = C ‖η‖2

L2(α+1)(Ω) ,

where the constant C > 0 depends only on the growth–condition for the function f ,
on Lebesgue norms of u over the time interval [0, T ].

Choosing ε1, ε2, ε3 such that ε−1
1 +ε−1

2 +ε−1
3 ≤ 2, and inserting the above bounds

into (8.39), we obtain

d

dt
|‖ξ|‖2

DG ≤ C1

(
‖η̇‖2

L2(Ω) + ‖η‖2
L2(α+1)(Ω)

)
+ C̃2 ‖f(Πeu) − f(uDG)‖2

L2(Ω) . (8.40)

To bound ‖f(Πeu) − f(uDG)‖2
L2(Ω) we note that, by the same argument as above, we

have

‖f(Πeu) − f(uDG)‖2
L2(Ω) ≤ C ‖ξ‖2

L2(α+1)(Ω)

(
1 + ‖ξ‖2α

L
2αq
q−2 (Ω)

)
,

where the constant C > 0 depends only on the growth–condition for the function f ,
on Lebesgue norms of u over the time interval [0, T ].

Let us choose uDG
0 = Πeu0, thus having ξ(0) = 0, and let 0 < t⋆ ≤ T be the

largest time such that the solution |‖ξ(t)|‖2
DG of (8.38) (and thus uDG(t)) exists and

|‖ξ|‖DG ≤ 1 for t ∈ [0, t⋆]; the existence of such t⋆ is guaranteed by the Cauchy–Picard
theorem from the theory of ODEs.

By Hypothesis A, we have 2(α + 1) ≤ 2n/(n − 2), and hence by the broken
Sobolev–Poincaré inequality,

‖f(Πeu) − f(uDG)‖2
L2(Ω) ≤ C|‖ξ|‖2

DG.

Inserting this bound into (8.40), we obtain the differential inequality

d

dt
|‖ξ|‖2

DG ≤ C1

(
‖η̇‖2

L2(Ω) + ‖η‖2
L2(α+1)(Ω)

)
+ C2|‖ξ|‖2

DG, (8.41)

which, upon integrating from 0 to t ≤ t⋆ and noting that ξ(0) = 0, yields

|‖ξ(t)|‖2
DG ≤ C1

∫ t

0

{
‖η̇(s)‖2

L2(Ω) + ‖η(s)‖2
L2(α+1)(Ω)

}
ds + C2

∫ t

0

|‖ξ(s)|‖2
DG ds.

(8.42)
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By Lemma 8.8, the first argument on the right–hand side can be bounded in terms
of hκ and pκ. Fixing the polynomial degree pκ for all κ ∈ T and denoting 0 < h =
maxκ∈T hκ, let us define C3 = C22

2α, and let h0 > 0 be small enough so that for all
h ≤ h0 we have

C1

∫ t

0

{
‖η̇(s)‖2

L2(Ω) + ‖η(s)‖2
L2(α+1)(Ω)

}
ds ≤ 1

1 + T
e−C3T .

Thus, for h ≤ h0 and t ∈ [0, t⋆], from (8.42) we have

|‖ξ(t)|‖2
DG <

1

1 + T
e−C3T + C3

∫ t

0

|‖ξ(s)|‖2
DG ds;

using the Gronwall–Bellmann inequality, we deduce that |‖ξ(t)|‖2
DG < 1 for all t ∈

[0, t⋆] with h ≤ h0.

By continuity of the mapping t 7→ |‖ξ(t)|‖2
DG, the assumption t⋆ < T implies that

either |‖ξ(t)|‖2
DG ≤ 1 for all t ∈ [0, T ], or that there exists a time t⋆⋆ ∈ (t⋆, T ] such

that |‖ξ(t⋆⋆)|‖2
DG = 1.

In either case, we have a contradiction with the fact that t⋆ is the largest time
in the interval [0, T ] such that, for all t ∈ [0, t⋆], we have |‖ξ(t)|‖2

DG ≤ 1. Thus we
deduce that t⋆ = T for 0 < h ≤ h0.

Taking into account this fact, setting h ≤ h0, and applying the Gronwall–Bellman
inequality to (8.42) gives us the following bound:

|‖ξ(t)|‖2
DG ≤ C

∫ t

0

{
‖η̇(s)‖2

L2(Ω) + ‖η(s)‖2
L2(α+1)(Ω)

}
ds, 0 ≤ t ≤ T, (8.43)

where the constant C > 0 depends only on the domain Ω, the growth–condition for
the function f , the time T , on Lebesgue and Sobolev norms of u over the time interval
[0, T ].

Further, by the broken Sobolev–Poincaré inequality, we have the bound

‖η‖2
L2(α+1)(Ω) ≤ C|‖η|‖2

DG,

and, employing the triangle inequality, we thus obtain

|‖(u − uDG)(t)|‖2
DG ≤ C

(
|‖η(t)|‖2

DG +

∫ t

0

{
‖η̇(s)‖2

L2(Ω) + |‖η(s)|‖2
DG

}
ds

)
, 0 ≤ t ≤ T,

with the constant C as above.
By the results of Lemma 8.8 we have that

‖η‖2
L2(Ω) ≤ C

(
max
κ∈T

h2
κ

pκ

) ∑

κ∈T

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
Hkκ (κ) and |‖η|‖2

DG ≤ C
∑

κ∈T

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
Hkκ (κ) ,

with 1 ≤ sκ ≤ min(pκ + 1, kκ), pκ ≥ 1, for κ ∈ T . Inserting these bounds in

the above error bound, denoting ‖u‖2
X1

:= ‖u‖2
L∞(0,T ;Hkκ (Ω)) + ‖u‖2

L2(0,T ;Hkκ (Ω)) +

‖u̇‖2
L2(0,T ;Hkκ (Ω)), and taking the maximum over t ∈ [0, T ] yields (8.36).

From (8.43), by the broken Sobolev–Poincaré inequality, we deduce that

‖ξ(t)‖2
L2(Ω) ≤ C

∫ t

0

{
‖η̇(s)‖2

L2(Ω) + ‖η(s)‖2
L2(α+1)(Ω)

}
ds, 0 ≤ t ≤ T.
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Employing the triangle inequality yields, for all 0 ≤ t ≤ T ,

‖u(t) − uDG(t)‖2
L2(Ω) ≤ C

(
‖η(t)‖2

L2(Ω) +

∫ t

0

{
‖η̇(s)‖2

L2(Ω) + ‖η(s)‖2
L2(α+1)(Ω)

}
ds

)
,

(8.44)
with the constant C as above.

Further, by the Sobolev inequality (see [1]), we have, for 1 ≤ 2(α+1) ≤ 2n/(n−2),
n ≥ 3, and 1 ≤ 2(α + 1) < ∞, n = 2,

‖η‖L2(α+1)(κ̂) ≤ C ‖η‖H1(κ̂) ,

where κ̂ is the unit reference element (the unit hypercube). By scaling back from the
reference element, we obtain

‖η‖L2(α+1)(κ) ≤ C

(
h

n( 1
2(α+1)

− 1
2 )

κ ‖η‖L2(κ) + h
1+n( 1

2(α+1)
− 1

2 )
κ |η|H1(κ)

)
,

and thus, upon squaring and summing over κ ∈ T , taking the square root and noting
that

(∑

i

|ai|q
) 1

q

≤
(∑

i

|ai|2
) 1

2

, q ≥ 2,

we obtain

‖η‖L2(α+1)(Ω) ≤ C

(
max
κ∈T

h
n( 1

2(α+1)
− 1

2 )
κ ‖η‖L2(Ω) + max

κ∈T
h

1+n( 1
2(α+1)

− 1
2 )

κ |η|H1(Ω,T )

)
.

Inserting this inequality into (8.44) gives us

‖(u − uDG)(t)‖2
L2(Ω) ≤ C

(
‖η(t)‖2

L2(Ω) +

∫ t

0

{
‖η̇(s)‖2

L2(Ω)

+max
κ∈T

h
n( 2

2(α+1)
−1)

κ ‖η(s)‖2
L2(Ω) + max

κ∈T
h

2+n( 2
2(α+1)

−1)
κ |η(s)|2H1(Ω,T )

}
ds

)
. (8.45)

From Lemma 8.8, error bound (8.28), for kκ ≥ 2 and sκ = min(pκ + 1, kκ), we
have

‖η(t)‖2
L2(Ω) ≤ C

(
max
κ∈T

h2
κ

pκ

) ∑

κ∈T

h2sκ−2
κ

p2kκ−3
κ

‖u(t)‖2
Hkκ (κ)

and

max
κ∈T

h
n( 2

2(α+1)
−1)

κ ‖η(t)‖2
L2(Ω) ≤ C


max

κ∈T

h
2+n( 2

2(α+1)
−1)

κ

pκ


 ∑

κ∈T

h2sκ−2
κ

p2kκ−3
κ

‖u(t)‖2
Hkκ (κ) .

Similarly, from (8.27) we have

max
κ∈T

h
2+n( 2

2(α+1)
−1)

κ ‖η(t)‖2
H1(Ω,T ) ≤ C

(
max
κ∈T

h
2+n( 2

2(α+1)
−1)

κ

) ∑

κ∈T

h2sκ−2
κ

p2kκ−3
κ

‖u(t)‖2
Hkκ (κ) ,
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Inserting these error bounds into (8.45) and taking the maximum over t ∈ [0, T ], we
obtain

‖u − uDG‖2
L∞(0,T ;L2(Ω)) ≤ C

(
max
κ∈T

h2
κ

pκ

∑

κ∈T

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
X2

+max
κ∈T

h
2− αn

α+1
κ

∑

κ∈T

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
L2(0,T ;Hkκ (κ))

)
,

with 1 ≤ sκ ≤ min(pκ + 1, kκ), pκ ≥ 1, for κ ∈ T , where the constant C > 0 depends
only on the domain Ω, the shape–regularity of T , the time T , the parameter ρ in
(8.1) the growth–condition for the function f , on k = maxκ∈T kκ, and on Lebesgue

norms of u over the time interval [0, T ]; here we denote ‖u‖2
X2

:= ‖u‖2
L∞(0,T ;Hkκ (Ω)) +

‖u̇‖2
L2(0,T ;Hkκ (Ω)), and hence (8.37).

2

9. Conclusions. This work was concerned with the spatial discretisation of
initial–boundary value problems with mixed Dirichlet and Neumann boundary con-
ditions for second–order semilinear equations of parabolic type by the hp–version
interior penalty discontinuous Galerkin finite element method. Our goal was to de-
rive hp–version a priori error bounds. For this purpose, we derived hp–version error
bounds in the L2– and broken H1–norms for the non–local broken elliptic projection
operator. We also developed the techniques of handling the non–linearity in the er-
ror analysis of the hp–version interior penalty discontinuous Galerkin finite element
method, which allows for the proofs to be conducted on the entire time interval of
existence of the solution.

These enabled us to prove general error bounds for hp–version discontinuous
Galerkin finite element methods (symmetric and non–symmetric variants) on shape–
regular meshes. The bounds, in the H1–norm at least, are optimal in h and slightly
suboptimal in p.

To the best of our knowledge, these are the first error bounds of this kind for
semilinear parabolic equations with a non–linearity of such general type.

With these bounds, we have shown that the presence of the non–linearity, satis-
fying certain growth–conditions, does not degrade the convergence rate (in the H1–
norm) compared to the rates obtained in the linear case. In the case of the symmetric
version of the DGFEM, an attempt of the L2–analysis has been made; here, the im-
pact of the non–linearity on the optimality of the convergence rate is clearly seen,
as the presence of the non–linear term introduces a non–optimal term into the error
bound.
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