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Abstract. The effective behaviour of stationary micromagnetic phenomena is modelled by
a convexified Landau-Lifshitz minimization problem for the limit of large and soft magnets
Ω without the exchange energy. The numerical simulation of the resulting minimization
problem has to overcome difficulties caused by the pointwise side-restriction |m| ≤ 1 and
the stray field energy on the unbounded domain R

d. A penalty method models the side-
restriction and the exterior Maxwell equation is recast via a nonlocal integral operator P.
As shown in [7, 21], the discretization leads to a nonlocal problem with piecewise constant
ansatz and test functions and (dense) stiffness matrices with closed form formulae for their
entries. This paper addresses the numerical solution with Newton-Raphson schemes and
the scientific computation of effective micromagnetic simulations.

1. Introduction

Stationary micromagnetic phenomena of static or quasi-static processes are usually based
on a variational model named after Landau and Lifshitz [3, 13]. The magnetic body Ω
is a bounded Lipschitz domain in R

d for d = 2, 3 on which the microscopic vector-valued
magnetization

mα : Ω → R
d

minimizes the magnetic energy Eα(m) subject to the side-restriction |m| = constant that
depends on the temperature. The effective magnetization vector m : Ω → R

d is a spatial
average of the microscopic magnetization mα and so averages out the small oscillations which
mα is enforced to develop for small values of the exchange energy parameter α ≥ 0. For
large and soft magnets, the parameter α vanishes in the magnetic energy

Eα(m) :=

∫

Ω

φ(m) dx −
∫

Ω

f · m dx +
1

2

∫

Rd

|∇u|2 dx + α

∫

Ω

|∇m|2 dx.(1.1)

This is justified in [9] where it is proven that the effective model for α → 0 is E0(m) where
the effective magnetization m : Ω → R

d obeys the averaged side-restriction |m| ≤ 1 (with
the aforementioned constant normalized to 1). Notice that the approximation even of an
effective magnetization zero is a nontrivial highly oscillatory problem [14, 16, 17, 20, 24, 26].
In contrast to that, this paper follows [8, 7, 21] and adopt the effective model directly. This
relaxed problem (RP ) [9, 26] reads: Minimize

E∗∗
0 (m) :=

∫

Ω

φ∗∗(m) dx −
∫

Ω

f · m dx +
1

2

∫

Rd

|∇u|2 dx(1.2)
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subject to the side-restriction

|m(x)| ≤ 1 for almost every x ∈ Ω.(1.3)

Given some direction e ∈ R
d, called easy axis, |e| = 1, and an orthonormal basis (e, z2, z3, . . . ,

zd) of R
d, i.e. z2, . . . , zd are an orthonormal basis of the orthogonal complement of span{e},

the (uniaxial) anisotropic energy density φ∗∗, e.g. of Cobalt, in (1.2) reads

(1.4) φ∗∗(m) =
1

2

d∑

j=2

(m · zj)
2 for allm ∈ R

d.

This specifies the first term out of three of (1.2) and we restrict to the uniaxial case in
the following. The second is a linear relation with the applied magnetization f , a given
function in L2(Ω; Rd); here and below we employ standard notation for Lebesgue spaces,
e.g. f ∈ L2(Ω) means that f is measurable (i.e. the pointwise limit of some sequence of
continuous functions) and L2 integrable (i.e.

∫
Ω
|f(x)|2 dx < ∞) while L2(Ω; Rd) means

L2(Ω)× · · · ×L2(Ω) in d components. The third term in (1.2) models the stray field energy
in R

d. Given a magnetization m (as the argument in E∗∗
0 (m)) the associated magnetic

potential u allows a Laplace operator ∆u to equal zero outside Ω, equals div m in a weak
sense in Ω, and involves a Neumann boundary condition ∂u/∂n = m ·n along ∂Ω (in a weak
form), where n denotes the outer normal on the boundary ∂Ω. Thus, u is a function of m

defined by

(1.5) ∆u = div m in R
d in the sense of distributions.

Here and below, m is an L∞ function on Ω and extended by zero outside the magnetic
domain Ω. Then, ∇u is uniquely determined and belongs to L2(Rd; Rd) and hence the third
energy term is finite. This concludes the short description of the effective model via (RP ).
In fact, (RP ) has solutions [9] which are unique [7, 20, 21]. The numerical simulation of
the effective magnetization as a minimizer in (RP ) already overcame the severe difficulty of
highly oscillating micromagnetizations. But there remain the convex side-restriction |m| ≤ 1
and the unbounded domain R

d in the far field equation.

A coupling of the piecewise constant discretization of the effective magnetizations mh with
a (nonconforming) finite element discretization of the magnetic potentials uh in [8] required

a bounded domain Ω̂ that surrounds the magnetic body Ω. Therein, a penalty scheme
successfully treated the side-restriction |mh| ≤ 1. In [7, 16, 17, 21], the exterior problem
is equivalently recast utilizing integral operators. This paper reviews the full model and its
discretization with an a priori and a posteriori error analysis in Section 2. The focus is then
on the performance of the simple Newton-Raphson scheme with penalty term in a multilevel
framework of adaptive mesh-refining algorithms. Section 3 defines the numerical algorithms
proposed while Section 4 and Section 5 reports on numerical tests and general conclusions
about the performance. A numerical example from [7] with known exact solution and a
scientific computing experiment from [8] with a practical application are treated. A short
Section 6 summarizes a few observations and comments on future developments.

2. Exact and discrete models and a priori and a posteriori error control

This section presents the exact effective model proposed for the numerical simulation of
the macroscopic magnetization vector m ∈ L∞(Ω; Rd); it introduces the reformulation of
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the stray field energy contribution by the Helmholtz projection P as well as the penalty
formulation for the side-restriction |m| ≤ 1; while this section continuous with the description
of the discrete models, it ends with a review of a priori and a posteriori error control from [7].
Let m = (m1, . . . ,md) be a magnetization and denote with G : R

d\{0} → R the Newtonian
kernel,

G(x) :=

{
−γ−1

2 log |x| for d = 2,

γ−1
d /(d − 2) |x|2−d for d > 2

for x 6= 0,(2.1)

where the positive constant γd is the surface measure of the unit sphere, e.g. γ2 = 2π,
γ3 = 4π. With the convolution operator

(Lm)(x) :=
d∑

j=1

(∂G/∂xj ∗ mj)(x) for all x ∈ R
d

one can prove u = Lm ∈ H1
`oc(R

d), i.e. u = Lm has a weak derivative in L2(B(0, R)) for
any ball B(0, R) around the origin 0 with arbitrary radius R. Moreover, one can show that
∇u = ∇(Lm) =: Pm belongs to L2(R2, R2) and satisfies (1.5). The Helmholtz projection
operator

P : L2(Rd; Rd) → L2(Rd; Rd)

is the L2 orthogonal projection onto the linear and closed subspace of all the gradients
[7, 17, 21, 22]. Hence, the stray field energy in E∗∗

0 (m) reads
∫

Rd

|∇u|2 dx =

∫

Rd

(Pm) · m dx.

The Gâteaux derivative (also called first variation) of (RP ) yields the Problem (P ): Find
(λ,m) ∈ L2(Ω) × L2(Ω; Rd) such that

Pm + Dφ∗∗(m) + λm = f a.e. in Ω,(2.2)

λ ≥ 0, |m| ≤ 1, λ(1 − |m|) = 0 a.e. in Ω.(2.3)

The variable λ is the Lagrange multiplier for the side-restriction |m| ≤ 1 and (2.3) are
the associated Kuhn-Tucker conditions. The term Pm from the stray field energy density is
based on the projection property P2 = P and yields a problem (2.2) on the bounded magnetic
domain Ω.

This problem (P ) is well-posed in the sense that there exists a unique solution. Given a
positive and small penalty parameter ε (possibly a given function of x in Ω) the penalization
of (P ) reads (Pε): Find mε ∈ L2(Ω; Rd) such that

Pmε + Dφ∗∗(mε) + λεmε = f a.e. in Ω,(2.4)

λε := ε−1 max{0, 1 − |mε|−1} a.e. in Ω.(2.5)

Problem (Pε) is well-posed in the sense that there exists a unique solution. The spatial
discretization of (P ) and (Pε) is based on a partition of Ω into a finite number of measurable

subsets of Ω. Let T be a finite set of closed subsets of Ω which are the closures T = int(T )
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of pairwise disjoint bounded Lipschitz domains int(T ) ⊂ Ω. Then L0(T ) denotes the linear
subspace of T -piecewise constants, e.g. the mesh-size function

h := hT ∈ L0(T ) ⊂ L∞(Ω) defined by h|T := hT := diam(T ) for all T ∈ T .

[Recall that (·)|T denotes the restriction of a function (·) onto T .] Another example is
fh ∈ L0(T ; Rd), the piecewise integral mean of the given right-hand side f ∈ L2(Ω; Rd)
defined by

fh|T := |T |−1

∫

T

f(x) dx for all T ∈ T .

Also, let ε := εh ∈ L0(T ) be a piecewise constant penalty parameter function. Then, a
consistent Galerkin discretization of (Pε) with T -piecewise constant trial and test function
reads (Pε,h): Find mh in L0(T ; Rd) such that

|T |−1

∫

T

(Pmh)(x) dx + Dφ∗∗(mh|T ) + λh|Tmh|T = fh|T for all T ∈ T ,(2.6)

λh|T := (ε|T )−1 max{0, 1 − |mh|T |−1} for all T ∈ T .(2.7)

The discrete model (Pε,h) can be reformulated as a minimization problem to apply the
direct method of the calculus of variations and to show the well-posedness, i.e. the unique
existence of solutions. [If the elements T ∈ T are rectangular, it can be shown that the
solution (λh,mh) of (RPε,h) is unique (independent of φ∗∗), cf. Remark 2.5 of [7].]

The numerical solution of the unique solution mh is the topic of the subsequent sections.

This section ends with a review of the a priori and a posteriori error analysis in [7] under
the present notation. Throughout, let (λ,m) and (λh,mh) solve (P ) and (Pε,h) respectively.
Then, there is an T -independent constant C > 0 such that

‖Pm − Pmh‖2
L2(Rd) + ‖Dφ∗∗(m) − Dφ∗∗(mh)‖2

L2(Ω) + ‖λm − λhmh‖2
L2(Ω)

≤ C(1 + ‖ε‖L∞(Ω))
(
‖m − mT ‖2

L2(Ω) + ‖Dφ∗∗(m) − (Dφ∗∗(m))T ‖2
L2(Ω)

+ ‖λm − (λm)T ‖2
L2(Ω)

)
+ C‖ε‖L∞(Ω)‖

√
ε λm‖2

L2(Ω).

(2.8)

Here and below, mT (resp. (Dφ∗∗(m))T ) denotes the T -piecewise integral mean of m ∈
L∞(Ω; Rd) (resp. Dφ∗∗(m)) and hence the first three terms on the right-hand side of (2.8)
are best approximation errors. The last term C‖ε‖L∞(Ω)‖

√
ελm‖2

L2(Ω) of order O(ε2) is the

penalty error. If we suppose m and λ smooth (i.e. m ∈ H1(Ω; Rd), Dφ∗∗(m) ∈ H1(Ω; Rd),
and λm ∈ H1(Ω; Rd)) then (2.8) verifies

‖Pm − Pmh‖L2(Rd) + ‖Dφ∗∗(m) − Dφ∗∗(mh)‖L2(Ω)

+ ‖λm − λhmh‖L2(Ω) + ‖
√

ελhmh‖L2(Ω) = O(ε + h).

In the same spirit, there holds an a posteriori error estimate

‖Pm − Pmh‖2
L2(Rd) + ‖Dφ∗∗(m) − Dφ∗∗(mh)‖2

L2(Ω)

≤ 2
{
‖ε λhmh‖2

L2(Ω) + ‖ε|λhmh|{(f − fh) − (Pmh − (Pmh)T )}‖L1(Ω)

+ 〈(f − fh) − (Pmh − (Pmh)T ) ; m − mT 〉L2(Ω)

}
.

(2.9)
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The right-hand side of (2.9) is not fully computable as it contains m − mT . Since |m| ≤ 1
there follows ‖m − mT ‖L∞(Ω) ≤ 1 and, hence, by Hölder’s inequality

〈(f − fT ) − (Pmh − (Pmh)T ) ; m − mT 〉L2(Ω) ≤ 2‖(f − fT ) − (Pmh − (Pmh)T )‖L1(Ω).

For m ∈ W 1,∞(Ω; Rd), the Poincaré estimate leads to

〈(f − fT ) − (Pmh − (Pmh)T ) ; m − mT 〉L2(Ω) ≤ C ‖h{(f − fT ) − (Pmh − (Pmh)T )}‖L1(Ω)

with a constant C = CP ‖m‖W 1,∞(Ω).

The two resulting a posteriori error estimates are reliable (in the first case as no assumption
on the smoothness of the unknown solution m is included) but not efficient (as the estimate
behaves too coarse - cf. [7] and the numerical examples below); or, conversely, efficient
(as the second estimate shows the higher convergence rates) but not reliable (or it appears
doubtful to assume a higher smoothness like m ∈ W 1,∞(Ω; Rd)). This phenomenon is called
reliability-efficiency gap in [5]: What is reliable is not efficient and what is efficient is not
reliable. The reason is a lack of control over the term ‖m − mh‖L2(Ω). The estimates allow
control over ‖zj · (m − mh)‖L2(Ω) for j = 2, 3, . . . , d via ‖Dφ∗∗(m) − Dφ∗∗(mh)‖L2(Ω) but
not over ‖e · (m − mh)‖L2(Ω) and so we lack any improved estimate over ‖m − mT ‖L2(Ω) ≤
‖m − mh‖L2(Ω).

3. Numerical Algorithms

This section presents the details on the numerical algorithms with emphasis on the Newton-
Raphson solver. Since there is a small penalty parameter involved, the performance of the
documented schemes will be studied in the subsequent sections. The discrete equations with
respect to a triangulation T = {T1, . . . , TN} lead to the unknown coefficients x ∈ R

dN of

(3.1) mh =
N∑

j=1

d∑

α=1

x[j,α]ϕ[j,α] ∈ L∞(Ω; Rd).

Here, one abbreviates [j, 1] := j and [j, 2] := j + N in 2D (and furthermore [j, 3] := j + 2N
for 3D) to fix the order of the coefficients and ϕ[j,α] := χTj

eα is the vector valued function
with the value (δ1α, . . . , δdα) [i.e. the k-th canonical unit vector for Kronecker’s δαβ] on Tj

which vanishes outside Tj. In terms of the coefficients (3.1) and with the abbreviate notation
εk := ε|Tk

and x(k) := (x[k,1], . . . ,x[k,d]) ∈ R
d, the discrete problem (Pε,h) reads

|Tk|−1

N∑

j=1

d∑

α=1

∫

Tk

(Pϕ[j,α]) dx + ε−1
k max{0, 1 − |x(k)|−1}x(k) + Dφ∗∗(x(k)) − fh|Tk

= 0 ∈ R
d

for all k = 1, 2, . . . , N . This nonlinear system of equations is recast as

F(x) = 0 ∈ R
dN

and then solved by the Newton-Raphson scheme. The following termination criterion is
based on suggestions in [15].

Algorithm 3.1 (Newton-Raphson). Input: Let x(0) ∈ R
dN be a given initial vector.

(i) Call Newton-Rhapson scheme to compute x(1), . . . ,x(k) ∈ R
dN until

|F(x(k))| ≤ 10−12 + 10−6|F(x(0))| or k = 100.
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(ii) In case k = 100 stop with an error message. Otherwise call Newton-Rhapson scheme
with initial vector x(k) to compute x(k+1), . . . ,x(`+1) ∈ R

dN until

|F(x(`))| ≤ min{10−12, |F(x(`+1))|} or ` = 100.

(iii) In case ` = 100 stop with an error message. Otherwise x(`) is an approximation of the
(unique) zero of F.
Output: Either error message or the number ` of iterations and x := x(`) as an approxima-
tion to the zero of F.

The evaluation of F(x) and DF(x) is possible with a closed form formulae for the stiffness
matrix A of the operator P from [7, 21]. The following algorithm is formulated for 2D but
works for 3D analogously. In particular, it shows that F(x) and DF(x) can be assembled in
linear complexity up to one matrix-vector multiplication.

Algorithm 3.2 (Compute F(x) and DF(x)). Input: x ∈ R
2N , A ∈ R

2N×2N
sym defined by

A[j,α][k,β] :=
∫

Tj
(Pϕ[k,β]) ·ϕ[j,α] dx and z ∈ R

2 such that Dφ∗∗(x) = (x · z)z for all x ∈ R
2 and

set b := Ax; M := A;.
Compute:

for j = 1 to N
mhT= (x[j,1],x[j,2])

T ∈ R
2;

(b[j,1],b[j,2])
T := (b[j,1],b[j,2])

T + |Tj|(mhT · z) z −
∫

Tj
f dx;

(
M11

jj M12
jj

M21
jj M22

jj

)
:=

(
M11

jj M12
jj

M21
jj M22

jj

)
+ |Tj| z ⊗ z;

if ` := |mhT| > 1
(b[j,1],b[j,2])

T := (b[j,1],b[j,2])
T + ε−1

j |Tj|(1 − `−1) mhT;
(

M11
jj M12

jj

M21
jj M22

jj

)
:=

(
M11

jj M12
jj

M21
jj M22

jj

)
+ ε−1

j |Tj|
{

(1 − `−1)
(

1 0
0 1

)
+ `−3

mhT⊗ mhT

}
;

endif

endfor.

Output: DF(x) = M ∈ R
2N×2N
sym and F(x) = b ∈ R

2N .

The rectangular elements employed throughout this paper guarantee that DF(x) is always
positive definite. Our calculations confirmed this in the sense that they did not show any
instabilities.

The nested Newton-Raphson solver in Algorithm 3.1 is part of a multilevel scheme driven
by an adaptive algorithm. As in [7], we adopted the estimators

µ :=
( ∑

T∈T

µ2
T

)1/2

and η :=
( ∑

T∈T

η2
T

)1/2

(3.2)

with the refinement indicators µT , ηT , for T ∈ T , defined by

`T := (ελh|mh|)|T = max{0, |mh|T | − 1},
µ2

T := (1 + `T )‖(f − fT ) − (Pmh − (Pmh)T )‖L1(T ) + |T |`2
T ,

η2
T := (hT + `T )‖(f − fT ) − (Pmh − (Pmh)T )‖L1(T ) + |T |`2

T .

(3.3)



EFFECTIVE SIMULATION OF A MACROSCOPIC MODEL FOR STATIONARY MICROMAGNETICS 7

The estimator µ is reliable, i.e. an upper bound for the error ‖Pm−Pmh‖L2(Rd)+‖Dφ∗∗(m)−
Dφ∗∗(mh)‖L2(Ω) up to a multiplicative constant, but cannot be efficient; the estimator η is
reliable solely for m ∈ W 1,∞(Ω; Rd), but expected to be efficient.

Algorithm 3.3 (Adaptive Mesh-Refinement). Input: Initial triangulation T (0), α > 0, and
0 ≤ θ ≤ 1. Set n = 0 and mh := 0.
Compute for n = 1, 2, . . . until termination
(i) On Tj ∈ T (n) = {T1, . . . , TN} set ε|Tj

:= εj = hα
Tj

> 0, j = 1, . . . , N

(ii) Call Algorithm 3.1 with start vector associated to m
(n−1)
h and output m

(n)
h .

(iii) Compute µ and η from (3.2) and indicators ηj := ηTj
and µj := µTj

from (3.3) with mh

substituted by m
(n)
h .

(iv) Mark an element Tj ∈ T (n) provided ηj ≥ θ max
1≤k≤N

ηk (or µj respectively).

(v) Refine the marked elements, update n and go to (i).

Output: Sequence of T (n), η(n), µ(n), m
(n)
h for n = 1, 2, . . . ,.

The choice θ = 0 in Algorithm 3.3 leads to uniform mesh-refinement, whereas θ = 1/2 leads
to adapted meshes. The remaining implementational details (on the calculations of A, ηj,
µj and the mesh-design in quads) will be given in [7].

This section will be concluded with a few remarks on the fast (approximate) evaluation of
the stiffness matrix A of Algorithm 3.2 for the nonlocal operator P ; further details on this
H2-matrix approach will appear in [23]. Given two elements Tj and Tk with (large) positive
distance, the entry

A[j,α],[k,β] =

∫

Tj

∫

Tk

∂2G

∂xα∂xβ

(x − y) dy dx for 1 ≤ j, k ≤ N and 1 ≤ α, β ≤ d

is approximated by replacing the (smooth) integral kernel

gαβ(x, y) =
∂2G

∂xα∂xβ

(x − y) for α, β = 1, 2, . . . , d

by a tensor product of polynomials in x and y. For certain sets of elements σ, τ ⊆ T and
associated domains ∪σ resp. ∪τ with large distance (obtained by a cluster tree partitioning

of T , cf. [2]), let vectors x
(σ)
m1

∈ ∪σ, y
(τ)
m2

∈ ∪τ and polynomials p
(σ)
m1

, p
(τ)
m2

on ∪σ resp. ∪τ be
given and define

g̃αβ(x, y) :=

M1∑

m1=1

M2∑

m2=1

gαβ(x(σ)
m , y(τ)

m2
) p(σ)

m1
(x) p(τ)

m2
(y) for x ∈ ∪σ and y ∈ ∪τ.

Given any Tj ∈ σ and Tk ∈ τ the fast approximate evaluation of the submatrix Aαβ|σ×τ of

Aαβ ∈ R
N×N
sym , A

αβ
jk := A[j,α],[k,β], is based on the approximation

A[j,α],[k,β] ≈
M1∑

m1=1

M2∑

m2=1

gαβ(x(σ)
m1

, y(τ)
m2

)
{ ∫

Tj

p(σ)
m1

(x) dx
}{ ∫

Tk

p(τ)
m2

(y) dy
}

.

It is shown in [25, 19] for other integral kernels that storage and matrix-vector multiplication
with H2-matrix are of linear complexity O(N) instead of O(N 2). Finally, the H-matrix
approach can also be employed for a fast evaluation of the refinement indicators [21, 23].
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4. Numerical Experiments With Known Exact Solution

This section presents some numerical results obtained with the multilevel adaptive solver of
Section 3. The example is adopted from [7] to study the performance of the solver.

The unit square Ω = (0, 1)2 is filled with a uniaxial magnetic material (1.4) with easy axis
e = (−1, 1)/

√
2 and z = (1, 1)/

√
2. Then,

(m(x), λ(x)) :=

{
(y(x), 0) for x ∈ ω,
(x1x2(1 − y1(x))−1(1 − y2(x))−2y(x), 1) for x ∈ Ω\ω(4.1)
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Figure 4.1. Convergence history for uniform mesh-refinement (θ = 0) on
performance of the Newton-Raphson scheme for different choices of the penal-
ization parameter ε = hα with α = 0.25, . . . , 3. The number of iteration steps
in Algorithm 3.1 depends only slightly on α and is plotted as a function of N .

defines the solution with a singular gradient at the three vertices (0, 1), (1, 0), (1, 1) on the
boundary of the magnetic body Ω = (0, 1)2 with given right-hand side

(4.2) f := Pm + (m · z)z + λm ∈ L2(Ω; R2).

Here,

y(x) :=
(1, 1) − x

|(1, 1) − x| and ω :=
{
x ∈ Ω

∣∣ |(1, 1) − x| < 1
}
.

The adapted meshes and several conclusions on the reliability - efficiency gap are drawn
in [7] and hence not repeated here. The convergence history for Algorithm 3.1 is depicted
in Figure 4.1 for uniform mesh-refining and Figure 4.2 for adaptive mesh-refining. In both
cases, the number of iteration increases moderately with the number of unknowns in the
multilevel meshed iteration. The smaller the parameter α the larger is the discretization
error discussed in [7] but the smaller is the computational effect displayed in Figure 4.1.
Since the difference is not too large, we omitted a refined strategy which begins with a
moderate α and eventually increases α from level to level. In fact, it seems that the choice
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Figure 4.2. Convergence history for uniform mesh-refinement (θ = 0) on
performance of the Newton-Raphson scheme for adaptive mesh-refinement θ =
1/2 and penalization with ε = h and ε = h3/2. The number of iteration steps
in Algorithm 3.1 depends only slightly on α and N , although the meshes
are highly adapted. Moreover, the figure shows the number of steps for the
corresponding uniform mesh-refinement for comparison. The increase of the
computational cost with N for adaptive mesh-refinement compares with that
for uniform mesh-refinement.

α = 3/2 already proposed in [7] yields a fair compromise with k < 20 iteration steps for each
level.

5. Numerical Example on a Practical Application

The final set of examples concern the ferromagnetic beam Ω = (−1/2, 1/2) × (−5/2, 5/2)
[8] with easy axis e = (1, 0) loaded with three different loads f (1) = (6, 0) parallel, f (2) =
(0.5, 0.5) diagonally, and f (3) = (0, 0.9) orthogonal to the easy axis. Figure 5.1 displays
the effective magnetization vectors and their lengths in a grey scale computed with θ = 0
in Algorithm 3.3 on T (3). We observe some moderate changes of the orientation near the
vertices of Ω and hence run Algorithm 3.3 with θ = 1/2 for η-adapted meshes shown in the
respective Figure 5.10, 5.11, and 5.12. Therein, the magnetic potential Lmh is displayed
as well on a neighbourhood of Ω. It is stressed that the isolines indicate the fact that the
approximation is in the entire space R

2 and not restricted to a bounded subset as in [8].
The discretization history of the meshes and a picture of the approximation of λh are given
in Figure 5.2 and Figure 5.3 for f (1), in Figure 5.4 and Figure 5.5 for f (2), and in Figure 5.6
and Figure 5.7 for f (3). In contrast to the FE model in [8] and as quite some surprise
to us [7], there is a moderate refinement towards the vertices only. Figure 5.8 shows the
empirical convergence history and (as the true effective magnetization is unknown) plots the
estimators µ and η as functions of N for uniform and adaptive mesh-refinements. It turns
out that, in fact, adaptive refinements - although superior - are not really necessary here [7].
The convergence history of the Newton-Rhapson scheme for ε = h and h3/2 in Figure 5.9 is
similar to the previous example and so proves that our proposed adaptive multilevel scheme
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1

Figure 5.1. Discrete magnetizations mh in Section 5 for f (1), f (2), and f (3)

(from left to right) and penalization with ε = h3/2 on a uniform mesh T3 with
N = 320 elements.

of Algorithm 3.3 with a meshed Newton-Raphson scheme performs well for real-life scientific
computing.

6. Conclusions

The final section presents conclusions, comments, and remarks on future developments.

6.1. Resume. In the large and soft body limit of micromagnetics, the effective magneti-
zation vector, i.e. the space average of the micromagnetic magnetization vectors, can be
calculated directly from an effective model (P ). Therein, exterior field problem can be
recast via some Helmholtz projection operator P that allows a nonlocal problem for L∞

functions on the magnetic domain Ω. The convexified pointwise side-restriction |m| ≤ 1 can
be involved in a penalization problem (Pε). The associated discrete problem (Pε,h) acts on
piecewise constant trial and test functions. The work [7] presented a throughout a priori
and a posteriori error analysis of the discretization errors.
This paper presented an adaptive multilevel scheme with a nested Newton-Raphson iteration
for the efficient solution of the discrete effective model. The numerical experiments of this
paper illustrate the almost linear complexity of the scheme. Although a direct solver is
employed here, an iterative scheme for the linear subproblems might easily be involved and
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Figure 5.2. η-adaptively generated meshes T0 (with N = 5) till T7 (with
N = 1604) in Section 5 for f (1) = (.6, 0), e = (1, 0), and ε = h3/2. The grey
scale shows the length |mh| of the discrete solution.

0.05 0.1 0.15 0.2 0.25

Figure 5.3. Discrete Lagrange multiplier λh on η-adaptively generated
meshes T0 (with N = 5) till T7 (with N = 1604) in Section 5 for f (1) = (.6, 0),
e = (1, 0), and ε = h3/2. The grey scale shows the pointwise value of λh. In
the white region we have λh ≡ 0, i.e. |mh| ≤ 1.

is supported by an H-matrix approach [23]. The overall empirical experience of this paper
and that of [7] supports the subsequent remarks.

6.2. Effective Modelling of Effective Magnetization. The model (Pε,h) allows the ef-
ficient simulation of the effective magnetization vectors. This yields a macroscopic approx-
imation of a multi-scale problem with a complicated microscopic structure which would be
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0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure 5.4. η-adaptively generated meshes T0 (with N = 5) till T7 (with
N = 1886) in Section 5 for f (2) = (.5, 5), e = (1, 0), and ε = h3/2. The grey
scale shows the length |mh| of the discrete solution.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Figure 5.5. Discrete Lagrange multiplier λh on η-adaptively generated
meshes T0 (with N = 5) till T7 (with N = 1886) in Section 5 for f (2) = (.5, .5),
e = (1, 0), and ε = h3/2. The grey scale shows the pointwise value of λh. In
the white region we have λh ≡ 0, i.e. |mh| ≤ 1.

impossible to compute by a resolution of the fines scale phenomena. We refer to [4] for a one-
dimensional trivial example of non-convex minimization problem that illustrates that cluster
of local minimizers in the high-dimensional global non-convex minimization problem yield
an extremely difficult discrete problem one should not assume to be able to solve accurately.

6.3. Competition with [8]. The adaptive mesh-refinements can be very important to im-
prove the empirical convergence rates. In many cases, however, the improvements in accuracy
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0.6 0.8 1

Figure 5.6. η-adaptively generated meshes T0 (with N = 5) till T7 (with
N = 2216) in Section 5 for f (3) = (0, .9), e = (1, 0), and ε = h3/2. The grey
scale shows the length |mh| of the discrete solution.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Figure 5.7. Discrete Lagrange multiplier λh on η-adaptively generated
meshes T0 (with N = 5) till T7 (with N = 2216) in Section 5 for f (3) = (0, .9),
e = (1, 0), and ε = h3/2. The grey scale shows the pointwise value of λh. In
the white region we have λh ≡ 0, i.e. |mh| ≤ 1. Except on the vertices, we see
that there is almost no penalization.

the discrete model (Pε,h) do not really require a local mesh-refining. This is in contrast to
the discrete model of [8] where every vertex of the domain Ω yielded a local mesh-refinement
towards it. In this sense, the presented Algorithm 3 is superior to the suggested schemes of
[8]. This is particularly true for the accuracy of the magnetic potential u := Lm which is
a macroscopic quantity (e.g. it is smooth and does not exhibit oscillations) in the exterior
unbounded domain. This point is modelled exactly in (Pε,h) while the truncation error of a
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Figure 5.8. Experimental convergence of the error estimators η and µ in
Section 5 for f (1), f (2), and f (3) (from top to bottom) and uniform, η-adaptive,
and µ-adaptive mesh-refinement corresponding to the penalization parameter
ε = h3/2. There is (up to a multiplicative constant) no improvement of the
convergence behaviour by the adaptive mesh-refining strategies, although we
observe some local mesh-refinement towards the corners for f (1) and f (2), cf.
Figure 5.2 and 5.4.
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Figure 5.9. Convergence history for uniform mesh-refinement (θ = 0) on
performance of the Newton-Raphson scheme for adapted mesh-refinement and
penalization with ε = h and ε = h3/2 for f (1), f (2), and f (3) (from top to
bottom). The number of iteration steps in Algorithm 3.1 depends only slightly
on α and N .
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Figure 5.10. Discrete Magnetization mh (zoom on the left) on the η-
adaptively generated mesh T4 (with N = 236) and corresponding potential
uh (right) for constant exterior field f (1) = (.6, 0) and penalization parameter
ε = h3/2. The grey scale in the zoomed magnet displays the length |mh| of
the discrete magnetization. On the right, the pointwise value of uh is shown
by grey scale and some isolines have been drawn.

bounded neighbourhood Ω̂ of the magnetic body is NOT included in the analysis of [8] (for
simplicity).

6.4. Fast Evaluation of Integral Operator. Comparing the CPU times, the H-matrix
approach yields a fast evaluation in Algorithm 2 and then is comparable with a finite element
coupling as in [8]. Thus, the frequent reservation against the integral approach with reference
to the dense matrices is no longer a valid argument [12, 21, 22]. This will be particularly
important for 3D simulations [21].

6.5. Stabilization and Penalization. The penalty parameter ε = hα for α > 1 small, such
as ε = h3/2 seems to be a good compromise between accuracy (α large) and the condition
of the discrete system of equations (α small). In contrast to other situations in convexified
problems [1] , a further stabilization appears unnecessary. The adaptive multilevel scheme
appears to be capable of an effective numerical simulation.

6.6. Future developments. The a posteriori error estimates in this paper show the reli-
ability-efficiency gap for the error estimators µ (expected to be reliable) and η (expected to
be efficient). This dramatic lack of error control requires to be overcome in the future for
reliable and accurate numerical simulations.
The effective simulation of large soft magnets is presented in this paper. For other situations
the effective regimes are unclear, an effective model equation is unknown. It would be very
desirable to simulate those regimes with a macroscopic discretization as well.
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Figure 5.11. Discrete Magnetization mh (zoom on the left) on the η-
adaptively generated mesh T4 (with N = 212) and corresponding potential
uh (right) for constant exterior field f (2) = (.5, .5) and penalization parameter
ε = h3/2. The grey scale in the zoomed magnet displays the length |mh| of
the discrete magnetization. On the right, the pointwise value of uh is shown
by grey scale and some isolines have been drawn.

Finally, some type of asymptotic expansion of the generic situation for Eα(m) from (1.1) in
terms of a very small positive α is very desirable. As the equations change type, continuous
trial and test functions of piecewise first-order need to be involved. Higher order discretiza-
tions are valuable but rise the difficulty of a conflict with the pointwise side-restriction
|m| ≤ 1.
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