
The Savage-Hutter Avalanche Model
How far Can it be Pushed?

Kolumban Hutter, Yongqi Wang and Shiva P. Pudasaini

Department of Mechanics

Darmstadt University of Technology

64289 Darmstadt, Germany

{hutter,wang,pudasain}@mechanik.tu-darmstadt.de

Abstract

The Savage-Hutter (SH) avalanche model is a depth averaged dynamical model
of a fluid like continuum implementing the following simplifying assumptions: (i)
density preserving, (ii) shallowness of the avalanche piles and small topographic
curvatures, (iii) Coulomb-type sliding with bed friction angle δ and (iv) Mohr-
Coulomb behaviour in the interior with internal angle of friction φ ≥ δ and an
ad-hoc assumption reducing the number of Mohr’s circles in three dimensional
stress states to one. We scrutinize the available literature on information regard-
ing these assumptions and thus delineate the ranges of validity of the proposed
model equations. The discussion is limited to relatively large snow avalanches
with negligible powder snow component and laboratory sand avalanches starting
on steep slopes. The conclusion of the analysis is that the SH model is a valid
model for sand avalanches, but its Mohr–Coulomb sliding law may have to be
complemented for snow avalanches by a second viscous contribution. For very
small snow avalanches and for laboratory avalanches starting on moderately steep
and bumpy slopes it may not be adequate.

1 Introduction

The Savage-Hutter (SH) avalanche model [34, 35] and its extensions [5, 7, 8, 12, 13, 14,
15, 16, 21, 28, 29, 38, 40, 44], henceforth also called SH-model, is a dynamical fluid-like
model which consists of hyperbolic partial differential equations for the distribution of
the depth and the (two) topography-parallel, depth averaged velocity components in
an avalanching mass of cohesionless granules (e.g., sand, grains, rocks and snow). It
is designed to predict the motion and deformation from initiation to runout along a
concomitantly determined avalanche track along a prescribed topography. In the past,
it has been used to describe flows in straight and curved chutes [7, 13, 14, 15, 16], in
channels with plane and parabolic cross sections and simply curved thalwegs [5, 8, 11, 21,
22, 38, 39, 41, 42], but has been extended to flows in corries having arbitrarily curved
and twisted thalwegs and arbitrary topographies [28, 29, 30]. The basic simplifying
assumptions in the various models are mathematically not exactly the same; however,
physically they are identical, namely consisting of
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(i) the assumption of density preserving (incompressibility),

(ii) the assumption of shallowness of the avalanche piles, and of small topographic
curvatures,

(iii) the assumptions of Coulomb-type sliding with bed friction angle δ,

(iv) Mohr–Coulomb frictional behaviour in the interior with internal angle of friction
φ ≥ δ and an ad-hoc assumption, reducing the number of Mohr’s circles in three
dimensional stress states from three to one, and

(v) nearly uniform velocity profile through the avalanche depth.

All these assumptions can be justified, but they limit the applicability of the model
equations. In the ensuing study we scrutinize the literature and provide documentation
under what conditions the SH-avalanche equations are likely to be valid. Specifically,
it is shown both for laboratory avalanches and for flow avalanches of snow that the
above stated five simplifying assumptions are not invalidating the model equations to
the extent that they would not be able to reproduce laboratory and field experiments
sufficiently accurately. This is not to say that one or the other assumption (i)–(v)
would always be fulfilled, but that its violation may be minor or, if it is large, of short
duration or length as compared to the global scales, that it will hardly be identifiable
in laboratory or large scale observations. This neither means that there would not be
a number of situations in which the model equations fail as an adequate predictive
tool. This happens for instance for very small snow avalanches (slab avalanches) or for
avalanches starting on slopes with small inclination angle, for slush avalanches or for the
motion over very rough beds or abrupt topographic steps. All these cases are mainly
short-lived and thus do not reach a catastrophic level.

In §2 the ranges of validity of the aforementioned five assumptions will be identified;
it deals with laboratory experiments and field observations, and the assumptions (i)–
(v) will be justified. The performance of the model equations will be discussed in §3;
this means that model output will be compared with the corresponding findings from
experiments, but it equally also relates to the computational performance of numerical
codes in attempts to integrate the free boundary value equations. Finally, §4 brings an
outlook of unsolved problems to be handled in the future.

2 The simplifying assumptions and their ranges of

validity

2.1 Density preserving

There are hardly any measurements available on volume changes in rapid shear flows
of snow or granular materials. However, Hutter & Koch [13] reported measurements
of areal changes of granular flows in an exponentially curved chute of 10 cm width by
taking fast speed photographs from the side and measuring the areas of the individual
pile shapes. These measurements revealed volume changes in sand-avalanche-chute flows
initially of 15–20%, i.e., between the pile volume at rest and that of the first photograph
in motion, less than ∼ 4% during motion, i.e., between any two photographs when the
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avalanche was moving and inconclusive information during the settling process. This
is consistent with what one would expect: A considerable expansion when the granular
mass is set into shearing, practically remaining density preserving in rapid flow and
experiencing a compaction when the avalanche stops suddenly or continuously.

Field observations on density variations in artificially released flow avalanches of
snow were made by Gubler and others [9, 10]. These authors use microwave FMCW
techniques. Their measurements provide limited information about the density variation
with depth of the snow in motion, but the results are not conclusive enough to infer
that density variations would play a dynamic role in the avalanche motion.

Qualitatively, these results are plausible. Snow avalanches in the flowing regime
are relatively dense, bouncing is seldom seen, much less than in laboratory sand flows,
and when so, only in dry snow avalanches. So, the mean particle distances are likely
not much larger than the particle diameters. Moreover, shearing seems to be weak
and restricted to the thin fluidized layer at the base, which is most likely small (see also
velocity measurements later on). So, the depth changes due to the associated dilatations
are small. It follows that the conditions of a Boussinesq medium are satisfied, but since
no traces of buoyancy effects have been seen the assumption of density preserving is an

excellent approximation.

2.2 Shallowness of the avalanche piles – small topographic

curvature

Observations of dense flow avalanches show that the moving snow masses are thin, long
and wide and have an aspect ratio

ε =
typical thickness [H]

typical length tangential to the bed [L]
¿ 1,

which is very small and is of order 10−3 − 10−1. Avalanches with large aspect ratios
(ε ∼ 1) are generally small, travel short distances and practically never cause damage
nor constitute a danger. Therefore, they are less important. So, approximating non-
dimensionalized equations to terms linear in ε may be sufficient. This also requires
that local radii [R] of the topography are large such that [L]/[R] = O(εα), 0 < α <
1, that the coefficient of bed friction angle is equally O(εβ), 0 < β < 1, and that
dimensionless shearing in the bulk velocity profile is O(ε1+γ), with γ = min{α, β}.
These assumptions are stringent restrictions. Topographic variations must be relatively
smooth, basal friction ought to be limited (namely δ ≤ φ), so bumpy bottom boundaries
are excluded. Moreover, in reality topographic regions with large curvature are often
small and then may only have a limited effect on the overall flow of the avalanche.
When, on the other hand, avalanches chute over a topographic step and become air
borne and go through a ballistic motion, they often turn into a powder snow avalanche
after impinging on the ground. In these situations the model, of course, ceases to be
valid. On the other hand, todays Geographical Information Systems (GIS) are usually
based on a 25× 25m2 grid, whilst a 5× 5m2 grid would be more appropriate; therefore
they do not allow to resolve the topography sufficiently accurately to account for local
bumps and troughs.

Thus, the shallowness assumption is reasonably satisfied and may only occasionally
be violated. In circumstances when it is only locally violated the simplified model
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equations are likely to generate reasonable solutions, see [14].

2.3 Bed friction only Coulomb-type

All classical avalanche models write the basal shear stress as a combination of a normal-
stress dependent Coulomb term and a velocity dependent viscous terms

Basal shear = Coulomb term + Viscous contribution,

τBase = −

{

(tan δ)p⊥
v

|v|
+ c(v, p⊥)|v|v

}

,

in which δ is the bed-friction angle, p⊥ the pressure normal to the base, c the viscous
drag coefficient, generally treated as constants but varying from avalanche to avalanche,
and v is the velocity tangential to the bed, see Voellmy [42], Perla et al. [26], Salm
et al. [31, 32]. Hutter and others almost exclusively set c = 0 and state that granular
avalanches in the laboratory can be well reproduced by the Coulomb term alone [5, 7, 8,
9, 11, 12, 13, 14, 15, 16], sometimes by accounting for a reduction in the value of δ in the
rear portion of the avalanche, [5, 45], because abraded and deposited fines reduce the
bed friction angle. On the other hand, identifications of δ and c from observations and
back calculation of field avalanches, come up with both, nonzero δ and c, see e.g. Ancey
[1, 2], Gubler et al. [9], Gubler [10], Zwinger and others [46, 47]. For the runout process
shortly before the avalanche comes to an immediate stop, there were even suggestions
to parameterize c as c ∝ |v|−3, see Schaerer [36].

It is well known that with a Coulomb sliding law alone and a constant bed friction
angle, a steady flow1 of an avalanche down an inclined plane cannot be obtained; the
avalanche is continuously accelerating. (See, however, the work of Savage & Nohguchi
[33] for an exponentially curved bed and when δ is not a constant; and work by Hutter
[11], Hutter & Greve [12], Hutter & Nohguchi [15]). Based on this, it is sometimes
argued that, if the steady state motion exists, an additional friction process, e.g. a
viscous component is needed. In the field, this question can probably never be settled.
Verification is not possible, since avalanche tracks are not plane, not uniformly rough and
generally too short in the sense of producing steady state behaviour. At least as far as
field avalanches are concerned, an additional friction mechanism only needs to be added,
when large discrepancies with observations arise. From this it follows that existence of
a steady asymptotic flow in natural events is rather a belief of the scientist demanding
it than an established fact. Careful experiments done with granular avalanches along
plexiglass chutes show no conclusive information as to whether steady state flows will
asymptotically be reached2, see Eckart et al. [4].

In a recent paper, in which Ancey and Meunier [2] performed a back analysis of 15
documented avalanche events, the bulk frictional force, experienced by an avalanche was
computed. “Three types of rheological behaviour were identified: (i) the inertial regime,
where the frictional force drops to zero, (ii) the Coulombic frictional force, where the
force is fairly independent of the avalanche velocity, and (iii) the velocity-dependent
regime, where the force exhibits a complicated (nonlinear and hysteretic) dependence
on velocity. During its course, an avalanche can experience one or several regimes.

1The centre of mass of a finite mass is moving steadily; the avalanche can still deform.
2In these experiments δ and φ were similar to those also relevant in dense flow avalanches
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Interestingly, the Coulomb model can provide predictions of the velocity and runout
distance in good agreement with field data for most events, even though for some path
sections, the bulk frictional force departs from the Coulomb model”, from [2].

Results obtained by Zwinger [46] point in a slightly different direction. He models
mixed avalanches consisting of powder and flow avalanche components, in which the
SH-flow avalanche component is used in combination with a turbulent, particle laden
powder avalanche with a coupling through a saltation layer. In post computations
of the Madlein avalanche of 1984 in the community Ischgl he found that reasonable
agreement with the observed deposition could only be obtained when the sliding law
was Coulomb-type at low velocities and viscous-type at large velocities. No extensive
parameter study seems to have been made by Zwinger, so that better agreement would
also be possible when a careful parameter identification would be made. Besides this,
the Madlein avalanche is mixed and thus of a different class.

All these findings converge to the statement that Coulomb friction only needs to be
complemented by a viscous drag under unusual circumstances.

2.4 Shearing is unimportant except at the very base

Typical internal, φ, and bed, δ, friction angles for real snow avalanches and for labora-
tory avalanches of quartz, sand, marmor chips and vestolen (plastic beads) moving on
plexiglass chutes or chutes coated with drawing paper and sandpaper (SIA120), respec-
tively, are

Snow: 30◦ < φ < 40◦, 13◦ < δ < 22◦,

Lab sand: 30◦ < φ < 37◦, 19◦ < δ < 25◦.

This guarantees that the basal surfaces are smoother than the material under motion,
and the absence of the bumpiness makes it unlikely that the bed transmits considerable
shearing into the moving pile. Note also that the ranges of δ and φ stated above
cover similar intervals, making inferences from laboratory results to large scale snow
avalanches possible, since these are the only two phenomenological parameters in the
SH-model with which the material response of a granular avalanche is described.

Data on measured velocity profiles are scarce for both, field and laboratory ex-
periments. Velocity profiles were measured at selected points in artificially released
avalanches by Dent et al. [3] for an avalanche in Montana. From a shelter behind a rock
nose in the avalanche track the passing avalanche was observed through a window from
bottom to top and pure plugflow was observed. Gubler and others [9, 10] used radar
Doppler measurements to determine the depth variation of the downhill velocity in an
artificially released flow avalanche at the Lukmanier pass in Switzerland; shearing was
observed, but it was small, and a statement that it needed to be accounted for was not
conclusive. Kern et al. [20] performed chute experiments at Weißfluhjoch, Switzerland,
2680 m a.s.l in a 38 m long rectangular channel with snow and observed that their
artificial snow avalanches suffered shearing within the lower most layer, approximately
covering 20–30% of the avalanche depth, above which plug flow and below which sliding
was observed. Kern et al. roughened the bed artificially so that the bed friction angle
may have been large, above say 30◦, but they did not provide measured values. So, the
experiments likely constitute a situation not typical for flow avalanches.
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Eckart et al. [4] conducted laboratory experiments with sand on plexiglass and used
Particle Image Velocimetry (PIV) techniques to view the moving mass from above,
below and from the side, so measuring the surface and basal velocity as well as its
profile at the sidewall of the uniform steady flow. Chutes, 65, 185 and 285 cm long
and 27,5 cm wide, inclined at 30◦, 35◦, 40◦ and 45◦ were used. Shearing was observed
immediately at the outlet of the material, but disappeared after a distance of 50 cm.
Below this region of flow establishment basal and surface velocities were equal with
a relative deviation of less than 3.5%. The shearing in the flow establishment region
depends on the inclination angle of the chute and the constructive details of the outlet
mechanism. In this case the granular material is released from a tank by quickly lifting
a gate, thus freeing the particles along a line perpendicular to the base. Because of the
basal friction the bottom particles are held back, whilst the top particles are free to
move. This automatically introduces a shearing that is weakened as the material moves
down the slope as a free-surface flow.

Pudasaini and Hsiau [27] conducted similar experiments with a laboratory chute
consisting of an inclined plane that merges via cylindrical segment into a horizontal
plane but this time the flow is completely three-dimensional, unconfined, unsteady and
non-uniform. PIV measurements were made from above and below in the steep portions
of the chute close to the transition region with similar results as reported above: The
mean deviation of velocities at the base and the free surface is no more than 3%.

We conclude, a depth averaged model based on uniform velocity profiles provides most

likely an accurate description of the dynamics of flow avalanches on smooth beds.

2.5 Mohr–Coulomb behaviour

Because in a depth integrated model only the stress states at the free surface and at the
base enter the description, a detailed model for the mechanical constitutive behaviour
of the stresses is not needed. Nevertheless, the granular structure of the material is still
thought to be important insofar as active and passive stress states are distinguished
according to whether the flow is extending or compressing in the direction of the stress
considered.

The following approximate description of the Mohr–Coulomb behaviour is likely
the most critical assumption of the model. It is based on the observation of real flow
avalanches that the motion is primarily unidirectional, and transverse shearing is small.
Consider a local Cartesian coordinate system at a basal point, in which x is in the
downhill direction, y is transverse and z is orthogonal to the two, Fig. 1a. Moreover,
consider an infinitesimal cube (its lower face lies in the sliding surface) with the stress
vectors as indicated on the visible faces; pzz is the overburden pressure and τxz the shear
traction, at the base as exerted on the sliding surface; pyy is the pressure exerted on
faces of the cube normal to the y-direction. It is assumed that the shear stresses τxy
and τyz are negligibly small, so that pyy is very close to a principal stress, which will be
assumed; τxy is small since transverse shearing is supposed to be small – the motion is
practically all downhill – and τyz cannot be large, because, by construction, x is in the
direction of the local velocity. Given the pair (pbzz, τ

b
xz) (b for base), it must lie in the

stress plane (p, τ) on the line through the origin, forming the angle δ with the p-axis.
All stress states on planes at the base perpendicular to the y-axis then lie on the active
(dashed) or passive (solid) circles through (pbzz, τ

b
xz) that are tangent to the wedge with
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Figure 1: (a) Volume element at the base of an avalanche. The local coordinates x, y
and z are in the direction of the sliding velocity, perpendicular to it and tangential to
the bed and normal to the two directions. The stress vectors indicated on the front and
top faces are those components which are significant for the Mohr circle argument. The
omitted components are small. (b) Mohr stress plane (in which pressure is positive).
The point representing the traction on the sliding surface lies on the straight line forming
the angle δ with the p-axis. Through this point an active and a passive Mohr circles can
be drawn which touch the wedge with opening angle 2φ On these circles lie the stress
states (pbxx, τ

b
xz)act/pass as well as the principal stresses indicated by •.

vertex angle 2δ, and the points (pbxx, τ
b
xz)act,pass are obtained by a rotation of 180◦ on

these circles. Of the two possibilities “act” (“pass”) is selected if the normal strain
rate in the x-direction, ∂u/∂x is positive, i.e., extensional (negative, i.e., compacting).
The principal stresses and the direction of the elements at which they apply can also
be calculated; they are given as indicated by the solid circles in the Mohr diagram in
Fig. 1b. Given (pbzz, τ

b
xz), all stress states can be expressed in terms of these as well as

φ and δ.
There remains the determination of pbyy. To this end it will now be assumed that

of the three principal stresses two will agree with one another. This ad-hoc assumption
makes the determination of pbyy unique and sets it equal to one of the four principal
stresses on the two circles shown in Fig. 1b. The sign of the longitudinal normal strain
rate, ∂u/∂x, selects the active or passive circle, and the sign of the transversal normal
strain rate, ∂v/∂y, will determine the smaller (∂v/∂y > 0) or the larger (∂v/∂y < 0) of
the two values on the respective circle. Thus,

pbxx
pbzz

= Kxact/pass
(φ, δ),

pbyy
pbzz

= K
yact/pass

xact/pass
(φ, δ), (1)

where Kxact/pass
, K

yact/pass

xact/pass
are the earth pressure coefficients that are functions of φ and

δ. This is the least rational assumption of all, and it is only justified by the results
it produces. It should, however, also be mentioned that the above ad-hoc assumption
destroys the rational invariance of the equations about the z-direction perpendicular to
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the tangential plane of the reference surface. The reason for this lies in the omission of
the stresses τyz and the preference of the x-velocities in the above construction of (1).
Iverson and others [17, 18] in their models do not use it.

At the free surface all stress components must be zero in a cohesionless Mohr–
Coulomb material if the traction from above is set to zero. Moreover, since pzz and τxz
are linearly distributed, it is also reasonable to assume a linear dependence for pxx and
pyy, connecting (pbxx, p

b
yy) at the base with (0, 0) at the free surface.

3 Performance of the model

3.1 Governing equations [28]

The SH-equations were derived in various different coordinate systems. In appropriately
chosen orthogonal curvilinear coordinates they take the following conservative form:

Mass Balance

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (2)

Momentum Balances

∂

∂t
(hu) +

∂

∂x
(hu2) +

∂

∂y
(huv) = hsx −

∂

∂x

(

βxh
2

2

)

,

(3)
∂

∂t
(hv) +

∂

∂x
(huv) +

∂

∂y
(hv2) = hsy −

∂

∂y

(

βyh
2

2

)

,

βx := −εgzKx, βy := −εgzKy,

sx := gx −
u

|u|
tan δ

(

−gz + λκηu2
)

+ εgz
∂b

∂x
,

(4)
sy := gy −

v

|u|
tan δ

(

−gz + λκηu2
)

+ εgz
∂b

∂y
,

η := cos (ψ(y) + ϕ(x) + ϕ0) ,

in which

Kx = Kxact/pass
= 2sec2φ

(

1∓
(

1− cos2 φ/ cos2 δ
)1/2

)

− 1,

(

∂u

∂x
>
< 0

)

,

(5)

Ky = K
yact/pass

xact/pass
=

1

2

(

Kx + 1∓
(

(Kx − 1)2 + 4 tan2 δ
)1/2

)

,

(

∂v

∂y
>
< 0

)

.

Here, x, y are curvilinear coordinates in the directions along and perpendicular to the
curved and twisted master curve; h, hu, hv are the avalanche depth and the specific
momenta in the x- and y-directions, respectively; gx, gy, gz define the gravity components
in the three orthogonal directions x, y, z; λκ is the local radius of curvature of the
master curve and βx, βy define normal pressures in the x- and y-directions, respectively.
Moreover, b(x, y) defines the basal surface, i.e., the deviation of the basal topography
from the reference surface z = 0, whilst ϕ gives the accumulation of the torsion of the
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master curve from an initial position and φ0 is an arbitrary constant, see Pudasaini &
Hutter [28]. Equations (2)–(5) form a hyperbolic system of partial differential equations
with coefficients which may have jump discontinuities and can be written in standard
mathematical form. For their solution the input quantities are the topography (b(x, y),
master curve) the internal and bed friction angles, φ, δ, and the initial values for h,
u, v; the output is defined by the three conservative functions h(x, y, t), hu(x, y, t) and
hv(x, y, t) or equivalently h(x, y, t), u(x, y, t) and v(x, y, t).

3.2 Numerical schemes

In order to test the above model equations against avalanche events either in Nature
or in the laboratory, a numerical integration scheme must be constructed. Early at-
tempts [5, 7, 8, 12, 13, 14, 21, 34, 35, 45] used Lagrangian finite difference schemes with
central difference approximation and leap frog temporal integration steps. These ap-
proaches made addition of explicit numerical diffusion necessary, but it was held minimal
and made operative where gradients of the avalanche thickness and velocities became
large. These methods were not able to capture shocks and may have smoothed these
out. Shock capturing finite difference techniques were introduced later. Tai [38] and
Tai et al. [39] used them in a two-dimensional Eulerian shock capturing scheme and a
one-dimensional front-tracking method, respectively. Wang et al. [44] employed a high
resolution approach, namely the non-oscillatory central (NOC) scheme, and compared
different cell reconstruction techniques – four second-order total variation diminishing
(TVD) limiters and a three-order essentially non-oscillatory (ENO) cell reconstruction
scheme. Of the numerical methods under consideration the NOC scheme with the
Minmod TVD limiter showed the best performance in chute flows down a parabolic
channel merging into a horizontal plane. These Eulerian schemes, whereas superior to
the above mentioned central difference schemes, are comparably accurate to other shock
capturing methods. Koschdon and Schaefer [22] use an arbitrary Lagrangian-Eulerian
finite-volume method, where unstructured boundary-fitted moving grids are employed
to follow the free boundary. The underlying flow solver consists of a Godunov-type ap-
proach in the space-time domain, and the fluxes are calculated using Riemann solvers.
Vollmöller [43], on the other hand, uses a wave propagation method in the context of
unstructured finite volumes and on the basis of Godunov-type schemes with spatially
discretized flux functions.

Comparisons of numerical solutions with laboratory chute flows have been conducted
in [5, 7, 8, 11, 13, 14, 21, 35, 38, 39, 40, 41, 45] and will not be repeated here. However,
the results of the motion of a finite mass of sand down a plane plexiglass chute merging
into a horizontal runout are summarised in Fig. 2. It compares the geometry of the
deposit as obtained experimentally and computationally by Pudasaini [27] using the
integration technique in Wang et al [44] and Tai [38]. The details are given in the figure
caption.

The true test of a shock capturing integration method is a situation where abrupt
changes of flow heights and/or velocities occur. Experiments were conducted in the
Darmstadt laboratory3 for uniform granular flows down an inclined plane that is diverted
by a pyramid, a circular cylinder or a wall. Shock waves, dead zones and/or particle free

3Laboratory of the Department of Mechanics, Darmstadt University of Technology, Darmstadt,
Germany.
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a) Final deposit of a granular avalanche obtained by the theory
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b) Final deposit of a granular avalanche obtained by the experiment
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Figure 2: Final deposit of a granular avalanche moving down a plexiglass plane with
45◦ inclination angle merging into a horizontal plane. The panels show height level lines
of the deposit at rest as obtained by the theory (above) and experiment (below) and
as determined by Pudasaini, [27], using the integration method described in Wang et
al [44].

regions were formed that were computationally reproduced by Gray et al. [6] using the
NOC scheme introduced by Nessyahu & Tadmor [25] and extended to multidimensions
by Jiang & Tadmor [19] and Lie & Noelle [23]. The results of Gray et al. can also be
reproduced by using the integration routine of Wang et al. [44].

A robust test of an integration code for the SH-equations is the flow of a finite
granular mass down an inclined plane impinging on obstructions, partly circumflowing
and partly overflowing these, and then merging into a horizontal plane. The topography
of the deposited mass depends strongly on the flow around and over the obstruction.
For a high wall perpendicular to and across the inclined plane, which only allows flow
around the sides of the wall, the deposited mass, computed with the NOC scheme and
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(a) granular flow of a finite mass past a wall

t = 7 t = 14 t = 21

(b) granular flow of a finite mass past a tetrahedral wedge

t = 7 t = 14 t = 21

Figure 3: Three-dimensional geometries of a granular flow down an inclined (by 40◦)
plane and into the horizontal plane past a wall (above) and a tetrahedral wedge (below)
both having a maximum dimensionless height of H = 5 for three different dimensionless
times t = 7, 14, 21.

the Minmod limiter described in Wang et al. [44] consists of two separate heaps with
lobes connected to the sides of the wall at much higher elevation, which are unrealistic
and not reproduced when the integration is performed for the flow over and around a
tetrahedral wedge. Admittedly, when impinging a wall, the SH-equations can not be a
valid set of equations to properly predict the flow in the immediate vicinity of the wall.
The formation of the dead zone behind the wall, however, changes the geometry of the
flow in the right direction. In any case, a numerical scheme that does not show these
lobes would certainly be more trustworthy; inspite of this, corroboration of the solution
by experiment is still necessary. Fig. 3 shows some deposited masses for this case and
the figure caption explains details.

It is apparent that numerical integration of the strongly convective SH-equations
requires a robust numerical programme which must be tested in benchmark problems
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involving shocks, dead zones and granular free regions. Of course, less sophisticated dis-
cretisations may prove adequate when shocks or steep gradients of the fields do not arise.
In any case, only a trustworthy numerical programme can be used when computational
results are compared with experiments.

3.3 Comparison with observations

It is not necessary here to repeat the many comparisons that were conducted with
numerical output and experimental findings. In the laboratory the moving granular
masses were photographed with fast speed cameras operating between 4 and 15 frames
per second. This simple technique allowed comparison of the avalanche circumference
as the moving mass evolved through time from initiation to runout. With less accuracy
the photos also permitted estimation of the velocity distribution. However, the latter
became only experimentally available, once the particle image velocimetry technique
was introduced. Excellent comparisons were obtained in confined flows down chutes
consisting of plane segments [14], an exponentially [13] or concave-convexly [7] curved
profile in which a single hump was split into two separate depositions above and below
the topographic bump. Further comparisons were performed for transversely unconfined
flows down an inclined plane merging into a horizontal plane [8, 21, 43], or a parabolic
channel merging into a horizontal plane with curved thalweg [5, 45]. Steep shock-like
depth changes arose in the transition zones from supercritical (dilating) to subcritical
(compacting) flow conditions that could well be reproduced by the shock-capturing in-
tegration techniques, but shock forming flows down inclined planes, diverted by wedges,
walls and cylinders [40] could only adequately be reproduced by the shock capturing
techniques [6, 44]. While these results are pleasing and provide support for the SH
model, there still is the need for comparison of experiments and theory when dead zones
are formed. Such studies are presently under way.

Whereas laboratory experiments can be studied under isolated, well controlled con-
ditions, this is not so for natural avalanche events, even if these are artificially released.
Comparison of the SH-equations with such events are very rare and generally less con-
vincing than for granular avalanches in the laboratory. Problems arise with the esti-
mation of δ and φ, the discretisation of the topography, the estimation of the moving
mass, the neglection of entraining mass from below and possible deposition, which may
be present, in some instances to a large extent. The only example we know is reported
in [46, 47].

In this regard it seems important that input parameters of the SH-model are ran-
domly varied within practically reasonable ranges and that probability distributions are
determined for the output quantities.

In summary, it appears that computational routines are now available which reliably
allow construction of trustworthy solutions of the SH-equations. The computational
output, when compared with laboratory experiments proved the equations to be a re-
liable model for most tested configurations. Further scrutiny does, however, seem to
be necessary for geometrically more complex situations for which the validity of the
model seems to be limited. Predictions or post-computations of real avalanches should
always be performed with a statistical input such that input parameters are varied in
their ranges of expectation and probability distributions are determined for the output
quantities.
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4 Outlook

This brief review of the depth integrated SH-equations allows the following inferences
to be drawn:

• For laboratory avalanches starting on steep slopes the model seems to reproduce
the motion of a finite mass of granular material down inclines from initiation
to runout pretty well including shock capturing features. Additional studies are
necessary for those cases in which obstructions are hit in the vicinity of which the
shallowness assumption is formally violated.

• Comparison of the model equations with field events – either snow or rock
avalanches – are scarce and insufficiently conclusive. Post-calculations of the
Madlein avalanche in Austria seems to indicate that the Coulomb basal friction
law is insufficient and requires complementation by a viscous contribution.

• The model equations have not yet been tested for stresses exerted on walls of ob-
structing objects. Are computed wall pressures and shear tractions representative
for the corresponding tractions in the experiment? Practically, these quantities
are important ones, and suitability of the model equations for these would make
the model much more valuable.

• There is a need for a wider application of the model to situations with natural
topographies. Such topographies should also be reproduced in physical models at
smaller scale to test the robustness of the equations as well as the reproducibility
of avalanche motion performed with these.

• Avalanches starting from gentle slopes of inclination angles ≤ 30◦ and on bumpy
beds behave differently, and they often come to a premature stop. They generally
are less dangerous.

Finally, it ought to be mentioned that this review and all the work reported herein
does not touch the practically significant entrainment mechanism from the ground. If
snow avalanches move over a layer of deposited snow, they often entrain snow from this
layer and grow in mass. This often happens and significantly influences the dynamics
of an avalanche. To my knowledge, there is only one paper attacking this problem [37].
Of course, in real avalanche events the measurement of the entrained mass is difficult
and in most situations not controllable. Needless to say, that this adds further to the
uncertainty in comparisons of real avalanche events with computational output of any
model.
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